/[PAMELA software]/DarthVader/TrackerLevel2/src/TrkLevel2.cpp
ViewVC logotype

Contents of /DarthVader/TrackerLevel2/src/TrkLevel2.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1.45 - (show annotations) (download)
Sat Mar 22 08:32:50 2008 UTC (16 years, 11 months ago) by pam-fi
Branch: MAIN
Changes since 1.44: +59 -26 lines
fixed memory leak ( + some new methods )

1 /**
2 * \file TrkLevel2.cpp
3 * \author Elena Vannuccini
4 */
5 #include <TrkLevel2.h>
6 #include <iostream>
7 #include <math.h>
8 using namespace std;
9 //......................................
10 // F77 routines
11 //......................................
12 extern "C" {
13 void dotrack_(int*, double*, double*, double*, double*, int*);
14 void dotrack2_(int*, double*, double*, double*, double*,double*, double*, double*,int*);
15 void mini2_(int*,int*,int*);
16 void guess_();
17 void gufld_(float*, float*);
18 float risxeta2_(float *);
19 float risxeta3_(float *);
20 float risxeta4_(float *);
21 float risyeta2_(float *);
22 }
23
24 //--------------------------------------
25 //
26 //
27 //--------------------------------------
28 TrkTrack::TrkTrack(){
29 // cout << "TrkTrack::TrkTrack()" << endl;
30 seqno = -1;
31 image = -1;
32 chi2 = 0;
33 nstep = 0;
34 for(int it1=0;it1<5;it1++){
35 al[it1] = 0;
36 for(int it2=0;it2<5;it2++)coval[it1][it2] = 0;
37 };
38 for(int ip=0;ip<6;ip++){
39 xgood[ip] = 0;
40 ygood[ip] = 0;
41 xm[ip] = 0;
42 ym[ip] = 0;
43 zm[ip] = 0;
44 resx[ip] = 0;
45 resy[ip] = 0;
46 tailx[ip] = 0;
47 taily[ip] = 0;
48 xv[ip] = 0;
49 yv[ip] = 0;
50 zv[ip] = 0;
51 axv[ip] = 0;
52 ayv[ip] = 0;
53 dedx_x[ip] = 0;
54 dedx_y[ip] = 0;
55 multmaxx[ip] = 0;
56 multmaxy[ip] = 0;
57 seedx[ip] = 0;
58 seedy[ip] = 0;
59 xpu[ip] = 0;
60 ypu[ip] = 0;
61
62 };
63
64 // TrkParams::SetTrackingMode();
65 // TrkParams::SetPrecisionFactor();
66 // TrkParams::SetStepMin();
67 TrkParams::SetMiniDefault();
68 TrkParams::SetPFA();
69
70 int ngf = TrkParams::nGF;
71 for(int i=0; i<ngf; i++){
72 xGF[i] = 0.;
73 yGF[i] = 0.;
74 }
75
76
77 };
78 //--------------------------------------
79 //
80 //
81 //--------------------------------------
82 TrkTrack::TrkTrack(const TrkTrack& t){
83 seqno = t.seqno;
84 image = t.image;
85 chi2 = t.chi2;
86 nstep = t.nstep;
87 for(int it1=0;it1<5;it1++){
88 al[it1] = t.al[it1];
89 for(int it2=0;it2<5;it2++)coval[it1][it2] = t.coval[it1][it2];
90 };
91 for(int ip=0;ip<6;ip++){
92 xgood[ip] = t.xgood[ip];
93 ygood[ip] = t.ygood[ip];
94 xm[ip] = t.xm[ip];
95 ym[ip] = t.ym[ip];
96 zm[ip] = t.zm[ip];
97 resx[ip] = t.resx[ip];
98 resy[ip] = t.resy[ip];
99 tailx[ip] = t.tailx[ip];
100 taily[ip] = t.taily[ip];
101 xv[ip] = t.xv[ip];
102 yv[ip] = t.yv[ip];
103 zv[ip] = t.zv[ip];
104 axv[ip] = t.axv[ip];
105 ayv[ip] = t.ayv[ip];
106 dedx_x[ip] = t.dedx_x[ip];
107 dedx_y[ip] = t.dedx_y[ip];
108 multmaxx[ip] = t.multmaxx[ip];
109 multmaxy[ip] = t.multmaxy[ip];
110 seedx[ip] = t.seedx[ip];
111 seedy[ip] = t.seedy[ip];
112 xpu[ip] = t.xpu[ip];
113 ypu[ip] = t.ypu[ip];
114 };
115
116 // TrkParams::SetTrackingMode();
117 // TrkParams::SetPrecisionFactor();
118 // TrkParams::SetStepMin();
119 TrkParams::SetMiniDefault();
120 TrkParams::SetPFA();
121
122 int ngf = TrkParams::nGF;
123 for(int i=0; i<ngf; i++){
124 xGF[i] = t.xGF[i];
125 yGF[i] = t.yGF[i];
126 }
127 };
128 //--------------------------------------
129 //
130 //
131 //--------------------------------------
132 void TrkTrack::Copy(TrkTrack& t){
133
134 t.seqno = seqno;
135 t.image = image;
136 t.chi2 = chi2;
137 t.nstep = nstep;
138 for(int it1=0;it1<5;it1++){
139 t.al[it1] = al[it1];
140 for(int it2=0;it2<5;it2++)t.coval[it1][it2] = coval[it1][it2];
141 };
142 for(int ip=0;ip<6;ip++){
143 t.xgood[ip] = xgood[ip];
144 t.ygood[ip] = ygood[ip];
145 t.xm[ip] = xm[ip];
146 t.ym[ip] = ym[ip];
147 t.zm[ip] = zm[ip];
148 t.resx[ip] = resx[ip];
149 t.resy[ip] = resy[ip];
150 t.tailx[ip] = tailx[ip];
151 t.taily[ip] = taily[ip];
152 t.xv[ip] = xv[ip];
153 t.yv[ip] = yv[ip];
154 t.zv[ip] = zv[ip];
155 t.axv[ip] = axv[ip];
156 t.ayv[ip] = ayv[ip];
157 t.dedx_x[ip] = dedx_x[ip];
158 t.dedx_y[ip] = dedx_y[ip];
159 t.multmaxx[ip] = multmaxx[ip];
160 t.multmaxy[ip] = multmaxy[ip];
161 t.seedx[ip] = seedx[ip];
162 t.seedy[ip] = seedy[ip];
163 t.xpu[ip] = xpu[ip];
164 t.ypu[ip] = ypu[ip];
165
166 };
167 int ngf = TrkParams::nGF;
168 for(int i=0; i<ngf; i++){
169 t.xGF[i] = xGF[i];
170 t.yGF[i] = yGF[i];
171 }
172
173
174 };
175 //--------------------------------------
176 //
177 //
178 //--------------------------------------
179 /**
180 * Evaluates the trajectory in the apparatus associated to the track.
181 * It integrates the equations of motion in the magnetic field. The magnetic field should be previously loaded ( by calling TrkLevel2::LoadField() ), otherwise an error message is returned.
182 * @param t pointer to an object of the class Trajectory,
183 * which z coordinates should be previously initialized by calling the proper constructor ( Trajectory::Trajectory(int n, float* zin) ).
184 * @return error flag.
185 *
186 * >>> OBSOLETE !!! use TrkTrack::DoTrack2(Trajectory* t) instead
187 *
188 */
189 int TrkTrack::DoTrack(Trajectory* t){
190
191 cout << " int TrkTrack::DoTrack(Trajectory* t) --->> OBSOLETE !!! "<<endl;
192 cout << " use int TrkTrack::DoTrack2(Trajectory* t)"<<endl;
193
194 double *dxout = new double[t->npoint];
195 double *dyout = new double[t->npoint];
196 double *dzin = new double[t->npoint];
197 double dal[5];
198
199 int ifail = 0;
200
201 for (int i=0; i<5; i++) dal[i] = (double)al[i];
202 for (int i=0; i<t->npoint; i++) dzin[i] = (double)t->z[i];
203
204 TrkParams::Load(1);
205 if( !TrkParams::IsLoaded(1) ){
206 cout << "int TrkTrack::DoTrack(Trajectory* t) --- ERROR --- m.field not loaded"<<endl;
207 return 0;
208 }
209 dotrack_(&(t->npoint),dzin,dxout,dyout,dal,&ifail);
210
211 for (int i=0; i<t->npoint; i++){
212 t->x[i] = (float)*(dxout+i);
213 t->y[i] = (float)*(dyout+i);
214 }
215
216 delete [] dxout;
217 delete [] dyout;
218 delete [] dzin;
219
220 return ifail;
221 };
222 //--------------------------------------
223 //
224 //
225 //--------------------------------------
226 /**
227 * Evaluates the trajectory in the apparatus associated to the track.
228 * It integrates the equations of motion in the magnetic field. The magnetic field should be previously loaded ( by calling TrkLevel2::LoadField() ), otherwise an error message is returned.
229 * @param t pointer to an object of the class Trajectory,
230 * which z coordinates should be previously initialized by calling the proper constructor ( Trajectory::Trajectory(int n, float* zin) ).
231 * @return error flag.
232 */
233 int TrkTrack::DoTrack2(Trajectory* t){
234
235 double *dxout = new double[t->npoint];
236 double *dyout = new double[t->npoint];
237 double *dthxout = new double[t->npoint];
238 double *dthyout = new double[t->npoint];
239 double *dtlout = new double[t->npoint];
240 double *dzin = new double[t->npoint];
241 double dal[5];
242
243 int ifail = 0;
244
245 for (int i=0; i<5; i++) dal[i] = (double)al[i];
246 for (int i=0; i<t->npoint; i++) dzin[i] = (double)t->z[i];
247
248 TrkParams::Load(1);
249 if( !TrkParams::IsLoaded(1) ){
250 cout << "int TrkTrack::DoTrack2(Trajectory* t) --- ERROR --- m.field not loaded"<<endl;
251 return 0;
252 }
253 dotrack2_(&(t->npoint),dzin,dxout,dyout,dthxout,dthyout,dtlout,dal,&ifail);
254
255 for (int i=0; i<t->npoint; i++){
256 t->x[i] = (float)*(dxout+i);
257 t->y[i] = (float)*(dyout+i);
258 t->thx[i] = (float)*(dthxout+i);
259 t->thy[i] = (float)*(dthyout+i);
260 t->tl[i] = (float)*(dtlout+i);
261 }
262
263 delete [] dxout;
264 delete [] dyout;
265 delete [] dzin;
266 delete [] dthxout;
267 delete [] dthyout;
268 delete [] dtlout;
269
270 return ifail;
271 };
272 //--------------------------------------
273 //
274 //
275 //--------------------------------------
276 //float TrkTrack::BdL(){
277 //};
278 //--------------------------------------
279 //
280 //
281 //--------------------------------------
282 Float_t TrkTrack::GetRigidity(){
283 Float_t rig=0;
284 if(chi2>0)rig=1./al[4];
285 if(rig<0) rig=-rig;
286 return rig;
287 };
288 //
289 Float_t TrkTrack::GetDeflection(){
290 Float_t def=0;
291 if(chi2>0)def=al[4];
292 return def;
293 };
294 //
295 /**
296 * Method to retrieve the dE/dx measured on a tracker view.
297 * @param ip plane (0-5)
298 * @param iv view (0=x 1=y)
299 */
300 Float_t TrkTrack::GetDEDX(int ip, int iv){
301 if(iv==0 && ip>=0 && ip<6)return fabs(dedx_x[ip]);
302 else if(iv==1 && ip>=0 && ip<6)return fabs(dedx_y[ip]);
303 else {
304 cout << "TrkTrack::GetDEDX(int ip, int iv) -- wrong input parameters "<<ip<<iv<<endl;
305 return 0.;
306 }
307 }
308 /**
309 * Method to evaluate the dE/dx measured on a tracker plane.
310 * The two measurements on x- and y-view are averaged.
311 * @param ip plane (0-5)
312 */
313 Float_t TrkTrack::GetDEDX(int ip){
314 if( (Int_t)XGood(ip)+(Int_t)YGood(ip) == 0 ) return 0;
315 return (GetDEDX(ip,0)+GetDEDX(ip,1))/((Int_t)XGood(ip)+(Int_t)YGood(ip));
316 };
317
318 /**
319 * Method to evaluate the dE/dx averaged over all planes.
320 */
321 Float_t TrkTrack::GetDEDX(){
322 Float_t dedx=0;
323 for(Int_t ip=0; ip<6; ip++)dedx+=GetDEDX(ip,0)*XGood(ip)+GetDEDX(ip,1)*YGood(ip);
324 dedx = dedx/(GetNX()+GetNY());
325 return dedx;
326 };
327 /**
328 * Returns 1 if the cluster on a tracker view includes bad strips
329 * (at least one bad strip among the four strip used by p.f.a.)
330 * @param ip plane (0-5)
331 * @param iv view (0=x 1=y)
332 */
333 Bool_t TrkTrack::IsBad(int ip,int iv){
334 if(iv==0 && ip>=0 && ip<6)return (xgood[ip]<0) ;
335 else if(iv==1 && ip>=0 && ip<6)return (ygood[ip]<0) ;
336 else {
337 cout << "TrkTrack::IsBad(int ip, int iv) -- wrong input parameters "<<ip<<iv<<endl;
338 return 0.;
339 }
340 };
341 /**
342 * Returns 1 if the signal on a tracker view is saturated.
343 * @param ip plane (0-5)
344 * @param iv view (0=x 1=y)
345 */
346 Bool_t TrkTrack::IsSaturated(int ip,int iv){
347 if(iv==0 && ip>=0 && ip<6)return (dedx_x[ip]<0) ;
348 else if(iv==1 && ip>=0 && ip<6)return (dedx_y[ip]<0) ;
349 else {
350 cout << "TrkTrack::IsSaturated(int ip, int iv) -- wrong input parameters "<<ip<<iv<<endl;
351 return 0.;
352 }
353 };
354 /**
355 * Returns 1 if either the x or the y signal on a tracker plane is saturated.
356 * @param ip plane (0-5)
357 */
358 Bool_t TrkTrack::IsSaturated(int ip){
359 return (IsSaturated(ip,0)||IsSaturated(ip,1));
360 };
361 /**
362 * Returns 1 if there is at least a saturated signal along the track.
363 */
364 Bool_t TrkTrack::IsSaturated(){
365 for(int ip=0; ip<6; ip++)for(int iv=0; iv<2; iv++)if(IsSaturated(ip,iv))return true;
366 return false;
367 }
368 /**
369 * Returns the track "lever-arm" on the x view, defined as the distance (in planes) between
370 * the upper and lower x measurements (the maximum value of lever-arm is 6).
371 */
372 Int_t TrkTrack::GetLeverArmX(){
373 int first_plane = -1;
374 int last_plane = -1;
375 for(Int_t ip=0; ip<6; ip++){
376 if( XGood(ip) && first_plane == -1 )first_plane = ip;
377 if( XGood(ip) && first_plane != -1 )last_plane = ip;
378 }
379 if( first_plane == -1 || last_plane == -1){
380 cout<< "Int_t TrkTrack::GetLeverArmX() -- XGood(ip) always false ??? "<<endl;
381 return 0;
382 }
383 return (last_plane-first_plane+1);
384 }
385 /**
386 * Returns the track "lever-arm" on the y view, defined as the distance (in planes) between
387 * the upper and lower y measurements (the maximum value of lever-arm is 6).
388 */
389 Int_t TrkTrack::GetLeverArmY(){
390 int first_plane = -1;
391 int last_plane = -1;
392 for(Int_t ip=0; ip<6; ip++){
393 if( YGood(ip) && first_plane == -1 )first_plane = ip;
394 if( YGood(ip) && first_plane != -1 )last_plane = ip;
395 }
396 if( first_plane == -1 || last_plane == -1){
397 cout<< "Int_t TrkTrack::GetLeverArmY() -- YGood(ip) always false ??? "<<endl;
398 return 0;
399 }
400 return (last_plane-first_plane+1);
401 }
402 /**
403 * Returns the reduced chi-square of track x-projection
404 */
405 Float_t TrkTrack::GetChi2X(){
406 float chiq=0;
407 for(int ip=0; ip<6; ip++)if(XGood(ip))chiq+= pow((xv[ip]-xm[ip])/resx[ip],2.);
408 if(GetNX()>3)chiq=chiq/(GetNX()-3);
409 else chiq=0;
410 if(chiq==0)cout << " Float_t TrkTrack::GetChi2X() -- WARNING -- value not defined "<<chiq<<endl;
411 return chiq;
412 }
413 /**
414 * Returns the reduced chi-square of track y-projection
415 */
416 Float_t TrkTrack::GetChi2Y(){
417 float chiq=0;
418 for(int ip=0; ip<6; ip++)if(YGood(ip))chiq+= pow((yv[ip]-ym[ip])/resy[ip],2.);
419 if(GetNY()>2)chiq=chiq/(GetNY()-2);
420 else chiq=0;
421 if(chiq==0)cout << " Float_t TrkTrack::GetChi2Y() -- WARNING -- value not defined "<<chiq<<endl;
422 return chiq;
423 }
424 /**
425 * Returns the logarythm of the likeliwood-function of track x-projection
426 */
427 Float_t TrkTrack::GetLnLX(){
428 float lnl=0;
429 for(int ip=0; ip<6; ip++)
430 if( XGood(ip) && tailx[ip]!=0 )
431 lnl += (tailx[ip]+1.) * log( (tailx[ip]*pow(resx[ip],2.) + pow(xv[ip]-xm[ip],2.)) / (tailx[ip]*pow(resx[ip],2)) );
432 if(GetNX()>3)lnl=lnl/(GetNX()-3);
433 else lnl=0;
434 if(lnl==0){
435 cout << " Float_t TrkTrack::GetLnLX() -- WARNING -- value not defined "<<lnl<<endl;
436 Dump();
437 }
438 return lnl;
439
440 }
441 /**
442 * Returns the logarythm of the likeliwood-function of track y-projection
443 */
444 Float_t TrkTrack::GetLnLY(){
445 float lnl=0;
446 for(int ip=0; ip<6; ip++)
447 if( YGood(ip) && taily[ip]!=0 )
448 lnl += (taily[ip]+1.) * log( (taily[ip]*pow(resy[ip],2.) + pow(yv[ip]-ym[ip],2.)) / (taily[ip]*pow(resy[ip],2)) );
449 if(GetNY()>2)lnl=lnl/(GetNY()-2);
450 else lnl=0;
451 if(lnl==0){
452 cout << " Float_t TrkTrack::GetLnLY() -- WARNING -- value not defined "<<lnl<<endl;
453 Dump();
454 }
455 return lnl;
456
457 }
458 /**
459 * Returns the effective angle, relative to the sensor, on each plane.
460 * @param ip plane (0-5)
461 * @param iv view (0=x 1=y)
462 */
463 Float_t TrkTrack::GetEffectiveAngle(int ip, int iv){
464
465 if(ip<0 || ip>5){
466 cout << "Float_t TrkTrack::GetEffectiveAngle(int "<<ip<<", int "<<iv<<") ==> wrong input"<<endl;
467 return 0.;
468 }
469
470 float v[3]={xv[ip],yv[ip],zv[ip]};
471 //-----------------------------------------
472 // effective angle (relative to the sensor)
473 //-----------------------------------------
474 float axv_geo = axv[ip];
475 float muhall_h = 297.61; //cm**2/Vs
476 float BY = TrkParams::GetBY(v);
477 float axv_eff = 0;
478 if(ip==5) axv_geo = -1*axv_geo;
479 if(ip==5) BY = -1*BY;
480 axv_eff = 180.*atan( tan(axv_geo*acos(-1.)/180.) + muhall_h * BY * 0.0001)/acos(-1.);
481 //-----------------------------------------
482 // effective angle (relative to the sensor)
483 //-----------------------------------------
484 float ayv_geo = ayv[ip];
485 float muhall_e = 1258.18; //cm**2/Vs
486 float BX = TrkParams::GetBX(v);
487 float ayv_eff = 0;
488 ayv_eff = 180.*atan( tan(ayv_geo*acos(-1.)/180.) + muhall_e * BX * 0.0001)/acos(-1.);
489
490 if (iv==0)return axv_eff;
491 else if(iv==1)return ayv_eff;
492 else{
493 cout << "Float_t TrkTrack::GetEffectiveAngle(int "<<ip<<", int "<<iv<<") ==> wrong input"<<endl;
494 return 0.;
495 }
496
497 };
498
499 //--------------------------------------
500 //
501 //
502 //--------------------------------------
503 void TrkTrack::Dump(){
504 cout << endl << "========== Track " ;
505 cout << endl << "seq. n. : "<< seqno;
506 cout << endl << "image n. : "<< image;
507 cout << endl << "al : "; for(int i=0; i<5; i++)cout << al[i] << " ";
508 cout << endl << "chi^2 : "<< chi2;
509 cout << endl << "n.step : "<< nstep;
510 cout << endl << "xgood : "; for(int i=0; i<6; i++)cout << XGood(i) ;
511 cout << endl << "ygood : "; for(int i=0; i<6; i++)cout << YGood(i) ;
512 cout << endl << "xm : "; for(int i=0; i<6; i++)cout << xm[i] << " ";
513 cout << endl << "ym : "; for(int i=0; i<6; i++)cout << ym[i] << " ";
514 cout << endl << "zm : "; for(int i=0; i<6; i++)cout << zm[i] << " ";
515 cout << endl << "xv : "; for(int i=0; i<6; i++)cout << xv[i] << " ";
516 cout << endl << "yv : "; for(int i=0; i<6; i++)cout << yv[i] << " ";
517 cout << endl << "zv : "; for(int i=0; i<6; i++)cout << zv[i] << " ";
518 cout << endl << "resx : "; for(int i=0; i<6; i++)cout << resx[i] << " ";
519 cout << endl << "resy : "; for(int i=0; i<6; i++)cout << resy[i] << " ";
520 cout << endl << "tailx : "; for(int i=0; i<6; i++)cout << tailx[i] << " ";
521 cout << endl << "taily : "; for(int i=0; i<6; i++)cout << taily[i] << " ";
522 cout << endl << "coval : "; for(int i=0; i<5; i++)cout << coval[0][i]<<" ";
523 cout << endl << " "; for(int i=0; i<5; i++)cout << coval[1][i]<<" ";
524 cout << endl << " "; for(int i=0; i<5; i++)cout << coval[2][i]<<" ";
525 cout << endl << " "; for(int i=0; i<5; i++)cout << coval[3][i]<<" ";
526 cout << endl << " "; for(int i=0; i<5; i++)cout << coval[4][i]<<" ";
527 cout << endl << "dedx_x : "; for(int i=0; i<6; i++)cout << dedx_x[i] << " ";
528 cout << endl << "dedx_y : "; for(int i=0; i<6; i++)cout << dedx_y[i] << " ";
529 cout << endl << "maxs x : "; for(int i=0; i<6; i++)cout << GetClusterX_MaxStrip(i) << " ";
530 cout << endl << "maxs y : "; for(int i=0; i<6; i++)cout << GetClusterY_MaxStrip(i) << " ";
531 cout << endl << "mult x : "; for(int i=0; i<6; i++)cout << GetClusterX_Multiplicity(i) << " ";
532 cout << endl << "mult y : "; for(int i=0; i<6; i++)cout << GetClusterY_Multiplicity(i) << " ";
533 cout << endl << "seed x : "; for(int i=0; i<6; i++)cout << GetClusterX_Seed(i) << " ";
534 cout << endl << "seed y : "; for(int i=0; i<6; i++)cout << GetClusterY_Seed(i) << " ";
535 cout << endl << "xpu : "; for(int i=0; i<6; i++)cout << xpu[i] << " ";
536 cout << endl << "ypu : "; for(int i=0; i<6; i++)cout << ypu[i] << " ";
537
538 cout << endl;
539 }
540 /**
541 * Set the TrkTrack position measurements
542 */
543 void TrkTrack::SetMeasure(double *xmeas, double *ymeas, double *zmeas){
544 for(int i=0; i<6; i++) xm[i]=*xmeas++;
545 for(int i=0; i<6; i++) ym[i]=*ymeas++;
546 for(int i=0; i<6; i++) zm[i]=*zmeas++;
547 }
548 /**
549 * Set the TrkTrack position resolution
550 */
551 void TrkTrack::SetResolution(double *rx, double *ry){
552 for(int i=0; i<6; i++) resx[i]=*rx++;
553 for(int i=0; i<6; i++) resy[i]=*ry++;
554 }
555 /**
556 * Set the TrkTrack tails position resolution
557 */
558 void TrkTrack::SetTail(double *tx, double *ty, double factor){
559 for(int i=0; i<6; i++) tailx[i]=factor*(*tx++);
560 for(int i=0; i<6; i++) taily[i]=factor*(*ty++);
561 }
562 /**
563 * Set the TrkTrack Student parameter (resx,resy,tailx,taily)
564 * from previous gausian fit
565 *@param flag =0 standard, =1 with noise correction
566 */
567 void TrkTrack::SetStudentParam(int flag){
568 float sx[11]={0.000128242,
569 0.000136942,
570 0.000162718,
571 0.000202644,
572 0.00025597,
573 0.000317456,
574 0.000349048,
575 0.000384638,
576 0.000457295,
577 0.000512319,
578 0.000538573};
579 float tx[11]={1.79402,
580 2.04876,
581 2.88376,
582 3.3,
583 3.14084,
584 4.07686,
585 4.44736,
586 3.5179,
587 3.38697,
588 3.45739,
589 3.18627};
590 float sy[11]={0.000483075,
591 0.000466925,
592 0.000431658,
593 0.000428317,
594 0.000433854,
595 0.000444044,
596 0.000482098,
597 0.000537579,
598 0.000636279,
599 0.000741998,
600 0.000864261};
601 float ty[11]={0.997032,
602 1.11147,
603 1.18526,
604 1.61404,
605 2.21908,
606 3.08959,
607 4.48833,
608 4.42687,
609 4.65253,
610 4.52043,
611 4.29926};
612 int index;
613 float fact;
614 for(int i=0; i<6; i++) {
615 index = int((fabs(axv[i])+1.)/2.);
616 if(index>10) index=10;
617 tailx[i]=tx[index];
618 if(flag==1) {
619 if(fabs(axv[i])<=10.) fact = resx[i]/risxeta2_(&(axv[i]));
620 if(fabs(axv[i])>10.&&fabs(axv[i])<=15.) fact = resx[i]/risxeta3_(&(axv[i]));
621 if(fabs(axv[i])>15.) fact = resx[i]/risxeta4_(&(axv[i]));
622 } else fact = 1.;
623 resx[i] = sx[index]*fact;
624 }
625 for(int i=0; i<6; i++) {
626 index = int((fabs(ayv[i])+1.)/2.);
627 if(index>10) index=10;
628 taily[i]=ty[index];
629 if(flag==1) fact = resy[i]/risyeta2_(&(ayv[i]));
630 else fact = 1.;
631 resy[i] = sy[index]*fact;
632 }
633 }
634 /**
635 * Set the TrkTrack good measurement
636 */
637 void TrkTrack::SetGood(int *xg, int *yg){
638
639 for(int i=0; i<6; i++) xgood[i]=*xg++;
640 for(int i=0; i<6; i++) ygood[i]=*yg++;
641 }
642
643 /**
644 * Load the magnetic field
645 */
646 void TrkTrack::LoadField(TString path){
647
648 // strcpy(path_.path,path.Data());
649 // path_.pathlen = path.Length();
650 // path_.error = 0;
651 // readb_();
652
653 // TrkParams::SetTrackingMode();
654 // TrkParams::SetPrecisionFactor();
655 // TrkParams::SetStepMin();
656 TrkParams::SetMiniDefault();
657
658 TrkParams::Set(path,1);
659 TrkParams::Load(1);
660
661 };
662
663
664 /**
665 * Method to fill minimization-routine common
666 */
667 void TrkTrack::FillMiniStruct(cMini2track& track){
668
669 for(int i=0; i<6; i++){
670
671 // cout << i<<" - "<<xgood[i]<<" "<<XGood(i)<<endl;
672 // cout << i<<" - "<<ygood[i]<<" "<<YGood(i)<<endl;
673 track.xgood[i]=XGood(i);
674 track.ygood[i]=YGood(i);
675
676 track.xm[i]=xm[i];
677 track.ym[i]=ym[i];
678 track.zm[i]=zm[i];
679
680 // --- temporaneo ----------------------------
681 // andrebbe inserita la dimensione del sensore
682 float segment = 100.;
683 track.xm_a[i]=xm[i];
684 track.xm_b[i]=xm[i];
685 track.ym_a[i]=ym[i];
686 track.ym_b[i]=ym[i];
687 if( XGood(i) && !YGood(i) ){
688 track.ym_a[i] = track.ym_a[i]+segment;
689 track.ym_b[i] = track.ym_b[i]-segment;
690 }else if( !XGood(i) && YGood(i)){
691 track.xm_a[i] = track.xm_a[i]+segment;
692 track.xm_b[i] = track.xm_b[i]-segment;
693 }
694 // --- temporaneo ----------------------------
695
696 track.resx[i]=resx[i];
697 track.resy[i]=resy[i];
698 track.tailx[i]=tailx[i];
699 track.taily[i]=taily[i];
700 }
701
702 for(int i=0; i<5; i++) track.al[i]=al[i];
703 track.zini = 23.5;
704 // ZINI = 23.5 !!! it should be the same parameter in all codes
705
706 }
707 /**
708 * Method to set values from minimization-routine common
709 */
710 void TrkTrack::SetFromMiniStruct(cMini2track *track){
711
712 for(int i=0; i<5; i++) {
713 al[i]=track->al[i];
714 for(int j=0; j<5; j++) coval[i][j]=track->cov[i][j];
715 }
716 chi2 = track->chi2;
717 nstep = track->nstep;
718 for(int i=0; i<6; i++){
719 xv[i] = track->xv[i];
720 yv[i] = track->yv[i];
721 zv[i] = track->zv[i];
722 xm[i] = track->xm[i];
723 ym[i] = track->ym[i];
724 zm[i] = track->zm[i];
725 axv[i] = track->axv[i];
726 ayv[i] = track->ayv[i];
727 }
728
729 }
730 /**
731 * \brief Method to re-evaluate coordinates of clusters associated with a track.
732 *
733 * The method can be applied only after recovering level1 information
734 * (either by reprocessing single events from level0 or from
735 * the TrkLevel1 branch, if present); it calls F77 subroutines that
736 * read the level1 common and fill the minimization-routine common.
737 * Some clusters can be excluded or added by means of the methods:
738 *
739 * TrkTrack::ResetXGood(int ip)
740 * TrkTrack::ResetYGood(int ip)
741 * TrkTrack::SetXGood(int ip, int cid, int is)
742 * TrkTrack::SetYGood(int ip, int cid, int is)
743 *
744 * NB! The method TrkTrack::SetGood(int *xg, int *yg) set the plane-mask (0-1)
745 * for the minimization-routine common. It deletes the cluster information
746 * (at least for the moment...) thus cannot be applied before
747 * TrkTrack::EvaluateClusterPositions().
748 *
749 * Different p.f.a. can be applied by calling (once) the method:
750 *
751 * TrkParams::SetPFA(0); //Set ETA p.f.a.
752 *
753 * @see TrkParams::SetPFA(int)
754 */
755 Bool_t TrkTrack::EvaluateClusterPositions(){
756
757 // cout << "void TrkTrack::GetClusterositions() "<<endl;
758
759 TrkParams::Load( );
760 if( !TrkParams::IsLoaded() )return false;
761
762 for(int ip=0; ip<6; ip++){
763 // cout << ip<<" ** "<<xm[ip]<<" / "<<ym[ip]<<endl;;
764 int icx = GetClusterX_ID(ip)+1;
765 int icy = GetClusterY_ID(ip)+1;
766 int sensor = GetSensor(ip)+1;//<< convenzione "Paolo"
767 if(ip==5 && sensor!=0)sensor=3-sensor;//<< convenzione "Elena"
768 int ladder = GetLadder(ip)+1;
769 float ax = axv[ip];
770 float ay = ayv[ip];
771 float v[3];
772 v[0]=xv[ip];
773 v[1]=yv[ip];
774 v[2]=zv[ip];
775 float bfx = 10*TrkParams::GetBX(v);//Tesla
776 float bfy = 10*TrkParams::GetBY(v);//Tesla
777 int ipp=ip+1;
778 xyzpam_(&ipp,&icx,&icy,&ladder,&sensor,&ax,&ay,&bfx,&bfy);
779 if(icx<0 || icy<0)return false;
780 }
781 return true;
782 }
783 /**
784 * \brief Tracking method. It calls F77 mini routine.
785 *
786 * @param pfixed Particle momentum. If pfixed=0 the momentum
787 * is left as a free parameter, otherwise it is fixed to the input value.
788 * @param fail Output flag (!=0 if the fit failed).
789 * @param iprint Flag to set debug mode ( 0 = no output; 1 = verbose; 2 = debug).
790 * @param froml1 Flag to re-evaluate positions (see TrkTrack::GetClusterPositions()).
791 *
792 * The option to re-evaluate positions can be used only after recovering
793 * level1 information, eg. by reprocessing the single event.
794 *
795 * Example:
796 *
797 * if( !event->GetTrkLevel0() )return false;
798 * event->GetTrkLevel0()->ProcessEvent(); // re-processing level0->level1
799 * int fail=0;
800 * event->GetTrkLevel2()->GetTrack(0)->Fit(0.,fail,0,1);
801 *
802 * @see EvaluateClusterPositions()
803 *
804 * The fitting procedure can be varied by changing the tracking mode,
805 * the fit-precision factor, the minimum number of step, etc.
806 * @see SetTrackingMode(int)
807 * @see SetPrecisionFactor(double)
808 * @see SetStepMin(int)
809 * @see SetDeltaB(int,double)
810 */
811 void TrkTrack::Fit(double pfixed, int& fail, int iprint, int froml1){
812
813 float al_ini[] = {0.,0.,0.,0.,0.};
814
815 TrkParams::Load( );
816 if( !TrkParams::IsLoaded() )return;
817
818 extern cMini2track track_;
819 fail = 0;
820
821 FillMiniStruct(track_);
822
823 if(froml1!=0){
824 if( !EvaluateClusterPositions() ){
825 cout << "void TrkTrack::Fit("<<pfixed<<","<<fail<<","<<iprint<<","<<froml1<<") --- ERROR evaluating cluster positions "<<endl;
826 FillMiniStruct(track_) ;
827 fail = 1;
828 return;
829 }
830 }else{
831 FillMiniStruct(track_);
832 }
833
834 // if fit variables have been reset, evaluate the initial guess
835 if(al[0]==-9999.&&al[1]==-9999.&&al[2]==-9999.&&al[3]==-9999.&&al[4]==-9999.)guess_();
836
837 // --------------------- free momentum
838 if(pfixed==0.) {
839 track_.pfixed=0.;
840 }
841 // --------------------- fixed momentum
842 if(pfixed!=0.) {
843 al[4]=1./pfixed;
844 track_.pfixed=pfixed;
845 }
846
847 // store temporarily the initial guess
848 for(int i=0; i<5; i++) al_ini[i]=track_.al[i];
849
850 // ------------------------------------------
851 // call mini routine
852 // TrkParams::Load(1);
853 // if( !TrkParams::IsLoaded(1) ){
854 // cout << "void TrkTrack::Fit(double pfixed, int& fail, int iprint) --- ERROR --- m.field not loaded"<<endl;
855 // return;
856 // }
857 int istep=0;
858 int ifail=0;
859 mini2_(&istep,&ifail, &iprint);
860 if(ifail!=0) {
861 if(iprint)cout << "ERROR: ifail= " << ifail << endl;
862 fail = 1;
863 }
864 // ------------------------------------------
865
866 SetFromMiniStruct(&track_);
867
868 if(fail){
869 if(iprint)cout << " >>>> fit failed "<<endl;
870 for(int i=0; i<5; i++) al[i]=al_ini[i];
871 }
872
873 };
874 /**
875 * Reset the fit parameters
876 */
877 void TrkTrack::FitReset(){
878 for(int i=0; i<5; i++) al[i]=-9999.;
879 chi2=0.;
880 nstep=0;
881 // for(int i=0; i<6; i++) xv[i]=0.;
882 // for(int i=0; i<6; i++) yv[i]=0.;
883 // for(int i=0; i<6; i++) zv[i]=0.;
884 // for(int i=0; i<6; i++) axv[i]=0.;
885 // for(int i=0; i<6; i++) ayv[i]=0.;
886 for(int i=0; i<5; i++) {
887 for(int j=0; j<5; j++) coval[i][j]=0.;
888 }
889 }
890 /**
891 * Set the tracking mode
892 */
893 void TrkTrack::SetTrackingMode(int trackmode){
894 extern cMini2track track_;
895 track_.trackmode = trackmode;
896 }
897 /**
898 * Set the factor scale for tracking precision
899 */
900 void TrkTrack::SetPrecisionFactor(double fact){
901 extern cMini2track track_;
902 track_.fact = fact;
903 }
904 /**
905 * Set the minimum number of steps for tracking precision
906 */
907 void TrkTrack::SetStepMin(int istepmin){
908 extern cMini2track track_;
909 track_.istepmin = istepmin;
910 }
911 /**
912 * Set deltaB parameters (id=0,1). By default they are set to zero.
913 */
914 void TrkTrack::SetDeltaB(int id, double db){
915 if(id!=0 && id!=1)cout << "void TrkTrack::SetDeltaB(int id,double db) -- wrong input parameters: "<<id<<" "<<db<<endl;
916 TrkParams::SetDeltaB(id,db);
917 }
918
919 /**
920 * Returns true if the track is inside the magnet cavity.
921 * @param toll Tolerance around the nominal volume (toll>0 define an inner fiducial volume)
922 */
923 Bool_t TrkTrack::IsInsideCavity(float toll){
924
925 // float xmagntop, ymagntop, xmagnbottom, ymagnbottom;
926 // xmagntop = xv[0] + (ZMAGNHIGH-zv[0])*tan(acos(-1.0)*axv[0]/180.);
927 // ymagntop = yv[0] + (ZMAGNHIGH-zv[0])*tan(acos(-1.0)*ayv[0]/180.);
928 // xmagnbottom = xv[5] + (ZMAGNLOW-zv[5])*tan(acos(-1.0)*axv[5]/180.);
929 // ymagnbottom = yv[5] + (ZMAGNLOW-zv[5])*tan(acos(-1.0)*ayv[5]/180.);
930 // if( xmagntop>XMAGNLOW && xmagntop<XMAGNHIGH &&
931 // ymagntop>YMAGNLOW && ymagntop<YMAGNHIGH &&
932 // xmagnbottom>XMAGNLOW && xmagnbottom<XMAGNHIGH &&
933 // ymagnbottom>YMAGNLOW && ymagnbottom<YMAGNHIGH ) return(true);
934 // else return(false);
935
936 int ngf = TrkParams::nGF;
937 for(int i=0; i<ngf; i++){
938 //
939 // cout << endl << TrkParams::GF_element[i];
940 if(
941 TrkParams::GF_element[i].CompareTo("CUF") &&
942 TrkParams::GF_element[i].CompareTo("T2") &&
943 TrkParams::GF_element[i].CompareTo("T3") &&
944 TrkParams::GF_element[i].CompareTo("T4") &&
945 TrkParams::GF_element[i].CompareTo("T5") &&
946 TrkParams::GF_element[i].CompareTo("CLF") &&
947 true)continue;
948 // apply condition only within the cavity
949 // cout << " -- "<<xGF[i]<<" "<<yGF[i];
950 if(
951 xGF[i] <= TrkParams::xGF_min[i] + toll ||
952 xGF[i] >= TrkParams::xGF_max[i] - toll ||
953 yGF[i] <= TrkParams::yGF_min[i] + toll ||
954 yGF[i] >= TrkParams::yGF_max[i] - toll ||
955 false){
956
957 return false;
958 }
959 }
960 return true;
961
962
963 }
964 /**
965 * Returns true if the track is inside the nominal acceptance, which is defined
966 * by the intersection among magnet cavity, silicon-plane sensitive area and
967 * ToF sensitive area (nominal values from the official document used to
968 * calculate the geometrical factor)
969 */
970 Bool_t TrkTrack::IsInsideAcceptance(){
971
972 int ngf = TrkParams::nGF;
973 for(int i=0; i<ngf; i++){
974 if(
975 xGF[i] <= TrkParams::xGF_min[i] ||
976 xGF[i] >= TrkParams::xGF_max[i] ||
977 yGF[i] <= TrkParams::yGF_min[i] ||
978 yGF[i] >= TrkParams::yGF_max[i] ||
979 false)return false;
980 }
981 return true;
982
983 }
984 /**
985 * Method to retrieve ID (0,1,...) of x-cluster (if any) associated to this track.
986 * If no cluster is associated, ID=-1.
987 * @param ip Tracker plane (0-5)
988 */
989 Int_t TrkTrack::GetClusterX_ID(int ip){
990 return ((Int_t)fabs(xgood[ip]))%10000000-1;
991 };
992 /**
993 * Method to retrieve ID (0-xxx) of y-cluster (if any) associated to this track.
994 * If no cluster is associated, ID=-1.
995 * @param ip Tracker plane (0-5)
996 */
997 Int_t TrkTrack::GetClusterY_ID(int ip){
998 return ((Int_t)fabs(ygood[ip]))%10000000-1;
999 };
1000
1001 /**
1002 * Method to retrieve the ladder (0-4, increasing x) traversed by the track on this plane.
1003 * If no ladder is traversed (dead area) the metod retuns -1.
1004 * @param ip Tracker plane (0-5)
1005 */
1006 Int_t TrkTrack::GetLadder(int ip){
1007 if(XGood(ip))return (Int_t)fabs(xgood[ip]/100000000)-1;
1008 if(YGood(ip))return (Int_t)fabs(ygood[ip]/100000000)-1;
1009 return -1;
1010 };
1011 /**
1012 * Method to retrieve the sensor (0-1, increasing y) traversed by the track on this plane.
1013 * If no sensor is traversed (dead area) the metod retuns -1.
1014 * @param ip Tracker plane (0-5)
1015 */
1016 Int_t TrkTrack::GetSensor(int ip){
1017 if(XGood(ip))return (Int_t)((Int_t)fabs(xgood[ip]/10000000)%10)-1;
1018 if(YGood(ip))return (Int_t)((Int_t)fabs(ygood[ip]/10000000)%10)-1;
1019 return -1;
1020 };
1021
1022 /**
1023 * \brief Method to include a x-cluster to the track.
1024 * @param ip Tracker plane (0-5)
1025 * @param clid Cluster ID (0,1,...)
1026 * @param is Sensor (0-1, increasing y)
1027 * @see Fit(double pfixed, int& fail, int iprint, int froml1)
1028 */
1029 void TrkTrack::SetXGood(int ip, int clid, int is){
1030 int il=0; //ladder (temporary)
1031 bool bad=false; //ladder (temporary)
1032 xgood[ip]=il*100000000+is*10000000+clid;
1033 if(bad)xgood[ip]=-xgood[ip];
1034 };
1035 /**
1036 * \brief Method to include a y-cluster to the track.
1037 * @param ip Tracker plane (0-5)
1038 * @param clid Cluster ID (0,1,...)
1039 * @param is Sensor (0-1)
1040 * @see Fit(double pfixed, int& fail, int iprint, int froml1)
1041 */
1042 void TrkTrack::SetYGood(int ip, int clid, int is){
1043 int il=0; //ladder (temporary)
1044 bool bad=false; //ladder (temporary)
1045 ygood[ip]=il*100000000+is*10000000+clid;
1046 if(bad)ygood[ip]=-ygood[ip];
1047 };
1048
1049 /**
1050 * \brief Average X
1051 * Average value of <xv>, evaluated from the first to the last hit x view.
1052 */
1053 Float_t TrkTrack::GetXav(){
1054
1055 int first_plane = -1;
1056 int last_plane = -1;
1057 for(Int_t ip=0; ip<6; ip++){
1058 if( XGood(ip) && first_plane == -1 )first_plane = ip;
1059 if( XGood(ip) && first_plane != -1 )last_plane = ip;
1060 }
1061 if( first_plane == -1 || last_plane == -1){
1062 return -100;
1063 }
1064 if( last_plane-first_plane+1 ==0 )return -100;
1065
1066 Float_t av = 0;
1067 for(int ip=first_plane; ip<=last_plane; ip++)av+=xv[ip];
1068
1069 return (av/(last_plane-first_plane+1));
1070 }
1071 /**
1072 * \brief Average Y
1073 * Average value of <yv>, evaluated from the first to the last hit x view.
1074 */
1075 Float_t TrkTrack::GetYav(){
1076
1077 int first_plane = -1;
1078 int last_plane = -1;
1079 for(Int_t ip=0; ip<6; ip++){
1080 if( XGood(ip) && first_plane == -1 )first_plane = ip;
1081 if( XGood(ip) && first_plane != -1 )last_plane = ip;
1082 }
1083 if( first_plane == -1 || last_plane == -1){
1084 return -100;
1085 }
1086 if( last_plane-first_plane+1 ==0 )return -100;
1087
1088 Float_t av = 0;
1089 for(int ip=first_plane; ip<=last_plane; ip++)av+=yv[ip];
1090
1091 return (av/(last_plane-first_plane+1));
1092 }
1093 /**
1094 * \brief Average Z
1095 * Average value of <zv>, evaluated from the first to the last hit x view.
1096 */
1097 Float_t TrkTrack::GetZav(){
1098
1099 int first_plane = -1;
1100 int last_plane = -1;
1101 for(Int_t ip=0; ip<6; ip++){
1102 if( XGood(ip) && first_plane == -1 )first_plane = ip;
1103 if( XGood(ip) && first_plane != -1 )last_plane = ip;
1104 }
1105 if( first_plane == -1 || last_plane == -1){
1106 return -100;
1107 }
1108 if( last_plane-first_plane+1 ==0 )return -100;
1109
1110 Float_t av = 0;
1111 for(int ip=first_plane; ip<=last_plane; ip++)av+=zv[ip];
1112
1113 return (av/(last_plane-first_plane+1));
1114 }
1115
1116 /**
1117 * \brief Number of column traversed
1118 */
1119 Int_t TrkTrack::GetNColumns(){
1120 int sensors[] = {0,0,0,0,0,0};
1121 for(int ip=0; ip<6; ip++){
1122 int sensorid = GetLadder(ip)+3*GetSensor(ip);
1123 if(XGood(ip)||YGood(ip))
1124 if(sensorid>=0 && sensorid<6)sensors[sensorid]=1;
1125 }
1126 int nsensors=0;
1127 for(int is=0; is<6; is++)nsensors += sensors[is];
1128 return nsensors;
1129 };
1130 /**
1131 * \brief Give the maximum energy release
1132 */
1133 Float_t TrkTrack::GetDEDX_max(int ip, int iv){
1134 Float_t max=0;
1135 int pfrom = 0;
1136 int pto = 6;
1137 int vfrom = 0;
1138 int vto = 2;
1139 if(ip>=0&&ip<6){
1140 pfrom = ip;
1141 pto = ip+1;
1142 }
1143 if(iv>=0&&iv<2){
1144 vfrom = iv;
1145 vto = iv+1;
1146 }
1147 for(int i=pfrom; i<pto; i++)
1148 for(int j=0; j<vto; j++)
1149 if(GetDEDX(i,j)>max)max=GetDEDX(i,j);
1150
1151 return max;
1152
1153 };
1154
1155 /**
1156 * \brief Give the minimum energy release
1157 */
1158 Float_t TrkTrack::GetDEDX_min(int ip, int iv){
1159 Float_t min=100000000;
1160 int pfrom = 0;
1161 int pto = 6;
1162 int vfrom = 0;
1163 int vto = 2;
1164 if(ip>=0&&ip<6){
1165 pfrom = ip;
1166 pto = ip+1;
1167 }
1168 if(iv>=0&&iv<2){
1169 vfrom = iv;
1170 vto = iv+1;
1171 }
1172 for(int i=pfrom; i<pto; i++)
1173 for(int j=0; j<vto; j++)
1174 if(GetDEDX(i,j)<min)min=GetDEDX(i,j);
1175
1176 return min;
1177
1178 };
1179
1180 /**
1181 * \brief Give the maximum spatial residual release
1182 */
1183 Float_t TrkTrack::GetResidual_max(int ip, int iv){
1184 Float_t max=0;
1185 int pfrom = 0;
1186 int pto = 6;
1187 int vfrom = 0;
1188 int vto = 2;
1189 if(ip>=0&&ip<6){
1190 pfrom = ip;
1191 pto = ip+1;
1192 }
1193 if(iv>=0&&iv<2){
1194 vfrom = iv;
1195 vto = iv+1;
1196 }
1197 for(int i=pfrom; i<pto; i++){
1198 for(int j=0; j<vto; j++){
1199 if(j==0 && XGood(i) && fabs(xm[i]-xv[i])>fabs(max))max=xv[i]-xm[i];
1200 if(j==1 && YGood(i) && fabs(ym[i]-yv[i])>fabs(max))max=yv[i]-ym[i];
1201 }
1202 }
1203 return max;
1204
1205 };
1206
1207
1208 /**
1209 * \brief Give the maximum multiplicity on the x view
1210 */
1211 Int_t TrkTrack::GetClusterX_Multiplicity_max(){
1212 int max=0;
1213 for(int ip=0; ip<6; ip++)
1214 if(GetClusterX_Multiplicity(ip)>max)max=GetClusterX_Multiplicity(ip);
1215 return max;
1216 };
1217 /**
1218 * \brief Give the minimum multiplicity on the x view
1219 */
1220 Int_t TrkTrack::GetClusterX_Multiplicity_min(){
1221 int min=50;
1222 for(int ip=0; ip<6; ip++)
1223 if(GetClusterX_Multiplicity(ip)<min)min=GetClusterX_Multiplicity(ip);
1224 return min;
1225 };
1226 /**
1227 * \brief Give the maximum multiplicity on the x view
1228 */
1229 Int_t TrkTrack::GetClusterY_Multiplicity_max(){
1230 int max=0;
1231 for(int ip=0; ip<6; ip++)
1232 if(GetClusterY_Multiplicity(ip)>max)max=GetClusterY_Multiplicity(ip);
1233 return max;
1234 };
1235 /**
1236 * \brief Give the minimum multiplicity on the x view
1237 */
1238 Int_t TrkTrack::GetClusterY_Multiplicity_min(){
1239 int min=50;
1240 for(int ip=0; ip<6; ip++)
1241 if(GetClusterY_Multiplicity(ip)<min)min=GetClusterY_Multiplicity(ip);
1242 return min;
1243 };
1244
1245 /**
1246 * \brief Give the minimum seed on the x view
1247 */
1248 Float_t TrkTrack::GetClusterX_Seed_min(){
1249 Float_t min=100000;
1250 for(int ip=0; ip<6; ip++)
1251 if(XGood(ip) && GetClusterX_Seed(ip)<min)min=GetClusterX_Seed(ip);
1252 return min;
1253 };
1254 /**
1255 * \brief Give the minimum seed on the x view
1256 */
1257 Float_t TrkTrack::GetClusterY_Seed_min(){
1258 Float_t min=100000;
1259 for(int ip=0; ip<6; ip++)
1260 if(YGood(ip) && GetClusterY_Seed(ip)<min)min=GetClusterY_Seed(ip);
1261 return min;
1262 };
1263
1264
1265 //--------------------------------------
1266 //
1267 //
1268 //--------------------------------------
1269 void TrkTrack::Clear(){
1270 // cout << "TrkTrack::Clear()"<<endl;
1271 seqno = -1;
1272 image = -1;
1273 chi2 = 0;
1274 nstep = 0;
1275 for(int it1=0;it1<5;it1++){
1276 al[it1] = 0;
1277 for(int it2=0;it2<5;it2++)coval[it1][it2] = 0;
1278 };
1279 for(int ip=0;ip<6;ip++){
1280 xgood[ip] = 0;
1281 ygood[ip] = 0;
1282 xm[ip] = 0;
1283 ym[ip] = 0;
1284 zm[ip] = 0;
1285 resx[ip] = 0;
1286 resy[ip] = 0;
1287 tailx[ip] = 0;
1288 taily[ip] = 0;
1289 xv[ip] = 0;
1290 yv[ip] = 0;
1291 zv[ip] = 0;
1292 axv[ip] = 0;
1293 ayv[ip] = 0;
1294 dedx_x[ip] = 0;
1295 dedx_y[ip] = 0;
1296
1297 };
1298 int ngf = TrkParams::nGF;
1299 for(int i=0; i<ngf; i++){
1300 xGF[i] = 0.;
1301 yGF[i] = 0.;
1302 }
1303 // if(clx)clx->Clear();
1304 // if(cly)cly->Clear();
1305 // clx.Clear();
1306 // cly.Clear();
1307 };
1308 //--------------------------------------
1309 //
1310 //
1311 //--------------------------------------
1312 void TrkTrack::Delete(){
1313 // cout << "TrkTrack::Delete()"<<endl;
1314 Clear();
1315 // if(clx)delete clx;
1316 // if(cly)delete cly;
1317 };
1318 //--------------------------------------
1319 //
1320 //
1321 //--------------------------------------
1322
1323 //--------------------------------------
1324 //
1325 //
1326 //--------------------------------------
1327 TrkSinglet::TrkSinglet(){
1328 // cout << "TrkSinglet::TrkSinglet() " << GetUniqueID()<<endl;
1329 // plane = 0;
1330 // coord[0] = 0;
1331 // coord[1] = 0;
1332 // sgnl = 0;
1333 // multmax = 0;
1334 // cls = 0;
1335 Clear();
1336 };
1337 //--------------------------------------
1338 //
1339 //
1340 //--------------------------------------
1341 TrkSinglet::TrkSinglet(const TrkSinglet& s){
1342 // cout << "TrkSinglet::TrkSinglet(const TrkSinglet& s) " << GetUniqueID()<<endl;
1343 plane = s.plane;
1344 coord[0] = s.coord[0];
1345 coord[1] = s.coord[1];
1346 sgnl = s.sgnl;
1347 multmax = s.multmax;
1348 // cls = 0;//<<<<pointer
1349 // cls = TRef(s.cls);
1350 };
1351 //--------------------------------------
1352 //
1353 //
1354 //--------------------------------------
1355 void TrkSinglet::Dump(){
1356 int i=0;
1357 cout << endl << "========== Singlet " ;
1358 cout << endl << "plane : " << plane;
1359 cout << endl << "coord[2] : "; while( i<2 && cout << coord[i] << " ") i++;
1360 cout << endl << "sgnl : " << sgnl;
1361 cout << endl << "max.strip : ";
1362 cout << endl << "multiplicity : ";
1363 }
1364 //--------------------------------------
1365 //
1366 //
1367 //--------------------------------------
1368 void TrkSinglet::Clear(){
1369 // cout << "TrkSinglet::Clear() " << GetUniqueID()<<endl;
1370 // cls=0;
1371 plane=-1;
1372 coord[0]=-999;
1373 coord[1]=-999;
1374 sgnl=0;
1375 multmax = 0;
1376
1377 }
1378 //--------------------------------------
1379 //
1380 //
1381 //--------------------------------------
1382 TrkLevel2::TrkLevel2(){
1383 // cout <<"TrkLevel2::TrkLevel2()"<<endl;
1384 for(Int_t i=0; i<12 ; i++){
1385 good[i] = -1;
1386 VKmask[i] = 0;
1387 VKflag[i] = 0;
1388 };
1389 Track = 0;
1390 SingletX = 0;
1391 SingletY = 0;
1392
1393 }
1394 //--------------------------------------
1395 //
1396 //
1397 //--------------------------------------
1398 void TrkLevel2::Set(){
1399 if(!Track)Track = new TClonesArray("TrkTrack");
1400 if(!SingletX)SingletX = new TClonesArray("TrkSinglet");
1401 if(!SingletY)SingletY = new TClonesArray("TrkSinglet");
1402 }
1403 //--------------------------------------
1404 //
1405 //
1406 //--------------------------------------
1407 void TrkLevel2::Dump(){
1408
1409 //
1410 cout << endl << endl << "=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-";
1411 cout << endl << "good : "; for(int i=0; i<12; i++) cout << hex <<" 0x"<< good[i]<<dec;
1412 cout << endl << "ntrk() : " << ntrk() ;
1413 cout << endl << "nclsx() : " << nclsx();
1414 cout << endl << "nclsy() : " << nclsy();
1415 if(Track){
1416 TClonesArray &t = *Track;
1417 for(int i=0; i<ntrk(); i++) ((TrkTrack *)t[i])->Dump();
1418 }
1419 // if(SingletX){
1420 // TClonesArray &sx = *SingletX;
1421 // for(int i=0; i<nclsx(); i++) ((TrkSinglet *)sx[i])->Dump();
1422 // }
1423 // if(SingletY){
1424 // TClonesArray &sy = *SingletY;
1425 // for(int i=0; i<nclsy(); i++) ((TrkSinglet *)sy[i])->Dump();
1426 // }
1427 cout << endl;
1428 }
1429 /**
1430 * \brief Dump processing status
1431 */
1432 void TrkLevel2::StatusDump(int view){
1433 cout << "DSP n. "<<view+1<<" status: "<<hex<<good[view]<<endl;
1434 };
1435 /**
1436 * \brief Check event status
1437 *
1438 * Check the event status, according to a flag-mask given as input.
1439 * Return true if the view passes the check.
1440 *
1441 * @param view View number (0-11)
1442 * @param flagmask Mask of flags to check (eg. flagmask=0x111 no missing packet,
1443 * no crc error, no software alarm)
1444 *
1445 * @see TrkLevel2 class definition to know how the status flag is defined
1446 *
1447 */
1448 Bool_t TrkLevel2::StatusCheck(int view, int flagmask){
1449
1450 if( view<0 || view >= 12)return false;
1451 return !(good[view]&flagmask);
1452
1453 };
1454
1455
1456 //--------------------------------------
1457 //
1458 //
1459 //--------------------------------------
1460 /**
1461 * The method returns false if the viking-chip was masked
1462 * either apriori ,on the basis of the mask read from the DB,
1463 * or run-by-run, on the basis of the calibration parameters)
1464 * @param iv Tracker view (0-11)
1465 * @param ivk Viking-chip number (0-23)
1466 */
1467 Bool_t TrkLevel2::GetVKMask(int iv, int ivk){
1468 Int_t whichbit = (Int_t)pow(2,ivk);
1469 return (whichbit&VKmask[iv])!=0;
1470 }
1471 /**
1472 * The method returns false if the viking-chip was masked
1473 * for this event due to common-noise computation failure.
1474 * @param iv Tracker view (0-11)
1475 * @param ivk Viking-chip number (0-23)
1476 */
1477 Bool_t TrkLevel2::GetVKFlag(int iv, int ivk){
1478 Int_t whichbit = (Int_t)pow(2,ivk);
1479 return (whichbit&VKflag[iv])!=0;
1480 }
1481 /**
1482 * The method returns true if the viking-chip was masked, either
1483 * forced (see TrkLevel2::GetVKMask(int,int)) or
1484 * for this event only (TrkLevel2::GetVKFlag(int,int)).
1485 * @param iv Tracker view (0-11)
1486 * @param ivk Viking-chip number (0-23)
1487 */
1488 Bool_t TrkLevel2::IsMaskedVK(int iv, int ivk){
1489 return !(GetVKMask(iv,ivk)&&GetVKFlag(iv,ivk) );
1490 };
1491
1492 //--------------------------------------
1493 //
1494 //
1495 //--------------------------------------
1496 /**
1497 * Fills a TrkLevel2 object with values from a struct cTrkLevel2 (to get data from F77 common).
1498 * Ref to Level1 data (clusters) is also set. If l1==NULL no references are set.
1499 * (NB It make sense to set references only if events are stored in a tree that contains also the Level1 branch)
1500 */
1501 void TrkLevel2::SetFromLevel2Struct(cTrkLevel2 *l2, TrkLevel1 *l1){
1502
1503 // cout << "void TrkLevel2::SetFromLevel2Struct(cTrkLevel2 *l2, TrkLevel1 *l1)"<<endl;
1504 Clear();
1505
1506 // temporary objects:
1507 TrkSinglet* t_singlet = new TrkSinglet();
1508 TrkTrack* t_track = new TrkTrack();
1509
1510 // -----------------
1511 // general variables
1512 // -----------------
1513 for(Int_t i=0; i<12 ; i++){
1514 good[i] = l2->good[i];
1515 VKmask[i]=0;
1516 VKflag[i]=0;
1517 for(Int_t ii=0; ii<24 ; ii++){
1518 Int_t setbit = (Int_t)pow(2,ii);
1519 if( l2->vkflag[ii][i]!=-1 )VKmask[i]=VKmask[i]|setbit;
1520 if( l2->vkflag[ii][i]!=0 )VKflag[i]=VKflag[i]|setbit;
1521 };
1522 };
1523 // --------------
1524 // *** TRACKS ***
1525 // --------------
1526 if(!Track) Track = new TClonesArray("TrkTrack");
1527 TClonesArray &t = *Track;
1528
1529 for(int i=0; i<l2->ntrk; i++){
1530 t_track->seqno = i;// NBNBNBNB deve sempre essere = i
1531 t_track->image = l2->image[i]-1;
1532 t_track->chi2 = l2->chi2_nt[i];
1533 t_track->nstep = l2->nstep_nt[i];
1534 for(int it1=0;it1<5;it1++){
1535 t_track->al[it1] = l2->al_nt[i][it1];
1536 for(int it2=0;it2<5;it2++)
1537 t_track->coval[it1][it2] = l2->coval[i][it2][it1];
1538 };
1539 for(int ip=0;ip<6;ip++){
1540 // ---------------------------------
1541 // new implementation of xgood/ygood
1542 // ---------------------------------
1543 t_track->xgood[ip] = l2->cltrx[i][ip]; //cluster ID
1544 t_track->ygood[ip] = l2->cltry[i][ip]; //cluster ID
1545 t_track->xgood[ip] += 10000000*l2->ls[i][ip]; // ladder+sensor
1546 t_track->ygood[ip] += 10000000*l2->ls[i][ip]; // ladder+sensor
1547 if(l2->xbad[i][ip]>0)t_track->xgood[ip]=-t_track->xgood[ip];
1548 if(l2->ybad[i][ip]>0)t_track->ygood[ip]=-t_track->ygood[ip];
1549 // if(l2->xbad[i][ip]>0 || l2->ybad[i][ip]>0){
1550 // if(l2->dedx_x[i][ip]<0 || l2->dedx_y[i][ip]<0){
1551 // cout << ip << " - "<< l2->cltrx[i][ip] << " "<<l2->cltry[i][ip]<<" "<<l2->ls[i][ip]<<endl;
1552 // cout << ip << " - "<<t_track->xgood[ip]<<" "<<t_track->ygood[ip]<<endl;
1553 // cout << ip << " - "<<t_track->GetClusterX_ID(ip)<<" "<<t_track->GetClusterY_ID(ip)<<" "<<t_track->GetLadder(ip)<<" "<<t_track->GetSensor(ip)<<endl;
1554 // cout << ip << " - "<<t_track->BadClusterX(ip)<<" "<<t_track->BadClusterY(ip)<<endl;
1555 // cout << ip << " - "<<t_track->SaturatedClusterX(ip)<<" "<<t_track->SaturatedClusterY(ip)<<endl;
1556 // }
1557 t_track->xm[ip] = l2->xm_nt[i][ip];
1558 t_track->ym[ip] = l2->ym_nt[i][ip];
1559 t_track->zm[ip] = l2->zm_nt[i][ip];
1560 t_track->resx[ip] = l2->resx_nt[i][ip];
1561 t_track->resy[ip] = l2->resy_nt[i][ip];
1562 t_track->tailx[ip] = l2->tailx[i][ip];
1563 t_track->taily[ip] = l2->taily[i][ip];
1564 t_track->xv[ip] = l2->xv_nt[i][ip];
1565 t_track->yv[ip] = l2->yv_nt[i][ip];
1566 t_track->zv[ip] = l2->zv_nt[i][ip];
1567 t_track->axv[ip] = l2->axv_nt[i][ip];
1568 t_track->ayv[ip] = l2->ayv_nt[i][ip];
1569 t_track->dedx_x[ip] = l2->dedx_x[i][ip];
1570 t_track->dedx_y[ip] = l2->dedx_y[i][ip];
1571 t_track->multmaxx[ip] = l2->multmaxx[i][ip];
1572 t_track->multmaxy[ip] = l2->multmaxy[i][ip];
1573 t_track->seedx[ip] = l2->seedx[i][ip];
1574 t_track->seedy[ip] = l2->seedy[i][ip];
1575 t_track->xpu[ip] = l2->xpu[i][ip];
1576 t_track->ypu[ip] = l2->ypu[i][ip];
1577 //-----------------------------------------------------
1578 //-----------------------------------------------------
1579 //-----------------------------------------------------
1580 //-----------------------------------------------------
1581 };
1582 // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1583 // evaluated coordinates (to define GF)
1584 // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1585 int ngf = TrkParams::nGF;
1586 float *zgf = TrkParams::zGF;
1587 Trajectory tgf = Trajectory(ngf,zgf);
1588 tgf.DoTrack2(t_track->al);//<<<< integrate the trajectory
1589 for(int ip=0; ip<ngf; ip++){
1590 t_track->xGF[ip] = tgf.x[ip];
1591 t_track->yGF[ip] = tgf.y[ip];
1592 }
1593
1594 // if(t_track->IsSaturated())t_track->Dump();
1595 new(t[i]) TrkTrack(*t_track);
1596 t_track->Clear();
1597 };//end loop over track
1598
1599 // ----------------
1600 // *** SINGLETS ***
1601 // ----------------
1602 if(!SingletX)SingletX = new TClonesArray("TrkSinglet");
1603 TClonesArray &sx = *SingletX;
1604 for(int i=0; i<l2->nclsx; i++){
1605 t_singlet->plane = l2->planex[i];
1606 t_singlet->coord[0] = l2->xs[i][0];
1607 t_singlet->coord[1] = l2->xs[i][1];
1608 t_singlet->sgnl = l2->signlxs[i];
1609 t_singlet->multmax = l2->multmaxsx[i];
1610 if(l2->sxbad[i]>0) t_singlet->multmax = -1*t_singlet->multmax;
1611 //-----------------------------------------------------
1612 // if(l1) t_singlet->cls = l1->GetCluster(l2->clsx[i]-1);
1613 //-----------------------------------------------------
1614 new(sx[i]) TrkSinglet(*t_singlet);
1615 t_singlet->Clear();
1616 }
1617 if(!SingletY)SingletY = new TClonesArray("TrkSinglet");
1618 TClonesArray &sy = *SingletY;
1619 for(int i=0; i<l2->nclsy; i++){
1620 t_singlet->plane = l2->planey[i];
1621 t_singlet->coord[0] = l2->ys[i][0];
1622 t_singlet->coord[1] = l2->ys[i][1];
1623 t_singlet->sgnl = l2->signlys[i];
1624 t_singlet->multmax = l2->multmaxsy[i];
1625 if(l2->sybad[i]>0) t_singlet->multmax = -1*t_singlet->multmax;
1626 //-----------------------------------------------------
1627 // if(l1) t_singlet->cls = l1->GetCluster(l2->clsy[i]-1);
1628 //-----------------------------------------------------
1629 new(sy[i]) TrkSinglet(*t_singlet);
1630 t_singlet->Clear();
1631 };
1632
1633
1634
1635 delete t_track;
1636 delete t_singlet;
1637 }
1638 /**
1639 * Fills a struct cTrkLevel2 with values from a TrkLevel2 object (to put data into a F77 common).
1640 */
1641
1642 void TrkLevel2::GetLevel2Struct(cTrkLevel2 *l2) const {
1643
1644 // general variables
1645 // l2->good2 = good2 ;
1646 for(Int_t i=0; i<12 ; i++){
1647 // l2->crc[i] = crc[i];
1648 l2->good[i] = good[i];
1649 };
1650 // *** TRACKS ***
1651
1652 if(Track){
1653 l2->ntrk = Track->GetEntries();
1654 for(Int_t i=0;i<l2->ntrk;i++){
1655 l2->image[i] = 1 + ((TrkTrack *)Track->At(i))->image;
1656 l2->chi2_nt[i] = ((TrkTrack *)Track->At(i))->chi2;
1657 l2->nstep_nt[i] = ((TrkTrack *)Track->At(i))->nstep;
1658 for(int it1=0;it1<5;it1++){
1659 l2->al_nt[i][it1] = ((TrkTrack *)Track->At(i))->al[it1];
1660 for(int it2=0;it2<5;it2++)
1661 l2->coval[i][it2][it1] = ((TrkTrack *)Track->At(i))->coval[it1][it2];
1662 };
1663 for(int ip=0;ip<6;ip++){
1664 l2->xgood_nt[i][ip] = ((TrkTrack *)Track->At(i))->XGood(ip);
1665 l2->ygood_nt[i][ip] = ((TrkTrack *)Track->At(i))->YGood(ip);
1666 l2->xm_nt[i][ip] = ((TrkTrack *)Track->At(i))->xm[ip];
1667 l2->ym_nt[i][ip] = ((TrkTrack *)Track->At(i))->ym[ip];
1668 l2->zm_nt[i][ip] = ((TrkTrack *)Track->At(i))->zm[ip];
1669 l2->resx_nt[i][ip] = ((TrkTrack *)Track->At(i))->resx[ip];
1670 l2->resy_nt[i][ip] = ((TrkTrack *)Track->At(i))->resy[ip];
1671 l2->tailx[i][ip] = ((TrkTrack *)Track->At(i))->tailx[ip];
1672 l2->taily[i][ip] = ((TrkTrack *)Track->At(i))->taily[ip];
1673 l2->xv_nt[i][ip] = ((TrkTrack *)Track->At(i))->xv[ip];
1674 l2->yv_nt[i][ip] = ((TrkTrack *)Track->At(i))->yv[ip];
1675 l2->zv_nt[i][ip] = ((TrkTrack *)Track->At(i))->zv[ip];
1676 l2->axv_nt[i][ip] = ((TrkTrack *)Track->At(i))->axv[ip];
1677 l2->ayv_nt[i][ip] = ((TrkTrack *)Track->At(i))->ayv[ip];
1678 l2->dedx_x[i][ip] = ((TrkTrack *)Track->At(i))->dedx_x[ip];
1679 l2->dedx_y[i][ip] = ((TrkTrack *)Track->At(i))->dedx_y[ip];
1680 };
1681 }
1682 }
1683 // *** SINGLETS ***
1684 if(SingletX){
1685 l2->nclsx = SingletX->GetEntries();
1686 for(Int_t i=0;i<l2->nclsx;i++){
1687 l2->planex[i] = ((TrkSinglet *)SingletX->At(i))->plane;
1688 l2->xs[i][0] = ((TrkSinglet *)SingletX->At(i))->coord[0];
1689 l2->xs[i][1] = ((TrkSinglet *)SingletX->At(i))->coord[1];
1690 l2->signlxs[i] = ((TrkSinglet *)SingletX->At(i))->sgnl;
1691 }
1692 }
1693
1694 if(SingletY){
1695 l2->nclsy = SingletY->GetEntries();
1696 for(Int_t i=0;i<l2->nclsy;i++){
1697 l2->planey[i] = ((TrkSinglet *)SingletY->At(i))->plane;
1698 l2->ys[i][0] = ((TrkSinglet *)SingletY->At(i))->coord[0];
1699 l2->ys[i][1] = ((TrkSinglet *)SingletY->At(i))->coord[1];
1700 l2->signlys[i] = ((TrkSinglet *)SingletY->At(i))->sgnl;
1701 }
1702 }
1703 }
1704 //--------------------------------------
1705 //
1706 //
1707 //--------------------------------------
1708 void TrkLevel2::Clear(){
1709 for(Int_t i=0; i<12 ; i++){
1710 good[i] = -1;
1711 VKflag[i] = 0;
1712 VKmask[i] = 0;
1713 };
1714 // if(Track)Track->Clear("C");
1715 // if(SingletX)SingletX->Clear("C");
1716 // if(SingletY)SingletY->Clear("C");
1717 if(Track)Track->Delete();
1718 if(SingletX)SingletX->Delete();
1719 if(SingletY)SingletY->Delete();
1720 }
1721 // //--------------------------------------
1722 // //
1723 // //
1724 // //--------------------------------------
1725 void TrkLevel2::Delete(){
1726
1727 // cout << "void TrkLevel2::Delete()"<<endl;
1728 Clear();
1729 if(Track)delete Track;
1730 if(SingletX)delete SingletX;
1731 if(SingletY)delete SingletY;
1732
1733 }
1734 //--------------------------------------
1735 //
1736 //
1737 //--------------------------------------
1738 /**
1739 * Sort physical tracks and stores them in a TObjectArray, ordering by increasing chi**2 value (in case of track image, it selects the one with lower chi**2). The total number of physical tracks is given by GetNTracks() and the it-th physical track can be retrieved by means of the method GetTrack(int it).
1740 * This method is overridden by PamLevel2::GetTracks(), where calorimeter and TOF information is used.
1741 */
1742 TRefArray *TrkLevel2::GetTracks_NFitSorted(){
1743
1744 if(!Track)return 0;
1745
1746 TRefArray *sorted = new TRefArray();
1747
1748 TClonesArray &t = *Track;
1749 // TClonesArray &ts = *PhysicalTrack;
1750 int N = ntrk();
1751 vector<int> m(N); for(int i=0; i<N; i++)m[i]=1;
1752 // int m[50]; for(int i=0; i<N; i++)m[i]=1;
1753
1754 int indo=0;
1755 int indi=0;
1756 while(N > 0){
1757 // while(N != 0){
1758 int nfit =0;
1759 float chi2ref = numeric_limits<float>::max();
1760
1761 // first loop to search maximum num. of fit points
1762 for(int i=0; i < ntrk(); i++){
1763 if( ((TrkTrack *)t[i])->GetNtot() >= nfit && m[i]==1){
1764 nfit = ((TrkTrack *)t[i])->GetNtot();
1765 }
1766 }
1767 //second loop to search minimum chi2 among selected
1768 for(int i=0; i<ntrk(); i++){
1769 Float_t chi2 = ((TrkTrack *)t[i])->chi2;
1770 if(chi2 < 0) chi2 = -chi2*1000;
1771 if( chi2 < chi2ref
1772 && ((TrkTrack *)t[i])->GetNtot() == nfit
1773 && m[i]==1){
1774 chi2ref = ((TrkTrack *)t[i])->chi2;
1775 indi = i;
1776 };
1777 };
1778 if( ((TrkTrack *)t[indi])->HasImage() ){
1779 m[((TrkTrack *)t[indi])->image] = 0;
1780 N--;
1781
1782 // cout << "i** "<< ((TrkTrack *)t[indi])->image << " " << nfiti <<" "<<chi2i<<endl;
1783 };
1784 sorted->Add( (TrkTrack*)t[indi] );
1785
1786 m[indi] = 0;
1787 // cout << "SORTED "<< indo << " "<< indi << " "<< N << " "<<((TrkTrack *)t[indi])->image<<" "<<chi2ref<<endl;
1788 N--;
1789 indo++;
1790 }
1791 m.clear();
1792 // cout << "GetTracks_NFitSorted(it): Done"<< endl;
1793
1794 return sorted;
1795 // return PhysicalTrack;
1796 }
1797 //--------------------------------------
1798 //
1799 //
1800 //--------------------------------------
1801 /**
1802 * Retrieves the is-th stored track.
1803 * @param it Track number, ranging from 0 to ntrk().
1804 * Fitted tracks ( images included ) are stored in a TObjectArray ( TrkLevel2::Track ) in the same order they are returned by the F77 fitting routine.
1805 */
1806 TrkTrack *TrkLevel2::GetStoredTrack(int is){
1807
1808 if(is >= this->ntrk()){
1809 cout << "TrkTrack *TrkLevel2::GetStoredTrack(int) >> Track "<< is << "doen not exits! " << endl;
1810 cout << "Stored tracks ntrk() = "<< this->ntrk() << endl;
1811 return 0;
1812 }
1813 if(!Track){
1814 cout << "TrkTrack *TrkLevel2::GetStoredTrack(int is) >> (TClonesArray*) Track ==0 "<<endl;
1815 };
1816 TClonesArray &t = *(Track);
1817 TrkTrack *track = (TrkTrack*)t[is];
1818 return track;
1819 }
1820 //--------------------------------------
1821 //
1822 //
1823 //--------------------------------------
1824 /**
1825 * Retrieves the is-th stored X singlet.
1826 * @param it Singlet number, ranging from 0 to nclsx().
1827 */
1828 TrkSinglet *TrkLevel2::GetSingletX(int is){
1829
1830 if(is >= this->nclsx()){
1831 cout << "TrkSinglet *TrkLevel2::GetSingletX(int) >> Singlet "<< is << "doen not exits! " << endl;
1832 cout << "Stored x-singlets nclsx() = "<< this->nclsx() << endl;
1833 return 0;
1834 }
1835 if(!SingletX)return 0;
1836 TClonesArray &t = *(SingletX);
1837 TrkSinglet *singlet = (TrkSinglet*)t[is];
1838 return singlet;
1839 }
1840 //--------------------------------------
1841 //
1842 //
1843 //--------------------------------------
1844 /**
1845 * Retrieves the is-th stored Y singlet.
1846 * @param it Singlet number, ranging from 0 to nclsx().
1847 */
1848 TrkSinglet *TrkLevel2::GetSingletY(int is){
1849
1850 if(is >= this->nclsy()){
1851 cout << "TrkSinglet *TrkLevel2::GetSingletY(int) >> Singlet "<< is << "doen not exits! " << endl;
1852 cout << "Stored y-singlets nclsx() = "<< this->nclsx() << endl;
1853 return 0;
1854 }
1855 if(!SingletY)return 0;
1856 TClonesArray &t = *(SingletY);
1857 TrkSinglet *singlet = (TrkSinglet*)t[is];
1858 return singlet;
1859 }
1860 //--------------------------------------
1861 //
1862 //
1863 //--------------------------------------
1864 /**
1865 * Retrieves the it-th "physical" track, sorted by the method GetNTracks().
1866 * @param it Track number, ranging from 0 to GetNTracks().
1867 */
1868
1869 TrkTrack *TrkLevel2::GetTrack(int it){
1870
1871 if(it >= this->GetNTracks()){
1872 cout << "TrkTrack *TrkLevel2::GetTrack(int) >> Track "<< it << "does not exits! " << endl;
1873 cout << "Physical tracks GetNTracks() = "<< this->ntrk() << endl;
1874 return 0;
1875 }
1876
1877 TRefArray *sorted = GetTracks(); //TEMPORANEO
1878 if(!sorted)return 0;
1879 TrkTrack *track = (TrkTrack*)sorted->At(it);
1880 sorted->Clear();
1881 delete sorted;
1882 return track;
1883 }
1884 /**
1885 * Give the number of "physical" tracks, sorted by the method GetTracks().
1886 */
1887 Int_t TrkLevel2::GetNTracks(){
1888
1889 Float_t ntot=0;
1890 if(!Track)return 0;
1891 TClonesArray &t = *Track;
1892 for(int i=0; i<ntrk(); i++) {
1893 if( ((TrkTrack *)t[i])->GetImageSeqNo() == -1 ) ntot+=1.;
1894 else ntot+=0.5;
1895 }
1896 return (Int_t)ntot;
1897
1898 };
1899 //--------------------------------------
1900 //
1901 //
1902 //--------------------------------------
1903 /**
1904 * Retrieves (if present) the image of the it-th "physical" track, sorted by the method GetNTracks().
1905 * @param it Track number, ranging from 0 to GetNTracks().
1906 */
1907 TrkTrack *TrkLevel2::GetTrackImage(int it){
1908
1909 if(it >= this->GetNTracks()){
1910 cout << "TrkTrack *TrkLevel2::GetTrackImage(int) >> Track "<< it << "does not exits! " << endl;
1911 cout << "Physical tracks GetNTracks() = "<< this->ntrk() << endl;
1912 return 0;
1913 }
1914
1915 TRefArray* sorted = GetTracks(); //TEMPORANEO
1916 if(!sorted)return 0;
1917 TrkTrack *track = (TrkTrack*)sorted->At(it);
1918
1919 if(!track->HasImage()){
1920 cout << "TrkTrack *TrkLevel2::GetTrackImage(int) >> Track "<< it << "does not have image! " << endl;
1921 return 0;
1922 }
1923 if(!Track)return 0;
1924 TrkTrack *image = (TrkTrack*)(*Track)[track->image];
1925
1926 sorted->Delete();
1927 delete sorted;
1928
1929 return image;
1930
1931 }
1932 //--------------------------------------
1933 //
1934 //
1935 //--------------------------------------
1936 /**
1937 * Loads the magnetic field.
1938 * @param s Path of the magnetic-field files.
1939 */
1940 void TrkLevel2::LoadField(TString path){
1941 //
1942 // strcpy(path_.path,path.Data());
1943 // path_.pathlen = path.Length();
1944 // path_.error = 0;
1945 // readb_();
1946
1947 // TrkParams::SetTrackingMode();
1948 // TrkParams::SetPrecisionFactor();
1949 // TrkParams::SetStepMin();
1950 TrkParams::SetMiniDefault();
1951
1952 TrkParams::Set(path,1);
1953 TrkParams::Load(1);
1954
1955 //
1956 };
1957 // /**
1958 // * Get BY (kGauss)
1959 // * @param v (x,y,z) coordinates in cm
1960 // */
1961 // float TrkLevel2::GetBX(float* v){
1962 // float b[3];
1963 // gufld_(v,b);
1964 // return b[0]/10.;
1965 // }
1966 // /**
1967 // * Get BY (kGauss)
1968 // * @param v (x,y,z) coordinates in cm
1969 // */
1970 // float TrkLevel2::GetBY(float* v){
1971 // float b[3];
1972 // gufld_(v,b);
1973 // return b[1]/10.;
1974 // }
1975 // /**
1976 // * Get BY (kGauss)
1977 // * @param v (x,y,z) coordinates in cm
1978 // */
1979 // float TrkLevel2::GetBZ(float* v){
1980 // float b[3];
1981 // gufld_(v,b);
1982 // return b[2]/10.;
1983 // }
1984 //--------------------------------------
1985 //
1986 //
1987 //--------------------------------------
1988 /**
1989 * Get tracker-plane (mechanical) z-coordinate
1990 * @param plane_id plane index (1=TOP,2,3,4,5,6=BOTTOM)
1991 */
1992 Float_t TrkLevel2::GetZTrk(Int_t plane_id){
1993 switch(plane_id){
1994 case 1: return ZTRK1;
1995 case 2: return ZTRK2;
1996 case 3: return ZTRK3;
1997 case 4: return ZTRK4;
1998 case 5: return ZTRK5;
1999 case 6: return ZTRK6;
2000 default: return 0.;
2001 };
2002 };
2003 //--------------------------------------
2004 //
2005 //
2006 //--------------------------------------
2007 /**
2008 * Trajectory default constructor.
2009 * (By default is created with z-coordinates inside the tracking volume)
2010 */
2011 Trajectory::Trajectory(){
2012 npoint = 10;
2013 x = new float[npoint];
2014 y = new float[npoint];
2015 z = new float[npoint];
2016 thx = new float[npoint];
2017 thy = new float[npoint];
2018 tl = new float[npoint];
2019 float dz = ((ZTRK1)-(ZTRK6))/(npoint-1);
2020 for(int i=0; i<npoint; i++){
2021 x[i] = 0;
2022 y[i] = 0;
2023 z[i] = (ZTRK1) - i*dz;
2024 thx[i] = 0;
2025 thy[i] = 0;
2026 tl[i] = 0;
2027 }
2028 }
2029 //--------------------------------------
2030 //
2031 //
2032 //--------------------------------------
2033 /**
2034 * Trajectory constructor.
2035 * (By default is created with z-coordinates inside the tracking volume)
2036 * \param n Number of points
2037 */
2038 Trajectory::Trajectory(int n){
2039 if(n<=0){
2040 cout << "NB! Trajectory must have at least 1 point >>> created with 10 points" << endl;
2041 n=10;
2042 }
2043 npoint = n;
2044 x = new float[npoint];
2045 y = new float[npoint];
2046 z = new float[npoint];
2047 thx = new float[npoint];
2048 thy = new float[npoint];
2049 tl = new float[npoint];
2050 float dz = ((ZTRK1)-(ZTRK6))/(npoint-1);
2051 for(int i=0; i<npoint; i++){
2052 x[i] = 0;
2053 y[i] = 0;
2054 z[i] = (ZTRK1) - i*dz;
2055 thx[i] = 0;
2056 thy[i] = 0;
2057 tl[i] = 0;
2058 }
2059 }
2060 //--------------------------------------
2061 //
2062 //
2063 //--------------------------------------
2064 /**
2065 * Trajectory constructor.
2066 * \param n Number of points
2067 * \param pz Pointer to float array, defining z coordinates
2068 */
2069 Trajectory::Trajectory(int n, float* zin){
2070 npoint = 10;
2071 if(n>0)npoint = n;
2072 x = new float[npoint];
2073 y = new float[npoint];
2074 z = new float[npoint];
2075 thx = new float[npoint];
2076 thy = new float[npoint];
2077 tl = new float[npoint];
2078 int i=0;
2079 do{
2080 x[i] = 0;
2081 y[i] = 0;
2082 z[i] = zin[i];
2083 thx[i] = 0;
2084 thy[i] = 0;
2085 tl[i] = 0;
2086 i++;
2087 }while(zin[i-1] > zin[i] && i < npoint);
2088 npoint=i;
2089 if(npoint != n)cout << "NB! Trajectory created with "<<npoint<<" points"<<endl;
2090 }
2091 void Trajectory::Delete(){
2092
2093 if(x) delete [] x;
2094 if(y) delete [] y;
2095 if(z) delete [] z;
2096 if(thx) delete [] thx;
2097 if(thy) delete [] thy;
2098 if(tl) delete [] tl;
2099
2100 }
2101 //--------------------------------------
2102 //
2103 //
2104 //--------------------------------------
2105 /**
2106 * Dump the trajectory coordinates.
2107 */
2108 void Trajectory::Dump(){
2109 cout <<endl<< "Trajectory ========== "<<endl;
2110 for (int i=0; i<npoint; i++){
2111 cout << i <<" >> " << x[i] <<" "<< y[i] <<" "<< z[i] ;
2112 cout <<" -- " << thx[i] <<" "<< thy[i] ;
2113 cout <<" -- " << tl[i] << endl;
2114 };
2115 }
2116 //--------------------------------------
2117 //
2118 //
2119 //--------------------------------------
2120 /**
2121 * Get trajectory length between two points
2122 * @param ifirst first point (default 0)
2123 * @param ilast last point (default npoint)
2124 */
2125 float Trajectory::GetLength(int ifirst, int ilast){
2126 if( ifirst<0 ) ifirst = 0;
2127 if( ilast>=npoint) ilast = npoint-1;
2128 float l=0;
2129 for(int i=ifirst;i<=ilast;i++){
2130 l=l+tl[i];
2131 };
2132 if(z[ilast] > ZINI)l=l-tl[ilast];
2133 if(z[ifirst] < ZINI) l=l-tl[ifirst];
2134
2135 return l;
2136
2137 }
2138
2139 /**
2140 * Evaluates the trajectory in the apparatus associated to the track.
2141 * It integrates the equations of motion in the magnetic field. The magnetic field should be previously loaded ( by calling TrkLevel2::LoadField() ), otherwise an error message is returned.
2142 * @param t pointer to an object of the class Trajectory,
2143 * which z coordinates should be previously initialized by calling the proper constructor ( Trajectory::Trajectory(int n, float* zin) ).
2144 * @return error flag.
2145 */
2146 int Trajectory::DoTrack2(float* al){
2147
2148 // double *dxout = new double[npoint];
2149 // double *dyout = new double[npoint];
2150 // double *dthxout = new double[npoint];
2151 // double *dthyout = new double[npoint];
2152 // double *dtlout = new double[npoint];
2153 // double *dzin = new double[npoint];
2154
2155 double *dxout;
2156 double *dyout;
2157 double *dthxout;
2158 double *dthyout;
2159 double *dtlout;
2160 double *dzin;
2161
2162 dxout = (double*) malloc(npoint*sizeof(double));
2163 dyout = (double*) malloc(npoint*sizeof(double));
2164 dthxout = (double*) malloc(npoint*sizeof(double));
2165 dthyout = (double*) malloc(npoint*sizeof(double));
2166 dtlout = (double*) malloc(npoint*sizeof(double));
2167 dzin = (double*) malloc(npoint*sizeof(double));
2168
2169 double dal[5];
2170
2171 int ifail = 0;
2172
2173 for (int i=0; i<5; i++) dal[i] = (double)al[i];
2174 for (int i=0; i<npoint; i++) dzin[i] = (double)z[i];
2175
2176 TrkParams::Load(1);
2177 if( !TrkParams::IsLoaded(1) ){
2178 cout << "int Trajectory::DoTrack2(float* al) --- ERROR --- m.field not loaded"<<endl;
2179 return 0;
2180 }
2181 dotrack2_(&(npoint),dzin,dxout,dyout,dthxout,dthyout,dtlout,dal,&ifail);
2182
2183 for (int i=0; i<npoint; i++){
2184 x[i] = (float)*(dxout+i);
2185 y[i] = (float)*(dyout+i);
2186 thx[i] = (float)*(dthxout+i);
2187 thy[i] = (float)*(dthyout+i);
2188 tl[i] = (float)*(dtlout+i);
2189 }
2190
2191 if(dxout) free( dxout );
2192 if(dyout) free( dyout );
2193 if(dthxout)free( dthxout );
2194 if(dthyout)free( dthyout );
2195 if(dtlout) free( dtlout );
2196 if(dzin) free( dzin );
2197
2198 // delete [] dxout;
2199 // delete [] dyout;
2200 // delete [] dthxout;
2201 // delete [] dthyout;
2202 // delete [] dtlout;
2203 // delete [] dzin;
2204
2205
2206 return ifail;
2207 };
2208
2209 ClassImp(TrkLevel2);
2210 ClassImp(TrkSinglet);
2211 ClassImp(TrkTrack);
2212 ClassImp(Trajectory);

  ViewVC Help
Powered by ViewVC 1.1.23