/[PAMELA software]/DarthVader/TrackerLevel2/src/TrkLevel2.cpp
ViewVC logotype

Contents of /DarthVader/TrackerLevel2/src/TrkLevel2.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1.53 - (show annotations) (download)
Tue Feb 3 13:57:15 2009 UTC (16 years ago) by pam-fi
Branch: MAIN
Changes since 1.52: +89 -70 lines
Upgrade of the tracking routine, to accept an arbitrary reference plane + change of method name (DoTrack insted of DoTrack2)

1 /**
2 * \file TrkLevel2.cpp
3 * \author Elena Vannuccini
4 */
5 #include <TrkLevel2.h>
6 #include <iostream>
7 #include <math.h>
8 using namespace std;
9 //......................................
10 // F77 routines
11 //......................................
12 extern "C" {
13 void dotrack_(int*, double*, double*, double*, double*, int*);
14 void dotrack2_(int*, double*, double*, double*, double*,double*, double*, double*,int*);
15 void dotrack3_(int*, double*, double*, double*, double*,double*, double*, double*,double*,int*);
16 void mini2_(int*,int*,int*);
17 void guess_();
18 void gufld_(float*, float*);
19 float risxeta2_(float *);
20 float risxeta3_(float *);
21 float risxeta4_(float *);
22 float risyeta2_(float *);
23 }
24
25 //--------------------------------------
26 //
27 //
28 //--------------------------------------
29 TrkTrack::TrkTrack(){
30 // cout << "TrkTrack::TrkTrack()" << endl;
31 seqno = -1;
32 image = -1;
33 chi2 = 0;
34 nstep = 0;
35 for(int it1=0;it1<5;it1++){
36 al[it1] = 0;
37 for(int it2=0;it2<5;it2++)coval[it1][it2] = 0;
38 };
39 for(int ip=0;ip<6;ip++){
40 xgood[ip] = 0;
41 ygood[ip] = 0;
42 xm[ip] = 0;
43 ym[ip] = 0;
44 zm[ip] = 0;
45 resx[ip] = 0;
46 resy[ip] = 0;
47 tailx[ip] = 0;
48 taily[ip] = 0;
49 xv[ip] = 0;
50 yv[ip] = 0;
51 zv[ip] = 0;
52 axv[ip] = 0;
53 ayv[ip] = 0;
54 dedx_x[ip] = 0;
55 dedx_y[ip] = 0;
56 multmaxx[ip] = 0;
57 multmaxy[ip] = 0;
58 seedx[ip] = 0;
59 seedy[ip] = 0;
60 xpu[ip] = 0;
61 ypu[ip] = 0;
62
63 };
64
65 // TrkParams::SetTrackingMode();
66 // TrkParams::SetPrecisionFactor();
67 // TrkParams::SetStepMin();
68 TrkParams::SetMiniDefault();
69 TrkParams::SetPFA();
70
71 int ngf = TrkParams::nGF;
72 for(int i=0; i<ngf; i++){
73 xGF[i] = 0.;
74 yGF[i] = 0.;
75 }
76
77
78 };
79 //--------------------------------------
80 //
81 //
82 //--------------------------------------
83 TrkTrack::TrkTrack(const TrkTrack& t){
84 seqno = t.seqno;
85 image = t.image;
86 chi2 = t.chi2;
87 nstep = t.nstep;
88 for(int it1=0;it1<5;it1++){
89 al[it1] = t.al[it1];
90 for(int it2=0;it2<5;it2++)coval[it1][it2] = t.coval[it1][it2];
91 };
92 for(int ip=0;ip<6;ip++){
93 xgood[ip] = t.xgood[ip];
94 ygood[ip] = t.ygood[ip];
95 xm[ip] = t.xm[ip];
96 ym[ip] = t.ym[ip];
97 zm[ip] = t.zm[ip];
98 resx[ip] = t.resx[ip];
99 resy[ip] = t.resy[ip];
100 tailx[ip] = t.tailx[ip];
101 taily[ip] = t.taily[ip];
102 xv[ip] = t.xv[ip];
103 yv[ip] = t.yv[ip];
104 zv[ip] = t.zv[ip];
105 axv[ip] = t.axv[ip];
106 ayv[ip] = t.ayv[ip];
107 dedx_x[ip] = t.dedx_x[ip];
108 dedx_y[ip] = t.dedx_y[ip];
109 multmaxx[ip] = t.multmaxx[ip];
110 multmaxy[ip] = t.multmaxy[ip];
111 seedx[ip] = t.seedx[ip];
112 seedy[ip] = t.seedy[ip];
113 xpu[ip] = t.xpu[ip];
114 ypu[ip] = t.ypu[ip];
115 };
116
117 // TrkParams::SetTrackingMode();
118 // TrkParams::SetPrecisionFactor();
119 // TrkParams::SetStepMin();
120 TrkParams::SetMiniDefault();
121 TrkParams::SetPFA();
122
123 int ngf = TrkParams::nGF;
124 for(int i=0; i<ngf; i++){
125 xGF[i] = t.xGF[i];
126 yGF[i] = t.yGF[i];
127 }
128 };
129 //--------------------------------------
130 //
131 //
132 //--------------------------------------
133 void TrkTrack::Copy(TrkTrack& t){
134
135 t.seqno = seqno;
136 t.image = image;
137 t.chi2 = chi2;
138 t.nstep = nstep;
139 for(int it1=0;it1<5;it1++){
140 t.al[it1] = al[it1];
141 for(int it2=0;it2<5;it2++)t.coval[it1][it2] = coval[it1][it2];
142 };
143 for(int ip=0;ip<6;ip++){
144 t.xgood[ip] = xgood[ip];
145 t.ygood[ip] = ygood[ip];
146 t.xm[ip] = xm[ip];
147 t.ym[ip] = ym[ip];
148 t.zm[ip] = zm[ip];
149 t.resx[ip] = resx[ip];
150 t.resy[ip] = resy[ip];
151 t.tailx[ip] = tailx[ip];
152 t.taily[ip] = taily[ip];
153 t.xv[ip] = xv[ip];
154 t.yv[ip] = yv[ip];
155 t.zv[ip] = zv[ip];
156 t.axv[ip] = axv[ip];
157 t.ayv[ip] = ayv[ip];
158 t.dedx_x[ip] = dedx_x[ip];
159 t.dedx_y[ip] = dedx_y[ip];
160 t.multmaxx[ip] = multmaxx[ip];
161 t.multmaxy[ip] = multmaxy[ip];
162 t.seedx[ip] = seedx[ip];
163 t.seedy[ip] = seedy[ip];
164 t.xpu[ip] = xpu[ip];
165 t.ypu[ip] = ypu[ip];
166
167 };
168 int ngf = TrkParams::nGF;
169 for(int i=0; i<ngf; i++){
170 t.xGF[i] = xGF[i];
171 t.yGF[i] = yGF[i];
172 }
173
174
175 };
176 //--------------------------------------
177 //
178 //
179 //--------------------------------------
180 /**
181 *
182 * >>> OBSOLETE !!! use TrkTrack::DoTrack(Trajectory* t) instead
183 *
184 */
185 int TrkTrack::DoTrack2(Trajectory* t){
186
187 cout << endl;
188 cout << " int TrkTrack::DoTrack2(Trajectory* t) --->> NB NB !! this method is going to be eliminated !!! "<<endl;
189 cout << " >>>> replace it with TrkTrack::DoTrack(Trajectory* t) <<<<"<<endl;
190 cout << " (Sorry Wolfgang!! Don't be totally confused!! By Elena)"<<endl;
191 cout << endl;
192
193 return DoTrack(t);
194
195 };
196 //--------------------------------------
197 //
198 //
199 //--------------------------------------
200 /**
201 * Evaluates the trajectory in the apparatus associated to the track state-vector.
202 * It integrates the equations of motion in the magnetic field.
203 * @param t pointer to an object of the class Trajectory,
204 * which z coordinates should be previously assigned.
205 * @return error flag.
206 */
207 int TrkTrack::DoTrack(Trajectory* t){
208
209 double *dxout = new double[t->npoint];
210 double *dyout = new double[t->npoint];
211 double *dthxout = new double[t->npoint];
212 double *dthyout = new double[t->npoint];
213 double *dtlout = new double[t->npoint];
214 double *dzin = new double[t->npoint];
215 double dal[5];
216
217 int ifail = 0;
218
219 for (int i=0; i<5; i++) dal[i] = (double)al[i];
220 for (int i=0; i<t->npoint; i++) dzin[i] = (double)t->z[i];
221
222 TrkParams::Load(1);
223 if( !TrkParams::IsLoaded(1) ){
224 cout << "int TrkTrack::DoTrack(Trajectory* t) --- ERROR --- m.field not loaded"<<endl;
225 return 0;
226 }
227 dotrack2_(&(t->npoint),dzin,dxout,dyout,dthxout,dthyout,dtlout,dal,&ifail);
228
229 for (int i=0; i<t->npoint; i++){
230 t->x[i] = (float)*(dxout+i);
231 t->y[i] = (float)*(dyout+i);
232 t->thx[i] = (float)*(dthxout+i);
233 t->thy[i] = (float)*(dthyout+i);
234 t->tl[i] = (float)*(dtlout+i);
235 }
236
237 delete [] dxout;
238 delete [] dyout;
239 delete [] dzin;
240 delete [] dthxout;
241 delete [] dthyout;
242 delete [] dtlout;
243
244 return ifail;
245 };
246 //--------------------------------------
247 //
248 //
249 //--------------------------------------
250 //float TrkTrack::BdL(){
251 //};
252 //--------------------------------------
253 //
254 //
255 //--------------------------------------
256 Float_t TrkTrack::GetRigidity(){
257 Float_t rig=0;
258 if(chi2>0)rig=1./al[4];
259 if(rig<0) rig=-rig;
260 return rig;
261 };
262 //
263 Float_t TrkTrack::GetDeflection(){
264 Float_t def=0;
265 if(chi2>0)def=al[4];
266 return def;
267 };
268 //
269 /**
270 * Method to retrieve the dE/dx measured on a tracker view.
271 * @param ip plane (0-5)
272 * @param iv view (0=x 1=y)
273 */
274 Float_t TrkTrack::GetDEDX(int ip, int iv){
275 if(iv==0 && ip>=0 && ip<6)return fabs(dedx_x[ip]);
276 else if(iv==1 && ip>=0 && ip<6)return fabs(dedx_y[ip]);
277 else {
278 cout << "TrkTrack::GetDEDX(int ip, int iv) -- wrong input parameters "<<ip<<iv<<endl;
279 return 0.;
280 }
281 }
282 /**
283 * Method to evaluate the dE/dx measured on a tracker plane.
284 * The two measurements on x- and y-view are averaged.
285 * @param ip plane (0-5)
286 */
287 Float_t TrkTrack::GetDEDX(int ip){
288 if( (Int_t)XGood(ip)+(Int_t)YGood(ip) == 0 ) return 0;
289 return (GetDEDX(ip,0)+GetDEDX(ip,1))/((Int_t)XGood(ip)+(Int_t)YGood(ip));
290 };
291
292 /**
293 * Method to evaluate the dE/dx averaged over all planes.
294 */
295 Float_t TrkTrack::GetDEDX(){
296 Float_t dedx=0;
297 for(Int_t ip=0; ip<6; ip++)dedx+=GetDEDX(ip,0)*XGood(ip)+GetDEDX(ip,1)*YGood(ip);
298 dedx = dedx/(GetNX()+GetNY());
299 return dedx;
300 };
301 /**
302 * Returns 1 if the cluster on a tracker view includes bad strips
303 * (at least one bad strip among the four strip used by p.f.a.)
304 * @param ip plane (0-5)
305 * @param iv view (0=x 1=y)
306 */
307 Bool_t TrkTrack::IsBad(int ip,int iv){
308 if(iv==0 && ip>=0 && ip<6)return (xgood[ip]<0) ;
309 else if(iv==1 && ip>=0 && ip<6)return (ygood[ip]<0) ;
310 else {
311 cout << "TrkTrack::IsBad(int ip, int iv) -- wrong input parameters "<<ip<<iv<<endl;
312 return 0.;
313 }
314 };
315 /**
316 * Returns 1 if the signal on a tracker view is saturated.
317 * @param ip plane (0-5)
318 * @param iv view (0=x 1=y)
319 */
320 Bool_t TrkTrack::IsSaturated(int ip,int iv){
321 if(iv==0 && ip>=0 && ip<6)return (dedx_x[ip]<0) ;
322 else if(iv==1 && ip>=0 && ip<6)return (dedx_y[ip]<0) ;
323 else {
324 cout << "TrkTrack::IsSaturated(int ip, int iv) -- wrong input parameters "<<ip<<iv<<endl;
325 return 0.;
326 }
327 };
328 /**
329 * Returns 1 if either the x or the y signal on a tracker plane is saturated.
330 * @param ip plane (0-5)
331 */
332 Bool_t TrkTrack::IsSaturated(int ip){
333 return (IsSaturated(ip,0)||IsSaturated(ip,1));
334 };
335 /**
336 * Returns 1 if there is at least a saturated signal along the track.
337 */
338 Bool_t TrkTrack::IsSaturated(){
339 for(int ip=0; ip<6; ip++)for(int iv=0; iv<2; iv++)if(IsSaturated(ip,iv))return true;
340 return false;
341 }
342 /**
343 * Returns the track "lever-arm" on the x view, defined as the distance (in planes) between
344 * the upper and lower x measurements (the maximum value of lever-arm is 6).
345 */
346 Int_t TrkTrack::GetLeverArmX(){
347 int first_plane = -1;
348 int last_plane = -1;
349 for(Int_t ip=0; ip<6; ip++){
350 if( XGood(ip) && first_plane == -1 )first_plane = ip;
351 if( XGood(ip) && first_plane != -1 )last_plane = ip;
352 }
353 if( first_plane == -1 || last_plane == -1){
354 cout<< "Int_t TrkTrack::GetLeverArmX() -- XGood(ip) always false ??? "<<endl;
355 return 0;
356 }
357 return (last_plane-first_plane+1);
358 }
359 /**
360 * Returns the track "lever-arm" on the y view, defined as the distance (in planes) between
361 * the upper and lower y measurements (the maximum value of lever-arm is 6).
362 */
363 Int_t TrkTrack::GetLeverArmY(){
364 int first_plane = -1;
365 int last_plane = -1;
366 for(Int_t ip=0; ip<6; ip++){
367 if( YGood(ip) && first_plane == -1 )first_plane = ip;
368 if( YGood(ip) && first_plane != -1 )last_plane = ip;
369 }
370 if( first_plane == -1 || last_plane == -1){
371 cout<< "Int_t TrkTrack::GetLeverArmY() -- YGood(ip) always false ??? "<<endl;
372 return 0;
373 }
374 return (last_plane-first_plane+1);
375 }
376 /**
377 * Returns the track "lever-arm" on the x+y view, defined as the distance (in planes) between
378 * the upper and lower x,y (couple) measurements (the maximum value of lever-arm is 6).
379 */
380 Int_t TrkTrack::GetLeverArmXY(){
381 int first_plane = -1;
382 int last_plane = -1;
383 for(Int_t ip=0; ip<6; ip++){
384 if( XGood(ip)*YGood(ip) && first_plane == -1 )first_plane = ip;
385 if( XGood(ip)*YGood(ip) && first_plane != -1 )last_plane = ip;
386 }
387 if( first_plane == -1 || last_plane == -1){
388 cout<< "Int_t TrkTrack::GetLeverArmXY() -- XGood(ip)*YGood(ip) always false ??? "<<endl;
389 return 0;
390 }
391 return (last_plane-first_plane+1);
392 }
393 /**
394 * Returns the reduced chi-square of track x-projection
395 */
396 Float_t TrkTrack::GetChi2X(){
397 float chiq=0;
398 for(int ip=0; ip<6; ip++)if(XGood(ip))chiq+= pow((xv[ip]-xm[ip])/resx[ip],2.);
399 if(GetNX()>3)chiq=chiq/(GetNX()-3);
400 else chiq=0;
401 if(chiq==0)cout << " Float_t TrkTrack::GetChi2X() -- WARNING -- value not defined "<<chiq<<endl;
402 return chiq;
403 }
404 /**
405 * Returns the reduced chi-square of track y-projection
406 */
407 Float_t TrkTrack::GetChi2Y(){
408 float chiq=0;
409 for(int ip=0; ip<6; ip++)if(YGood(ip))chiq+= pow((yv[ip]-ym[ip])/resy[ip],2.);
410 if(GetNY()>2)chiq=chiq/(GetNY()-2);
411 else chiq=0;
412 if(chiq==0)cout << " Float_t TrkTrack::GetChi2Y() -- WARNING -- value not defined "<<chiq<<endl;
413 return chiq;
414 }
415 /**
416 * Returns the logarythm of the likeliwood-function of track x-projection
417 */
418 Float_t TrkTrack::GetLnLX(){
419 float lnl=0;
420 for(int ip=0; ip<6; ip++)
421 if( XGood(ip) && tailx[ip]!=0 )
422 lnl += (tailx[ip]+1.) * log( (tailx[ip]*pow(resx[ip],2.) + pow(xv[ip]-xm[ip],2.)) / (tailx[ip]*pow(resx[ip],2)) );
423 if(GetNX()>3)lnl=lnl/(GetNX()-3);
424 else lnl=0;
425 if(lnl==0){
426 cout << " Float_t TrkTrack::GetLnLX() -- WARNING -- value not defined "<<lnl<<endl;
427 Dump();
428 }
429 return lnl;
430
431 }
432 /**
433 * Returns the logarythm of the likeliwood-function of track y-projection
434 */
435 Float_t TrkTrack::GetLnLY(){
436 float lnl=0;
437 for(int ip=0; ip<6; ip++)
438 if( YGood(ip) && taily[ip]!=0 )
439 lnl += (taily[ip]+1.) * log( (taily[ip]*pow(resy[ip],2.) + pow(yv[ip]-ym[ip],2.)) / (taily[ip]*pow(resy[ip],2)) );
440 if(GetNY()>2)lnl=lnl/(GetNY()-2);
441 else lnl=0;
442 if(lnl==0){
443 cout << " Float_t TrkTrack::GetLnLY() -- WARNING -- value not defined "<<lnl<<endl;
444 Dump();
445 }
446 return lnl;
447
448 }
449 /**
450 * Returns the effective angle, relative to the sensor, on each plane.
451 * @param ip plane (0-5)
452 * @param iv view (0=x 1=y)
453 */
454 Float_t TrkTrack::GetEffectiveAngle(int ip, int iv){
455
456 if(ip<0 || ip>5){
457 cout << "Float_t TrkTrack::GetEffectiveAngle(int "<<ip<<", int "<<iv<<") ==> wrong input"<<endl;
458 return 0.;
459 }
460
461 float v[3]={xv[ip],yv[ip],zv[ip]};
462 //-----------------------------------------
463 // effective angle (relative to the sensor)
464 //-----------------------------------------
465 float axv_geo = axv[ip];
466 float muhall_h = 297.61; //cm**2/Vs
467 float BY = TrkParams::GetBY(v);
468 float axv_eff = 0;
469 if(ip==5) axv_geo = -1*axv_geo;
470 if(ip==5) BY = -1*BY;
471 axv_eff = 180.*atan( tan(axv_geo*acos(-1.)/180.) + muhall_h * BY * 0.0001)/acos(-1.);
472 //-----------------------------------------
473 // effective angle (relative to the sensor)
474 //-----------------------------------------
475 float ayv_geo = ayv[ip];
476 float muhall_e = 1258.18; //cm**2/Vs
477 float BX = TrkParams::GetBX(v);
478 float ayv_eff = 0;
479 ayv_eff = 180.*atan( tan(ayv_geo*acos(-1.)/180.) + muhall_e * BX * 0.0001)/acos(-1.);
480
481 if (iv==0)return axv_eff;
482 else if(iv==1)return ayv_eff;
483 else{
484 cout << "Float_t TrkTrack::GetEffectiveAngle(int "<<ip<<", int "<<iv<<") ==> wrong input"<<endl;
485 return 0.;
486 }
487
488 };
489
490 //--------------------------------------
491 //
492 //
493 //--------------------------------------
494 void TrkTrack::Dump(){
495 cout << endl << "========== Track " ;
496 cout << endl << "seq. n. : "<< seqno;
497 cout << endl << "image n. : "<< image;
498 cout << endl << "al : "; for(int i=0; i<5; i++)cout << al[i] << " ";
499 cout << endl << "chi^2 : "<< chi2;
500 cout << endl << "n.step : "<< nstep;
501 cout << endl << "xgood : "; for(int i=0; i<6; i++)cout << XGood(i) ;
502 cout << endl << "ygood : "; for(int i=0; i<6; i++)cout << YGood(i) ;
503 cout << endl << "xm : "; for(int i=0; i<6; i++)cout << xm[i] << " ";
504 cout << endl << "ym : "; for(int i=0; i<6; i++)cout << ym[i] << " ";
505 cout << endl << "zm : "; for(int i=0; i<6; i++)cout << zm[i] << " ";
506 cout << endl << "xv : "; for(int i=0; i<6; i++)cout << xv[i] << " ";
507 cout << endl << "yv : "; for(int i=0; i<6; i++)cout << yv[i] << " ";
508 cout << endl << "zv : "; for(int i=0; i<6; i++)cout << zv[i] << " ";
509 cout << endl << "resx : "; for(int i=0; i<6; i++)cout << resx[i] << " ";
510 cout << endl << "resy : "; for(int i=0; i<6; i++)cout << resy[i] << " ";
511 cout << endl << "tailx : "; for(int i=0; i<6; i++)cout << tailx[i] << " ";
512 cout << endl << "taily : "; for(int i=0; i<6; i++)cout << taily[i] << " ";
513 cout << endl << "coval : "; for(int i=0; i<5; i++)cout << coval[0][i]<<" ";
514 cout << endl << " "; for(int i=0; i<5; i++)cout << coval[1][i]<<" ";
515 cout << endl << " "; for(int i=0; i<5; i++)cout << coval[2][i]<<" ";
516 cout << endl << " "; for(int i=0; i<5; i++)cout << coval[3][i]<<" ";
517 cout << endl << " "; for(int i=0; i<5; i++)cout << coval[4][i]<<" ";
518 cout << endl << "dedx_x : "; for(int i=0; i<6; i++)cout << dedx_x[i] << " ";
519 cout << endl << "dedx_y : "; for(int i=0; i<6; i++)cout << dedx_y[i] << " ";
520 cout << endl << "maxs x : "; for(int i=0; i<6; i++)cout << GetClusterX_MaxStrip(i) << " ";
521 cout << endl << "maxs y : "; for(int i=0; i<6; i++)cout << GetClusterY_MaxStrip(i) << " ";
522 cout << endl << "mult x : "; for(int i=0; i<6; i++)cout << GetClusterX_Multiplicity(i) << " ";
523 cout << endl << "mult y : "; for(int i=0; i<6; i++)cout << GetClusterY_Multiplicity(i) << " ";
524 cout << endl << "seed x : "; for(int i=0; i<6; i++)cout << GetClusterX_Seed(i) << " ";
525 cout << endl << "seed y : "; for(int i=0; i<6; i++)cout << GetClusterY_Seed(i) << " ";
526 cout << endl << "xpu : "; for(int i=0; i<6; i++)cout << xpu[i] << " ";
527 cout << endl << "ypu : "; for(int i=0; i<6; i++)cout << ypu[i] << " ";
528
529 cout << endl;
530 }
531 /**
532 * Set the TrkTrack position measurements
533 */
534 void TrkTrack::SetMeasure(double *xmeas, double *ymeas, double *zmeas){
535 for(int i=0; i<6; i++) xm[i]=*xmeas++;
536 for(int i=0; i<6; i++) ym[i]=*ymeas++;
537 for(int i=0; i<6; i++) zm[i]=*zmeas++;
538 }
539 /**
540 * Set the TrkTrack position resolution
541 */
542 void TrkTrack::SetResolution(double *rx, double *ry){
543 for(int i=0; i<6; i++) resx[i]=*rx++;
544 for(int i=0; i<6; i++) resy[i]=*ry++;
545 }
546 /**
547 * Set the TrkTrack tails position resolution
548 */
549 void TrkTrack::SetTail(double *tx, double *ty, double factor){
550 for(int i=0; i<6; i++) tailx[i]=factor*(*tx++);
551 for(int i=0; i<6; i++) taily[i]=factor*(*ty++);
552 }
553 /**
554 * Set the TrkTrack Student parameter (resx,resy,tailx,taily)
555 * from previous gausian fit
556 *@param flag =0 standard, =1 with noise correction
557 */
558 void TrkTrack::SetStudentParam(int flag){
559 float sx[11]={0.000128242,
560 0.000136942,
561 0.000162718,
562 0.000202644,
563 0.00025597,
564 0.000317456,
565 0.000349048,
566 0.000384638,
567 0.000457295,
568 0.000512319,
569 0.000538573};
570 float tx[11]={1.79402,
571 2.04876,
572 2.88376,
573 3.3,
574 3.14084,
575 4.07686,
576 4.44736,
577 3.5179,
578 3.38697,
579 3.45739,
580 3.18627};
581 float sy[11]={0.000483075,
582 0.000466925,
583 0.000431658,
584 0.000428317,
585 0.000433854,
586 0.000444044,
587 0.000482098,
588 0.000537579,
589 0.000636279,
590 0.000741998,
591 0.000864261};
592 float ty[11]={0.997032,
593 1.11147,
594 1.18526,
595 1.61404,
596 2.21908,
597 3.08959,
598 4.48833,
599 4.42687,
600 4.65253,
601 4.52043,
602 4.29926};
603 int index;
604 float fact=0.;
605 for(int i=0; i<6; i++) {
606 index = int((fabs(axv[i])+1.)/2.);
607 if(index>10) index=10;
608 tailx[i]=tx[index];
609 if(flag==1) {
610 if(fabs(axv[i])<=10.) fact = resx[i]/risxeta2_(&(axv[i]));
611 if(fabs(axv[i])>10.&&fabs(axv[i])<=15.) fact = resx[i]/risxeta3_(&(axv[i]));
612 if(fabs(axv[i])>15.) fact = resx[i]/risxeta4_(&(axv[i]));
613 } else fact = 1.;
614 resx[i] = sx[index]*fact;
615 }
616 for(int i=0; i<6; i++) {
617 index = int((fabs(ayv[i])+1.)/2.);
618 if(index>10) index=10;
619 taily[i]=ty[index];
620 if(flag==1) fact = resy[i]/risyeta2_(&(ayv[i]));
621 else fact = 1.;
622 resy[i] = sy[index]*fact;
623 }
624 }
625 /**
626 * Set the TrkTrack good measurement
627 */
628 void TrkTrack::SetGood(int *xg, int *yg){
629
630 for(int i=0; i<6; i++) xgood[i]=*xg++;
631 for(int i=0; i<6; i++) ygood[i]=*yg++;
632 }
633
634 /**
635 * Load the magnetic field
636 */
637 void TrkTrack::LoadField(TString path){
638
639 // strcpy(path_.path,path.Data());
640 // path_.pathlen = path.Length();
641 // path_.error = 0;
642 // readb_();
643
644 // TrkParams::SetTrackingMode();
645 // TrkParams::SetPrecisionFactor();
646 // TrkParams::SetStepMin();
647 TrkParams::SetMiniDefault();
648
649 TrkParams::Set(path,1);
650 TrkParams::Load(1);
651 if( !TrkParams::IsLoaded(1) ){
652 cout << "void TrkTrack::LoadField(TString path) --- ERROR --- m.field not loaded"<<endl;
653 }
654
655 };
656
657
658 /**
659 * Method to fill minimization-routine common
660 */
661 void TrkTrack::FillMiniStruct(cMini2track& track){
662
663 for(int i=0; i<6; i++){
664
665 // cout << i<<" - "<<xgood[i]<<" "<<XGood(i)<<endl;
666 // cout << i<<" - "<<ygood[i]<<" "<<YGood(i)<<endl;
667 track.xgood[i]=XGood(i);
668 track.ygood[i]=YGood(i);
669
670 track.xm[i]=xm[i];
671 track.ym[i]=ym[i];
672 track.zm[i]=zm[i];
673
674 // --- temporaneo ----------------------------
675 // float segment = 100.;
676 // track.xm_a[i]=xm[i];
677 // track.xm_b[i]=xm[i];
678 // track.ym_a[i]=ym[i];
679 // track.ym_b[i]=ym[i];
680 // if( XGood(i) && !YGood(i) ){
681 // track.ym_a[i] = track.ym_a[i]+segment;
682 // track.ym_b[i] = track.ym_b[i]-segment;
683 // }else if( !XGood(i) && YGood(i)){
684 // track.xm_a[i] = track.xm_a[i]+segment;
685 // track.xm_b[i] = track.xm_b[i]-segment;
686 // }
687 // --- temporaneo ----------------------------
688
689 if( XGood(i) || YGood(i) ){
690 double segment = 2.;//cm
691 // NB: i parametri di allineamento hanno una notazione particolare!!!
692 // sensor = 0 (hybrid side), 1
693 // ladder = 0-2 (increasing x)
694 // plane = 0-5 (from bottom to top!!!)
695 int is = (int)GetSensor(i); if(i==5)is=1-is;
696 int ip = 5-i;
697 int il = (int)GetLadder(i);
698
699 double omega = 0.;
700 double beta = 0.;
701 double gamma = 0.;
702 if(
703 (is < 0 || is > 1 || ip < 0 || ip > 5 || il < 0 || il > 2) &&
704 true){
705 // se il piano risulta colpito, ladder e sensore devono essere
706 // assegnati correttamente
707 cout << " void TrkTrack::FillMiniStruct(cMini2track&) --- WARNING --- sensor not defined, cannot read alignment parameters "<<endl;
708 cout << " is ip il = "<<is<<" "<<ip<<" "<<il<<endl;
709 }else{
710 omega = alignparameters_.omega[is][il][ip];
711 beta = alignparameters_.beta[is][il][ip];
712 gamma = alignparameters_.gamma[is][il][ip];
713 }
714
715 if( XGood(i) && !YGood(i) ){
716 track.xm_a[i] = xm[i] - omega * segment;
717 track.ym_a[i] = ym[i] + segment;
718 // track.zm_a[i] = zm[i] + beta * segment;//not used yet
719 track.xm_b[i] = xm[i] + omega * segment;
720 track.ym_b[i] = ym[i] - segment;
721 // track.zm_b[i] = zm[i] - beta * segment;//not used yet
722 }else if( !XGood(i) && YGood(i) ){
723 track.xm_a[i] = xm[i] + segment;
724 track.ym_a[i] = ym[i] + omega * segment;
725 // track.zm_a[i] = zm[i] - gamma * segment;//not used yet
726 track.xm_b[i] = xm[i] - segment;
727 track.ym_b[i] = ym[i] - omega * segment;
728 // track.zm_b[i] = zm[i] + gamma * segment;//not used yet
729 }
730 }
731
732 track.resx[i]=resx[i];
733 track.resy[i]=resy[i];
734 track.tailx[i]=tailx[i];
735 track.taily[i]=taily[i];
736 }
737
738 for(int i=0; i<5; i++) track.al[i]=al[i];
739 track.zini = 23.5;
740 // ZINI = 23.5 !!! it should be the same parameter in all codes
741
742 }
743 /**
744 * Method to set values from minimization-routine common
745 */
746 void TrkTrack::SetFromMiniStruct(cMini2track *track){
747
748 for(int i=0; i<5; i++) {
749 al[i]=track->al[i];
750 for(int j=0; j<5; j++) coval[i][j]=track->cov[i][j];
751 }
752 chi2 = track->chi2;
753 nstep = track->nstep;
754 for(int i=0; i<6; i++){
755 xv[i] = track->xv[i];
756 yv[i] = track->yv[i];
757 zv[i] = track->zv[i];
758 xm[i] = track->xm[i];
759 ym[i] = track->ym[i];
760 zm[i] = track->zm[i];
761 axv[i] = track->axv[i];
762 ayv[i] = track->ayv[i];
763 }
764
765 }
766 /**
767 * \brief Method to re-evaluate coordinates of clusters associated with a track.
768 *
769 * The method can be applied only after recovering level1 information
770 * (either by reprocessing single events from level0 or from
771 * the TrkLevel1 branch, if present); it calls F77 subroutines that
772 * read the level1 common and fill the minimization-routine common.
773 * Some clusters can be excluded or added by means of the methods:
774 *
775 * TrkTrack::ResetXGood(int ip)
776 * TrkTrack::ResetYGood(int ip)
777 * TrkTrack::SetXGood(int ip, int cid, int is)
778 * TrkTrack::SetYGood(int ip, int cid, int is)
779 *
780 * NB! The method TrkTrack::SetGood(int *xg, int *yg) set the plane-mask (0-1)
781 * for the minimization-routine common. It deletes the cluster information
782 * (at least for the moment...) thus cannot be applied before
783 * TrkTrack::EvaluateClusterPositions().
784 *
785 * Different p.f.a. can be applied by calling (once) the method:
786 *
787 * TrkParams::SetPFA(0); //Set ETA p.f.a.
788 *
789 * @see TrkParams::SetPFA(int)
790 */
791 Bool_t TrkTrack::EvaluateClusterPositions(){
792
793 // cout << "void TrkTrack::GetClusterositions() "<<endl;
794
795 TrkParams::Load(1);
796 if( !TrkParams::IsLoaded(1) ){
797 cout << "Bool_t TrkTrack::EvaluateClusterPositions() ---ERROR--- m.field not loaded "<<endl;
798 return false;
799 }
800 TrkParams::Load(4);
801 if( !TrkParams::IsLoaded(4) ){
802 cout << "Bool_t TrkTrack::EvaluateClusterPositions() ---ERROR--- p.f.a. par. not loaded "<<endl;
803 return false;
804 }
805 TrkParams::Load(5);
806 if( !TrkParams::IsLoaded(5) ){
807 cout << "Bool_t TrkTrack::EvaluateClusterPositions() ---ERROR--- alignment par. not loaded "<<endl;
808 return false;
809 }
810
811 for(int ip=0; ip<6; ip++){
812 // cout << ip<<" ** "<<xm[ip]<<" / "<<ym[ip]<<endl;;
813 int icx = GetClusterX_ID(ip)+1;
814 int icy = GetClusterY_ID(ip)+1;
815 int sensor = GetSensor(ip)+1;//<< convenzione "Paolo"
816 if(ip==5 && sensor!=0)sensor=3-sensor;//<< convenzione "Elena"
817 int ladder = GetLadder(ip)+1;
818 float ax = axv[ip];
819 float ay = ayv[ip];
820 float v[3];
821 v[0]=xv[ip];
822 v[1]=yv[ip];
823 v[2]=zv[ip];
824 float bfx = 10*TrkParams::GetBX(v);//Tesla
825 float bfy = 10*TrkParams::GetBY(v);//Tesla
826 int ipp=ip+1;
827 xyzpam_(&ipp,&icx,&icy,&ladder,&sensor,&ax,&ay,&bfx,&bfy);
828 if(icx<0 || icy<0)return false;
829 }
830 return true;
831 }
832 /**
833 * \brief Tracking method. It calls F77 mini routine.
834 *
835 * @param pfixed Particle momentum. If pfixed=0 the momentum
836 * is left as a free parameter, otherwise it is fixed to the input value.
837 * @param fail Output flag (!=0 if the fit failed).
838 * @param iprint Flag to set debug mode ( 0 = no output; 1 = verbose; 2 = debug).
839 * @param froml1 Flag to re-evaluate positions (see TrkTrack::GetClusterPositions()).
840 *
841 * The option to re-evaluate positions can be used only after recovering
842 * level1 information, eg. by reprocessing the single event.
843 *
844 * Example:
845 *
846 * if( !event->GetTrkLevel0() )return false;
847 * event->GetTrkLevel0()->ProcessEvent(); // re-processing level0->level1
848 * int fail=0;
849 * event->GetTrkLevel2()->GetTrack(0)->Fit(0.,fail,0,1);
850 *
851 * @see EvaluateClusterPositions()
852 *
853 * The fitting procedure can be varied by changing the tracking mode,
854 * the fit-precision factor, the minimum number of step, etc.
855 * @see SetTrackingMode(int)
856 * @see SetPrecisionFactor(double)
857 * @see SetStepMin(int)
858 * @see SetDeltaB(int,double)
859 */
860 void TrkTrack::Fit(double pfixed, int& fail, int iprint, int froml1){
861
862 TrkParams::Load(1);
863 if( !TrkParams::IsLoaded(1) ){
864 cout << "void TrkTrack::Fit(double,int&,int,int) ---ERROR--- m.field not loaded "<<endl;
865 return;
866 }
867 TrkParams::Load(5);
868 if( !TrkParams::IsLoaded(5) ){
869 cout << "void TrkTrack::Fit(double,int&,int,int) ---ERROR--- align.param. not loaded "<<endl;
870 return;
871 }
872
873 float al_ini[] = {0.,0.,0.,0.,0.};
874
875 extern cMini2track track_;
876 fail = 0;
877
878 FillMiniStruct(track_);
879
880 if(froml1!=0){
881 if( !EvaluateClusterPositions() ){
882 cout << "void TrkTrack::Fit("<<pfixed<<","<<fail<<","<<iprint<<","<<froml1<<") --- ERROR evaluating cluster positions "<<endl;
883 FillMiniStruct(track_) ;
884 fail = 1;
885 return;
886 }
887 }else{
888 FillMiniStruct(track_);
889 }
890
891 // if fit variables have been reset, evaluate the initial guess
892 if(al[0]==-9999.&&al[1]==-9999.&&al[2]==-9999.&&al[3]==-9999.&&al[4]==-9999.)guess_();
893
894 // --------------------- free momentum
895 if(pfixed==0.) {
896 track_.pfixed=0.;
897 }
898 // --------------------- fixed momentum
899 if(pfixed!=0.) {
900 al[4]=1./pfixed;
901 track_.pfixed=pfixed;
902 }
903
904 // store temporarily the initial guess
905 for(int i=0; i<5; i++) al_ini[i]=track_.al[i];
906
907 // ------------------------------------------
908 // call mini routine
909 // ------------------------------------------
910 int istep=0;
911 int ifail=0;
912 mini2_(&istep,&ifail, &iprint);
913 if(ifail!=0) {
914 if(iprint)cout << "ERROR: ifail= " << ifail << endl;
915 fail = 1;
916 }
917 // ------------------------------------------
918
919 SetFromMiniStruct(&track_);
920
921 if(fail){
922 if(iprint)cout << " >>>> fit failed "<<endl;
923 for(int i=0; i<5; i++) al[i]=al_ini[i];
924 }
925
926 };
927 /**
928 * Reset the fit parameters
929 */
930 void TrkTrack::FitReset(){
931 for(int i=0; i<5; i++) al[i]=-9999.;
932 chi2=0.;
933 nstep=0;
934 // for(int i=0; i<6; i++) xv[i]=0.;
935 // for(int i=0; i<6; i++) yv[i]=0.;
936 // for(int i=0; i<6; i++) zv[i]=0.;
937 // for(int i=0; i<6; i++) axv[i]=0.;
938 // for(int i=0; i<6; i++) ayv[i]=0.;
939 for(int i=0; i<5; i++) {
940 for(int j=0; j<5; j++) coval[i][j]=0.;
941 }
942 }
943 /**
944 * Set the tracking mode
945 */
946 void TrkTrack::SetTrackingMode(int trackmode){
947 extern cMini2track track_;
948 track_.trackmode = trackmode;
949 }
950 /**
951 * Set the factor scale for tracking precision
952 */
953 void TrkTrack::SetPrecisionFactor(double fact){
954 extern cMini2track track_;
955 track_.fact = fact;
956 }
957 /**
958 * Set the minimum number of steps for tracking precision
959 */
960 void TrkTrack::SetStepMin(int istepmin){
961 extern cMini2track track_;
962 track_.istepmin = istepmin;
963 }
964 /**
965 * Set deltaB parameters (id=0,1). By default they are set to zero.
966 */
967 void TrkTrack::SetDeltaB(int id, double db){
968 if(id!=0 && id!=1)cout << "void TrkTrack::SetDeltaB(int id,double db) -- wrong input parameters: "<<id<<" "<<db<<endl;
969 TrkParams::SetDeltaB(id,db);
970 }
971
972 /**
973 * Returns true if the track is inside the magnet cavity.
974 * @param toll Tolerance around the nominal volume (toll>0 define an inner fiducial volume)
975 */
976 Bool_t TrkTrack::IsInsideCavity(float toll){
977
978 // float xmagntop, ymagntop, xmagnbottom, ymagnbottom;
979 // xmagntop = xv[0] + (ZMAGNHIGH-zv[0])*tan(acos(-1.0)*axv[0]/180.);
980 // ymagntop = yv[0] + (ZMAGNHIGH-zv[0])*tan(acos(-1.0)*ayv[0]/180.);
981 // xmagnbottom = xv[5] + (ZMAGNLOW-zv[5])*tan(acos(-1.0)*axv[5]/180.);
982 // ymagnbottom = yv[5] + (ZMAGNLOW-zv[5])*tan(acos(-1.0)*ayv[5]/180.);
983 // if( xmagntop>XMAGNLOW && xmagntop<XMAGNHIGH &&
984 // ymagntop>YMAGNLOW && ymagntop<YMAGNHIGH &&
985 // xmagnbottom>XMAGNLOW && xmagnbottom<XMAGNHIGH &&
986 // ymagnbottom>YMAGNLOW && ymagnbottom<YMAGNHIGH ) return(true);
987 // else return(false);
988
989 int ngf = TrkParams::nGF;
990 for(int i=0; i<ngf; i++){
991 //
992 // cout << endl << TrkParams::GF_element[i];
993 if(
994 TrkParams::GF_element[i].CompareTo("CUF") &&
995 TrkParams::GF_element[i].CompareTo("T2") &&
996 TrkParams::GF_element[i].CompareTo("T3") &&
997 TrkParams::GF_element[i].CompareTo("T4") &&
998 TrkParams::GF_element[i].CompareTo("T5") &&
999 TrkParams::GF_element[i].CompareTo("CLF") &&
1000 true)continue;
1001 // apply condition only within the cavity
1002 // cout << " -- "<<xGF[i]<<" "<<yGF[i];
1003 if(
1004 xGF[i] <= TrkParams::xGF_min[i] + toll ||
1005 xGF[i] >= TrkParams::xGF_max[i] - toll ||
1006 yGF[i] <= TrkParams::yGF_min[i] + toll ||
1007 yGF[i] >= TrkParams::yGF_max[i] - toll ||
1008 false){
1009
1010 return false;
1011 }
1012 }
1013 return true;
1014
1015
1016 }
1017 /**
1018 * Returns true if the track is inside the nominal acceptance, which is defined
1019 * by the intersection among magnet cavity, silicon-plane sensitive area and
1020 * ToF sensitive area (nominal values from the official document used to
1021 * calculate the geometrical factor)
1022 */
1023 Bool_t TrkTrack::IsInsideAcceptance(){
1024
1025 int ngf = TrkParams::nGF;
1026 for(int i=0; i<ngf; i++){
1027 if(
1028 xGF[i] <= TrkParams::xGF_min[i] ||
1029 xGF[i] >= TrkParams::xGF_max[i] ||
1030 yGF[i] <= TrkParams::yGF_min[i] ||
1031 yGF[i] >= TrkParams::yGF_max[i] ||
1032 false)return false;
1033 }
1034 return true;
1035
1036 }
1037 /**
1038 * Method to retrieve ID (0,1,...) of x-cluster (if any) associated to this track.
1039 * If no cluster is associated, ID=-1.
1040 * @param ip Tracker plane (0-5)
1041 */
1042 Int_t TrkTrack::GetClusterX_ID(int ip){
1043 return ((Int_t)fabs(xgood[ip]))%10000000-1;
1044 };
1045 /**
1046 * Method to retrieve ID (0-xxx) of y-cluster (if any) associated to this track.
1047 * If no cluster is associated, ID=-1.
1048 * @param ip Tracker plane (0-5)
1049 */
1050 Int_t TrkTrack::GetClusterY_ID(int ip){
1051 return ((Int_t)fabs(ygood[ip]))%10000000-1;
1052 };
1053
1054 /**
1055 * Method to retrieve the ladder (0-2, increasing x) traversed by the track on this plane.
1056 * If no ladder is traversed (dead area) the metod retuns -1.
1057 * @param ip Tracker plane (0-5)
1058 */
1059 Int_t TrkTrack::GetLadder(int ip){
1060 if(XGood(ip))return (Int_t)fabs(xgood[ip]/100000000)-1;
1061 if(YGood(ip))return (Int_t)fabs(ygood[ip]/100000000)-1;
1062 return -1;
1063 };
1064 /**
1065 * Method to retrieve the sensor (0-1, increasing y) traversed by the track on this plane.
1066 * If no sensor is traversed (dead area) the metod retuns -1.
1067 * @param ip Tracker plane (0-5)
1068 */
1069 Int_t TrkTrack::GetSensor(int ip){
1070 if(XGood(ip))return (Int_t)((Int_t)fabs(xgood[ip]/10000000)%10)-1;
1071 if(YGood(ip))return (Int_t)((Int_t)fabs(ygood[ip]/10000000)%10)-1;
1072 return -1;
1073 };
1074
1075 /**
1076 * \brief Method to include a x-cluster to the track.
1077 * @param ip Tracker plane (0-5)
1078 * @param clid Cluster ID (0 = no-cluster, 1,2,... otherwise )
1079 * @param il Ladder (0-2, increasing x, -1 if no sensitive area is hit)
1080 * @param is Sensor (0-1, increasing y, -1 if no sensitive area is hit)
1081 * @param bad True if the cluster contains bad strips
1082 * @see Fit(double pfixed, int& fail, int iprint, int froml1)
1083 */
1084 void TrkTrack::SetXGood(int ip, int clid, int il, int is, bool bad){
1085 // int il=0; //ladder (temporary)
1086 // bool bad=false; //ladder (temporary)
1087 if(ip<0||ip>5||clid<0||il<-1||il>2||is<-1||is>1)
1088 cout << " void TrkTrack::SetXGood(int,int,int,int,bool) --> MA SEI DI COCCIO?!?!"<<endl;
1089 xgood[ip]=(il+1)*100000000+(is+1)*10000000+clid;
1090 if(bad)xgood[ip]=-xgood[ip];
1091 };
1092 /**
1093 * \brief Method to include a y-cluster to the track.
1094 * @param ip Tracker plane (0-5)
1095 * @param clid Cluster ID (0 = no-cluster, 1,2,... otherwise )
1096 * @param il Ladder (0-2, increasing x, -1 if no sensitive area is hit)
1097 * @param is Sensor (0-1, increasing y, -1 if no sensitive area is hit)
1098 * @param bad True if the cluster contains bad strips
1099 * @see Fit(double pfixed, int& fail, int iprint, int froml1)
1100 */
1101 void TrkTrack::SetYGood(int ip, int clid, int il, int is, bool bad){
1102 // int il=0; //ladder (temporary)
1103 // bool bad=false; //ladder (temporary)
1104 if(ip<0||ip>5||clid<0||il<-1||il>2||is<-1||is>1)
1105 cout << " void TrkTrack::SetYGood(int,int,int,int,bool) --> MA SEI DI COCCIO?!?!"<<endl;
1106 ygood[ip]=(il+1)*100000000+(is+1)*10000000+clid;
1107 if(bad)ygood[ip]=-ygood[ip];
1108 };
1109
1110 /**
1111 * \brief Average X
1112 * Average value of <xv>, evaluated from the first to the last hit x view.
1113 */
1114 Float_t TrkTrack::GetXav(){
1115
1116 int first_plane = -1;
1117 int last_plane = -1;
1118 for(Int_t ip=0; ip<6; ip++){
1119 if( XGood(ip) && first_plane == -1 )first_plane = ip;
1120 if( XGood(ip) && first_plane != -1 )last_plane = ip;
1121 }
1122 if( first_plane == -1 || last_plane == -1){
1123 return -100;
1124 }
1125 if( last_plane-first_plane+1 ==0 )return -100;
1126
1127 Float_t av = 0;
1128 for(int ip=first_plane; ip<=last_plane; ip++)av+=xv[ip];
1129
1130 return (av/(last_plane-first_plane+1));
1131 }
1132 /**
1133 * \brief Average Y
1134 * Average value of <yv>, evaluated from the first to the last hit x view.
1135 */
1136 Float_t TrkTrack::GetYav(){
1137
1138 int first_plane = -1;
1139 int last_plane = -1;
1140 for(Int_t ip=0; ip<6; ip++){
1141 if( XGood(ip) && first_plane == -1 )first_plane = ip;
1142 if( XGood(ip) && first_plane != -1 )last_plane = ip;
1143 }
1144 if( first_plane == -1 || last_plane == -1){
1145 return -100;
1146 }
1147 if( last_plane-first_plane+1 ==0 )return -100;
1148
1149 Float_t av = 0;
1150 for(int ip=first_plane; ip<=last_plane; ip++)av+=yv[ip];
1151
1152 return (av/(last_plane-first_plane+1));
1153 }
1154 /**
1155 * \brief Average Z
1156 * Average value of <zv>, evaluated from the first to the last hit x view.
1157 */
1158 Float_t TrkTrack::GetZav(){
1159
1160 int first_plane = -1;
1161 int last_plane = -1;
1162 for(Int_t ip=0; ip<6; ip++){
1163 if( XGood(ip) && first_plane == -1 )first_plane = ip;
1164 if( XGood(ip) && first_plane != -1 )last_plane = ip;
1165 }
1166 if( first_plane == -1 || last_plane == -1){
1167 return -100;
1168 }
1169 if( last_plane-first_plane+1 ==0 )return -100;
1170
1171 Float_t av = 0;
1172 for(int ip=first_plane; ip<=last_plane; ip++)av+=zv[ip];
1173
1174 return (av/(last_plane-first_plane+1));
1175 }
1176
1177 /**
1178 * \brief Number of column traversed
1179 */
1180 Int_t TrkTrack::GetNColumns(){
1181 int sensors[] = {0,0,0,0,0,0};
1182 for(int ip=0; ip<6; ip++){
1183 int sensorid = GetLadder(ip)+3*GetSensor(ip);
1184 if(XGood(ip)||YGood(ip))
1185 if(sensorid>=0 && sensorid<6)sensors[sensorid]=1;
1186 }
1187 int nsensors=0;
1188 for(int is=0; is<6; is++)nsensors += sensors[is];
1189 return nsensors;
1190 };
1191 /**
1192 * \brief Give the maximum energy release
1193 */
1194 Float_t TrkTrack::GetDEDX_max(int ip, int iv){
1195 Float_t max=0;
1196 int pfrom = 0;
1197 int pto = 6;
1198 int vfrom = 0;
1199 int vto = 2;
1200 if(ip>=0&&ip<6){
1201 pfrom = ip;
1202 pto = ip+1;
1203 }
1204 if(iv>=0&&iv<2){
1205 vfrom = iv;
1206 vto = iv+1;
1207 }
1208 for(int i=pfrom; i<pto; i++)
1209 for(int j=vfrom; j<vto; j++){
1210 if(j==0 && XGood(i) && GetDEDX(i,j)>max)max=GetDEDX(i,j);
1211 if(j==1 && YGood(i) && GetDEDX(i,j)>max)max=GetDEDX(i,j);
1212 }
1213 return max;
1214
1215 };
1216
1217 /**
1218 * \brief Give the minimum energy release
1219 */
1220 Float_t TrkTrack::GetDEDX_min(int ip, int iv){
1221 Float_t min=100000000;
1222 int pfrom = 0;
1223 int pto = 6;
1224 int vfrom = 0;
1225 int vto = 2;
1226 if(ip>=0&&ip<6){
1227 pfrom = ip;
1228 pto = ip+1;
1229 }
1230 if(iv>=0&&iv<2){
1231 vfrom = iv;
1232 vto = iv+1;
1233 }
1234 for(int i=pfrom; i<pto; i++)
1235 for(int j=vfrom; j<vto; j++){
1236 if(j==0 && XGood(i) && GetDEDX(i,j)<min)min=GetDEDX(i,j);
1237 if(j==1 && YGood(i) && GetDEDX(i,j)<min)min=GetDEDX(i,j);
1238 }
1239 return min;
1240
1241 };
1242
1243 /**
1244 * \brief Give the maximum spatial residual
1245 */
1246 Float_t TrkTrack::GetResidual_max(int ip, int iv){
1247 Float_t max=0;
1248 int pfrom = 0;
1249 int pto = 6;
1250 int vfrom = 0;
1251 int vto = 2;
1252 if(ip>=0&&ip<6){
1253 pfrom = ip;
1254 pto = ip+1;
1255 }
1256 if(iv>=0&&iv<2){
1257 vfrom = iv;
1258 vto = iv+1;
1259 }
1260 for(int i=pfrom; i<pto; i++){
1261 for(int j=vfrom; j<vto; j++){
1262 if(j==0 && XGood(i) && fabs(xm[i]-xv[i])>fabs(max))max=xm[i]-xv[i];
1263 if(j==1 && YGood(i) && fabs(ym[i]-yv[i])>fabs(max))max=ym[i]-yv[i];
1264 }
1265 }
1266 return max;
1267
1268 };
1269 /**
1270 * \brief Give the anerage spatial residual
1271 */
1272 Float_t TrkTrack::GetResidual_av(int ip, int iv){
1273 //
1274 //Sum$((xm>-50)*(xm-xv)/resx)/sqrt(TrkTrack.GetNX()*TrkTrack.GetChi2X())<0.3
1275
1276 Float_t av = 0.;
1277 int nav = 0;
1278 //
1279 int pfrom = 0;
1280 int pto = 6;
1281 int vfrom = 0;
1282 int vto = 2;
1283 if(ip>=0&&ip<6){
1284 pfrom = ip;
1285 pto = ip+1;
1286 }
1287 if(iv>=0&&iv<2){
1288 vfrom = iv;
1289 vto = iv+1;
1290 }
1291 for(int i=pfrom; i<pto; i++){
1292 for(int j=vfrom; j<vto; j++){
1293 nav++;
1294 if(j==0 && XGood(i)) av += (xm[i]-xv[i])/resx[i];
1295 if(j==1 && YGood(i)) av += (ym[i]-yv[i])/resy[i];
1296 }
1297 }
1298 if(nav==0)return -100.;
1299 return av/nav;
1300
1301 };
1302
1303
1304 /**
1305 * \brief Give the maximum multiplicity on the x view
1306 */
1307 Int_t TrkTrack::GetClusterX_Multiplicity_max(){
1308 int max=0;
1309 for(int ip=0; ip<6; ip++)
1310 if(GetClusterX_Multiplicity(ip)>max)max=GetClusterX_Multiplicity(ip);
1311 return max;
1312 };
1313 /**
1314 * \brief Give the minimum multiplicity on the x view
1315 */
1316 Int_t TrkTrack::GetClusterX_Multiplicity_min(){
1317 int min=50;
1318 for(int ip=0; ip<6; ip++)
1319 if(GetClusterX_Multiplicity(ip)<min)min=GetClusterX_Multiplicity(ip);
1320 return min;
1321 };
1322 /**
1323 * \brief Give the maximum multiplicity on the x view
1324 */
1325 Int_t TrkTrack::GetClusterY_Multiplicity_max(){
1326 int max=0;
1327 for(int ip=0; ip<6; ip++)
1328 if(GetClusterY_Multiplicity(ip)>max)max=GetClusterY_Multiplicity(ip);
1329 return max;
1330 };
1331 /**
1332 * \brief Give the minimum multiplicity on the x view
1333 */
1334 Int_t TrkTrack::GetClusterY_Multiplicity_min(){
1335 int min=50;
1336 for(int ip=0; ip<6; ip++)
1337 if(GetClusterY_Multiplicity(ip)<min)min=GetClusterY_Multiplicity(ip);
1338 return min;
1339 };
1340
1341 /**
1342 * \brief Give the minimum seed on the x view
1343 */
1344 Float_t TrkTrack::GetClusterX_Seed_min(){
1345 Float_t min=100000;
1346 for(int ip=0; ip<6; ip++)
1347 if(XGood(ip) && GetClusterX_Seed(ip)<min)min=GetClusterX_Seed(ip);
1348 return min;
1349 };
1350 /**
1351 * \brief Give the minimum seed on the x view
1352 */
1353 Float_t TrkTrack::GetClusterY_Seed_min(){
1354 Float_t min=100000;
1355 for(int ip=0; ip<6; ip++)
1356 if(YGood(ip) && GetClusterY_Seed(ip)<min)min=GetClusterY_Seed(ip);
1357 return min;
1358 };
1359
1360
1361 //--------------------------------------
1362 //
1363 //
1364 //--------------------------------------
1365 void TrkTrack::Clear(){
1366 // cout << "TrkTrack::Clear()"<<endl;
1367 seqno = -1;
1368 image = -1;
1369 chi2 = 0;
1370 nstep = 0;
1371 for(int it1=0;it1<5;it1++){
1372 al[it1] = 0;
1373 for(int it2=0;it2<5;it2++)coval[it1][it2] = 0;
1374 };
1375 for(int ip=0;ip<6;ip++){
1376 xgood[ip] = 0;
1377 ygood[ip] = 0;
1378 xm[ip] = 0;
1379 ym[ip] = 0;
1380 zm[ip] = 0;
1381 resx[ip] = 0;
1382 resy[ip] = 0;
1383 tailx[ip] = 0;
1384 taily[ip] = 0;
1385 xv[ip] = 0;
1386 yv[ip] = 0;
1387 zv[ip] = 0;
1388 axv[ip] = 0;
1389 ayv[ip] = 0;
1390 dedx_x[ip] = 0;
1391 dedx_y[ip] = 0;
1392
1393 };
1394 int ngf = TrkParams::nGF;
1395 for(int i=0; i<ngf; i++){
1396 xGF[i] = 0.;
1397 yGF[i] = 0.;
1398 }
1399 // if(clx)clx->Clear();
1400 // if(cly)cly->Clear();
1401 // clx.Clear();
1402 // cly.Clear();
1403 };
1404 //--------------------------------------
1405 //
1406 //
1407 //--------------------------------------
1408 void TrkTrack::Delete(){
1409 // cout << "TrkTrack::Delete()"<<endl;
1410 Clear();
1411 // if(clx)delete clx;
1412 // if(cly)delete cly;
1413 };
1414 //--------------------------------------
1415 //
1416 //
1417 //--------------------------------------
1418
1419 //--------------------------------------
1420 //
1421 //
1422 //--------------------------------------
1423 TrkSinglet::TrkSinglet(){
1424 // cout << "TrkSinglet::TrkSinglet() " << GetUniqueID()<<endl;
1425 // plane = 0;
1426 // coord[0] = 0;
1427 // coord[1] = 0;
1428 // sgnl = 0;
1429 // multmax = 0;
1430 // cls = 0;
1431 Clear();
1432 };
1433 //--------------------------------------
1434 //
1435 //
1436 //--------------------------------------
1437 TrkSinglet::TrkSinglet(const TrkSinglet& s){
1438 // cout << "TrkSinglet::TrkSinglet(const TrkSinglet& s) " << GetUniqueID()<<endl;
1439 plane = s.plane;
1440 coord[0] = s.coord[0];
1441 coord[1] = s.coord[1];
1442 sgnl = s.sgnl;
1443 multmax = s.multmax;
1444 // cls = 0;//<<<<pointer
1445 // cls = TRef(s.cls);
1446 };
1447 //--------------------------------------
1448 //
1449 //
1450 //--------------------------------------
1451 void TrkSinglet::Dump(){
1452 int i=0;
1453 cout << endl << "========== Singlet " ;
1454 cout << endl << "plane : " << plane;
1455 cout << endl << "coord[2] : "; while( i<2 && cout << coord[i] << " ") i++;
1456 cout << endl << "sgnl : " << sgnl;
1457 cout << endl << "max.strip : ";
1458 cout << endl << "multiplicity : ";
1459 }
1460 //--------------------------------------
1461 //
1462 //
1463 //--------------------------------------
1464 void TrkSinglet::Clear(){
1465 // cout << "TrkSinglet::Clear() " << GetUniqueID()<<endl;
1466 // cls=0;
1467 plane=-1;
1468 coord[0]=-999;
1469 coord[1]=-999;
1470 sgnl=0;
1471 multmax = 0;
1472
1473 }
1474 //--------------------------------------
1475 //
1476 //
1477 //--------------------------------------
1478 TrkLevel2::TrkLevel2(){
1479 // cout <<"TrkLevel2::TrkLevel2()"<<endl;
1480 for(Int_t i=0; i<12 ; i++){
1481 good[i] = -1;
1482 VKmask[i] = 0;
1483 VKflag[i] = 0;
1484 };
1485 Track = 0;
1486 SingletX = 0;
1487 SingletY = 0;
1488
1489 }
1490 //--------------------------------------
1491 //
1492 //
1493 //--------------------------------------
1494 void TrkLevel2::Set(){
1495 if(!Track)Track = new TClonesArray("TrkTrack");
1496 if(!SingletX)SingletX = new TClonesArray("TrkSinglet");
1497 if(!SingletY)SingletY = new TClonesArray("TrkSinglet");
1498 }
1499 //--------------------------------------
1500 //
1501 //
1502 //--------------------------------------
1503 void TrkLevel2::Dump(){
1504
1505 //
1506 cout << endl << endl << "=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-";
1507 cout << endl << "good : "; for(int i=0; i<12; i++) cout << hex <<" 0x"<< good[i]<<dec;
1508 cout << endl << "ntrk() : " << ntrk() ;
1509 cout << endl << "nclsx() : " << nclsx();
1510 cout << endl << "nclsy() : " << nclsy();
1511 if(Track){
1512 TClonesArray &t = *Track;
1513 for(int i=0; i<ntrk(); i++) ((TrkTrack *)t[i])->Dump();
1514 }
1515 // if(SingletX){
1516 // TClonesArray &sx = *SingletX;
1517 // for(int i=0; i<nclsx(); i++) ((TrkSinglet *)sx[i])->Dump();
1518 // }
1519 // if(SingletY){
1520 // TClonesArray &sy = *SingletY;
1521 // for(int i=0; i<nclsy(); i++) ((TrkSinglet *)sy[i])->Dump();
1522 // }
1523 cout << endl;
1524 }
1525 /**
1526 * \brief Dump processing status
1527 */
1528 void TrkLevel2::StatusDump(int view){
1529 cout << "DSP n. "<<view+1<<" status: "<<hex<<good[view]<<endl;
1530 };
1531 /**
1532 * \brief Check event status
1533 *
1534 * Check the event status, according to a flag-mask given as input.
1535 * Return true if the view passes the check.
1536 *
1537 * @param view View number (0-11)
1538 * @param flagmask Mask of flags to check (eg. flagmask=0x111 no missing packet,
1539 * no crc error, no software alarm)
1540 *
1541 * @see TrkLevel2 class definition to know how the status flag is defined
1542 *
1543 */
1544 Bool_t TrkLevel2::StatusCheck(int view, int flagmask){
1545
1546 if( view<0 || view >= 12)return false;
1547 return !(good[view]&flagmask);
1548
1549 };
1550
1551
1552 //--------------------------------------
1553 //
1554 //
1555 //--------------------------------------
1556 /**
1557 * The method returns false if the viking-chip was masked
1558 * either apriori ,on the basis of the mask read from the DB,
1559 * or run-by-run, on the basis of the calibration parameters)
1560 * @param iv Tracker view (0-11)
1561 * @param ivk Viking-chip number (0-23)
1562 */
1563 Bool_t TrkLevel2::GetVKMask(int iv, int ivk){
1564 Int_t whichbit = (Int_t)pow(2,ivk);
1565 return (whichbit&VKmask[iv])!=0;
1566 }
1567 /**
1568 * The method returns false if the viking-chip was masked
1569 * for this event due to common-noise computation failure.
1570 * @param iv Tracker view (0-11)
1571 * @param ivk Viking-chip number (0-23)
1572 */
1573 Bool_t TrkLevel2::GetVKFlag(int iv, int ivk){
1574 Int_t whichbit = (Int_t)pow(2,ivk);
1575 return (whichbit&VKflag[iv])!=0;
1576 }
1577 /**
1578 * The method returns true if the viking-chip was masked, either
1579 * forced (see TrkLevel2::GetVKMask(int,int)) or
1580 * for this event only (TrkLevel2::GetVKFlag(int,int)).
1581 * @param iv Tracker view (0-11)
1582 * @param ivk Viking-chip number (0-23)
1583 */
1584 Bool_t TrkLevel2::IsMaskedVK(int iv, int ivk){
1585 return !(GetVKMask(iv,ivk)&&GetVKFlag(iv,ivk) );
1586 };
1587
1588 //--------------------------------------
1589 //
1590 //
1591 //--------------------------------------
1592 /**
1593 * Fills a TrkLevel2 object with values from a struct cTrkLevel2 (to get data from F77 common).
1594 * Ref to Level1 data (clusters) is also set. If l1==NULL no references are set.
1595 * (NB It make sense to set references only if events are stored in a tree that contains also the Level1 branch)
1596 */
1597 void TrkLevel2::SetFromLevel2Struct(cTrkLevel2 *l2, TrkLevel1 *l1){
1598
1599 // cout << "void TrkLevel2::SetFromLevel2Struct(cTrkLevel2 *l2, TrkLevel1 *l1)"<<endl;
1600 Clear();
1601
1602 // temporary objects:
1603 TrkSinglet* t_singlet = new TrkSinglet();
1604 TrkTrack* t_track = new TrkTrack();
1605
1606 // -----------------
1607 // general variables
1608 // -----------------
1609 for(Int_t i=0; i<12 ; i++){
1610 good[i] = l2->good[i];
1611 VKmask[i]=0;
1612 VKflag[i]=0;
1613 for(Int_t ii=0; ii<24 ; ii++){
1614 Int_t setbit = (Int_t)pow(2,ii);
1615 if( l2->vkflag[ii][i]!=-1 )VKmask[i]=VKmask[i]|setbit;
1616 if( l2->vkflag[ii][i]!=0 )VKflag[i]=VKflag[i]|setbit;
1617 };
1618 };
1619 // --------------
1620 // *** TRACKS ***
1621 // --------------
1622 if(!Track) Track = new TClonesArray("TrkTrack");
1623 TClonesArray &t = *Track;
1624
1625 for(int i=0; i<l2->ntrk; i++){
1626 t_track->seqno = i;// NBNBNBNB deve sempre essere = i
1627 t_track->image = l2->image[i]-1;
1628 t_track->chi2 = l2->chi2_nt[i];
1629 t_track->nstep = l2->nstep_nt[i];
1630 for(int it1=0;it1<5;it1++){
1631 t_track->al[it1] = l2->al_nt[i][it1];
1632 for(int it2=0;it2<5;it2++)
1633 t_track->coval[it1][it2] = l2->coval[i][it2][it1];
1634 };
1635 for(int ip=0;ip<6;ip++){
1636 // ---------------------------------
1637 // new implementation of xgood/ygood
1638 // ---------------------------------
1639 t_track->xgood[ip] = l2->cltrx[i][ip]; //cluster ID
1640 t_track->ygood[ip] = l2->cltry[i][ip]; //cluster ID
1641 t_track->xgood[ip] += 10000000*l2->ls[i][ip]; // ladder+sensor
1642 t_track->ygood[ip] += 10000000*l2->ls[i][ip]; // ladder+sensor
1643 if(l2->xbad[i][ip]>0)t_track->xgood[ip]=-t_track->xgood[ip];
1644 if(l2->ybad[i][ip]>0)t_track->ygood[ip]=-t_track->ygood[ip];
1645 // if(l2->xbad[i][ip]>0 || l2->ybad[i][ip]>0){
1646 // if(l2->dedx_x[i][ip]<0 || l2->dedx_y[i][ip]<0){
1647 // cout << ip << " - "<< l2->cltrx[i][ip] << " "<<l2->cltry[i][ip]<<" "<<l2->ls[i][ip]<<endl;
1648 // cout << ip << " - "<<t_track->xgood[ip]<<" "<<t_track->ygood[ip]<<endl;
1649 // cout << ip << " - "<<t_track->GetClusterX_ID(ip)<<" "<<t_track->GetClusterY_ID(ip)<<" "<<t_track->GetLadder(ip)<<" "<<t_track->GetSensor(ip)<<endl;
1650 // cout << ip << " - "<<t_track->BadClusterX(ip)<<" "<<t_track->BadClusterY(ip)<<endl;
1651 // cout << ip << " - "<<t_track->SaturatedClusterX(ip)<<" "<<t_track->SaturatedClusterY(ip)<<endl;
1652 // }
1653 t_track->xm[ip] = l2->xm_nt[i][ip];
1654 t_track->ym[ip] = l2->ym_nt[i][ip];
1655 t_track->zm[ip] = l2->zm_nt[i][ip];
1656 t_track->resx[ip] = l2->resx_nt[i][ip];
1657 t_track->resy[ip] = l2->resy_nt[i][ip];
1658 t_track->tailx[ip] = l2->tailx[i][ip];
1659 t_track->taily[ip] = l2->taily[i][ip];
1660 t_track->xv[ip] = l2->xv_nt[i][ip];
1661 t_track->yv[ip] = l2->yv_nt[i][ip];
1662 t_track->zv[ip] = l2->zv_nt[i][ip];
1663 t_track->axv[ip] = l2->axv_nt[i][ip];
1664 t_track->ayv[ip] = l2->ayv_nt[i][ip];
1665 t_track->dedx_x[ip] = l2->dedx_x[i][ip];
1666 t_track->dedx_y[ip] = l2->dedx_y[i][ip];
1667 t_track->multmaxx[ip] = l2->multmaxx[i][ip];
1668 t_track->multmaxy[ip] = l2->multmaxy[i][ip];
1669 t_track->seedx[ip] = l2->seedx[i][ip];
1670 t_track->seedy[ip] = l2->seedy[i][ip];
1671 t_track->xpu[ip] = l2->xpu[i][ip];
1672 t_track->ypu[ip] = l2->ypu[i][ip];
1673 //-----------------------------------------------------
1674 //-----------------------------------------------------
1675 //-----------------------------------------------------
1676 //-----------------------------------------------------
1677 };
1678 // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1679 // evaluated coordinates (to define GF)
1680 // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1681 int ngf = TrkParams::nGF;
1682 float *zgf = TrkParams::zGF;
1683 Trajectory tgf = Trajectory(ngf,zgf);
1684 tgf.DoTrack(t_track->al);//<<<< integrate the trajectory
1685 for(int ip=0; ip<ngf; ip++){
1686 t_track->xGF[ip] = tgf.x[ip];
1687 t_track->yGF[ip] = tgf.y[ip];
1688 }
1689
1690 // if(t_track->IsSaturated())t_track->Dump();
1691 new(t[i]) TrkTrack(*t_track);
1692 t_track->Clear();
1693 };//end loop over track
1694
1695 // ----------------
1696 // *** SINGLETS ***
1697 // ----------------
1698 if(!SingletX)SingletX = new TClonesArray("TrkSinglet");
1699 TClonesArray &sx = *SingletX;
1700 for(int i=0; i<l2->nclsx; i++){
1701 t_singlet->plane = l2->planex[i];
1702 t_singlet->coord[0] = l2->xs[i][0];
1703 t_singlet->coord[1] = l2->xs[i][1];
1704 t_singlet->sgnl = l2->signlxs[i];
1705 t_singlet->multmax = l2->multmaxsx[i];
1706 if(l2->sxbad[i]>0) t_singlet->multmax = -1*t_singlet->multmax;
1707 //-----------------------------------------------------
1708 // if(l1) t_singlet->cls = l1->GetCluster(l2->clsx[i]-1);
1709 //-----------------------------------------------------
1710 new(sx[i]) TrkSinglet(*t_singlet);
1711 t_singlet->Clear();
1712 }
1713 if(!SingletY)SingletY = new TClonesArray("TrkSinglet");
1714 TClonesArray &sy = *SingletY;
1715 for(int i=0; i<l2->nclsy; i++){
1716 t_singlet->plane = l2->planey[i];
1717 t_singlet->coord[0] = l2->ys[i][0];
1718 t_singlet->coord[1] = l2->ys[i][1];
1719 t_singlet->sgnl = l2->signlys[i];
1720 t_singlet->multmax = l2->multmaxsy[i];
1721 if(l2->sybad[i]>0) t_singlet->multmax = -1*t_singlet->multmax;
1722 //-----------------------------------------------------
1723 // if(l1) t_singlet->cls = l1->GetCluster(l2->clsy[i]-1);
1724 //-----------------------------------------------------
1725 new(sy[i]) TrkSinglet(*t_singlet);
1726 t_singlet->Clear();
1727 };
1728
1729
1730
1731 delete t_track;
1732 delete t_singlet;
1733 }
1734 /**
1735 * Fills a struct cTrkLevel2 with values from a TrkLevel2 object (to put data into a F77 common).
1736 */
1737
1738 void TrkLevel2::GetLevel2Struct(cTrkLevel2 *l2) const {
1739
1740 // general variables
1741 // l2->good2 = good2 ;
1742 for(Int_t i=0; i<12 ; i++){
1743 // l2->crc[i] = crc[i];
1744 l2->good[i] = good[i];
1745 };
1746 // *** TRACKS ***
1747
1748 if(Track){
1749 l2->ntrk = Track->GetEntries();
1750 for(Int_t i=0;i<l2->ntrk;i++){
1751 l2->image[i] = 1 + ((TrkTrack *)Track->At(i))->image;
1752 l2->chi2_nt[i] = ((TrkTrack *)Track->At(i))->chi2;
1753 l2->nstep_nt[i] = ((TrkTrack *)Track->At(i))->nstep;
1754 for(int it1=0;it1<5;it1++){
1755 l2->al_nt[i][it1] = ((TrkTrack *)Track->At(i))->al[it1];
1756 for(int it2=0;it2<5;it2++)
1757 l2->coval[i][it2][it1] = ((TrkTrack *)Track->At(i))->coval[it1][it2];
1758 };
1759 for(int ip=0;ip<6;ip++){
1760 l2->xgood_nt[i][ip] = ((TrkTrack *)Track->At(i))->XGood(ip);
1761 l2->ygood_nt[i][ip] = ((TrkTrack *)Track->At(i))->YGood(ip);
1762 l2->xm_nt[i][ip] = ((TrkTrack *)Track->At(i))->xm[ip];
1763 l2->ym_nt[i][ip] = ((TrkTrack *)Track->At(i))->ym[ip];
1764 l2->zm_nt[i][ip] = ((TrkTrack *)Track->At(i))->zm[ip];
1765 l2->resx_nt[i][ip] = ((TrkTrack *)Track->At(i))->resx[ip];
1766 l2->resy_nt[i][ip] = ((TrkTrack *)Track->At(i))->resy[ip];
1767 l2->tailx[i][ip] = ((TrkTrack *)Track->At(i))->tailx[ip];
1768 l2->taily[i][ip] = ((TrkTrack *)Track->At(i))->taily[ip];
1769 l2->xv_nt[i][ip] = ((TrkTrack *)Track->At(i))->xv[ip];
1770 l2->yv_nt[i][ip] = ((TrkTrack *)Track->At(i))->yv[ip];
1771 l2->zv_nt[i][ip] = ((TrkTrack *)Track->At(i))->zv[ip];
1772 l2->axv_nt[i][ip] = ((TrkTrack *)Track->At(i))->axv[ip];
1773 l2->ayv_nt[i][ip] = ((TrkTrack *)Track->At(i))->ayv[ip];
1774 l2->dedx_x[i][ip] = ((TrkTrack *)Track->At(i))->dedx_x[ip];
1775 l2->dedx_y[i][ip] = ((TrkTrack *)Track->At(i))->dedx_y[ip];
1776 };
1777 }
1778 }
1779 // *** SINGLETS ***
1780 if(SingletX){
1781 l2->nclsx = SingletX->GetEntries();
1782 for(Int_t i=0;i<l2->nclsx;i++){
1783 l2->planex[i] = ((TrkSinglet *)SingletX->At(i))->plane;
1784 l2->xs[i][0] = ((TrkSinglet *)SingletX->At(i))->coord[0];
1785 l2->xs[i][1] = ((TrkSinglet *)SingletX->At(i))->coord[1];
1786 l2->signlxs[i] = ((TrkSinglet *)SingletX->At(i))->sgnl;
1787 }
1788 }
1789
1790 if(SingletY){
1791 l2->nclsy = SingletY->GetEntries();
1792 for(Int_t i=0;i<l2->nclsy;i++){
1793 l2->planey[i] = ((TrkSinglet *)SingletY->At(i))->plane;
1794 l2->ys[i][0] = ((TrkSinglet *)SingletY->At(i))->coord[0];
1795 l2->ys[i][1] = ((TrkSinglet *)SingletY->At(i))->coord[1];
1796 l2->signlys[i] = ((TrkSinglet *)SingletY->At(i))->sgnl;
1797 }
1798 }
1799 }
1800 //--------------------------------------
1801 //
1802 //
1803 //--------------------------------------
1804 void TrkLevel2::Clear(){
1805 for(Int_t i=0; i<12 ; i++){
1806 good[i] = -1;
1807 VKflag[i] = 0;
1808 VKmask[i] = 0;
1809 };
1810 // if(Track)Track->Clear("C");
1811 // if(SingletX)SingletX->Clear("C");
1812 // if(SingletY)SingletY->Clear("C");
1813 if(Track)Track->Delete();
1814 if(SingletX)SingletX->Delete();
1815 if(SingletY)SingletY->Delete();
1816 }
1817 // //--------------------------------------
1818 // //
1819 // //
1820 // //--------------------------------------
1821 void TrkLevel2::Delete(){
1822
1823 // cout << "void TrkLevel2::Delete()"<<endl;
1824 Clear();
1825 if(Track)delete Track;
1826 if(SingletX)delete SingletX;
1827 if(SingletY)delete SingletY;
1828
1829 }
1830 //--------------------------------------
1831 //
1832 //
1833 //--------------------------------------
1834 /**
1835 * Sort physical tracks and stores them in a TObjectArray, ordering by increasing chi**2 value (in case of track image, it selects the one with lower chi**2). The total number of physical tracks is given by GetNTracks() and the it-th physical track can be retrieved by means of the method GetTrack(int it).
1836 * This method is overridden by PamLevel2::GetTracks(), where calorimeter and TOF information is used.
1837 */
1838 TRefArray *TrkLevel2::GetTracks_NFitSorted(){
1839
1840 if(!Track)return 0;
1841
1842 // TRefArray *sorted = new TRefArray();
1843 TRefArray *sorted = NULL;
1844
1845 TClonesArray &t = *Track;
1846 // TClonesArray &ts = *PhysicalTrack;
1847 int N = ntrk();
1848 vector<int> m(N); for(int i=0; i<N; i++)m[i]=1;
1849 // int m[50]; for(int i=0; i<N; i++)m[i]=1;
1850
1851 int indo=0;
1852 int indi=0;
1853 while(N > 0){
1854 // while(N != 0){
1855 int nfit =0;
1856 float chi2ref = numeric_limits<float>::max();
1857
1858 // first loop to search maximum num. of fit points
1859 for(int i=0; i < ntrk(); i++){
1860 if( ((TrkTrack *)t[i])->GetNtot() >= nfit && m[i]==1){
1861 nfit = ((TrkTrack *)t[i])->GetNtot();
1862 }
1863 }
1864 //second loop to search minimum chi2 among selected
1865 for(int i=0; i<ntrk(); i++){
1866 Float_t chi2 = ((TrkTrack *)t[i])->chi2;
1867 if(chi2 < 0) chi2 = -chi2*1000;
1868 if( chi2 < chi2ref
1869 && ((TrkTrack *)t[i])->GetNtot() == nfit
1870 && m[i]==1){
1871 chi2ref = ((TrkTrack *)t[i])->chi2;
1872 indi = i;
1873 };
1874 };
1875 if( ((TrkTrack *)t[indi])->HasImage() ){
1876 m[((TrkTrack *)t[indi])->image] = 0;
1877 N--;
1878
1879 // cout << "i** "<< ((TrkTrack *)t[indi])->image << " " << nfiti <<" "<<chi2i<<endl;
1880 };
1881 if(!sorted)sorted = new TRefArray( TProcessID::GetProcessWithUID(t[indi]));
1882 sorted->Add( (TrkTrack*)t[indi] );
1883
1884 m[indi] = 0;
1885 // cout << "SORTED "<< indo << " "<< indi << " "<< N << " "<<((TrkTrack *)t[indi])->image<<" "<<chi2ref<<endl;
1886 N--;
1887 indo++;
1888 }
1889 m.clear();
1890 // cout << "GetTracks_NFitSorted(it): Done"<< endl;
1891
1892 return sorted;
1893 // return PhysicalTrack;
1894 }
1895 //--------------------------------------
1896 //
1897 //
1898 //--------------------------------------
1899 /**
1900 * Retrieves the is-th stored track.
1901 * @param it Track number, ranging from 0 to ntrk().
1902 * Fitted tracks ( images included ) are stored in a TObjectArray ( TrkLevel2::Track ) in the same order they are returned by the F77 fitting routine.
1903 */
1904 TrkTrack *TrkLevel2::GetStoredTrack(int is){
1905
1906 if(is >= this->ntrk()){
1907 cout << "TrkTrack *TrkLevel2::GetStoredTrack(int) >> Track "<< is << "doen not exits! " << endl;
1908 cout << "Stored tracks ntrk() = "<< this->ntrk() << endl;
1909 return 0;
1910 }
1911 if(!Track){
1912 cout << "TrkTrack *TrkLevel2::GetStoredTrack(int is) >> (TClonesArray*) Track ==0 "<<endl;
1913 };
1914 TClonesArray &t = *(Track);
1915 TrkTrack *track = (TrkTrack*)t[is];
1916 return track;
1917 }
1918 //--------------------------------------
1919 //
1920 //
1921 //--------------------------------------
1922 /**
1923 * Retrieves the is-th stored X singlet.
1924 * @param it Singlet number, ranging from 0 to nclsx().
1925 */
1926 TrkSinglet *TrkLevel2::GetSingletX(int is){
1927
1928 if(is >= this->nclsx()){
1929 cout << "TrkSinglet *TrkLevel2::GetSingletX(int) >> Singlet "<< is << "doen not exits! " << endl;
1930 cout << "Stored x-singlets nclsx() = "<< this->nclsx() << endl;
1931 return 0;
1932 }
1933 if(!SingletX)return 0;
1934 TClonesArray &t = *(SingletX);
1935 TrkSinglet *singlet = (TrkSinglet*)t[is];
1936 return singlet;
1937 }
1938 //--------------------------------------
1939 //
1940 //
1941 //--------------------------------------
1942 /**
1943 * Retrieves the is-th stored Y singlet.
1944 * @param it Singlet number, ranging from 0 to nclsx().
1945 */
1946 TrkSinglet *TrkLevel2::GetSingletY(int is){
1947
1948 if(is >= this->nclsy()){
1949 cout << "TrkSinglet *TrkLevel2::GetSingletY(int) >> Singlet "<< is << "doen not exits! " << endl;
1950 cout << "Stored y-singlets nclsx() = "<< this->nclsx() << endl;
1951 return 0;
1952 }
1953 if(!SingletY)return 0;
1954 TClonesArray &t = *(SingletY);
1955 TrkSinglet *singlet = (TrkSinglet*)t[is];
1956 return singlet;
1957 }
1958 //--------------------------------------
1959 //
1960 //
1961 //--------------------------------------
1962 /**
1963 * Retrieves the it-th "physical" track, sorted by the method GetNTracks().
1964 * @param it Track number, ranging from 0 to GetNTracks().
1965 */
1966
1967 TrkTrack *TrkLevel2::GetTrack(int it){
1968
1969 if(it >= this->GetNTracks()){
1970 cout << "TrkTrack *TrkLevel2::GetTrack(int) >> Track "<< it << "does not exits! " << endl;
1971 cout << "Physical tracks GetNTracks() = "<< this->ntrk() << endl;
1972 return 0;
1973 }
1974
1975 TRefArray *sorted = GetTracks(); //TEMPORANEO
1976 if(!sorted)return 0;
1977 TrkTrack *track = (TrkTrack*)sorted->At(it);
1978 sorted->Clear();
1979 delete sorted;
1980 return track;
1981 }
1982 /**
1983 * Give the number of "physical" tracks, sorted by the method GetTracks().
1984 */
1985 Int_t TrkLevel2::GetNTracks(){
1986
1987 Float_t ntot=0;
1988 if(!Track)return 0;
1989 TClonesArray &t = *Track;
1990 for(int i=0; i<ntrk(); i++) {
1991 if( ((TrkTrack *)t[i])->GetImageSeqNo() == -1 ) ntot+=1.;
1992 else ntot+=0.5;
1993 }
1994 return (Int_t)ntot;
1995
1996 };
1997 //--------------------------------------
1998 //
1999 //
2000 //--------------------------------------
2001 /**
2002 * Retrieves (if present) the image of the it-th "physical" track, sorted by the method GetNTracks().
2003 * @param it Track number, ranging from 0 to GetNTracks().
2004 */
2005 TrkTrack *TrkLevel2::GetTrackImage(int it){
2006
2007 if(it >= this->GetNTracks()){
2008 cout << "TrkTrack *TrkLevel2::GetTrackImage(int) >> Track "<< it << "does not exits! " << endl;
2009 cout << "Physical tracks GetNTracks() = "<< this->ntrk() << endl;
2010 return 0;
2011 }
2012
2013 TRefArray* sorted = GetTracks(); //TEMPORANEO
2014 if(!sorted)return 0;
2015 TrkTrack *track = (TrkTrack*)sorted->At(it);
2016
2017 if(!track->HasImage()){
2018 cout << "TrkTrack *TrkLevel2::GetTrackImage(int) >> Track "<< it << "does not have image! " << endl;
2019 return 0;
2020 }
2021 if(!Track)return 0;
2022 TrkTrack *image = (TrkTrack*)(*Track)[track->image];
2023
2024 sorted->Delete();
2025 delete sorted;
2026
2027 return image;
2028
2029 }
2030 //--------------------------------------
2031 //
2032 //
2033 //--------------------------------------
2034 /**
2035 * Loads the magnetic field.
2036 * @param s Path of the magnetic-field files.
2037 */
2038 void TrkLevel2::LoadField(TString path){
2039 //
2040 // strcpy(path_.path,path.Data());
2041 // path_.pathlen = path.Length();
2042 // path_.error = 0;
2043 // readb_();
2044
2045 // TrkParams::SetTrackingMode();
2046 // TrkParams::SetPrecisionFactor();
2047 // TrkParams::SetStepMin();
2048 TrkParams::SetMiniDefault();
2049
2050 TrkParams::Set(path,1);
2051 TrkParams::Load(1);
2052 if( !TrkParams::IsLoaded(1) ){
2053 cout << "void TrkLevel2::LoadField(TString path) --- ERROR --- m.field not loaded"<<endl;
2054 }
2055
2056 //
2057 };
2058 // /**
2059 // * Get BY (kGauss)
2060 // * @param v (x,y,z) coordinates in cm
2061 // */
2062 // float TrkLevel2::GetBX(float* v){
2063 // float b[3];
2064 // gufld_(v,b);
2065 // return b[0]/10.;
2066 // }
2067 // /**
2068 // * Get BY (kGauss)
2069 // * @param v (x,y,z) coordinates in cm
2070 // */
2071 // float TrkLevel2::GetBY(float* v){
2072 // float b[3];
2073 // gufld_(v,b);
2074 // return b[1]/10.;
2075 // }
2076 // /**
2077 // * Get BY (kGauss)
2078 // * @param v (x,y,z) coordinates in cm
2079 // */
2080 // float TrkLevel2::GetBZ(float* v){
2081 // float b[3];
2082 // gufld_(v,b);
2083 // return b[2]/10.;
2084 // }
2085 //--------------------------------------
2086 //
2087 //
2088 //--------------------------------------
2089 /**
2090 * Get tracker-plane (mechanical) z-coordinate
2091 * @param plane_id plane index (1=TOP,2,3,4,5,6=BOTTOM)
2092 */
2093 Float_t TrkLevel2::GetZTrk(Int_t plane_id){
2094 switch(plane_id){
2095 case 1: return ZTRK1;
2096 case 2: return ZTRK2;
2097 case 3: return ZTRK3;
2098 case 4: return ZTRK4;
2099 case 5: return ZTRK5;
2100 case 6: return ZTRK6;
2101 default: return 0.;
2102 };
2103 };
2104 //--------------------------------------
2105 //
2106 //
2107 //--------------------------------------
2108 /**
2109 * Trajectory default constructor.
2110 * (By default is created with z-coordinates inside the tracking volume)
2111 */
2112 Trajectory::Trajectory(){
2113 npoint = 10;
2114 x = new float[npoint];
2115 y = new float[npoint];
2116 z = new float[npoint];
2117 thx = new float[npoint];
2118 thy = new float[npoint];
2119 tl = new float[npoint];
2120 float dz = ((ZTRK1)-(ZTRK6))/(npoint-1);
2121 for(int i=0; i<npoint; i++){
2122 x[i] = 0;
2123 y[i] = 0;
2124 z[i] = (ZTRK1) - i*dz;
2125 thx[i] = 0;
2126 thy[i] = 0;
2127 tl[i] = 0;
2128 }
2129 }
2130 //--------------------------------------
2131 //
2132 //
2133 //--------------------------------------
2134 /**
2135 * Trajectory constructor.
2136 * (By default is created with z-coordinates inside the tracking volume)
2137 * \param n Number of points
2138 */
2139 Trajectory::Trajectory(int n){
2140 if(n<=0){
2141 cout << "NB! Trajectory must have at least 1 point >>> created with 10 points" << endl;
2142 n=10;
2143 }
2144 npoint = n;
2145 x = new float[npoint];
2146 y = new float[npoint];
2147 z = new float[npoint];
2148 thx = new float[npoint];
2149 thy = new float[npoint];
2150 tl = new float[npoint];
2151 float dz = ((ZTRK1)-(ZTRK6))/(npoint-1);
2152 for(int i=0; i<npoint; i++){
2153 x[i] = 0;
2154 y[i] = 0;
2155 z[i] = (ZTRK1) - i*dz;
2156 thx[i] = 0;
2157 thy[i] = 0;
2158 tl[i] = 0;
2159 }
2160 }
2161 //--------------------------------------
2162 //
2163 //
2164 //--------------------------------------
2165 /**
2166 * Trajectory constructor.
2167 * \param n Number of points
2168 * \param pz Pointer to float array, defining z coordinates
2169 */
2170 Trajectory::Trajectory(int n, float* zin){
2171 npoint = 10;
2172 if(n>0)npoint = n;
2173 x = new float[npoint];
2174 y = new float[npoint];
2175 z = new float[npoint];
2176 thx = new float[npoint];
2177 thy = new float[npoint];
2178 tl = new float[npoint];
2179 int i=0;
2180 do{
2181 x[i] = 0;
2182 y[i] = 0;
2183 z[i] = zin[i];
2184 thx[i] = 0;
2185 thy[i] = 0;
2186 tl[i] = 0;
2187 i++;
2188 }while(zin[i-1] > zin[i] && i < npoint);
2189 npoint=i;
2190 if(npoint != n)cout << "NB! Trajectory created with "<<npoint<<" points"<<endl;
2191 }
2192 void Trajectory::Delete(){
2193
2194 if(x) delete [] x;
2195 if(y) delete [] y;
2196 if(z) delete [] z;
2197 if(thx) delete [] thx;
2198 if(thy) delete [] thy;
2199 if(tl) delete [] tl;
2200
2201 }
2202 //--------------------------------------
2203 //
2204 //
2205 //--------------------------------------
2206 /**
2207 * Dump the trajectory coordinates.
2208 */
2209 void Trajectory::Dump(){
2210 cout <<endl<< "Trajectory ========== "<<endl;
2211 for (int i=0; i<npoint; i++){
2212 cout << i <<" >> " << x[i] <<" "<< y[i] <<" "<< z[i] ;
2213 cout <<" -- " << thx[i] <<" "<< thy[i] ;
2214 cout <<" -- " << tl[i] << endl;
2215 };
2216 }
2217 //--------------------------------------
2218 //
2219 //
2220 //--------------------------------------
2221 /**
2222 * Get trajectory length between two points
2223 * @param ifirst first point (default 0)
2224 * @param ilast last point (default npoint)
2225 */
2226 float Trajectory::GetLength(int ifirst, int ilast){
2227 if( ifirst<0 ) ifirst = 0;
2228 if( ilast>=npoint) ilast = npoint-1;
2229 float l=0;
2230 for(int i=ifirst;i<=ilast;i++){
2231 l=l+tl[i];
2232 };
2233 if(z[ilast] > ZINI)l=l-tl[ilast];
2234 if(z[ifirst] < ZINI) l=l-tl[ifirst];
2235
2236 return l;
2237
2238 }
2239
2240 /**
2241 * Evaluates the trajectory in the apparatus associated to the track.
2242 * It integrates the equations of motion in the magnetic field.
2243 * @param al Track state-vector (X0,Y0,sin(theta),phi,deflection).
2244 * @param zini z-coordinate of the reference plane (Z0).
2245 * @return error flag.
2246 *
2247 * This method is needed when you want to integrate the particle trajectory
2248 * starting from a track state-vector relative to an arbitrary reference plane.
2249 * The default reference plane, used by the tracker routines, is at zini=23.5.
2250 * If you give as input the track state-vector from a TrkTrack object,
2251 * you can use Trajectory::DoTrack(float* al) instead.
2252 */
2253 int Trajectory::DoTrack(float* al, float zini){
2254
2255 // double *dxout = new double[npoint];
2256 // double *dyout = new double[npoint];
2257 // double *dthxout = new double[npoint];
2258 // double *dthyout = new double[npoint];
2259 // double *dtlout = new double[npoint];
2260 // double *dzin = new double[npoint];
2261
2262 double *dxout;
2263 double *dyout;
2264 double *dthxout;
2265 double *dthyout;
2266 double *dtlout;
2267 double *dzin;
2268
2269 dxout = (double*) malloc(npoint*sizeof(double));
2270 dyout = (double*) malloc(npoint*sizeof(double));
2271 dthxout = (double*) malloc(npoint*sizeof(double));
2272 dthyout = (double*) malloc(npoint*sizeof(double));
2273 dtlout = (double*) malloc(npoint*sizeof(double));
2274 dzin = (double*) malloc(npoint*sizeof(double));
2275
2276 double dal[5];
2277
2278 double dzini = (double)zini;
2279
2280 int ifail = 0;
2281
2282 for (int i=0; i<5; i++) dal[i] = (double)al[i];
2283 for (int i=0; i<npoint; i++) dzin[i] = (double)z[i];
2284
2285 TrkParams::Load(1);
2286 if( !TrkParams::IsLoaded(1) ){
2287 cout << "int Trajectory::DoTrack(float* al) --- ERROR --- m.field not loaded"<<endl;
2288 return 0;
2289 }
2290 // dotrack2_(&(npoint),dzin,dxout,dyout,dthxout,dthyout,dtlout,dal,&ifail);
2291 dotrack3_(&(npoint),dzin,dxout,dyout,dthxout,dthyout,dtlout,dal,&dzini,&ifail);
2292
2293 for (int i=0; i<npoint; i++){
2294 x[i] = (float)*(dxout+i);
2295 y[i] = (float)*(dyout+i);
2296 thx[i] = (float)*(dthxout+i);
2297 thy[i] = (float)*(dthyout+i);
2298 tl[i] = (float)*(dtlout+i);
2299 }
2300
2301 if(dxout) free( dxout );
2302 if(dyout) free( dyout );
2303 if(dthxout)free( dthxout );
2304 if(dthyout)free( dthyout );
2305 if(dtlout) free( dtlout );
2306 if(dzin) free( dzin );
2307
2308 // delete [] dxout;
2309 // delete [] dyout;
2310 // delete [] dthxout;
2311 // delete [] dthyout;
2312 // delete [] dtlout;
2313 // delete [] dzin;
2314
2315
2316 return ifail;
2317 };
2318
2319 /**
2320 *
2321 * >>> OBSOLETE !!! use Trajectory::DoTrack(float* al, float zini) instead
2322 *
2323 */
2324 int Trajectory::DoTrack2(float* al, float zini){
2325
2326 cout << endl;
2327 cout << " int Trajectory::DoTrack2(float* al, float zini) --->> NB NB !! this method is going to be eliminated !!! "<<endl;
2328 cout << " >>>> replace it with TrkTrack::DoTrack(Trajectory* t) <<<<"<<endl;
2329 cout << " (Sorry Wolfgang!! Don't be totally confused!! By Elena)"<<endl;
2330 cout << endl;
2331
2332 return DoTrack(al,zini);
2333
2334 };
2335
2336
2337
2338 ClassImp(TrkLevel2);
2339 ClassImp(TrkSinglet);
2340 ClassImp(TrkTrack);
2341 ClassImp(Trajectory);

  ViewVC Help
Powered by ViewVC 1.1.23