/* * CaloGeomYSensCut.cpp * * Created on: 13-apr-2010 * Author: S. Ricciarini */ /*! @file CaloGeomYSensCut.cpp The CaloGeomYSens class implementation file */ #ifndef NO_CALOAXIS #include "CaloGeomYSensCut.h" int CaloGeomYSensCut::Check(PamLevel2 *event) { Float_t ySensBorder=-0.25; // cm for TRK planes T1-T5 Float_t ySensBorderT6=+0.25; // cm for TRK plane T6 Float_t xCaloTrack = 0.; Float_t yCaloTrack = 0.; Double_t tanx, tany, beta; Float_t alCaloTop[5]; // MUST be Float_t Int_t nPoint = TrkParams::nGF+1; // MUST be Int_t Float_t zIn[nPoint]; // MUST be Float_t Trajectory* traj = NULL; static const Float_t zCaloTop=-26.181; // cm MUST Float_t tanx=_xCaloAxis->par[1]; tany=_yCaloAxis->par[1]; if (_iMethod==0) { } else if (_iMethod==1) { // curved track in the Pamela acceptance (back-propagated starting from the straight track in the calorimeter, evaluated at the top of calorimeter, which is of course better than at higher z coordinates) for (Int_t igf = 0; igf < TrkParams::nGF; igf++) { zIn[igf]=TrkParams::zGF[igf]; } zIn[TrkParams::nGF]=zCaloTop; traj = (Trajectory*) new Trajectory(nPoint,zIn); alCaloTop[0]=_xCaloAxis->GetYfit(zCaloTop); // Yfit [xCaloTop] alCaloTop[1]=_yCaloAxis->GetYfit(zCaloTop); // Yfit [yCaloTop] alCaloTop[2]=sin(atan(sqrt(pow(tanx,2)+pow(tany,2)))); // [sintheta] alCaloTop[3]=TMath::Pi()+atan2(tany,tanx); // [phi] beta = event->GetToFLevel2()->CalcBeta(0,_resMax,_qualCut,_chi2Cut); // TOF stand-alone beta alCaloTop[4] = 1./(_mass*beta/sqrt(1.-pow(beta,2))); // [etaP] [rho = (m/Z)*(beta/(sqrt(1-beta^2)))] traj->DoTrack(alCaloTop,zCaloTop); } else { return 1; } for (Int_t igf = 0; igf < TrkParams::nGF; igf++) { if (_iMethod==0) { // straight track // NOTE: par[0] is the x (y) coordinate on plane z=0 in PAMELA reference (magnet centre) xCaloTrack = _xCaloAxis->par[0] + tanx * TrkParams::zGF[igf]; // cm yCaloTrack = _yCaloAxis->par[0] + tany * TrkParams::zGF[igf]; // cm } else if (_iMethod==1) { xCaloTrack = traj->x[igf]; yCaloTrack = traj->y[igf]; } if (! (TrkParams::xGF_min[igf] + _xTolCaloTrack < xCaloTrack && xCaloTrack < TrkParams::xGF_max[igf] - _xTolCaloTrack) ) { return 0; } if (! (TrkParams::yGF_min[igf] + _yTolCaloTrack < yCaloTrack && yCaloTrack < TrkParams::yGF_max[igf] - _yTolCaloTrack) ) { return 0; } if (_ySens==0) { if (igf==4 || (6<=igf && igf<=9) ) { // T1-T5 // cout << "igf " << igf << " yCaloTrack " << yCaloTrack << " " << ySensBorder << endl; if (! (yCaloTrack < ySensBorder) ) { // cout << "NO" << endl; return 0; } } else if (igf==11) { // T6 // cout << "igf " << igf << " yCaloTrack " << yCaloTrack << " " << ySensBorderT6 << endl; if (! (yCaloTrack < ySensBorderT6) ) { // cout << "NO" << endl; return 0; } } } else if (_ySens==1) { if (igf==4 || (6<=igf && igf<=9) ) { // T1-T5 // cout << "igf " << igf << " yCaloTrack " << yCaloTrack << " " << ySensBorder << endl; if (! (yCaloTrack > ySensBorder) ) { // cout << "NO" << endl; return 0; } } else if (igf==11) { // T6 // cout << "igf " << igf << " yCaloTrack " << yCaloTrack << " " << ySensBorderT6 << endl; if (! (yCaloTrack > ySensBorderT6) ) { // cout << "NO" << endl; return 0; } } } else { return 0; } } return CUTOK; } #endif /* NO_CALOAXIS */