/* * EffRigCollection.cpp * * Created on: 10/ago/2009 * Author: Nicola Mori */ /*! @file EffRigCollection.cpp The EffRigCollection class implementation file. */ #include "EffRigCollection.h" #include "TGraphAsymmErrors.h" extern "C" { /*! @brief Fortran routine by Sergio Ricciarini which computes errors on the efficiency. * * This routine has been developed to carefully evaluate the error bars on the efficiency, * which must have a value between 0 and 1. See the appendix of Sergio's PhD thesis for more * details. * The important thing is that the computed efficiency will have the unphysical value 1.1 * if there are less than 8 events in the efficiency sample (eg., the sample used to compute the * efficiency). This is necessary to have a reliable estimate of the errors. * * @param sel Pointer to an Int_t variable containing the number of events in the efficiency sample. * @param det Pointer to an Int_t variable containing the number of events in the efficiency sample * which satisfied the set of cuts for which the efficiency is being measured. * @param eff Pointer to a Double_t variable where the computed efficiency will be returned. * @param errLow Pointer to a Double_t variable where the length of the lower error bar will * be returned. * @param errHigh Pointer to a Double_t variable where the length of the upper error bar will * be returned. * @return Not clear at this point... ignore it. */ bool efficiency_(Int_t* sel, Int_t* det, Double_t* eff, Double_t* errLow, Double_t* errHigh); } EffRigCollection::EffRigCollection(const char *collectionName, TString outFileBase, TString rigBinsFile, int errMethod, bool owns) : EffCollection(collectionName, outFileBase, errMethod, owns), _bins(0), _selVector(0), _detVector(0), _outUp(0), _outDown(0) { ifstream rigBinListFile; rigBinListFile.open(rigBinsFile); TString auxString; while (!rigBinListFile.eof()) { rigBinListFile >> auxString; if (auxString != "") { _bins.push_back(auxString.Atof()); } } rigBinListFile.close(); _selVector.resize(_bins.size() - 1, 0); _detVector.resize(_bins.size() - 1, 0); } int EffRigCollection::ApplyCut(PamLevel2 *event) { _nEv++; if (_selCollection.ApplyCut(event) == CUTOK) { // Check if the event is inside the rigidity range // NOTE: at this point a TrkPhSinCut should be already performed, // since we are going to retrieve rigidity. float rig = event->GetTrack(0)->GetTrkTrack()->GetRigidity(); if (rig >= _bins[0]) { int i = 1; while (rig >= _bins[i] && i < (int) _bins.size()) { i++; } i--; if (i < (int) (_selVector.size())) { _selVector[i]++; _sel++; if (_detCollection.ApplyCut(event) == CUTOK) { _detVector[i]++; _det++; _nGood++; return CUTOK; } } else _outUp++; } else { _outDown++; return 0; } } return 0; } void EffRigCollection::Finalize() { // Print the report EffCollection::Finalize(); cout << " Events below the minimum rigidity: " << _outDown << "\n"; cout << " Events above the maximum rigidity: " << _outUp << "\n"; // Compute the error Int_t sel[_selVector.size()]; Int_t det[_detVector.size()]; Double_t eff[_selVector.size()]; Double_t errLow[_selVector.size()]; Double_t errHigh[_selVector.size()]; for (unsigned int i = 0; i < _selVector.size(); i++) { sel[i] = (Int_t) _selVector[i]; det[i] = (Int_t) _detVector[i]; } TGraphAsymmErrors errGraph; errGraph.SetName(GetName()); errGraph.SetMarkerColor(kRed); errGraph.SetMarkerStyle(7); errGraph.GetYaxis()->SetRangeUser(0, 1.2); if (_errMethod == EFFERR_ROOT) { double binning[_bins.size()]; for (unsigned int i = 0; i < _bins.size(); i++) binning[i] = _bins[i]; TH1I pass("pass", "pass", _bins.size() - 1, binning); TH1I total("total", "total", _bins.size() - 1, binning); for (unsigned int i = 0; i < _selVector.size(); i++) { for (int j = 0; j < det[i]; j++) pass.Fill((binning[i + 1] + binning[i]) / 2.); for (int j = 0; j < sel[i]; j++) total.Fill((binning[i + 1] + binning[i]) / 2.); } errGraph.BayesDivide(&pass, &total); Double_t graphX; double currBin; int currPoint = 0; for (unsigned int i = 0; i < _selVector.size(); i++) { errGraph.GetPoint(currPoint, graphX, eff[i]); currBin = (binning[i + 1] + binning[i]) / 2.; if (currBin == graphX) { if (_selVector[i] < 8) { eff[i] = 1.1; errLow[i] = errHigh[i] = 0.; errGraph.SetPoint(currPoint, graphX, 1.1); float halfBin = (binning[i + 1] - binning[i]) / 2.; errGraph.SetPointError(currPoint, halfBin, halfBin, 0., 0.); } currPoint++; } } } if (_errMethod == EFFERR_SERGIO) { for (unsigned int i = 0; i < _selVector.size(); i++) { efficiency_(&(sel[i]), &(det[i]), &(eff[i]), &(errLow[i]), &(errHigh[i])); float R = (_bins[i] + _bins[i + 1]) / 2.; float halfBin = (_bins[i + 1] - _bins[i]) / 2.; errGraph.SetPoint(i, R, eff[i]); errGraph.SetPointError(i, halfBin, halfBin, errLow[i], errHigh[i]); } } // Write the output files if (_outFileBase != "") { ofstream outTextFile((_outFileBase + "-" + GetName() + "-rig.txt").Data(), ios_base::out); streamsize newPrec = 4; outTextFile.precision(newPrec); outTextFile.setf(ios::fixed, ios::floatfield); for (unsigned int i = 0; i < _selVector.size(); i++) { outTextFile << setw(10) << _bins[i] << setw(10) << _bins[i + 1] << setw(10) << _detVector[i] << setw(10) << _selVector[i]; if (_selVector[i] != 0) outTextFile << setw(10) << eff[i] << setw(10) << errLow[i] << setw(10) << errHigh[i] << "\n"; else outTextFile << setw(10) << 0. << setw(10) << 0. << setw(10) << 0.; if (i < _selVector.size() - 1) //Avoids to print an empty line at the end of the file outTextFile << endl; } outTextFile.close(); TFile outRootFile((_outFileBase + "-" + GetName() + "-rig.root"), "RECREATE"); outRootFile.cd(); errGraph.Write(); outRootFile.Close(); } }