/[PAMELA software]/DarthVader/TrackerLevel2/src/TrkLevel2.cpp
ViewVC logotype

Contents of /DarthVader/TrackerLevel2/src/TrkLevel2.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1.49 - (show annotations) (download)
Tue Nov 25 14:41:37 2008 UTC (16 years ago) by pam-fi
Branch: MAIN
Changes since 1.48: +2 -2 lines
fixed small bug in cluster-finding.

1 /**
2 * \file TrkLevel2.cpp
3 * \author Elena Vannuccini
4 */
5 #include <TrkLevel2.h>
6 #include <iostream>
7 #include <math.h>
8 using namespace std;
9 //......................................
10 // F77 routines
11 //......................................
12 extern "C" {
13 void dotrack_(int*, double*, double*, double*, double*, int*);
14 void dotrack2_(int*, double*, double*, double*, double*,double*, double*, double*,int*);
15 void mini2_(int*,int*,int*);
16 void guess_();
17 void gufld_(float*, float*);
18 float risxeta2_(float *);
19 float risxeta3_(float *);
20 float risxeta4_(float *);
21 float risyeta2_(float *);
22 }
23
24 //--------------------------------------
25 //
26 //
27 //--------------------------------------
28 TrkTrack::TrkTrack(){
29 // cout << "TrkTrack::TrkTrack()" << endl;
30 seqno = -1;
31 image = -1;
32 chi2 = 0;
33 nstep = 0;
34 for(int it1=0;it1<5;it1++){
35 al[it1] = 0;
36 for(int it2=0;it2<5;it2++)coval[it1][it2] = 0;
37 };
38 for(int ip=0;ip<6;ip++){
39 xgood[ip] = 0;
40 ygood[ip] = 0;
41 xm[ip] = 0;
42 ym[ip] = 0;
43 zm[ip] = 0;
44 resx[ip] = 0;
45 resy[ip] = 0;
46 tailx[ip] = 0;
47 taily[ip] = 0;
48 xv[ip] = 0;
49 yv[ip] = 0;
50 zv[ip] = 0;
51 axv[ip] = 0;
52 ayv[ip] = 0;
53 dedx_x[ip] = 0;
54 dedx_y[ip] = 0;
55 multmaxx[ip] = 0;
56 multmaxy[ip] = 0;
57 seedx[ip] = 0;
58 seedy[ip] = 0;
59 xpu[ip] = 0;
60 ypu[ip] = 0;
61
62 };
63
64 // TrkParams::SetTrackingMode();
65 // TrkParams::SetPrecisionFactor();
66 // TrkParams::SetStepMin();
67 TrkParams::SetMiniDefault();
68 TrkParams::SetPFA();
69
70 int ngf = TrkParams::nGF;
71 for(int i=0; i<ngf; i++){
72 xGF[i] = 0.;
73 yGF[i] = 0.;
74 }
75
76
77 };
78 //--------------------------------------
79 //
80 //
81 //--------------------------------------
82 TrkTrack::TrkTrack(const TrkTrack& t){
83 seqno = t.seqno;
84 image = t.image;
85 chi2 = t.chi2;
86 nstep = t.nstep;
87 for(int it1=0;it1<5;it1++){
88 al[it1] = t.al[it1];
89 for(int it2=0;it2<5;it2++)coval[it1][it2] = t.coval[it1][it2];
90 };
91 for(int ip=0;ip<6;ip++){
92 xgood[ip] = t.xgood[ip];
93 ygood[ip] = t.ygood[ip];
94 xm[ip] = t.xm[ip];
95 ym[ip] = t.ym[ip];
96 zm[ip] = t.zm[ip];
97 resx[ip] = t.resx[ip];
98 resy[ip] = t.resy[ip];
99 tailx[ip] = t.tailx[ip];
100 taily[ip] = t.taily[ip];
101 xv[ip] = t.xv[ip];
102 yv[ip] = t.yv[ip];
103 zv[ip] = t.zv[ip];
104 axv[ip] = t.axv[ip];
105 ayv[ip] = t.ayv[ip];
106 dedx_x[ip] = t.dedx_x[ip];
107 dedx_y[ip] = t.dedx_y[ip];
108 multmaxx[ip] = t.multmaxx[ip];
109 multmaxy[ip] = t.multmaxy[ip];
110 seedx[ip] = t.seedx[ip];
111 seedy[ip] = t.seedy[ip];
112 xpu[ip] = t.xpu[ip];
113 ypu[ip] = t.ypu[ip];
114 };
115
116 // TrkParams::SetTrackingMode();
117 // TrkParams::SetPrecisionFactor();
118 // TrkParams::SetStepMin();
119 TrkParams::SetMiniDefault();
120 TrkParams::SetPFA();
121
122 int ngf = TrkParams::nGF;
123 for(int i=0; i<ngf; i++){
124 xGF[i] = t.xGF[i];
125 yGF[i] = t.yGF[i];
126 }
127 };
128 //--------------------------------------
129 //
130 //
131 //--------------------------------------
132 void TrkTrack::Copy(TrkTrack& t){
133
134 t.seqno = seqno;
135 t.image = image;
136 t.chi2 = chi2;
137 t.nstep = nstep;
138 for(int it1=0;it1<5;it1++){
139 t.al[it1] = al[it1];
140 for(int it2=0;it2<5;it2++)t.coval[it1][it2] = coval[it1][it2];
141 };
142 for(int ip=0;ip<6;ip++){
143 t.xgood[ip] = xgood[ip];
144 t.ygood[ip] = ygood[ip];
145 t.xm[ip] = xm[ip];
146 t.ym[ip] = ym[ip];
147 t.zm[ip] = zm[ip];
148 t.resx[ip] = resx[ip];
149 t.resy[ip] = resy[ip];
150 t.tailx[ip] = tailx[ip];
151 t.taily[ip] = taily[ip];
152 t.xv[ip] = xv[ip];
153 t.yv[ip] = yv[ip];
154 t.zv[ip] = zv[ip];
155 t.axv[ip] = axv[ip];
156 t.ayv[ip] = ayv[ip];
157 t.dedx_x[ip] = dedx_x[ip];
158 t.dedx_y[ip] = dedx_y[ip];
159 t.multmaxx[ip] = multmaxx[ip];
160 t.multmaxy[ip] = multmaxy[ip];
161 t.seedx[ip] = seedx[ip];
162 t.seedy[ip] = seedy[ip];
163 t.xpu[ip] = xpu[ip];
164 t.ypu[ip] = ypu[ip];
165
166 };
167 int ngf = TrkParams::nGF;
168 for(int i=0; i<ngf; i++){
169 t.xGF[i] = xGF[i];
170 t.yGF[i] = yGF[i];
171 }
172
173
174 };
175 //--------------------------------------
176 //
177 //
178 //--------------------------------------
179 /**
180 * Evaluates the trajectory in the apparatus associated to the track.
181 * It integrates the equations of motion in the magnetic field. The magnetic field should be previously loaded ( by calling TrkLevel2::LoadField() ), otherwise an error message is returned.
182 * @param t pointer to an object of the class Trajectory,
183 * which z coordinates should be previously initialized by calling the proper constructor ( Trajectory::Trajectory(int n, float* zin) ).
184 * @return error flag.
185 *
186 * >>> OBSOLETE !!! use TrkTrack::DoTrack2(Trajectory* t) instead
187 *
188 */
189 int TrkTrack::DoTrack(Trajectory* t){
190
191 cout << " int TrkTrack::DoTrack(Trajectory* t) --->> OBSOLETE !!! "<<endl;
192 cout << " use int TrkTrack::DoTrack2(Trajectory* t)"<<endl;
193
194 double *dxout = new double[t->npoint];
195 double *dyout = new double[t->npoint];
196 double *dzin = new double[t->npoint];
197 double dal[5];
198
199 int ifail = 0;
200
201 for (int i=0; i<5; i++) dal[i] = (double)al[i];
202 for (int i=0; i<t->npoint; i++) dzin[i] = (double)t->z[i];
203
204 TrkParams::Load(1);
205 if( !TrkParams::IsLoaded(1) ){
206 cout << "int TrkTrack::DoTrack(Trajectory* t) --- ERROR --- m.field not loaded"<<endl;
207 return 0;
208 }
209 dotrack_(&(t->npoint),dzin,dxout,dyout,dal,&ifail);
210
211 for (int i=0; i<t->npoint; i++){
212 t->x[i] = (float)*(dxout+i);
213 t->y[i] = (float)*(dyout+i);
214 }
215
216 delete [] dxout;
217 delete [] dyout;
218 delete [] dzin;
219
220 return ifail;
221 };
222 //--------------------------------------
223 //
224 //
225 //--------------------------------------
226 /**
227 * Evaluates the trajectory in the apparatus associated to the track.
228 * It integrates the equations of motion in the magnetic field. The magnetic field should be previously loaded ( by calling TrkLevel2::LoadField() ), otherwise an error message is returned.
229 * @param t pointer to an object of the class Trajectory,
230 * which z coordinates should be previously initialized by calling the proper constructor ( Trajectory::Trajectory(int n, float* zin) ).
231 * @return error flag.
232 */
233 int TrkTrack::DoTrack2(Trajectory* t){
234
235 double *dxout = new double[t->npoint];
236 double *dyout = new double[t->npoint];
237 double *dthxout = new double[t->npoint];
238 double *dthyout = new double[t->npoint];
239 double *dtlout = new double[t->npoint];
240 double *dzin = new double[t->npoint];
241 double dal[5];
242
243 int ifail = 0;
244
245 for (int i=0; i<5; i++) dal[i] = (double)al[i];
246 for (int i=0; i<t->npoint; i++) dzin[i] = (double)t->z[i];
247
248 TrkParams::Load(1);
249 if( !TrkParams::IsLoaded(1) ){
250 cout << "int TrkTrack::DoTrack2(Trajectory* t) --- ERROR --- m.field not loaded"<<endl;
251 return 0;
252 }
253 dotrack2_(&(t->npoint),dzin,dxout,dyout,dthxout,dthyout,dtlout,dal,&ifail);
254
255 for (int i=0; i<t->npoint; i++){
256 t->x[i] = (float)*(dxout+i);
257 t->y[i] = (float)*(dyout+i);
258 t->thx[i] = (float)*(dthxout+i);
259 t->thy[i] = (float)*(dthyout+i);
260 t->tl[i] = (float)*(dtlout+i);
261 }
262
263 delete [] dxout;
264 delete [] dyout;
265 delete [] dzin;
266 delete [] dthxout;
267 delete [] dthyout;
268 delete [] dtlout;
269
270 return ifail;
271 };
272 //--------------------------------------
273 //
274 //
275 //--------------------------------------
276 //float TrkTrack::BdL(){
277 //};
278 //--------------------------------------
279 //
280 //
281 //--------------------------------------
282 Float_t TrkTrack::GetRigidity(){
283 Float_t rig=0;
284 if(chi2>0)rig=1./al[4];
285 if(rig<0) rig=-rig;
286 return rig;
287 };
288 //
289 Float_t TrkTrack::GetDeflection(){
290 Float_t def=0;
291 if(chi2>0)def=al[4];
292 return def;
293 };
294 //
295 /**
296 * Method to retrieve the dE/dx measured on a tracker view.
297 * @param ip plane (0-5)
298 * @param iv view (0=x 1=y)
299 */
300 Float_t TrkTrack::GetDEDX(int ip, int iv){
301 if(iv==0 && ip>=0 && ip<6)return fabs(dedx_x[ip]);
302 else if(iv==1 && ip>=0 && ip<6)return fabs(dedx_y[ip]);
303 else {
304 cout << "TrkTrack::GetDEDX(int ip, int iv) -- wrong input parameters "<<ip<<iv<<endl;
305 return 0.;
306 }
307 }
308 /**
309 * Method to evaluate the dE/dx measured on a tracker plane.
310 * The two measurements on x- and y-view are averaged.
311 * @param ip plane (0-5)
312 */
313 Float_t TrkTrack::GetDEDX(int ip){
314 if( (Int_t)XGood(ip)+(Int_t)YGood(ip) == 0 ) return 0;
315 return (GetDEDX(ip,0)+GetDEDX(ip,1))/((Int_t)XGood(ip)+(Int_t)YGood(ip));
316 };
317
318 /**
319 * Method to evaluate the dE/dx averaged over all planes.
320 */
321 Float_t TrkTrack::GetDEDX(){
322 Float_t dedx=0;
323 for(Int_t ip=0; ip<6; ip++)dedx+=GetDEDX(ip,0)*XGood(ip)+GetDEDX(ip,1)*YGood(ip);
324 dedx = dedx/(GetNX()+GetNY());
325 return dedx;
326 };
327 /**
328 * Returns 1 if the cluster on a tracker view includes bad strips
329 * (at least one bad strip among the four strip used by p.f.a.)
330 * @param ip plane (0-5)
331 * @param iv view (0=x 1=y)
332 */
333 Bool_t TrkTrack::IsBad(int ip,int iv){
334 if(iv==0 && ip>=0 && ip<6)return (xgood[ip]<0) ;
335 else if(iv==1 && ip>=0 && ip<6)return (ygood[ip]<0) ;
336 else {
337 cout << "TrkTrack::IsBad(int ip, int iv) -- wrong input parameters "<<ip<<iv<<endl;
338 return 0.;
339 }
340 };
341 /**
342 * Returns 1 if the signal on a tracker view is saturated.
343 * @param ip plane (0-5)
344 * @param iv view (0=x 1=y)
345 */
346 Bool_t TrkTrack::IsSaturated(int ip,int iv){
347 if(iv==0 && ip>=0 && ip<6)return (dedx_x[ip]<0) ;
348 else if(iv==1 && ip>=0 && ip<6)return (dedx_y[ip]<0) ;
349 else {
350 cout << "TrkTrack::IsSaturated(int ip, int iv) -- wrong input parameters "<<ip<<iv<<endl;
351 return 0.;
352 }
353 };
354 /**
355 * Returns 1 if either the x or the y signal on a tracker plane is saturated.
356 * @param ip plane (0-5)
357 */
358 Bool_t TrkTrack::IsSaturated(int ip){
359 return (IsSaturated(ip,0)||IsSaturated(ip,1));
360 };
361 /**
362 * Returns 1 if there is at least a saturated signal along the track.
363 */
364 Bool_t TrkTrack::IsSaturated(){
365 for(int ip=0; ip<6; ip++)for(int iv=0; iv<2; iv++)if(IsSaturated(ip,iv))return true;
366 return false;
367 }
368 /**
369 * Returns the track "lever-arm" on the x view, defined as the distance (in planes) between
370 * the upper and lower x measurements (the maximum value of lever-arm is 6).
371 */
372 Int_t TrkTrack::GetLeverArmX(){
373 int first_plane = -1;
374 int last_plane = -1;
375 for(Int_t ip=0; ip<6; ip++){
376 if( XGood(ip) && first_plane == -1 )first_plane = ip;
377 if( XGood(ip) && first_plane != -1 )last_plane = ip;
378 }
379 if( first_plane == -1 || last_plane == -1){
380 cout<< "Int_t TrkTrack::GetLeverArmX() -- XGood(ip) always false ??? "<<endl;
381 return 0;
382 }
383 return (last_plane-first_plane+1);
384 }
385 /**
386 * Returns the track "lever-arm" on the y view, defined as the distance (in planes) between
387 * the upper and lower y measurements (the maximum value of lever-arm is 6).
388 */
389 Int_t TrkTrack::GetLeverArmY(){
390 int first_plane = -1;
391 int last_plane = -1;
392 for(Int_t ip=0; ip<6; ip++){
393 if( YGood(ip) && first_plane == -1 )first_plane = ip;
394 if( YGood(ip) && first_plane != -1 )last_plane = ip;
395 }
396 if( first_plane == -1 || last_plane == -1){
397 cout<< "Int_t TrkTrack::GetLeverArmY() -- YGood(ip) always false ??? "<<endl;
398 return 0;
399 }
400 return (last_plane-first_plane+1);
401 }
402 /**
403 * Returns the reduced chi-square of track x-projection
404 */
405 Float_t TrkTrack::GetChi2X(){
406 float chiq=0;
407 for(int ip=0; ip<6; ip++)if(XGood(ip))chiq+= pow((xv[ip]-xm[ip])/resx[ip],2.);
408 if(GetNX()>3)chiq=chiq/(GetNX()-3);
409 else chiq=0;
410 if(chiq==0)cout << " Float_t TrkTrack::GetChi2X() -- WARNING -- value not defined "<<chiq<<endl;
411 return chiq;
412 }
413 /**
414 * Returns the reduced chi-square of track y-projection
415 */
416 Float_t TrkTrack::GetChi2Y(){
417 float chiq=0;
418 for(int ip=0; ip<6; ip++)if(YGood(ip))chiq+= pow((yv[ip]-ym[ip])/resy[ip],2.);
419 if(GetNY()>2)chiq=chiq/(GetNY()-2);
420 else chiq=0;
421 if(chiq==0)cout << " Float_t TrkTrack::GetChi2Y() -- WARNING -- value not defined "<<chiq<<endl;
422 return chiq;
423 }
424 /**
425 * Returns the logarythm of the likeliwood-function of track x-projection
426 */
427 Float_t TrkTrack::GetLnLX(){
428 float lnl=0;
429 for(int ip=0; ip<6; ip++)
430 if( XGood(ip) && tailx[ip]!=0 )
431 lnl += (tailx[ip]+1.) * log( (tailx[ip]*pow(resx[ip],2.) + pow(xv[ip]-xm[ip],2.)) / (tailx[ip]*pow(resx[ip],2)) );
432 if(GetNX()>3)lnl=lnl/(GetNX()-3);
433 else lnl=0;
434 if(lnl==0){
435 cout << " Float_t TrkTrack::GetLnLX() -- WARNING -- value not defined "<<lnl<<endl;
436 Dump();
437 }
438 return lnl;
439
440 }
441 /**
442 * Returns the logarythm of the likeliwood-function of track y-projection
443 */
444 Float_t TrkTrack::GetLnLY(){
445 float lnl=0;
446 for(int ip=0; ip<6; ip++)
447 if( YGood(ip) && taily[ip]!=0 )
448 lnl += (taily[ip]+1.) * log( (taily[ip]*pow(resy[ip],2.) + pow(yv[ip]-ym[ip],2.)) / (taily[ip]*pow(resy[ip],2)) );
449 if(GetNY()>2)lnl=lnl/(GetNY()-2);
450 else lnl=0;
451 if(lnl==0){
452 cout << " Float_t TrkTrack::GetLnLY() -- WARNING -- value not defined "<<lnl<<endl;
453 Dump();
454 }
455 return lnl;
456
457 }
458 /**
459 * Returns the effective angle, relative to the sensor, on each plane.
460 * @param ip plane (0-5)
461 * @param iv view (0=x 1=y)
462 */
463 Float_t TrkTrack::GetEffectiveAngle(int ip, int iv){
464
465 if(ip<0 || ip>5){
466 cout << "Float_t TrkTrack::GetEffectiveAngle(int "<<ip<<", int "<<iv<<") ==> wrong input"<<endl;
467 return 0.;
468 }
469
470 float v[3]={xv[ip],yv[ip],zv[ip]};
471 //-----------------------------------------
472 // effective angle (relative to the sensor)
473 //-----------------------------------------
474 float axv_geo = axv[ip];
475 float muhall_h = 297.61; //cm**2/Vs
476 float BY = TrkParams::GetBY(v);
477 float axv_eff = 0;
478 if(ip==5) axv_geo = -1*axv_geo;
479 if(ip==5) BY = -1*BY;
480 axv_eff = 180.*atan( tan(axv_geo*acos(-1.)/180.) + muhall_h * BY * 0.0001)/acos(-1.);
481 //-----------------------------------------
482 // effective angle (relative to the sensor)
483 //-----------------------------------------
484 float ayv_geo = ayv[ip];
485 float muhall_e = 1258.18; //cm**2/Vs
486 float BX = TrkParams::GetBX(v);
487 float ayv_eff = 0;
488 ayv_eff = 180.*atan( tan(ayv_geo*acos(-1.)/180.) + muhall_e * BX * 0.0001)/acos(-1.);
489
490 if (iv==0)return axv_eff;
491 else if(iv==1)return ayv_eff;
492 else{
493 cout << "Float_t TrkTrack::GetEffectiveAngle(int "<<ip<<", int "<<iv<<") ==> wrong input"<<endl;
494 return 0.;
495 }
496
497 };
498
499 //--------------------------------------
500 //
501 //
502 //--------------------------------------
503 void TrkTrack::Dump(){
504 cout << endl << "========== Track " ;
505 cout << endl << "seq. n. : "<< seqno;
506 cout << endl << "image n. : "<< image;
507 cout << endl << "al : "; for(int i=0; i<5; i++)cout << al[i] << " ";
508 cout << endl << "chi^2 : "<< chi2;
509 cout << endl << "n.step : "<< nstep;
510 cout << endl << "xgood : "; for(int i=0; i<6; i++)cout << XGood(i) ;
511 cout << endl << "ygood : "; for(int i=0; i<6; i++)cout << YGood(i) ;
512 cout << endl << "xm : "; for(int i=0; i<6; i++)cout << xm[i] << " ";
513 cout << endl << "ym : "; for(int i=0; i<6; i++)cout << ym[i] << " ";
514 cout << endl << "zm : "; for(int i=0; i<6; i++)cout << zm[i] << " ";
515 cout << endl << "xv : "; for(int i=0; i<6; i++)cout << xv[i] << " ";
516 cout << endl << "yv : "; for(int i=0; i<6; i++)cout << yv[i] << " ";
517 cout << endl << "zv : "; for(int i=0; i<6; i++)cout << zv[i] << " ";
518 cout << endl << "resx : "; for(int i=0; i<6; i++)cout << resx[i] << " ";
519 cout << endl << "resy : "; for(int i=0; i<6; i++)cout << resy[i] << " ";
520 cout << endl << "tailx : "; for(int i=0; i<6; i++)cout << tailx[i] << " ";
521 cout << endl << "taily : "; for(int i=0; i<6; i++)cout << taily[i] << " ";
522 cout << endl << "coval : "; for(int i=0; i<5; i++)cout << coval[0][i]<<" ";
523 cout << endl << " "; for(int i=0; i<5; i++)cout << coval[1][i]<<" ";
524 cout << endl << " "; for(int i=0; i<5; i++)cout << coval[2][i]<<" ";
525 cout << endl << " "; for(int i=0; i<5; i++)cout << coval[3][i]<<" ";
526 cout << endl << " "; for(int i=0; i<5; i++)cout << coval[4][i]<<" ";
527 cout << endl << "dedx_x : "; for(int i=0; i<6; i++)cout << dedx_x[i] << " ";
528 cout << endl << "dedx_y : "; for(int i=0; i<6; i++)cout << dedx_y[i] << " ";
529 cout << endl << "maxs x : "; for(int i=0; i<6; i++)cout << GetClusterX_MaxStrip(i) << " ";
530 cout << endl << "maxs y : "; for(int i=0; i<6; i++)cout << GetClusterY_MaxStrip(i) << " ";
531 cout << endl << "mult x : "; for(int i=0; i<6; i++)cout << GetClusterX_Multiplicity(i) << " ";
532 cout << endl << "mult y : "; for(int i=0; i<6; i++)cout << GetClusterY_Multiplicity(i) << " ";
533 cout << endl << "seed x : "; for(int i=0; i<6; i++)cout << GetClusterX_Seed(i) << " ";
534 cout << endl << "seed y : "; for(int i=0; i<6; i++)cout << GetClusterY_Seed(i) << " ";
535 cout << endl << "xpu : "; for(int i=0; i<6; i++)cout << xpu[i] << " ";
536 cout << endl << "ypu : "; for(int i=0; i<6; i++)cout << ypu[i] << " ";
537
538 cout << endl;
539 }
540 /**
541 * Set the TrkTrack position measurements
542 */
543 void TrkTrack::SetMeasure(double *xmeas, double *ymeas, double *zmeas){
544 for(int i=0; i<6; i++) xm[i]=*xmeas++;
545 for(int i=0; i<6; i++) ym[i]=*ymeas++;
546 for(int i=0; i<6; i++) zm[i]=*zmeas++;
547 }
548 /**
549 * Set the TrkTrack position resolution
550 */
551 void TrkTrack::SetResolution(double *rx, double *ry){
552 for(int i=0; i<6; i++) resx[i]=*rx++;
553 for(int i=0; i<6; i++) resy[i]=*ry++;
554 }
555 /**
556 * Set the TrkTrack tails position resolution
557 */
558 void TrkTrack::SetTail(double *tx, double *ty, double factor){
559 for(int i=0; i<6; i++) tailx[i]=factor*(*tx++);
560 for(int i=0; i<6; i++) taily[i]=factor*(*ty++);
561 }
562 /**
563 * Set the TrkTrack Student parameter (resx,resy,tailx,taily)
564 * from previous gausian fit
565 *@param flag =0 standard, =1 with noise correction
566 */
567 void TrkTrack::SetStudentParam(int flag){
568 float sx[11]={0.000128242,
569 0.000136942,
570 0.000162718,
571 0.000202644,
572 0.00025597,
573 0.000317456,
574 0.000349048,
575 0.000384638,
576 0.000457295,
577 0.000512319,
578 0.000538573};
579 float tx[11]={1.79402,
580 2.04876,
581 2.88376,
582 3.3,
583 3.14084,
584 4.07686,
585 4.44736,
586 3.5179,
587 3.38697,
588 3.45739,
589 3.18627};
590 float sy[11]={0.000483075,
591 0.000466925,
592 0.000431658,
593 0.000428317,
594 0.000433854,
595 0.000444044,
596 0.000482098,
597 0.000537579,
598 0.000636279,
599 0.000741998,
600 0.000864261};
601 float ty[11]={0.997032,
602 1.11147,
603 1.18526,
604 1.61404,
605 2.21908,
606 3.08959,
607 4.48833,
608 4.42687,
609 4.65253,
610 4.52043,
611 4.29926};
612 int index;
613 float fact;
614 for(int i=0; i<6; i++) {
615 index = int((fabs(axv[i])+1.)/2.);
616 if(index>10) index=10;
617 tailx[i]=tx[index];
618 if(flag==1) {
619 if(fabs(axv[i])<=10.) fact = resx[i]/risxeta2_(&(axv[i]));
620 if(fabs(axv[i])>10.&&fabs(axv[i])<=15.) fact = resx[i]/risxeta3_(&(axv[i]));
621 if(fabs(axv[i])>15.) fact = resx[i]/risxeta4_(&(axv[i]));
622 } else fact = 1.;
623 resx[i] = sx[index]*fact;
624 }
625 for(int i=0; i<6; i++) {
626 index = int((fabs(ayv[i])+1.)/2.);
627 if(index>10) index=10;
628 taily[i]=ty[index];
629 if(flag==1) fact = resy[i]/risyeta2_(&(ayv[i]));
630 else fact = 1.;
631 resy[i] = sy[index]*fact;
632 }
633 }
634 /**
635 * Set the TrkTrack good measurement
636 */
637 void TrkTrack::SetGood(int *xg, int *yg){
638
639 for(int i=0; i<6; i++) xgood[i]=*xg++;
640 for(int i=0; i<6; i++) ygood[i]=*yg++;
641 }
642
643 /**
644 * Load the magnetic field
645 */
646 void TrkTrack::LoadField(TString path){
647
648 // strcpy(path_.path,path.Data());
649 // path_.pathlen = path.Length();
650 // path_.error = 0;
651 // readb_();
652
653 // TrkParams::SetTrackingMode();
654 // TrkParams::SetPrecisionFactor();
655 // TrkParams::SetStepMin();
656 TrkParams::SetMiniDefault();
657
658 TrkParams::Set(path,1);
659 TrkParams::Load(1);
660 if( !TrkParams::IsLoaded(1) ){
661 cout << "void TrkTrack::LoadField(TString path) --- ERROR --- m.field not loaded"<<endl;
662 }
663
664 };
665
666
667 /**
668 * Method to fill minimization-routine common
669 */
670 void TrkTrack::FillMiniStruct(cMini2track& track){
671
672 for(int i=0; i<6; i++){
673
674 // cout << i<<" - "<<xgood[i]<<" "<<XGood(i)<<endl;
675 // cout << i<<" - "<<ygood[i]<<" "<<YGood(i)<<endl;
676 track.xgood[i]=XGood(i);
677 track.ygood[i]=YGood(i);
678
679 track.xm[i]=xm[i];
680 track.ym[i]=ym[i];
681 track.zm[i]=zm[i];
682
683 // --- temporaneo ----------------------------
684 // float segment = 100.;
685 // track.xm_a[i]=xm[i];
686 // track.xm_b[i]=xm[i];
687 // track.ym_a[i]=ym[i];
688 // track.ym_b[i]=ym[i];
689 // if( XGood(i) && !YGood(i) ){
690 // track.ym_a[i] = track.ym_a[i]+segment;
691 // track.ym_b[i] = track.ym_b[i]-segment;
692 // }else if( !XGood(i) && YGood(i)){
693 // track.xm_a[i] = track.xm_a[i]+segment;
694 // track.xm_b[i] = track.xm_b[i]-segment;
695 // }
696 // --- temporaneo ----------------------------
697
698 if( XGood(i) || YGood(i) ){
699 double segment = 2.;//cm
700 // NB: i parametri di allineamento hanno una notazione particolare!!!
701 // sensor = 0 (hybrid side), 1
702 // ladder = 0-2 (increasing x)
703 // plane = 0-5 (from bottom to top!!!)
704 int is = (int)GetSensor(i); if(i==5)is=1-is;
705 int ip = 5-i;
706 int il = (int)GetLadder(i);
707
708 double omega = 0.;
709 double beta = 0.;
710 double gamma = 0.;
711 if(
712 (is < 0 || is > 1 || ip < 0 || ip > 5 || il < 0 || il > 2) &&
713 true){
714 // se il piano risulta colpito, ladder e sensore devono essere
715 // assegnati correttamente
716 cout << " void TrkTrack::FillMiniStruct(cMini2track&) --- WARNING --- sensor not defined, cannot read alignment parameters "<<endl;
717 cout << " is ip il = "<<is<<" "<<ip<<" "<<il<<endl;
718 }else{
719 omega = alignparameters_.omega[is][il][ip];
720 beta = alignparameters_.beta[is][il][ip];
721 gamma = alignparameters_.gamma[is][il][ip];
722 }
723
724 if( XGood(i) && !YGood(i) ){
725 track.xm_a[i] = xm[i] - omega * segment;
726 track.ym_a[i] = ym[i] + segment;
727 track.zm_a[i] = zm[i] + beta * segment;
728 track.xm_b[i] = xm[i] + omega * segment;
729 track.ym_b[i] = ym[i] - segment;
730 track.zm_b[i] = zm[i] - beta * segment;
731 }else if( !XGood(i) && YGood(i) ){
732 track.xm_a[i] = xm[i] + segment;
733 track.ym_a[i] = ym[i] + omega * segment;
734 track.zm_a[i] = zm[i] - gamma * segment;
735 track.xm_b[i] = xm[i] - segment;
736 track.ym_b[i] = ym[i] - omega * segment;
737 track.zm_b[i] = zm[i] + gamma * segment;
738 }
739 }
740
741 track.resx[i]=resx[i];
742 track.resy[i]=resy[i];
743 track.tailx[i]=tailx[i];
744 track.taily[i]=taily[i];
745 }
746
747 for(int i=0; i<5; i++) track.al[i]=al[i];
748 track.zini = 23.5;
749 // ZINI = 23.5 !!! it should be the same parameter in all codes
750
751 }
752 /**
753 * Method to set values from minimization-routine common
754 */
755 void TrkTrack::SetFromMiniStruct(cMini2track *track){
756
757 for(int i=0; i<5; i++) {
758 al[i]=track->al[i];
759 for(int j=0; j<5; j++) coval[i][j]=track->cov[i][j];
760 }
761 chi2 = track->chi2;
762 nstep = track->nstep;
763 for(int i=0; i<6; i++){
764 xv[i] = track->xv[i];
765 yv[i] = track->yv[i];
766 zv[i] = track->zv[i];
767 xm[i] = track->xm[i];
768 ym[i] = track->ym[i];
769 zm[i] = track->zm[i];
770 axv[i] = track->axv[i];
771 ayv[i] = track->ayv[i];
772 }
773
774 }
775 /**
776 * \brief Method to re-evaluate coordinates of clusters associated with a track.
777 *
778 * The method can be applied only after recovering level1 information
779 * (either by reprocessing single events from level0 or from
780 * the TrkLevel1 branch, if present); it calls F77 subroutines that
781 * read the level1 common and fill the minimization-routine common.
782 * Some clusters can be excluded or added by means of the methods:
783 *
784 * TrkTrack::ResetXGood(int ip)
785 * TrkTrack::ResetYGood(int ip)
786 * TrkTrack::SetXGood(int ip, int cid, int is)
787 * TrkTrack::SetYGood(int ip, int cid, int is)
788 *
789 * NB! The method TrkTrack::SetGood(int *xg, int *yg) set the plane-mask (0-1)
790 * for the minimization-routine common. It deletes the cluster information
791 * (at least for the moment...) thus cannot be applied before
792 * TrkTrack::EvaluateClusterPositions().
793 *
794 * Different p.f.a. can be applied by calling (once) the method:
795 *
796 * TrkParams::SetPFA(0); //Set ETA p.f.a.
797 *
798 * @see TrkParams::SetPFA(int)
799 */
800 Bool_t TrkTrack::EvaluateClusterPositions(){
801
802 // cout << "void TrkTrack::GetClusterositions() "<<endl;
803
804 bool OK=true;
805 TrkParams::Load(1); if( !TrkParams::IsLoaded(1) )cout << "Bool_t TrkTrack::EvaluateClusterPositions() ---ERROR--- m.field not loaded "<<endl;
806 TrkParams::Load(4); if( !TrkParams::IsLoaded(4) )cout << "Bool_t TrkTrack::EvaluateClusterPositions() ---ERROR--- p.f.a. par. not loaded "<<endl;
807 TrkParams::Load(5); if( !TrkParams::IsLoaded(5) )cout << "Bool_t TrkTrack::EvaluateClusterPositions() ---ERROR--- alignment par. not loaded "<<endl;
808 if(!OK)return false;
809
810 for(int ip=0; ip<6; ip++){
811 // cout << ip<<" ** "<<xm[ip]<<" / "<<ym[ip]<<endl;;
812 int icx = GetClusterX_ID(ip)+1;
813 int icy = GetClusterY_ID(ip)+1;
814 int sensor = GetSensor(ip)+1;//<< convenzione "Paolo"
815 if(ip==5 && sensor!=0)sensor=3-sensor;//<< convenzione "Elena"
816 int ladder = GetLadder(ip)+1;
817 float ax = axv[ip];
818 float ay = ayv[ip];
819 float v[3];
820 v[0]=xv[ip];
821 v[1]=yv[ip];
822 v[2]=zv[ip];
823 float bfx = 10*TrkParams::GetBX(v);//Tesla
824 float bfy = 10*TrkParams::GetBY(v);//Tesla
825 int ipp=ip+1;
826 xyzpam_(&ipp,&icx,&icy,&ladder,&sensor,&ax,&ay,&bfx,&bfy);
827 if(icx<0 || icy<0)return false;
828 }
829 return true;
830 }
831 /**
832 * \brief Tracking method. It calls F77 mini routine.
833 *
834 * @param pfixed Particle momentum. If pfixed=0 the momentum
835 * is left as a free parameter, otherwise it is fixed to the input value.
836 * @param fail Output flag (!=0 if the fit failed).
837 * @param iprint Flag to set debug mode ( 0 = no output; 1 = verbose; 2 = debug).
838 * @param froml1 Flag to re-evaluate positions (see TrkTrack::GetClusterPositions()).
839 *
840 * The option to re-evaluate positions can be used only after recovering
841 * level1 information, eg. by reprocessing the single event.
842 *
843 * Example:
844 *
845 * if( !event->GetTrkLevel0() )return false;
846 * event->GetTrkLevel0()->ProcessEvent(); // re-processing level0->level1
847 * int fail=0;
848 * event->GetTrkLevel2()->GetTrack(0)->Fit(0.,fail,0,1);
849 *
850 * @see EvaluateClusterPositions()
851 *
852 * The fitting procedure can be varied by changing the tracking mode,
853 * the fit-precision factor, the minimum number of step, etc.
854 * @see SetTrackingMode(int)
855 * @see SetPrecisionFactor(double)
856 * @see SetStepMin(int)
857 * @see SetDeltaB(int,double)
858 */
859 void TrkTrack::Fit(double pfixed, int& fail, int iprint, int froml1){
860
861 bool OK=true;
862 TrkParams::Load(1); if( !TrkParams::IsLoaded(1) )cout << "void TrkTrack::Fit(double,int&,int,int) ---ERROR--- m.field not loaded "<<endl;
863 if(!OK)return;
864
865 float al_ini[] = {0.,0.,0.,0.,0.};
866
867 extern cMini2track track_;
868 fail = 0;
869
870 FillMiniStruct(track_);
871
872 if(froml1!=0){
873 if( !EvaluateClusterPositions() ){
874 cout << "void TrkTrack::Fit("<<pfixed<<","<<fail<<","<<iprint<<","<<froml1<<") --- ERROR evaluating cluster positions "<<endl;
875 FillMiniStruct(track_) ;
876 fail = 1;
877 return;
878 }
879 }else{
880 FillMiniStruct(track_);
881 }
882
883 // if fit variables have been reset, evaluate the initial guess
884 if(al[0]==-9999.&&al[1]==-9999.&&al[2]==-9999.&&al[3]==-9999.&&al[4]==-9999.)guess_();
885
886 // --------------------- free momentum
887 if(pfixed==0.) {
888 track_.pfixed=0.;
889 }
890 // --------------------- fixed momentum
891 if(pfixed!=0.) {
892 al[4]=1./pfixed;
893 track_.pfixed=pfixed;
894 }
895
896 // store temporarily the initial guess
897 for(int i=0; i<5; i++) al_ini[i]=track_.al[i];
898
899 // ------------------------------------------
900 // call mini routine
901 // ------------------------------------------
902 int istep=0;
903 int ifail=0;
904 mini2_(&istep,&ifail, &iprint);
905 if(ifail!=0) {
906 if(iprint)cout << "ERROR: ifail= " << ifail << endl;
907 fail = 1;
908 }
909 // ------------------------------------------
910
911 SetFromMiniStruct(&track_);
912
913 if(fail){
914 if(iprint)cout << " >>>> fit failed "<<endl;
915 for(int i=0; i<5; i++) al[i]=al_ini[i];
916 }
917
918 };
919 /**
920 * Reset the fit parameters
921 */
922 void TrkTrack::FitReset(){
923 for(int i=0; i<5; i++) al[i]=-9999.;
924 chi2=0.;
925 nstep=0;
926 // for(int i=0; i<6; i++) xv[i]=0.;
927 // for(int i=0; i<6; i++) yv[i]=0.;
928 // for(int i=0; i<6; i++) zv[i]=0.;
929 // for(int i=0; i<6; i++) axv[i]=0.;
930 // for(int i=0; i<6; i++) ayv[i]=0.;
931 for(int i=0; i<5; i++) {
932 for(int j=0; j<5; j++) coval[i][j]=0.;
933 }
934 }
935 /**
936 * Set the tracking mode
937 */
938 void TrkTrack::SetTrackingMode(int trackmode){
939 extern cMini2track track_;
940 track_.trackmode = trackmode;
941 }
942 /**
943 * Set the factor scale for tracking precision
944 */
945 void TrkTrack::SetPrecisionFactor(double fact){
946 extern cMini2track track_;
947 track_.fact = fact;
948 }
949 /**
950 * Set the minimum number of steps for tracking precision
951 */
952 void TrkTrack::SetStepMin(int istepmin){
953 extern cMini2track track_;
954 track_.istepmin = istepmin;
955 }
956 /**
957 * Set deltaB parameters (id=0,1). By default they are set to zero.
958 */
959 void TrkTrack::SetDeltaB(int id, double db){
960 if(id!=0 && id!=1)cout << "void TrkTrack::SetDeltaB(int id,double db) -- wrong input parameters: "<<id<<" "<<db<<endl;
961 TrkParams::SetDeltaB(id,db);
962 }
963
964 /**
965 * Returns true if the track is inside the magnet cavity.
966 * @param toll Tolerance around the nominal volume (toll>0 define an inner fiducial volume)
967 */
968 Bool_t TrkTrack::IsInsideCavity(float toll){
969
970 // float xmagntop, ymagntop, xmagnbottom, ymagnbottom;
971 // xmagntop = xv[0] + (ZMAGNHIGH-zv[0])*tan(acos(-1.0)*axv[0]/180.);
972 // ymagntop = yv[0] + (ZMAGNHIGH-zv[0])*tan(acos(-1.0)*ayv[0]/180.);
973 // xmagnbottom = xv[5] + (ZMAGNLOW-zv[5])*tan(acos(-1.0)*axv[5]/180.);
974 // ymagnbottom = yv[5] + (ZMAGNLOW-zv[5])*tan(acos(-1.0)*ayv[5]/180.);
975 // if( xmagntop>XMAGNLOW && xmagntop<XMAGNHIGH &&
976 // ymagntop>YMAGNLOW && ymagntop<YMAGNHIGH &&
977 // xmagnbottom>XMAGNLOW && xmagnbottom<XMAGNHIGH &&
978 // ymagnbottom>YMAGNLOW && ymagnbottom<YMAGNHIGH ) return(true);
979 // else return(false);
980
981 int ngf = TrkParams::nGF;
982 for(int i=0; i<ngf; i++){
983 //
984 // cout << endl << TrkParams::GF_element[i];
985 if(
986 TrkParams::GF_element[i].CompareTo("CUF") &&
987 TrkParams::GF_element[i].CompareTo("T2") &&
988 TrkParams::GF_element[i].CompareTo("T3") &&
989 TrkParams::GF_element[i].CompareTo("T4") &&
990 TrkParams::GF_element[i].CompareTo("T5") &&
991 TrkParams::GF_element[i].CompareTo("CLF") &&
992 true)continue;
993 // apply condition only within the cavity
994 // cout << " -- "<<xGF[i]<<" "<<yGF[i];
995 if(
996 xGF[i] <= TrkParams::xGF_min[i] + toll ||
997 xGF[i] >= TrkParams::xGF_max[i] - toll ||
998 yGF[i] <= TrkParams::yGF_min[i] + toll ||
999 yGF[i] >= TrkParams::yGF_max[i] - toll ||
1000 false){
1001
1002 return false;
1003 }
1004 }
1005 return true;
1006
1007
1008 }
1009 /**
1010 * Returns true if the track is inside the nominal acceptance, which is defined
1011 * by the intersection among magnet cavity, silicon-plane sensitive area and
1012 * ToF sensitive area (nominal values from the official document used to
1013 * calculate the geometrical factor)
1014 */
1015 Bool_t TrkTrack::IsInsideAcceptance(){
1016
1017 int ngf = TrkParams::nGF;
1018 for(int i=0; i<ngf; i++){
1019 if(
1020 xGF[i] <= TrkParams::xGF_min[i] ||
1021 xGF[i] >= TrkParams::xGF_max[i] ||
1022 yGF[i] <= TrkParams::yGF_min[i] ||
1023 yGF[i] >= TrkParams::yGF_max[i] ||
1024 false)return false;
1025 }
1026 return true;
1027
1028 }
1029 /**
1030 * Method to retrieve ID (0,1,...) of x-cluster (if any) associated to this track.
1031 * If no cluster is associated, ID=-1.
1032 * @param ip Tracker plane (0-5)
1033 */
1034 Int_t TrkTrack::GetClusterX_ID(int ip){
1035 return ((Int_t)fabs(xgood[ip]))%10000000-1;
1036 };
1037 /**
1038 * Method to retrieve ID (0-xxx) of y-cluster (if any) associated to this track.
1039 * If no cluster is associated, ID=-1.
1040 * @param ip Tracker plane (0-5)
1041 */
1042 Int_t TrkTrack::GetClusterY_ID(int ip){
1043 return ((Int_t)fabs(ygood[ip]))%10000000-1;
1044 };
1045
1046 /**
1047 * Method to retrieve the ladder (0-2, increasing x) traversed by the track on this plane.
1048 * If no ladder is traversed (dead area) the metod retuns -1.
1049 * @param ip Tracker plane (0-5)
1050 */
1051 Int_t TrkTrack::GetLadder(int ip){
1052 if(XGood(ip))return (Int_t)fabs(xgood[ip]/100000000)-1;
1053 if(YGood(ip))return (Int_t)fabs(ygood[ip]/100000000)-1;
1054 return -1;
1055 };
1056 /**
1057 * Method to retrieve the sensor (0-1, increasing y) traversed by the track on this plane.
1058 * If no sensor is traversed (dead area) the metod retuns -1.
1059 * @param ip Tracker plane (0-5)
1060 */
1061 Int_t TrkTrack::GetSensor(int ip){
1062 if(XGood(ip))return (Int_t)((Int_t)fabs(xgood[ip]/10000000)%10)-1;
1063 if(YGood(ip))return (Int_t)((Int_t)fabs(ygood[ip]/10000000)%10)-1;
1064 return -1;
1065 };
1066
1067 /**
1068 * \brief Method to include a x-cluster to the track.
1069 * @param ip Tracker plane (0-5)
1070 * @param clid Cluster ID (0 = no-cluster, 1,2,... otherwise )
1071 * @param il Ladder (0-2, increasing x, -1 if no sensitive area is hit)
1072 * @param is Sensor (0-1, increasing y, -1 if no sensitive area is hit)
1073 * @param bad True if the cluster contains bad strips
1074 * @see Fit(double pfixed, int& fail, int iprint, int froml1)
1075 */
1076 void TrkTrack::SetXGood(int ip, int clid, int il, int is, bool bad){
1077 // int il=0; //ladder (temporary)
1078 // bool bad=false; //ladder (temporary)
1079 if(ip<0||ip>5||clid<0||il<-1||il>2||is<-1||is>1)
1080 cout << " void TrkTrack::SetXGood(int,int,int,int,bool) --> MA SEI DI COCCIO?!?!"<<endl;
1081 xgood[ip]=(il+1)*100000000+(is+1)*10000000+clid;
1082 if(bad)xgood[ip]=-xgood[ip];
1083 };
1084 /**
1085 * \brief Method to include a y-cluster to the track.
1086 * @param ip Tracker plane (0-5)
1087 * @param clid Cluster ID (0 = no-cluster, 1,2,... otherwise )
1088 * @param il Ladder (0-2, increasing x, -1 if no sensitive area is hit)
1089 * @param is Sensor (0-1, increasing y, -1 if no sensitive area is hit)
1090 * @param bad True if the cluster contains bad strips
1091 * @see Fit(double pfixed, int& fail, int iprint, int froml1)
1092 */
1093 void TrkTrack::SetYGood(int ip, int clid, int il, int is, bool bad){
1094 // int il=0; //ladder (temporary)
1095 // bool bad=false; //ladder (temporary)
1096 if(ip<0||ip>5||clid<0||il<-1||il>2||is<-1||is>1)
1097 cout << " void TrkTrack::SetYGood(int,int,int,int,bool) --> MA SEI DI COCCIO?!?!"<<endl;
1098 ygood[ip]=(il+1)*100000000+(is+1)*10000000+clid;
1099 if(bad)ygood[ip]=-ygood[ip];
1100 };
1101
1102 /**
1103 * \brief Average X
1104 * Average value of <xv>, evaluated from the first to the last hit x view.
1105 */
1106 Float_t TrkTrack::GetXav(){
1107
1108 int first_plane = -1;
1109 int last_plane = -1;
1110 for(Int_t ip=0; ip<6; ip++){
1111 if( XGood(ip) && first_plane == -1 )first_plane = ip;
1112 if( XGood(ip) && first_plane != -1 )last_plane = ip;
1113 }
1114 if( first_plane == -1 || last_plane == -1){
1115 return -100;
1116 }
1117 if( last_plane-first_plane+1 ==0 )return -100;
1118
1119 Float_t av = 0;
1120 for(int ip=first_plane; ip<=last_plane; ip++)av+=xv[ip];
1121
1122 return (av/(last_plane-first_plane+1));
1123 }
1124 /**
1125 * \brief Average Y
1126 * Average value of <yv>, evaluated from the first to the last hit x view.
1127 */
1128 Float_t TrkTrack::GetYav(){
1129
1130 int first_plane = -1;
1131 int last_plane = -1;
1132 for(Int_t ip=0; ip<6; ip++){
1133 if( XGood(ip) && first_plane == -1 )first_plane = ip;
1134 if( XGood(ip) && first_plane != -1 )last_plane = ip;
1135 }
1136 if( first_plane == -1 || last_plane == -1){
1137 return -100;
1138 }
1139 if( last_plane-first_plane+1 ==0 )return -100;
1140
1141 Float_t av = 0;
1142 for(int ip=first_plane; ip<=last_plane; ip++)av+=yv[ip];
1143
1144 return (av/(last_plane-first_plane+1));
1145 }
1146 /**
1147 * \brief Average Z
1148 * Average value of <zv>, evaluated from the first to the last hit x view.
1149 */
1150 Float_t TrkTrack::GetZav(){
1151
1152 int first_plane = -1;
1153 int last_plane = -1;
1154 for(Int_t ip=0; ip<6; ip++){
1155 if( XGood(ip) && first_plane == -1 )first_plane = ip;
1156 if( XGood(ip) && first_plane != -1 )last_plane = ip;
1157 }
1158 if( first_plane == -1 || last_plane == -1){
1159 return -100;
1160 }
1161 if( last_plane-first_plane+1 ==0 )return -100;
1162
1163 Float_t av = 0;
1164 for(int ip=first_plane; ip<=last_plane; ip++)av+=zv[ip];
1165
1166 return (av/(last_plane-first_plane+1));
1167 }
1168
1169 /**
1170 * \brief Number of column traversed
1171 */
1172 Int_t TrkTrack::GetNColumns(){
1173 int sensors[] = {0,0,0,0,0,0};
1174 for(int ip=0; ip<6; ip++){
1175 int sensorid = GetLadder(ip)+3*GetSensor(ip);
1176 if(XGood(ip)||YGood(ip))
1177 if(sensorid>=0 && sensorid<6)sensors[sensorid]=1;
1178 }
1179 int nsensors=0;
1180 for(int is=0; is<6; is++)nsensors += sensors[is];
1181 return nsensors;
1182 };
1183 /**
1184 * \brief Give the maximum energy release
1185 */
1186 Float_t TrkTrack::GetDEDX_max(int ip, int iv){
1187 Float_t max=0;
1188 int pfrom = 0;
1189 int pto = 6;
1190 int vfrom = 0;
1191 int vto = 2;
1192 if(ip>=0&&ip<6){
1193 pfrom = ip;
1194 pto = ip+1;
1195 }
1196 if(iv>=0&&iv<2){
1197 vfrom = iv;
1198 vto = iv+1;
1199 }
1200 for(int i=pfrom; i<pto; i++)
1201 for(int j=vfrom; j<vto; j++){
1202 if(j==0 && XGood(i) && GetDEDX(i,j)>max)max=GetDEDX(i,j);
1203 if(j==1 && YGood(i) && GetDEDX(i,j)>max)max=GetDEDX(i,j);
1204 }
1205 return max;
1206
1207 };
1208
1209 /**
1210 * \brief Give the minimum energy release
1211 */
1212 Float_t TrkTrack::GetDEDX_min(int ip, int iv){
1213 Float_t min=100000000;
1214 int pfrom = 0;
1215 int pto = 6;
1216 int vfrom = 0;
1217 int vto = 2;
1218 if(ip>=0&&ip<6){
1219 pfrom = ip;
1220 pto = ip+1;
1221 }
1222 if(iv>=0&&iv<2){
1223 vfrom = iv;
1224 vto = iv+1;
1225 }
1226 for(int i=pfrom; i<pto; i++)
1227 for(int j=vfrom; j<vto; j++){
1228 if(j==0 && XGood(i) && GetDEDX(i,j)<min)min=GetDEDX(i,j);
1229 if(j==1 && YGood(i) && GetDEDX(i,j)<min)min=GetDEDX(i,j);
1230 }
1231 return min;
1232
1233 };
1234
1235 /**
1236 * \brief Give the maximum spatial residual
1237 */
1238 Float_t TrkTrack::GetResidual_max(int ip, int iv){
1239 Float_t max=0;
1240 int pfrom = 0;
1241 int pto = 6;
1242 int vfrom = 0;
1243 int vto = 2;
1244 if(ip>=0&&ip<6){
1245 pfrom = ip;
1246 pto = ip+1;
1247 }
1248 if(iv>=0&&iv<2){
1249 vfrom = iv;
1250 vto = iv+1;
1251 }
1252 for(int i=pfrom; i<pto; i++){
1253 for(int j=vfrom; j<vto; j++){
1254 if(j==0 && XGood(i) && fabs(xm[i]-xv[i])>fabs(max))max=xm[i]-xv[i];
1255 if(j==1 && YGood(i) && fabs(ym[i]-yv[i])>fabs(max))max=ym[i]-yv[i];
1256 }
1257 }
1258 return max;
1259
1260 };
1261 /**
1262 * \brief Give the average spatial residual
1263 */
1264 Float_t TrkTrack::GetResidual_av(int ip, int iv){
1265 //
1266 //Sum$((xm>-50)*(xm-xv)/resx)/sqrt(TrkTrack.GetNX()*TrkTrack.GetChi2X())<0.3
1267
1268 Float_t av = 0.;
1269 int nav = 0;
1270 //
1271 int pfrom = 0;
1272 int pto = 6;
1273 int vfrom = 0;
1274 int vto = 2;
1275 if(ip>=0&&ip<6){
1276 pfrom = ip;
1277 pto = ip+1;
1278 }
1279 if(iv>=0&&iv<2){
1280 vfrom = iv;
1281 vto = iv+1;
1282 }
1283 for(int i=pfrom; i<pto; i++){
1284 for(int j=vfrom; j<vto; j++){
1285 nav++;
1286 if(j==0 && XGood(i)) av += (xm[i]-xv[i])/resx[i];
1287 if(j==1 && YGood(i)) av += (ym[i]-yv[i])/resy[i];
1288 }
1289 }
1290 if(nav==0)return -100.;
1291 return av/nav;
1292
1293 };
1294
1295
1296 /**
1297 * \brief Give the maximum multiplicity on the x view
1298 */
1299 Int_t TrkTrack::GetClusterX_Multiplicity_max(){
1300 int max=0;
1301 for(int ip=0; ip<6; ip++)
1302 if(GetClusterX_Multiplicity(ip)>max)max=GetClusterX_Multiplicity(ip);
1303 return max;
1304 };
1305 /**
1306 * \brief Give the minimum multiplicity on the x view
1307 */
1308 Int_t TrkTrack::GetClusterX_Multiplicity_min(){
1309 int min=50;
1310 for(int ip=0; ip<6; ip++)
1311 if(GetClusterX_Multiplicity(ip)<min)min=GetClusterX_Multiplicity(ip);
1312 return min;
1313 };
1314 /**
1315 * \brief Give the maximum multiplicity on the x view
1316 */
1317 Int_t TrkTrack::GetClusterY_Multiplicity_max(){
1318 int max=0;
1319 for(int ip=0; ip<6; ip++)
1320 if(GetClusterY_Multiplicity(ip)>max)max=GetClusterY_Multiplicity(ip);
1321 return max;
1322 };
1323 /**
1324 * \brief Give the minimum multiplicity on the x view
1325 */
1326 Int_t TrkTrack::GetClusterY_Multiplicity_min(){
1327 int min=50;
1328 for(int ip=0; ip<6; ip++)
1329 if(GetClusterY_Multiplicity(ip)<min)min=GetClusterY_Multiplicity(ip);
1330 return min;
1331 };
1332
1333 /**
1334 * \brief Give the minimum seed on the x view
1335 */
1336 Float_t TrkTrack::GetClusterX_Seed_min(){
1337 Float_t min=100000;
1338 for(int ip=0; ip<6; ip++)
1339 if(XGood(ip) && GetClusterX_Seed(ip)<min)min=GetClusterX_Seed(ip);
1340 return min;
1341 };
1342 /**
1343 * \brief Give the minimum seed on the x view
1344 */
1345 Float_t TrkTrack::GetClusterY_Seed_min(){
1346 Float_t min=100000;
1347 for(int ip=0; ip<6; ip++)
1348 if(YGood(ip) && GetClusterY_Seed(ip)<min)min=GetClusterY_Seed(ip);
1349 return min;
1350 };
1351
1352
1353 //--------------------------------------
1354 //
1355 //
1356 //--------------------------------------
1357 void TrkTrack::Clear(){
1358 // cout << "TrkTrack::Clear()"<<endl;
1359 seqno = -1;
1360 image = -1;
1361 chi2 = 0;
1362 nstep = 0;
1363 for(int it1=0;it1<5;it1++){
1364 al[it1] = 0;
1365 for(int it2=0;it2<5;it2++)coval[it1][it2] = 0;
1366 };
1367 for(int ip=0;ip<6;ip++){
1368 xgood[ip] = 0;
1369 ygood[ip] = 0;
1370 xm[ip] = 0;
1371 ym[ip] = 0;
1372 zm[ip] = 0;
1373 resx[ip] = 0;
1374 resy[ip] = 0;
1375 tailx[ip] = 0;
1376 taily[ip] = 0;
1377 xv[ip] = 0;
1378 yv[ip] = 0;
1379 zv[ip] = 0;
1380 axv[ip] = 0;
1381 ayv[ip] = 0;
1382 dedx_x[ip] = 0;
1383 dedx_y[ip] = 0;
1384
1385 };
1386 int ngf = TrkParams::nGF;
1387 for(int i=0; i<ngf; i++){
1388 xGF[i] = 0.;
1389 yGF[i] = 0.;
1390 }
1391 // if(clx)clx->Clear();
1392 // if(cly)cly->Clear();
1393 // clx.Clear();
1394 // cly.Clear();
1395 };
1396 //--------------------------------------
1397 //
1398 //
1399 //--------------------------------------
1400 void TrkTrack::Delete(){
1401 // cout << "TrkTrack::Delete()"<<endl;
1402 Clear();
1403 // if(clx)delete clx;
1404 // if(cly)delete cly;
1405 };
1406 //--------------------------------------
1407 //
1408 //
1409 //--------------------------------------
1410
1411 //--------------------------------------
1412 //
1413 //
1414 //--------------------------------------
1415 TrkSinglet::TrkSinglet(){
1416 // cout << "TrkSinglet::TrkSinglet() " << GetUniqueID()<<endl;
1417 // plane = 0;
1418 // coord[0] = 0;
1419 // coord[1] = 0;
1420 // sgnl = 0;
1421 // multmax = 0;
1422 // cls = 0;
1423 Clear();
1424 };
1425 //--------------------------------------
1426 //
1427 //
1428 //--------------------------------------
1429 TrkSinglet::TrkSinglet(const TrkSinglet& s){
1430 // cout << "TrkSinglet::TrkSinglet(const TrkSinglet& s) " << GetUniqueID()<<endl;
1431 plane = s.plane;
1432 coord[0] = s.coord[0];
1433 coord[1] = s.coord[1];
1434 sgnl = s.sgnl;
1435 multmax = s.multmax;
1436 // cls = 0;//<<<<pointer
1437 // cls = TRef(s.cls);
1438 };
1439 //--------------------------------------
1440 //
1441 //
1442 //--------------------------------------
1443 void TrkSinglet::Dump(){
1444 int i=0;
1445 cout << endl << "========== Singlet " ;
1446 cout << endl << "plane : " << plane;
1447 cout << endl << "coord[2] : "; while( i<2 && cout << coord[i] << " ") i++;
1448 cout << endl << "sgnl : " << sgnl;
1449 cout << endl << "max.strip : " << GetCluster_MaxStrip();
1450 cout << endl << "multiplicity : " << GetCluster_Multiplicity();
1451 }
1452 //--------------------------------------
1453 //
1454 //
1455 //--------------------------------------
1456 void TrkSinglet::Clear(){
1457 // cout << "TrkSinglet::Clear() " << GetUniqueID()<<endl;
1458 // cls=0;
1459 plane=-1;
1460 coord[0]=-999;
1461 coord[1]=-999;
1462 sgnl=0;
1463 multmax = 0;
1464
1465 }
1466 //--------------------------------------
1467 //
1468 //
1469 //--------------------------------------
1470 TrkLevel2::TrkLevel2(){
1471 // cout <<"TrkLevel2::TrkLevel2()"<<endl;
1472 for(Int_t i=0; i<12 ; i++){
1473 good[i] = -1;
1474 VKmask[i] = 0;
1475 VKflag[i] = 0;
1476 };
1477 Track = 0;
1478 SingletX = 0;
1479 SingletY = 0;
1480
1481 }
1482 //--------------------------------------
1483 //
1484 //
1485 //--------------------------------------
1486 void TrkLevel2::Set(){
1487 if(!Track)Track = new TClonesArray("TrkTrack");
1488 if(!SingletX)SingletX = new TClonesArray("TrkSinglet");
1489 if(!SingletY)SingletY = new TClonesArray("TrkSinglet");
1490 }
1491 //--------------------------------------
1492 //
1493 //
1494 //--------------------------------------
1495 void TrkLevel2::Dump(){
1496
1497 //
1498 cout << endl << endl << "=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-";
1499 cout << endl << "good : "; for(int i=0; i<12; i++) cout << hex <<" 0x"<< good[i]<<dec;
1500 cout << endl << "ntrk() : " << ntrk() ;
1501 cout << endl << "nclsx() : " << nclsx();
1502 cout << endl << "nclsy() : " << nclsy();
1503 if(Track){
1504 TClonesArray &t = *Track;
1505 for(int i=0; i<ntrk(); i++) ((TrkTrack *)t[i])->Dump();
1506 }
1507 // if(SingletX){
1508 // TClonesArray &sx = *SingletX;
1509 // for(int i=0; i<nclsx(); i++) ((TrkSinglet *)sx[i])->Dump();
1510 // }
1511 // if(SingletY){
1512 // TClonesArray &sy = *SingletY;
1513 // for(int i=0; i<nclsy(); i++) ((TrkSinglet *)sy[i])->Dump();
1514 // }
1515 cout << endl;
1516 }
1517 /**
1518 * \brief Dump processing status
1519 */
1520 void TrkLevel2::StatusDump(int view){
1521 cout << "DSP n. "<<view+1<<" status: "<<hex<<good[view]<<endl;
1522 };
1523 /**
1524 * \brief Check event status
1525 *
1526 * Check the event status, according to a flag-mask given as input.
1527 * Return true if the view passes the check.
1528 *
1529 * @param view View number (0-11)
1530 * @param flagmask Mask of flags to check (eg. flagmask=0x111 no missing packet,
1531 * no crc error, no software alarm)
1532 *
1533 * @see TrkLevel2 class definition to know how the status flag is defined
1534 *
1535 */
1536 Bool_t TrkLevel2::StatusCheck(int view, int flagmask){
1537
1538 if( view<0 || view >= 12)return false;
1539 return !(good[view]&flagmask);
1540
1541 };
1542
1543
1544 //--------------------------------------
1545 //
1546 //
1547 //--------------------------------------
1548 /**
1549 * The method returns false if the viking-chip was masked
1550 * either apriori ,on the basis of the mask read from the DB,
1551 * or run-by-run, on the basis of the calibration parameters)
1552 * @param iv Tracker view (0-11)
1553 * @param ivk Viking-chip number (0-23)
1554 */
1555 Bool_t TrkLevel2::GetVKMask(int iv, int ivk){
1556 Int_t whichbit = (Int_t)pow(2,ivk);
1557 return (whichbit&VKmask[iv])!=0;
1558 }
1559 /**
1560 * The method returns false if the viking-chip was masked
1561 * for this event due to common-noise computation failure.
1562 * @param iv Tracker view (0-11)
1563 * @param ivk Viking-chip number (0-23)
1564 */
1565 Bool_t TrkLevel2::GetVKFlag(int iv, int ivk){
1566 Int_t whichbit = (Int_t)pow(2,ivk);
1567 return (whichbit&VKflag[iv])!=0;
1568 }
1569 /**
1570 * The method returns true if the viking-chip was masked, either
1571 * forced (see TrkLevel2::GetVKMask(int,int)) or
1572 * for this event only (TrkLevel2::GetVKFlag(int,int)).
1573 * @param iv Tracker view (0-11)
1574 * @param ivk Viking-chip number (0-23)
1575 */
1576 Bool_t TrkLevel2::IsMaskedVK(int iv, int ivk){
1577 return !(GetVKMask(iv,ivk)&&GetVKFlag(iv,ivk) );
1578 };
1579
1580 //--------------------------------------
1581 //
1582 //
1583 //--------------------------------------
1584 /**
1585 * Fills a TrkLevel2 object with values from a struct cTrkLevel2 (to get data from F77 common).
1586 * Ref to Level1 data (clusters) is also set. If l1==NULL no references are set.
1587 * (NB It make sense to set references only if events are stored in a tree that contains also the Level1 branch)
1588 */
1589 void TrkLevel2::SetFromLevel2Struct(cTrkLevel2 *l2, TrkLevel1 *l1){
1590
1591 // cout << "void TrkLevel2::SetFromLevel2Struct(cTrkLevel2 *l2, TrkLevel1 *l1)"<<endl;
1592 Clear();
1593
1594 // temporary objects:
1595 TrkSinglet* t_singlet = new TrkSinglet();
1596 TrkTrack* t_track = new TrkTrack();
1597
1598 // -----------------
1599 // general variables
1600 // -----------------
1601 for(Int_t i=0; i<12 ; i++){
1602 good[i] = l2->good[i];
1603 VKmask[i]=0;
1604 VKflag[i]=0;
1605 for(Int_t ii=0; ii<24 ; ii++){
1606 Int_t setbit = (Int_t)pow(2,ii);
1607 if( l2->vkflag[ii][i]!=-1 )VKmask[i]=VKmask[i]|setbit;
1608 if( l2->vkflag[ii][i]!=0 )VKflag[i]=VKflag[i]|setbit;
1609 };
1610 };
1611 // --------------
1612 // *** TRACKS ***
1613 // --------------
1614 if(!Track) Track = new TClonesArray("TrkTrack");
1615 TClonesArray &t = *Track;
1616
1617 for(int i=0; i<l2->ntrk; i++){
1618 t_track->seqno = i;// NBNBNBNB deve sempre essere = i
1619 t_track->image = l2->image[i]-1;
1620 t_track->chi2 = l2->chi2_nt[i];
1621 t_track->nstep = l2->nstep_nt[i];
1622 for(int it1=0;it1<5;it1++){
1623 t_track->al[it1] = l2->al_nt[i][it1];
1624 for(int it2=0;it2<5;it2++)
1625 t_track->coval[it1][it2] = l2->coval[i][it2][it1];
1626 };
1627 for(int ip=0;ip<6;ip++){
1628 // ---------------------------------
1629 // new implementation of xgood/ygood
1630 // ---------------------------------
1631 t_track->xgood[ip] = l2->cltrx[i][ip]; //cluster ID
1632 t_track->ygood[ip] = l2->cltry[i][ip]; //cluster ID
1633 t_track->xgood[ip] += 10000000*l2->ls[i][ip]; // ladder+sensor
1634 t_track->ygood[ip] += 10000000*l2->ls[i][ip]; // ladder+sensor
1635 if(l2->xbad[i][ip]>0)t_track->xgood[ip]=-t_track->xgood[ip];
1636 if(l2->ybad[i][ip]>0)t_track->ygood[ip]=-t_track->ygood[ip];
1637 // if(l2->xbad[i][ip]>0 || l2->ybad[i][ip]>0){
1638 // if(l2->dedx_x[i][ip]<0 || l2->dedx_y[i][ip]<0){
1639 // cout << ip << " - "<< l2->cltrx[i][ip] << " "<<l2->cltry[i][ip]<<" "<<l2->ls[i][ip]<<endl;
1640 // cout << ip << " - "<<t_track->xgood[ip]<<" "<<t_track->ygood[ip]<<endl;
1641 // cout << ip << " - "<<t_track->GetClusterX_ID(ip)<<" "<<t_track->GetClusterY_ID(ip)<<" "<<t_track->GetLadder(ip)<<" "<<t_track->GetSensor(ip)<<endl;
1642 // cout << ip << " - "<<t_track->BadClusterX(ip)<<" "<<t_track->BadClusterY(ip)<<endl;
1643 // cout << ip << " - "<<t_track->SaturatedClusterX(ip)<<" "<<t_track->SaturatedClusterY(ip)<<endl;
1644 // }
1645 t_track->xm[ip] = l2->xm_nt[i][ip];
1646 t_track->ym[ip] = l2->ym_nt[i][ip];
1647 t_track->zm[ip] = l2->zm_nt[i][ip];
1648 t_track->resx[ip] = l2->resx_nt[i][ip];
1649 t_track->resy[ip] = l2->resy_nt[i][ip];
1650 t_track->tailx[ip] = l2->tailx[i][ip];
1651 t_track->taily[ip] = l2->taily[i][ip];
1652 t_track->xv[ip] = l2->xv_nt[i][ip];
1653 t_track->yv[ip] = l2->yv_nt[i][ip];
1654 t_track->zv[ip] = l2->zv_nt[i][ip];
1655 t_track->axv[ip] = l2->axv_nt[i][ip];
1656 t_track->ayv[ip] = l2->ayv_nt[i][ip];
1657 t_track->dedx_x[ip] = l2->dedx_x[i][ip];
1658 t_track->dedx_y[ip] = l2->dedx_y[i][ip];
1659 t_track->multmaxx[ip] = l2->multmaxx[i][ip];
1660 t_track->multmaxy[ip] = l2->multmaxy[i][ip];
1661 t_track->seedx[ip] = l2->seedx[i][ip];
1662 t_track->seedy[ip] = l2->seedy[i][ip];
1663 t_track->xpu[ip] = l2->xpu[i][ip];
1664 t_track->ypu[ip] = l2->ypu[i][ip];
1665 //-----------------------------------------------------
1666 //-----------------------------------------------------
1667 //-----------------------------------------------------
1668 //-----------------------------------------------------
1669 };
1670 // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1671 // evaluated coordinates (to define GF)
1672 // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1673 int ngf = TrkParams::nGF;
1674 float *zgf = TrkParams::zGF;
1675 Trajectory tgf = Trajectory(ngf,zgf);
1676 tgf.DoTrack2(t_track->al);//<<<< integrate the trajectory
1677 for(int ip=0; ip<ngf; ip++){
1678 t_track->xGF[ip] = tgf.x[ip];
1679 t_track->yGF[ip] = tgf.y[ip];
1680 }
1681
1682 // if(t_track->IsSaturated())t_track->Dump();
1683 new(t[i]) TrkTrack(*t_track);
1684 t_track->Clear();
1685 };//end loop over track
1686
1687 // ----------------
1688 // *** SINGLETS ***
1689 // ----------------
1690 if(!SingletX)SingletX = new TClonesArray("TrkSinglet");
1691 TClonesArray &sx = *SingletX;
1692 for(int i=0; i<l2->nclsx; i++){
1693 t_singlet->plane = l2->planex[i];
1694 t_singlet->coord[0] = l2->xs[i][0];
1695 t_singlet->coord[1] = l2->xs[i][1];
1696 t_singlet->sgnl = l2->signlxs[i];
1697 t_singlet->multmax = l2->multmaxsx[i];
1698 if(l2->sxbad[i]>0) t_singlet->multmax = -1*t_singlet->multmax;
1699 //-----------------------------------------------------
1700 // if(l1) t_singlet->cls = l1->GetCluster(l2->clsx[i]-1);
1701 //-----------------------------------------------------
1702 new(sx[i]) TrkSinglet(*t_singlet);
1703 t_singlet->Clear();
1704 }
1705 if(!SingletY)SingletY = new TClonesArray("TrkSinglet");
1706 TClonesArray &sy = *SingletY;
1707 for(int i=0; i<l2->nclsy; i++){
1708 t_singlet->plane = l2->planey[i];
1709 t_singlet->coord[0] = l2->ys[i][0];
1710 t_singlet->coord[1] = l2->ys[i][1];
1711 t_singlet->sgnl = l2->signlys[i];
1712 t_singlet->multmax = l2->multmaxsy[i];
1713 if(l2->sybad[i]>0) t_singlet->multmax = -1*t_singlet->multmax;
1714 //-----------------------------------------------------
1715 // if(l1) t_singlet->cls = l1->GetCluster(l2->clsy[i]-1);
1716 //-----------------------------------------------------
1717 new(sy[i]) TrkSinglet(*t_singlet);
1718 t_singlet->Clear();
1719 };
1720
1721
1722
1723 delete t_track;
1724 delete t_singlet;
1725 }
1726 /**
1727 * Fills a struct cTrkLevel2 with values from a TrkLevel2 object (to put data into a F77 common).
1728 */
1729
1730 void TrkLevel2::GetLevel2Struct(cTrkLevel2 *l2) const {
1731
1732 // general variables
1733 // l2->good2 = good2 ;
1734 for(Int_t i=0; i<12 ; i++){
1735 // l2->crc[i] = crc[i];
1736 l2->good[i] = good[i];
1737 };
1738 // *** TRACKS ***
1739
1740 if(Track){
1741 l2->ntrk = Track->GetEntries();
1742 for(Int_t i=0;i<l2->ntrk;i++){
1743 l2->image[i] = 1 + ((TrkTrack *)Track->At(i))->image;
1744 l2->chi2_nt[i] = ((TrkTrack *)Track->At(i))->chi2;
1745 l2->nstep_nt[i] = ((TrkTrack *)Track->At(i))->nstep;
1746 for(int it1=0;it1<5;it1++){
1747 l2->al_nt[i][it1] = ((TrkTrack *)Track->At(i))->al[it1];
1748 for(int it2=0;it2<5;it2++)
1749 l2->coval[i][it2][it1] = ((TrkTrack *)Track->At(i))->coval[it1][it2];
1750 };
1751 for(int ip=0;ip<6;ip++){
1752 l2->xgood_nt[i][ip] = ((TrkTrack *)Track->At(i))->XGood(ip);
1753 l2->ygood_nt[i][ip] = ((TrkTrack *)Track->At(i))->YGood(ip);
1754 l2->xm_nt[i][ip] = ((TrkTrack *)Track->At(i))->xm[ip];
1755 l2->ym_nt[i][ip] = ((TrkTrack *)Track->At(i))->ym[ip];
1756 l2->zm_nt[i][ip] = ((TrkTrack *)Track->At(i))->zm[ip];
1757 l2->resx_nt[i][ip] = ((TrkTrack *)Track->At(i))->resx[ip];
1758 l2->resy_nt[i][ip] = ((TrkTrack *)Track->At(i))->resy[ip];
1759 l2->tailx[i][ip] = ((TrkTrack *)Track->At(i))->tailx[ip];
1760 l2->taily[i][ip] = ((TrkTrack *)Track->At(i))->taily[ip];
1761 l2->xv_nt[i][ip] = ((TrkTrack *)Track->At(i))->xv[ip];
1762 l2->yv_nt[i][ip] = ((TrkTrack *)Track->At(i))->yv[ip];
1763 l2->zv_nt[i][ip] = ((TrkTrack *)Track->At(i))->zv[ip];
1764 l2->axv_nt[i][ip] = ((TrkTrack *)Track->At(i))->axv[ip];
1765 l2->ayv_nt[i][ip] = ((TrkTrack *)Track->At(i))->ayv[ip];
1766 l2->dedx_x[i][ip] = ((TrkTrack *)Track->At(i))->dedx_x[ip];
1767 l2->dedx_y[i][ip] = ((TrkTrack *)Track->At(i))->dedx_y[ip];
1768 };
1769 }
1770 }
1771 // *** SINGLETS ***
1772 if(SingletX){
1773 l2->nclsx = SingletX->GetEntries();
1774 for(Int_t i=0;i<l2->nclsx;i++){
1775 l2->planex[i] = ((TrkSinglet *)SingletX->At(i))->plane;
1776 l2->xs[i][0] = ((TrkSinglet *)SingletX->At(i))->coord[0];
1777 l2->xs[i][1] = ((TrkSinglet *)SingletX->At(i))->coord[1];
1778 l2->signlxs[i] = ((TrkSinglet *)SingletX->At(i))->sgnl;
1779 }
1780 }
1781
1782 if(SingletY){
1783 l2->nclsy = SingletY->GetEntries();
1784 for(Int_t i=0;i<l2->nclsy;i++){
1785 l2->planey[i] = ((TrkSinglet *)SingletY->At(i))->plane;
1786 l2->ys[i][0] = ((TrkSinglet *)SingletY->At(i))->coord[0];
1787 l2->ys[i][1] = ((TrkSinglet *)SingletY->At(i))->coord[1];
1788 l2->signlys[i] = ((TrkSinglet *)SingletY->At(i))->sgnl;
1789 }
1790 }
1791 }
1792 //--------------------------------------
1793 //
1794 //
1795 //--------------------------------------
1796 void TrkLevel2::Clear(){
1797 for(Int_t i=0; i<12 ; i++){
1798 good[i] = -1;
1799 VKflag[i] = 0;
1800 VKmask[i] = 0;
1801 };
1802 // if(Track)Track->Clear("C");
1803 // if(SingletX)SingletX->Clear("C");
1804 // if(SingletY)SingletY->Clear("C");
1805 if(Track)Track->Delete();
1806 if(SingletX)SingletX->Delete();
1807 if(SingletY)SingletY->Delete();
1808 }
1809 // //--------------------------------------
1810 // //
1811 // //
1812 // //--------------------------------------
1813 void TrkLevel2::Delete(){
1814
1815 // cout << "void TrkLevel2::Delete()"<<endl;
1816 Clear();
1817 if(Track)delete Track;
1818 if(SingletX)delete SingletX;
1819 if(SingletY)delete SingletY;
1820
1821 }
1822 //--------------------------------------
1823 //
1824 //
1825 //--------------------------------------
1826 /**
1827 * Sort physical tracks and stores them in a TObjectArray, ordering by increasing chi**2 value (in case of track image, it selects the one with lower chi**2). The total number of physical tracks is given by GetNTracks() and the it-th physical track can be retrieved by means of the method GetTrack(int it).
1828 * This method is overridden by PamLevel2::GetTracks(), where calorimeter and TOF information is used.
1829 */
1830 TRefArray *TrkLevel2::GetTracks_NFitSorted(){
1831
1832 if(!Track)return 0;
1833
1834 TRefArray *sorted = new TRefArray();
1835
1836 TClonesArray &t = *Track;
1837 // TClonesArray &ts = *PhysicalTrack;
1838 int N = ntrk();
1839 vector<int> m(N); for(int i=0; i<N; i++)m[i]=1;
1840 // int m[50]; for(int i=0; i<N; i++)m[i]=1;
1841
1842 int indo=0;
1843 int indi=0;
1844 while(N > 0){
1845 // while(N != 0){
1846 int nfit =0;
1847 float chi2ref = numeric_limits<float>::max();
1848
1849 // first loop to search maximum num. of fit points
1850 for(int i=0; i < ntrk(); i++){
1851 if( ((TrkTrack *)t[i])->GetNtot() >= nfit && m[i]==1){
1852 nfit = ((TrkTrack *)t[i])->GetNtot();
1853 }
1854 }
1855 //second loop to search minimum chi2 among selected
1856 for(int i=0; i<ntrk(); i++){
1857 Float_t chi2 = ((TrkTrack *)t[i])->chi2;
1858 if(chi2 < 0) chi2 = -chi2*1000;
1859 if( chi2 < chi2ref
1860 && ((TrkTrack *)t[i])->GetNtot() == nfit
1861 && m[i]==1){
1862 chi2ref = ((TrkTrack *)t[i])->chi2;
1863 indi = i;
1864 };
1865 };
1866 if( ((TrkTrack *)t[indi])->HasImage() ){
1867 m[((TrkTrack *)t[indi])->image] = 0;
1868 N--;
1869
1870 // cout << "i** "<< ((TrkTrack *)t[indi])->image << " " << nfiti <<" "<<chi2i<<endl;
1871 };
1872 sorted->Add( (TrkTrack*)t[indi] );
1873
1874 m[indi] = 0;
1875 // cout << "SORTED "<< indo << " "<< indi << " "<< N << " "<<((TrkTrack *)t[indi])->image<<" "<<chi2ref<<endl;
1876 N--;
1877 indo++;
1878 }
1879 m.clear();
1880 // cout << "GetTracks_NFitSorted(it): Done"<< endl;
1881
1882 return sorted;
1883 // return PhysicalTrack;
1884 }
1885 //--------------------------------------
1886 //
1887 //
1888 //--------------------------------------
1889 /**
1890 * Retrieves the is-th stored track.
1891 * @param it Track number, ranging from 0 to ntrk().
1892 * Fitted tracks ( images included ) are stored in a TObjectArray ( TrkLevel2::Track ) in the same order they are returned by the F77 fitting routine.
1893 */
1894 TrkTrack *TrkLevel2::GetStoredTrack(int is){
1895
1896 if(is >= this->ntrk()){
1897 cout << "TrkTrack *TrkLevel2::GetStoredTrack(int) >> Track "<< is << "doen not exits! " << endl;
1898 cout << "Stored tracks ntrk() = "<< this->ntrk() << endl;
1899 return 0;
1900 }
1901 if(!Track){
1902 cout << "TrkTrack *TrkLevel2::GetStoredTrack(int is) >> (TClonesArray*) Track ==0 "<<endl;
1903 };
1904 TClonesArray &t = *(Track);
1905 TrkTrack *track = (TrkTrack*)t[is];
1906 return track;
1907 }
1908 //--------------------------------------
1909 //
1910 //
1911 //--------------------------------------
1912 /**
1913 * Retrieves the is-th stored X singlet.
1914 * @param it Singlet number, ranging from 0 to nclsx().
1915 */
1916 TrkSinglet *TrkLevel2::GetSingletX(int is){
1917
1918 if(is >= this->nclsx()){
1919 cout << "TrkSinglet *TrkLevel2::GetSingletX(int) >> Singlet "<< is << "doen not exits! " << endl;
1920 cout << "Stored x-singlets nclsx() = "<< this->nclsx() << endl;
1921 return 0;
1922 }
1923 if(!SingletX)return 0;
1924 TClonesArray &t = *(SingletX);
1925 TrkSinglet *singlet = (TrkSinglet*)t[is];
1926 return singlet;
1927 }
1928 //--------------------------------------
1929 //
1930 //
1931 //--------------------------------------
1932 /**
1933 * Retrieves the is-th stored Y singlet.
1934 * @param it Singlet number, ranging from 0 to nclsx().
1935 */
1936 TrkSinglet *TrkLevel2::GetSingletY(int is){
1937
1938 if(is >= this->nclsy()){
1939 cout << "TrkSinglet *TrkLevel2::GetSingletY(int) >> Singlet "<< is << "doen not exits! " << endl;
1940 cout << "Stored y-singlets nclsx() = "<< this->nclsx() << endl;
1941 return 0;
1942 }
1943 if(!SingletY)return 0;
1944 TClonesArray &t = *(SingletY);
1945 TrkSinglet *singlet = (TrkSinglet*)t[is];
1946 return singlet;
1947 }
1948 //--------------------------------------
1949 //
1950 //
1951 //--------------------------------------
1952 /**
1953 * Retrieves the it-th "physical" track, sorted by the method GetNTracks().
1954 * @param it Track number, ranging from 0 to GetNTracks().
1955 */
1956
1957 TrkTrack *TrkLevel2::GetTrack(int it){
1958
1959 if(it >= this->GetNTracks()){
1960 cout << "TrkTrack *TrkLevel2::GetTrack(int) >> Track "<< it << "does not exits! " << endl;
1961 cout << "Physical tracks GetNTracks() = "<< this->ntrk() << endl;
1962 return 0;
1963 }
1964
1965 TRefArray *sorted = GetTracks(); //TEMPORANEO
1966 if(!sorted)return 0;
1967 TrkTrack *track = (TrkTrack*)sorted->At(it);
1968 sorted->Clear();
1969 delete sorted;
1970 return track;
1971 }
1972 /**
1973 * Give the number of "physical" tracks, sorted by the method GetTracks().
1974 */
1975 Int_t TrkLevel2::GetNTracks(){
1976
1977 Float_t ntot=0;
1978 if(!Track)return 0;
1979 TClonesArray &t = *Track;
1980 for(int i=0; i<ntrk(); i++) {
1981 if( ((TrkTrack *)t[i])->GetImageSeqNo() == -1 ) ntot+=1.;
1982 else ntot+=0.5;
1983 }
1984 return (Int_t)ntot;
1985
1986 };
1987 //--------------------------------------
1988 //
1989 //
1990 //--------------------------------------
1991 /**
1992 * Retrieves (if present) the image of the it-th "physical" track, sorted by the method GetNTracks().
1993 * @param it Track number, ranging from 0 to GetNTracks().
1994 */
1995 TrkTrack *TrkLevel2::GetTrackImage(int it){
1996
1997 if(it >= this->GetNTracks()){
1998 cout << "TrkTrack *TrkLevel2::GetTrackImage(int) >> Track "<< it << "does not exits! " << endl;
1999 cout << "Physical tracks GetNTracks() = "<< this->ntrk() << endl;
2000 return 0;
2001 }
2002
2003 TRefArray* sorted = GetTracks(); //TEMPORANEO
2004 if(!sorted)return 0;
2005 TrkTrack *track = (TrkTrack*)sorted->At(it);
2006
2007 if(!track->HasImage()){
2008 cout << "TrkTrack *TrkLevel2::GetTrackImage(int) >> Track "<< it << "does not have image! " << endl;
2009 return 0;
2010 }
2011 if(!Track)return 0;
2012 TrkTrack *image = (TrkTrack*)(*Track)[track->image];
2013
2014 sorted->Delete();
2015 delete sorted;
2016
2017 return image;
2018
2019 }
2020 //--------------------------------------
2021 //
2022 //
2023 //--------------------------------------
2024 /**
2025 * Loads the magnetic field.
2026 * @param s Path of the magnetic-field files.
2027 */
2028 void TrkLevel2::LoadField(TString path){
2029 //
2030 // strcpy(path_.path,path.Data());
2031 // path_.pathlen = path.Length();
2032 // path_.error = 0;
2033 // readb_();
2034
2035 // TrkParams::SetTrackingMode();
2036 // TrkParams::SetPrecisionFactor();
2037 // TrkParams::SetStepMin();
2038 TrkParams::SetMiniDefault();
2039
2040 TrkParams::Set(path,1);
2041 TrkParams::Load(1);
2042 if( !TrkParams::IsLoaded(1) ){
2043 cout << "void TrkLevel2::LoadField(TString path) --- ERROR --- m.field not loaded"<<endl;
2044 }
2045
2046 //
2047 };
2048 // /**
2049 // * Get BY (kGauss)
2050 // * @param v (x,y,z) coordinates in cm
2051 // */
2052 // float TrkLevel2::GetBX(float* v){
2053 // float b[3];
2054 // gufld_(v,b);
2055 // return b[0]/10.;
2056 // }
2057 // /**
2058 // * Get BY (kGauss)
2059 // * @param v (x,y,z) coordinates in cm
2060 // */
2061 // float TrkLevel2::GetBY(float* v){
2062 // float b[3];
2063 // gufld_(v,b);
2064 // return b[1]/10.;
2065 // }
2066 // /**
2067 // * Get BY (kGauss)
2068 // * @param v (x,y,z) coordinates in cm
2069 // */
2070 // float TrkLevel2::GetBZ(float* v){
2071 // float b[3];
2072 // gufld_(v,b);
2073 // return b[2]/10.;
2074 // }
2075 //--------------------------------------
2076 //
2077 //
2078 //--------------------------------------
2079 /**
2080 * Get tracker-plane (mechanical) z-coordinate
2081 * @param plane_id plane index (1=TOP,2,3,4,5,6=BOTTOM)
2082 */
2083 Float_t TrkLevel2::GetZTrk(Int_t plane_id){
2084 switch(plane_id){
2085 case 1: return ZTRK1;
2086 case 2: return ZTRK2;
2087 case 3: return ZTRK3;
2088 case 4: return ZTRK4;
2089 case 5: return ZTRK5;
2090 case 6: return ZTRK6;
2091 default: return 0.;
2092 };
2093 };
2094 //--------------------------------------
2095 //
2096 //
2097 //--------------------------------------
2098 /**
2099 * Trajectory default constructor.
2100 * (By default is created with z-coordinates inside the tracking volume)
2101 */
2102 Trajectory::Trajectory(){
2103 npoint = 10;
2104 x = new float[npoint];
2105 y = new float[npoint];
2106 z = new float[npoint];
2107 thx = new float[npoint];
2108 thy = new float[npoint];
2109 tl = new float[npoint];
2110 float dz = ((ZTRK1)-(ZTRK6))/(npoint-1);
2111 for(int i=0; i<npoint; i++){
2112 x[i] = 0;
2113 y[i] = 0;
2114 z[i] = (ZTRK1) - i*dz;
2115 thx[i] = 0;
2116 thy[i] = 0;
2117 tl[i] = 0;
2118 }
2119 }
2120 //--------------------------------------
2121 //
2122 //
2123 //--------------------------------------
2124 /**
2125 * Trajectory constructor.
2126 * (By default is created with z-coordinates inside the tracking volume)
2127 * \param n Number of points
2128 */
2129 Trajectory::Trajectory(int n){
2130 if(n<=0){
2131 cout << "NB! Trajectory must have at least 1 point >>> created with 10 points" << endl;
2132 n=10;
2133 }
2134 npoint = n;
2135 x = new float[npoint];
2136 y = new float[npoint];
2137 z = new float[npoint];
2138 thx = new float[npoint];
2139 thy = new float[npoint];
2140 tl = new float[npoint];
2141 float dz = ((ZTRK1)-(ZTRK6))/(npoint-1);
2142 for(int i=0; i<npoint; i++){
2143 x[i] = 0;
2144 y[i] = 0;
2145 z[i] = (ZTRK1) - i*dz;
2146 thx[i] = 0;
2147 thy[i] = 0;
2148 tl[i] = 0;
2149 }
2150 }
2151 //--------------------------------------
2152 //
2153 //
2154 //--------------------------------------
2155 /**
2156 * Trajectory constructor.
2157 * \param n Number of points
2158 * \param pz Pointer to float array, defining z coordinates
2159 */
2160 Trajectory::Trajectory(int n, float* zin){
2161 npoint = 10;
2162 if(n>0)npoint = n;
2163 x = new float[npoint];
2164 y = new float[npoint];
2165 z = new float[npoint];
2166 thx = new float[npoint];
2167 thy = new float[npoint];
2168 tl = new float[npoint];
2169 int i=0;
2170 do{
2171 x[i] = 0;
2172 y[i] = 0;
2173 z[i] = zin[i];
2174 thx[i] = 0;
2175 thy[i] = 0;
2176 tl[i] = 0;
2177 i++;
2178 }while(zin[i-1] > zin[i] && i < npoint);
2179 npoint=i;
2180 if(npoint != n)cout << "NB! Trajectory created with "<<npoint<<" points"<<endl;
2181 }
2182 void Trajectory::Delete(){
2183
2184 if(x) delete [] x;
2185 if(y) delete [] y;
2186 if(z) delete [] z;
2187 if(thx) delete [] thx;
2188 if(thy) delete [] thy;
2189 if(tl) delete [] tl;
2190
2191 }
2192 //--------------------------------------
2193 //
2194 //
2195 //--------------------------------------
2196 /**
2197 * Dump the trajectory coordinates.
2198 */
2199 void Trajectory::Dump(){
2200 cout <<endl<< "Trajectory ========== "<<endl;
2201 for (int i=0; i<npoint; i++){
2202 cout << i <<" >> " << x[i] <<" "<< y[i] <<" "<< z[i] ;
2203 cout <<" -- " << thx[i] <<" "<< thy[i] ;
2204 cout <<" -- " << tl[i] << endl;
2205 };
2206 }
2207 //--------------------------------------
2208 //
2209 //
2210 //--------------------------------------
2211 /**
2212 * Get trajectory length between two points
2213 * @param ifirst first point (default 0)
2214 * @param ilast last point (default npoint)
2215 */
2216 float Trajectory::GetLength(int ifirst, int ilast){
2217 if( ifirst<0 ) ifirst = 0;
2218 if( ilast>=npoint) ilast = npoint-1;
2219 float l=0;
2220 for(int i=ifirst;i<=ilast;i++){
2221 l=l+tl[i];
2222 };
2223 if(z[ilast] > ZINI)l=l-tl[ilast];
2224 if(z[ifirst] < ZINI) l=l-tl[ifirst];
2225
2226 return l;
2227
2228 }
2229
2230 /**
2231 * Evaluates the trajectory in the apparatus associated to the track.
2232 * It integrates the equations of motion in the magnetic field. The magnetic field should be previously loaded ( by calling TrkLevel2::LoadField() ), otherwise an error message is returned.
2233 * @param t pointer to an object of the class Trajectory,
2234 * which z coordinates should be previously initialized by calling the proper constructor ( Trajectory::Trajectory(int n, float* zin) ).
2235 * @return error flag.
2236 */
2237 int Trajectory::DoTrack2(float* al){
2238
2239 // double *dxout = new double[npoint];
2240 // double *dyout = new double[npoint];
2241 // double *dthxout = new double[npoint];
2242 // double *dthyout = new double[npoint];
2243 // double *dtlout = new double[npoint];
2244 // double *dzin = new double[npoint];
2245
2246 double *dxout;
2247 double *dyout;
2248 double *dthxout;
2249 double *dthyout;
2250 double *dtlout;
2251 double *dzin;
2252
2253 dxout = (double*) malloc(npoint*sizeof(double));
2254 dyout = (double*) malloc(npoint*sizeof(double));
2255 dthxout = (double*) malloc(npoint*sizeof(double));
2256 dthyout = (double*) malloc(npoint*sizeof(double));
2257 dtlout = (double*) malloc(npoint*sizeof(double));
2258 dzin = (double*) malloc(npoint*sizeof(double));
2259
2260 double dal[5];
2261
2262 int ifail = 0;
2263
2264 for (int i=0; i<5; i++) dal[i] = (double)al[i];
2265 for (int i=0; i<npoint; i++) dzin[i] = (double)z[i];
2266
2267 TrkParams::Load(1);
2268 if( !TrkParams::IsLoaded(1) ){
2269 cout << "int Trajectory::DoTrack2(float* al) --- ERROR --- m.field not loaded"<<endl;
2270 return 0;
2271 }
2272 dotrack2_(&(npoint),dzin,dxout,dyout,dthxout,dthyout,dtlout,dal,&ifail);
2273
2274 for (int i=0; i<npoint; i++){
2275 x[i] = (float)*(dxout+i);
2276 y[i] = (float)*(dyout+i);
2277 thx[i] = (float)*(dthxout+i);
2278 thy[i] = (float)*(dthyout+i);
2279 tl[i] = (float)*(dtlout+i);
2280 }
2281
2282 if(dxout) free( dxout );
2283 if(dyout) free( dyout );
2284 if(dthxout)free( dthxout );
2285 if(dthyout)free( dthyout );
2286 if(dtlout) free( dtlout );
2287 if(dzin) free( dzin );
2288
2289 // delete [] dxout;
2290 // delete [] dyout;
2291 // delete [] dthxout;
2292 // delete [] dthyout;
2293 // delete [] dtlout;
2294 // delete [] dzin;
2295
2296
2297 return ifail;
2298 };
2299
2300 ClassImp(TrkLevel2);
2301 ClassImp(TrkSinglet);
2302 ClassImp(TrkTrack);
2303 ClassImp(Trajectory);

  ViewVC Help
Powered by ViewVC 1.1.23