/[PAMELA software]/DarthVader/TrackerLevel2/src/TrkLevel2.cpp
ViewVC logotype

Diff of /DarthVader/TrackerLevel2/src/TrkLevel2.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 1.2 by pam-fi, Thu Jun 1 09:03:09 2006 UTC revision 1.57 by pam-ts, Wed Jun 4 07:57:04 2014 UTC
# Line 4  Line 4 
4   */   */
5  #include <TrkLevel2.h>  #include <TrkLevel2.h>
6  #include <iostream>  #include <iostream>
7    #include <math.h>
8  using namespace std;  using namespace std;
9  //......................................  //......................................
10  // F77 routines  // F77 routines
# Line 11  using namespace std; Line 12  using namespace std;
12  extern "C" {      extern "C" {    
13      void dotrack_(int*, double*, double*, double*, double*, int*);      void dotrack_(int*, double*, double*, double*, double*, int*);
14      void dotrack2_(int*, double*, double*, double*, double*,double*, double*, double*,int*);      void dotrack2_(int*, double*, double*, double*, double*,double*, double*, double*,int*);
15      int  readb_(const char*);      void dotrack3_(int*, double*, double*, double*, double*,double*, double*, double*,double*,int*);
16        void mini2_(int*,int*,int*);
17        void guess_();
18        void gufld_(float*, float*);
19        float risxeta2_(float *);
20        float risxeta3_(float *);
21        float risxeta4_(float *);
22        float risyeta2_(float *);
23  }  }
24    
25  //--------------------------------------  //--------------------------------------
26  //  //
27  //  //
28  //--------------------------------------  //--------------------------------------
29  TrkTrack::TrkTrack(){  TrkTrack::TrkTrack(){
30      image = 0;  //    cout << "TrkTrack::TrkTrack()" << endl;
31        seqno = -1;
32        image = -1;
33      chi2  = 0;      chi2  = 0;
34        nstep = 0;
35      for(int it1=0;it1<5;it1++){      for(int it1=0;it1<5;it1++){
36          al[it1] = 0;          al[it1] = 0;
37          for(int it2=0;it2<5;it2++)          for(int it2=0;it2<5;it2++)coval[it1][it2] = 0;
             coval[it1][it2] = 0;  
38      };      };
39      for(int ip=0;ip<6;ip++){      for(int ip=0;ip<6;ip++){
40          xgood[ip]  = 0;          xgood[ip]  = 0;
# Line 33  TrkTrack::TrkTrack(){ Line 44  TrkTrack::TrkTrack(){
44          zm[ip]     = 0;          zm[ip]     = 0;
45          resx[ip]   = 0;          resx[ip]   = 0;
46          resy[ip]   = 0;          resy[ip]   = 0;
47            tailx[ip]   = 0;
48            taily[ip]   = 0;
49          xv[ip]     = 0;          xv[ip]     = 0;
50          yv[ip]     = 0;          yv[ip]     = 0;
51          zv[ip]     = 0;          zv[ip]     = 0;
# Line 40  TrkTrack::TrkTrack(){ Line 53  TrkTrack::TrkTrack(){
53          ayv[ip]    = 0;          ayv[ip]    = 0;
54          dedx_x[ip] = 0;          dedx_x[ip] = 0;
55          dedx_y[ip] = 0;          dedx_y[ip] = 0;
56      };              multmaxx[ip] = 0;
57            multmaxy[ip] = 0;
58            seedx[ip]  = 0;  
59            seedy[ip]  = 0;
60            xpu[ip]    = 0;  
61            ypu[ip]    = 0;  
62    
63        };
64        
65    //     TrkParams::SetTrackingMode();
66    //     TrkParams::SetPrecisionFactor();
67    //     TrkParams::SetStepMin();
68        TrkParams::SetMiniDefault();
69        TrkParams::SetPFA();
70    
71        int ngf = TrkParams::nGF;
72        for(int i=0; i<ngf; i++){
73            xGF[i] = 0.;
74            yGF[i] = 0.;
75        }
76    
77    
78  };  };
79  //--------------------------------------  //--------------------------------------
80  //  //
81  //  //
82  //--------------------------------------  //--------------------------------------
83  TrkTrack::TrkTrack(const TrkTrack& t){  TrkTrack::TrkTrack(const TrkTrack& t){
84        seqno = t.seqno;
85      image = t.image;      image = t.image;
86      chi2  = t.chi2;      chi2  = t.chi2;
87        nstep = t.nstep;
88      for(int it1=0;it1<5;it1++){      for(int it1=0;it1<5;it1++){
89          al[it1] = t.al[it1];          al[it1] = t.al[it1];
90          for(int it2=0;it2<5;it2++)          for(int it2=0;it2<5;it2++)coval[it1][it2] = t.coval[it1][it2];
             coval[it1][it2] = t.coval[it1][it2];  
91      };      };
92      for(int ip=0;ip<6;ip++){      for(int ip=0;ip<6;ip++){
93          xgood[ip]  = t.xgood[ip];          xgood[ip]  = t.xgood[ip];
# Line 62  TrkTrack::TrkTrack(const TrkTrack& t){ Line 97  TrkTrack::TrkTrack(const TrkTrack& t){
97          zm[ip]     = t.zm[ip];          zm[ip]     = t.zm[ip];
98          resx[ip]   = t.resx[ip];          resx[ip]   = t.resx[ip];
99          resy[ip]   = t.resy[ip];          resy[ip]   = t.resy[ip];
100            tailx[ip]  = t.tailx[ip];
101            taily[ip]  = t.taily[ip];
102          xv[ip]     = t.xv[ip];          xv[ip]     = t.xv[ip];
103          yv[ip]     = t.yv[ip];          yv[ip]     = t.yv[ip];
104          zv[ip]     = t.zv[ip];          zv[ip]     = t.zv[ip];
# Line 69  TrkTrack::TrkTrack(const TrkTrack& t){ Line 106  TrkTrack::TrkTrack(const TrkTrack& t){
106          ayv[ip]    = t.ayv[ip];          ayv[ip]    = t.ayv[ip];
107          dedx_x[ip] = t.dedx_x[ip];          dedx_x[ip] = t.dedx_x[ip];
108          dedx_y[ip] = t.dedx_y[ip];          dedx_y[ip] = t.dedx_y[ip];
109      };              multmaxx[ip] = t.multmaxx[ip];
110            multmaxy[ip] = t.multmaxy[ip];
111            seedx[ip]    = t.seedx[ip];  
112            seedy[ip]    = t.seedy[ip];
113            xpu[ip]      = t.xpu[ip];  
114            ypu[ip]      = t.ypu[ip];  
115        };
116    
117    //     TrkParams::SetTrackingMode();
118    //     TrkParams::SetPrecisionFactor();
119    //     TrkParams::SetStepMin();  
120        TrkParams::SetMiniDefault();
121        TrkParams::SetPFA();
122    
123        int ngf = TrkParams::nGF;
124        for(int i=0; i<ngf; i++){
125            xGF[i] = t.xGF[i];
126            yGF[i] = t.yGF[i];
127        }
128    };
129    //--------------------------------------
130    //
131    //
132    //--------------------------------------
133    void TrkTrack::Copy(TrkTrack& t){
134    
135        t.seqno = seqno;
136        t.image = image;
137        t.chi2  = chi2;
138        t.nstep = nstep;
139        for(int it1=0;it1<5;it1++){
140            t.al[it1] = al[it1];
141            for(int it2=0;it2<5;it2++)t.coval[it1][it2] = coval[it1][it2];
142        };
143        for(int ip=0;ip<6;ip++){
144            t.xgood[ip]  = xgood[ip];
145            t.ygood[ip]  = ygood[ip];
146            t.xm[ip]     = xm[ip];
147            t.ym[ip]     = ym[ip];
148            t.zm[ip]     = zm[ip];
149            t.resx[ip]   = resx[ip];
150            t.resy[ip]   = resy[ip];
151            t.tailx[ip]  = tailx[ip];
152            t.taily[ip]  = taily[ip];
153            t.xv[ip]     = xv[ip];
154            t.yv[ip]     = yv[ip];
155            t.zv[ip]     = zv[ip];
156            t.axv[ip]    = axv[ip];
157            t.ayv[ip]    = ayv[ip];
158            t.dedx_x[ip] = dedx_x[ip];
159            t.dedx_y[ip] = dedx_y[ip];
160            t.multmaxx[ip] = multmaxx[ip];
161            t.multmaxy[ip] = multmaxy[ip];
162            t.seedx[ip]    = seedx[ip];  
163            t.seedy[ip]    = seedy[ip];
164            t.xpu[ip]      = xpu[ip];  
165            t.ypu[ip]      = ypu[ip];  
166                
167        };
168        int ngf = TrkParams::nGF;
169        for(int i=0; i<ngf; i++){
170            t.xGF[i] = xGF[i];
171            t.yGF[i] = yGF[i];
172        }
173    
174        
175  };  };
176  //--------------------------------------  //--------------------------------------
177  //  //
178  //  //
179  //--------------------------------------  //--------------------------------------
180  /**  /**
181   * Evaluates the trajectory in the apparatus associated to the track.   *
182   * It integrates the equations of motion in the magnetic field. The magnetic field should be previously loaded ( by calling  TrkLevel2::LoadField() ), otherwise an error message is returned.     * >>> OBSOLETE !!! use TrkTrack::DoTrack(Trajectory* t) instead
183     *
184     */
185    int TrkTrack::DoTrack2(Trajectory* t){
186    
187        cout << endl;
188        cout << " int TrkTrack::DoTrack2(Trajectory* t) --->> NB NB !! this method is going to be eliminated !!! "<<endl;
189        cout << " >>>> replace it with TrkTrack::DoTrack(Trajectory* t) <<<<"<<endl;
190        cout << " (Sorry Wolfgang!! Don't be totally confused!! By Elena)"<<endl;
191        cout << endl;
192    
193        return DoTrack(t);
194    
195    };
196    //--------------------------------------
197    //
198    //
199    //--------------------------------------
200    /**
201     * Evaluates the trajectory in the apparatus associated to the track state-vector.
202     * It integrates the equations of motion in the magnetic field.
203   * @param t pointer to an object of the class Trajectory,   * @param t pointer to an object of the class Trajectory,
204   * which z coordinates should be previously initialized by calling the proper constructor ( Trajectory::Trajectory(int n, float* zin) ).   * which z coordinates should be previously assigned.
205   * @return error flag.   * @return error flag.
206   */   */
207  int TrkTrack::DoTrack(Trajectory* t){  int TrkTrack::DoTrack(Trajectory* t){
208    
209      double *dxout = new double[t->npoint];      double *dxout   = new double[t->npoint];
210      double *dyout = new double[t->npoint];      double *dyout   = new double[t->npoint];
211      double *dzin = new double[t->npoint];      double *dthxout = new double[t->npoint];
212        double *dthyout = new double[t->npoint];
213        double *dtlout  = new double[t->npoint];
214        double *dzin    = new double[t->npoint];
215      double dal[5];      double dal[5];
216    
217      int ifail = 0;      int ifail = 0;
# Line 94  int TrkTrack::DoTrack(Trajectory* t){ Line 219  int TrkTrack::DoTrack(Trajectory* t){
219      for (int i=0; i<5; i++)         dal[i]  = (double)al[i];      for (int i=0; i<5; i++)         dal[i]  = (double)al[i];
220      for (int i=0; i<t->npoint; i++) dzin[i] = (double)t->z[i];      for (int i=0; i<t->npoint; i++) dzin[i] = (double)t->z[i];
221    
222      dotrack_(&(t->npoint),dzin,dxout,dyout,dal,&ifail);      TrkParams::Load(1);
223        if( !TrkParams::IsLoaded(1) ){
224            cout << "int TrkTrack::DoTrack(Trajectory* t) --- ERROR --- m.field not loaded"<<endl;
225            return 0;
226        }
227        dotrack2_(&(t->npoint),dzin,dxout,dyout,dthxout,dthyout,dtlout,dal,&ifail);
228            
229      for (int i=0; i<t->npoint; i++){      for (int i=0; i<t->npoint; i++){
230          t->x[i] = (float)*dxout++;          t->x[i]   = (float)*(dxout+i);
231          t->y[i] = (float)*dyout++;          t->y[i]   = (float)*(dyout+i);
232            t->thx[i] = (float)*(dthxout+i);
233            t->thy[i] = (float)*(dthyout+i);
234            t->tl[i]  = (float)*(dtlout+i);
235      }      }
236    
237  //    delete [] dxout;      delete [] dxout;
238  //    delete [] dyout;      delete [] dyout;
239  //    delete [] dzin;      delete [] dzin;
240        delete [] dthxout;
241        delete [] dthyout;
242        delete [] dtlout;
243    
244      return ifail;      return ifail;
245  };  };
# Line 111  int TrkTrack::DoTrack(Trajectory* t){ Line 247  int TrkTrack::DoTrack(Trajectory* t){
247  //  //
248  //  //
249  //--------------------------------------  //--------------------------------------
250    //float TrkTrack::BdL(){
251    //};
252    //--------------------------------------
253    //
254    //
255    //--------------------------------------
256    Float_t TrkTrack::GetRigidity(){
257            Float_t rig=0;
258            if(chi2>0)rig=1./al[4];
259            if(rig<0) rig=-rig;
260            return rig;
261    };
262    //
263    Float_t TrkTrack::GetDeflection(){
264            Float_t def=0;
265            if(chi2>0)def=al[4];
266            return def;
267    };
268    //
269  /**  /**
270   * Evaluates the trajectory in the apparatus associated to the track.   * Method to retrieve the dE/dx measured on a tracker view.
271   * It integrates the equations of motion in the magnetic field. The magnetic field should be previously loaded ( by calling  TrkLevel2::LoadField() ), otherwise an error message is returned.     * @param ip plane (0-5)
272   * @param t pointer to an object of the class Trajectory,   * @param iv view (0=x 1=y)
  * which z coordinates should be previously initialized by calling the proper constructor ( Trajectory::Trajectory(int n, float* zin) ).  
  * @return error flag.  
273   */   */
274  int TrkTrack::DoTrack2(Trajectory* t){  Float_t TrkTrack::GetDEDX(int ip, int iv){
275        if(iv==0 && ip>=0 && ip<6)return fabs(dedx_x[ip]);
276        else if(iv==1 && ip>=0 && ip<6)return fabs(dedx_y[ip]);
277        else {
278            cout << "TrkTrack::GetDEDX(int ip, int iv) -- wrong input parameters "<<ip<<iv<<endl;
279            return 0.;
280        }
281    }
282    /**
283     * Method to evaluate the dE/dx measured on a tracker plane.
284     * The two measurements on x- and y-view are averaged.
285     * @param ip plane (0-5)
286     */
287    Float_t TrkTrack::GetDEDX(int ip){
288        if( (Int_t)XGood(ip)+(Int_t)YGood(ip) == 0 ) return 0;
289        return (GetDEDX(ip,0)+GetDEDX(ip,1))/((Int_t)XGood(ip)+(Int_t)YGood(ip));
290    };
291    
292      double *dxout   = new double[t->npoint];  /**
293      double *dyout   = new double[t->npoint];   * Method to evaluate the dE/dx averaged over all planes.
294      double *dthxout = new double[t->npoint];   */
295      double *dthyout = new double[t->npoint];  Float_t TrkTrack::GetDEDX(){
296      double *dtlout  = new double[t->npoint];      Float_t dedx=0;
297      double *dzin    = new double[t->npoint];      for(Int_t ip=0; ip<6; ip++)dedx+=GetDEDX(ip,0)*XGood(ip)+GetDEDX(ip,1)*YGood(ip);
298      double dal[5];      dedx = dedx/(GetNX()+GetNY());
299        return dedx;
300    };
301    /**
302     * Returns 1 if the cluster on a tracker view includes bad strips
303     * (at least one bad strip among the four strip used by p.f.a.)
304     * @param ip plane (0-5)
305     * @param iv view (0=x 1=y)
306     */
307    Bool_t TrkTrack::IsBad(int ip,int iv){
308        if(iv==0 && ip>=0 && ip<6)return (xgood[ip]<0) ;
309        else if(iv==1 && ip>=0 && ip<6)return (ygood[ip]<0) ;
310        else {
311            cout << "TrkTrack::IsBad(int ip, int iv) -- wrong input parameters "<<ip<<iv<<endl;
312            return 0.;
313        }
314    };
315    /**
316     * Returns 1 if the signal on a tracker view is saturated.
317     * @param ip plane (0-5)
318     * @param iv view (0=x 1=y)
319     */
320    Bool_t TrkTrack::IsSaturated(int ip,int iv){
321        if(iv==0 && ip>=0 && ip<6)return (dedx_x[ip]<0) ;
322        else if(iv==1 && ip>=0 && ip<6)return (dedx_y[ip]<0) ;
323        else {
324            cout << "TrkTrack::IsSaturated(int ip, int iv) -- wrong input parameters "<<ip<<iv<<endl;
325            return 0.;
326        }
327    };
328    /**
329     * Returns 1 if either the x or the y signal on a tracker plane is saturated.
330     * @param ip plane (0-5)
331     */
332    Bool_t TrkTrack::IsSaturated(int ip){
333        return (IsSaturated(ip,0)||IsSaturated(ip,1));
334    };
335    /**
336     * Returns 1 if there is at least a saturated signal along the track.
337     */
338    Bool_t TrkTrack::IsSaturated(){
339        for(int ip=0; ip<6; ip++)for(int iv=0; iv<2; iv++)if(IsSaturated(ip,iv))return true;
340        return false;
341    }
342    /**
343     * Returns the track "lever-arm" on the x view, defined as the distance (in planes) between
344     * the upper and lower x measurements (the maximum value of lever-arm is 6).
345     */
346    Int_t TrkTrack::GetLeverArmX(){
347        int first_plane = -1;
348        int last_plane  = -1;
349        for(Int_t ip=0; ip<6; ip++){
350            if( XGood(ip) && first_plane == -1 )first_plane = ip;
351            if( XGood(ip) && first_plane != -1 )last_plane = ip;
352        }
353        if( first_plane == -1 || last_plane == -1){
354            cout<< "Int_t TrkTrack::GetLeverArmX() -- XGood(ip) always false ??? "<<endl;
355            return 0;
356        }
357        return (last_plane-first_plane+1);
358    }
359    /**
360     * Returns the track "lever-arm" on the y view, defined as the distance (in planes) between
361     * the upper and lower y measurements (the maximum value of lever-arm is 6).
362     */
363    Int_t TrkTrack::GetLeverArmY(){
364        int first_plane = -1;
365        int last_plane  = -1;
366        for(Int_t ip=0; ip<6; ip++){
367            if( YGood(ip) && first_plane == -1 )first_plane = ip;
368            if( YGood(ip) && first_plane != -1 )last_plane = ip;
369        }
370        if( first_plane == -1 || last_plane == -1){
371            cout<< "Int_t TrkTrack::GetLeverArmY() -- YGood(ip) always false ??? "<<endl;
372            return 0;
373        }
374        return (last_plane-first_plane+1);
375    }
376    /**
377     * Returns the track "lever-arm" on the x+y view, defined as the distance (in planes) between
378     * the upper and lower x,y (couple) measurements (the maximum value of lever-arm is 6).
379     */
380    Int_t TrkTrack::GetLeverArmXY(){
381        int first_plane = -1;
382        int last_plane  = -1;
383        for(Int_t ip=0; ip<6; ip++){
384            if( XGood(ip)*YGood(ip) && first_plane == -1 )first_plane = ip;
385            if( XGood(ip)*YGood(ip) && first_plane != -1 )last_plane = ip;
386        }
387        if( first_plane == -1 || last_plane == -1){
388            cout<< "Int_t TrkTrack::GetLeverArmXY() -- XGood(ip)*YGood(ip) always false ??? "<<endl;
389            return 0;
390        }
391        return (last_plane-first_plane+1);
392    }
393    /**
394     * Returns the number of hit planes
395     */
396    Int_t TrkTrack::GetNhit()  {
397      int np=0;
398      for(Int_t ip=0; ip<6; ip++) np += (XGood(ip)||YGood(ip)) ;
399      return np;
400    };
401    /**
402     * Returns the reduced chi-square of track x-projection
403     */
404    Float_t  TrkTrack::GetChi2X(){
405        float chiq=0;
406        for(int ip=0; ip<6; ip++)if(XGood(ip))chiq+= pow((xv[ip]-xm[ip])/resx[ip],2.);
407        if(GetNX()>3)chiq=chiq/(GetNX()-3);
408        else chiq=0;
409        if(chiq==0)cout << " Float_t  TrkTrack::GetChi2X() -- WARNING -- value not defined "<<chiq<<endl;
410        return chiq;
411    }
412    /**
413     * Returns the reduced chi-square of track y-projection
414     */
415    Float_t  TrkTrack::GetChi2Y(){
416        float chiq=0;
417        for(int ip=0; ip<6; ip++)if(YGood(ip))chiq+= pow((yv[ip]-ym[ip])/resy[ip],2.);
418        if(GetNY()>2)chiq=chiq/(GetNY()-2);
419        else chiq=0;
420        if(chiq==0)cout << " Float_t  TrkTrack::GetChi2Y() -- WARNING -- value not defined "<<chiq<<endl;
421        return chiq;
422    }
423    /**
424     * Returns the logarythm of the likeliwood-function of  track x-projection
425     */
426    Float_t TrkTrack::GetLnLX(){
427        float lnl=0;
428        for(int ip=0; ip<6; ip++)
429            if( XGood(ip) && tailx[ip]!=0 )
430                lnl += (tailx[ip]+1.) * log( (tailx[ip]*pow(resx[ip],2.) + pow(xv[ip]-xm[ip],2.)) / (tailx[ip]*pow(resx[ip],2)) );
431        if(GetNX()>3)lnl=lnl/(GetNX()-3);
432        else lnl=0;
433        if(lnl==0){
434            cout << " Float_t  TrkTrack::GetLnLX() -- WARNING -- value not defined "<<lnl<<endl;
435            Dump();
436        }
437        return lnl;
438        
439    }
440    /**
441     * Returns the logarythm of the likeliwood-function of  track y-projection
442     */
443    Float_t TrkTrack::GetLnLY(){
444        float lnl=0;
445        for(int ip=0; ip<6; ip++)
446            if( YGood(ip) && taily[ip]!=0 )
447                lnl += (taily[ip]+1.) * log( (taily[ip]*pow(resy[ip],2.) + pow(yv[ip]-ym[ip],2.)) / (taily[ip]*pow(resy[ip],2)) );
448        if(GetNY()>2)lnl=lnl/(GetNY()-2);
449        else lnl=0;
450        if(lnl==0){
451            cout << " Float_t  TrkTrack::GetLnLY() -- WARNING -- value not defined "<<lnl<<endl;
452            Dump();
453        }
454        return lnl;
455        
456    }
457    /**
458     * Returns the effective angle, relative to the sensor, on each plane.
459     * @param ip plane (0-5)
460     * @param iv view (0=x 1=y)
461     */
462    Float_t TrkTrack::GetEffectiveAngle(int ip, int iv){
463    
464      int ifail = 0;      if(ip<0 || ip>5){
465            cout << "Float_t TrkTrack::GetEffectiveAngle(int "<<ip<<", int "<<iv<<") ==> wrong input"<<endl;
466            return 0.;
467        }
468    
469        float v[3]={xv[ip],yv[ip],zv[ip]};
470        //-----------------------------------------
471        // effective angle (relative to the sensor)
472        //-----------------------------------------
473        float axv_geo  = axv[ip];
474        float muhall_h = 297.61; //cm**2/Vs
475        float BY = TrkParams::GetBY(v);
476        float axv_eff = 0;
477        if(ip==5) axv_geo = -1*axv_geo;
478        if(ip==5) BY      = -1*BY;
479        axv_eff = 180.*atan( tan(axv_geo*acos(-1.)/180.) + muhall_h * BY * 0.0001)/acos(-1.);
480        //-----------------------------------------
481        // effective angle (relative to the sensor)
482        //-----------------------------------------
483        float ayv_geo = ayv[ip];
484        float muhall_e = 1258.18; //cm**2/Vs
485        float BX = TrkParams::GetBX(v);
486        float ayv_eff = 0;
487        ayv_eff = 180.*atan( tan(ayv_geo*acos(-1.)/180.) + muhall_e * BX * 0.0001)/acos(-1.);
488      
489        if     (iv==0)return axv_eff;
490        else if(iv==1)return ayv_eff;
491        else{
492            cout << "Float_t TrkTrack::GetEffectiveAngle(int "<<ip<<", int "<<iv<<") ==> wrong input"<<endl;
493            return 0.;
494        }
495      
496    };
497    
498    //--------------------------------------
499    //
500    //
501    //--------------------------------------
502    void TrkTrack::Dump(){
503        cout << endl << "========== Track " ;
504        cout << endl << "seq.  n. : "<< seqno;
505        cout << endl << "image n. : "<< image;
506        cout << endl << "al       : "; for(int i=0; i<5; i++)cout << al[i] << " ";
507        cout << endl << "chi^2    : "<< chi2;
508        cout << endl << "n.step   : "<< nstep;
509        cout << endl << "xgood    : "; for(int i=0; i<6; i++)cout << XGood(i) ;
510        cout << endl << "ygood    : "; for(int i=0; i<6; i++)cout << YGood(i) ;
511        cout << endl << "xm       : "; for(int i=0; i<6; i++)cout << xm[i] << " ";
512        cout << endl << "ym       : "; for(int i=0; i<6; i++)cout << ym[i] << " ";
513        cout << endl << "zm       : "; for(int i=0; i<6; i++)cout << zm[i] << " ";
514        cout << endl << "xv       : "; for(int i=0; i<6; i++)cout << xv[i] << " ";
515        cout << endl << "yv       : "; for(int i=0; i<6; i++)cout << yv[i] << " ";
516        cout << endl << "zv       : "; for(int i=0; i<6; i++)cout << zv[i] << " ";
517        cout << endl << "resx     : "; for(int i=0; i<6; i++)cout << resx[i] << " ";
518        cout << endl << "resy     : "; for(int i=0; i<6; i++)cout << resy[i] << " ";
519        cout << endl << "tailx    : "; for(int i=0; i<6; i++)cout << tailx[i] << " ";
520        cout << endl << "taily    : "; for(int i=0; i<6; i++)cout << taily[i] << " ";
521        cout << endl << "coval    : "; for(int i=0; i<5; i++)cout << coval[0][i]<<" ";
522        cout << endl << "           "; for(int i=0; i<5; i++)cout << coval[1][i]<<" ";
523        cout << endl << "           "; for(int i=0; i<5; i++)cout << coval[2][i]<<" ";
524        cout << endl << "           "; for(int i=0; i<5; i++)cout << coval[3][i]<<" ";
525        cout << endl << "           "; for(int i=0; i<5; i++)cout << coval[4][i]<<" ";
526        cout << endl << "dedx_x   : "; for(int i=0; i<6; i++)cout << dedx_x[i] << " ";
527        cout << endl << "dedx_y   : "; for(int i=0; i<6; i++)cout << dedx_y[i] << " ";
528        cout << endl << "maxs x   : "; for(int i=0; i<6; i++)cout << GetClusterX_MaxStrip(i) << " ";
529        cout << endl << "maxs y   : "; for(int i=0; i<6; i++)cout << GetClusterY_MaxStrip(i) << " ";
530        cout << endl << "mult x   : "; for(int i=0; i<6; i++)cout << GetClusterX_Multiplicity(i) << " ";
531        cout << endl << "mult y   : "; for(int i=0; i<6; i++)cout << GetClusterY_Multiplicity(i) << " ";
532        cout << endl << "seed x   : "; for(int i=0; i<6; i++)cout << GetClusterX_Seed(i) << " ";
533        cout << endl << "seed y   : "; for(int i=0; i<6; i++)cout << GetClusterY_Seed(i) << " ";
534        cout << endl << "xpu      : "; for(int i=0; i<6; i++)cout << xpu[i] << " ";
535        cout << endl << "ypu      : "; for(int i=0; i<6; i++)cout << ypu[i] << " ";
536    
537        cout << endl;
538    }
539    /**
540     * Set the TrkTrack position measurements
541     */
542    void TrkTrack::SetMeasure(double *xmeas, double *ymeas, double *zmeas){
543        for(int i=0; i<6; i++) xm[i]=*xmeas++;
544        for(int i=0; i<6; i++) ym[i]=*ymeas++;
545        for(int i=0; i<6; i++) zm[i]=*zmeas++;
546    }
547    /**
548     * Set the TrkTrack position resolution
549     */
550    void TrkTrack::SetResolution(double *rx, double *ry){
551        for(int i=0; i<6; i++) resx[i]=*rx++;
552        for(int i=0; i<6; i++) resy[i]=*ry++;
553    }
554    /**
555     * Set the TrkTrack tails position resolution
556     */
557    void TrkTrack::SetTail(double *tx, double *ty, double factor){
558        for(int i=0; i<6; i++) tailx[i]=factor*(*tx++);
559        for(int i=0; i<6; i++) taily[i]=factor*(*ty++);
560    }
561    /**
562     * Set the TrkTrack Student parameter (resx,resy,tailx,taily)
563     * from previous gausian fit
564     *@param flag =0 standard, =1 with noise correction
565     */
566    void TrkTrack::SetStudentParam(int flag){
567        float sx[11]={0.000128242,
568                       0.000136942,
569                       0.000162718,
570                       0.000202644,
571                       0.00025597,
572                       0.000317456,
573                       0.000349048,
574                       0.000384638,
575                       0.000457295,
576                       0.000512319,
577                       0.000538573};
578        float tx[11]={1.79402,
579                       2.04876,
580                       2.88376,
581                       3.3,
582                       3.14084,
583                       4.07686,
584                       4.44736,
585                       3.5179,
586                       3.38697,
587                       3.45739,
588                       3.18627};
589        float sy[11]={0.000483075,
590                       0.000466925,
591                       0.000431658,
592                       0.000428317,
593                       0.000433854,
594                       0.000444044,
595                       0.000482098,
596                       0.000537579,
597                       0.000636279,
598                       0.000741998,
599                       0.000864261};
600        float ty[11]={0.997032,
601                       1.11147,
602                       1.18526,
603                       1.61404,
604                       2.21908,
605                       3.08959,
606                       4.48833,
607                       4.42687,
608                       4.65253,
609                       4.52043,
610                       4.29926};
611        int index;
612        float fact=0.;
613        for(int i=0; i<6; i++) {
614            index = int((fabs(axv[i])+1.)/2.);
615            if(index>10) index=10;
616            tailx[i]=tx[index];
617            if(flag==1) {
618                if(fabs(axv[i])<=10.) fact = resx[i]/risxeta2_(&(axv[i]));
619                if(fabs(axv[i])>10.&&fabs(axv[i])<=15.) fact = resx[i]/risxeta3_(&(axv[i]));
620                if(fabs(axv[i])>15.) fact = resx[i]/risxeta4_(&(axv[i]));
621            } else fact = 1.;
622            resx[i] = sx[index]*fact;
623        }
624        for(int i=0; i<6; i++) {
625            index = int((fabs(ayv[i])+1.)/2.);
626            if(index>10) index=10;
627            taily[i]=ty[index];
628            if(flag==1) fact = resy[i]/risyeta2_(&(ayv[i]));
629            else fact = 1.;
630            resy[i] = sy[index]*fact;
631        }
632    }
633    /**
634     * Set the TrkTrack good measurement
635     */
636    void TrkTrack::SetGood(int *xg, int *yg){
637    
638        for(int i=0; i<6; i++) xgood[i]=*xg++;
639        for(int i=0; i<6; i++) ygood[i]=*yg++;
640    }
641    
642    /**
643     * Load the magnetic field
644     */
645    void TrkTrack::LoadField(TString path){
646        
647    //     strcpy(path_.path,path.Data());
648    //     path_.pathlen = path.Length();
649    //     path_.error   = 0;
650    //     readb_();
651    
652    //     TrkParams::SetTrackingMode();
653    //     TrkParams::SetPrecisionFactor();
654    //     TrkParams::SetStepMin();
655        TrkParams::SetMiniDefault();
656    
657        TrkParams::Set(path,1);
658        TrkParams::Load(1);
659        if( !TrkParams::IsLoaded(1) ){
660            cout << "void TrkTrack::LoadField(TString path) --- ERROR --- m.field not loaded"<<endl;
661        }
662    
663    };
664    
665    
666    /**
667     * Method to fill minimization-routine common
668     */
669    void TrkTrack::FillMiniStruct(cMini2track& track){
670    
671        for(int i=0; i<6; i++){
672    
673    //      cout << i<<" - "<<xgood[i]<<" "<<XGood(i)<<endl;
674    //      cout << i<<" - "<<ygood[i]<<" "<<YGood(i)<<endl;
675          track.xgood[i] = (double) XGood(i);
676            track.ygood[i] = (double) YGood(i);
677            
678            track.xm[i]= (double) xm[i];
679            track.ym[i]= (double) ym[i];
680            track.zm[i]= (double) zm[i];
681            
682    //      --- temporaneo ----------------------------
683    //      float segment = 100.;
684    //      track.xm_a[i]=xm[i];
685    //      track.xm_b[i]=xm[i];
686    //      track.ym_a[i]=ym[i];
687    //      track.ym_b[i]=ym[i];
688    //      if(       XGood(i) && !YGood(i) ){
689    //          track.ym_a[i] = track.ym_a[i]+segment;
690    //          track.ym_b[i] = track.ym_b[i]-segment;
691    //      }else if( !XGood(i) && YGood(i)){
692    //          track.xm_a[i] = track.xm_a[i]+segment;
693    //          track.xm_b[i] = track.xm_b[i]-segment;
694    //      }
695    //      --- temporaneo ----------------------------
696    
697            if( XGood(i) || YGood(i) ){
698                //NB!! the length of the sensor is not exactely taken into account    
699                double segment = 7.;// 2.;//cm //Elena 10th
700                // NB: i parametri di allineamento hanno una notazione particolare!!!
701                // sensor = 0 (hybrid side), 1
702                // ladder = 0-2 (increasing x)
703                // plane  = 0-5 (from bottom to top!!!)
704                int is = (int)GetSensor(i); if(i==5)is=1-is;
705                int ip = 5-i;
706                int il = (int)GetLadder(i);
707                
708                double omega   = 0.;
709                //      double beta    = 0.;// EM GCC 4.7
710                //      double gamma   = 0.;
711                if(
712                    (is < 0 || is > 1 || ip < 0 || ip > 5 || il < 0 || il > 2) &&
713                    true){
714                    // se il piano risulta colpito, ladder e sensore devono essere
715                    // assegnati correttamente
716                    cout << " void TrkTrack::FillMiniStruct(cMini2track&) --- WARNING --- sensor not defined, cannot read alignment parameters "<<endl;
717                    cout << " is ip il = "<<is<<" "<<ip<<" "<<il<<endl;
718                }else{
719                    omega   = alignparameters_.omega[is][il][ip];
720                    //              beta    = alignparameters_.beta[is][il][ip];// EM GCC 4.7 unused
721                    //              gamma   = alignparameters_.gamma[is][il][ip];// EM GCC 4.7 unused
722                }
723                
724                if(       XGood(i) && !YGood(i) ){
725                    track.xm_a[i] =  (double) xm[i] - omega * segment;
726                    track.ym_a[i] =  (double) ym[i] + segment;
727    //          track.zm_a[i] = zm[i] + beta * segment;//not used yet
728                    track.xm_b[i] =  (double) xm[i] + omega * segment;
729                    track.ym_b[i] =  (double) ym[i] - segment;
730    //          track.zm_b[i] = zm[i] - beta * segment;//not used yet
731                }else if( !XGood(i) && YGood(i) ){
732                    track.xm_a[i] =  (double) xm[i] + segment;
733                    track.ym_a[i] =  (double) ym[i] + omega * segment;
734    //          track.zm_a[i] = zm[i] - gamma * segment;//not used yet
735                    track.xm_b[i] =  (double) xm[i] - segment;
736                    track.ym_b[i] =  (double) ym[i] - omega * segment;
737    //          track.zm_b[i] = zm[i] + gamma * segment;//not used yet
738                }
739            }
740            
741            track.resx[i]= (double) resx[i];
742            track.resy[i]= (double) resy[i];
743            track.tailx[i]= (double) tailx[i];
744            track.taily[i]= (double) taily[i];
745        }
746    
747        for(int i=0; i<5; i++) track.al[i]= (double) al[i];
748        track.zini = 23.5;
749    // ZINI = 23.5 !!! it should be the same parameter in all codes
750        
751    }
752    /**
753     * Method to set values from  minimization-routine common
754     */
755    void TrkTrack::SetFromMiniStruct(cMini2track *track){
756    
757        for(int i=0; i<5; i++) {
758          al[i]= (float) (track->al[i]);
759            for(int j=0; j<5; j++) coval[i][j]= (float) (track->cov[i][j]);
760        }
761        chi2  =  (float) (track->chi2);
762        nstep =  (float) (track->nstep);
763        for(int i=0; i<6; i++){
764            xv[i]  =  (float) (track->xv[i]);
765            yv[i]  =  (float) (track->yv[i]);
766            zv[i]  =  (float) (track->zv[i]);
767            xm[i]  = (float)  (track->xm[i]);
768            ym[i]  =  (float) (track->ym[i]);
769            zm[i]  =  (float) (track->zm[i]);
770            axv[i] =  (float) (track->axv[i]);
771            ayv[i] =  (float) (track->ayv[i]);      
772            resx[i] = (float)  (track->resx[i]); //Elena 10th
773            resy[i] =  (float) (track->resy[i]);
774        }
775        
776    }
777    /**
778     * \brief Method to re-evaluate coordinates of clusters associated with a track.
779     *
780     * The method can be applied only after recovering level1 information
781     * (either by reprocessing single events from level0 or from  
782     * the TrkLevel1 branch, if present); it calls F77 subroutines that
783     * read the level1 common and fill the minimization-routine common.
784     * Some clusters can be excluded or added by means of the methods:
785     *
786     * TrkTrack::ResetXGood(int ip)
787     * TrkTrack::ResetYGood(int ip)
788     * TrkTrack::SetXGood(int ip, int cid, int is)
789     * TrkTrack::SetYGood(int ip, int cid, int is)
790     *
791     * NB! The method TrkTrack::SetGood(int *xg, int *yg) set the plane-mask (0-1)
792     * for the minimization-routine common. It deletes the cluster information
793     * (at least for the moment...) thus cannot be applied before
794     * TrkTrack::EvaluateClusterPositions().  
795     *
796     * Different p.f.a. can be applied by calling (once) the method:
797     *
798     * TrkParams::SetPFA(0); //Set ETA p.f.a.
799     *
800     * @see TrkParams::SetPFA(int)
801     */
802    Bool_t TrkTrack::EvaluateClusterPositions(){
803        
804    //     cout << "void TrkTrack::GetClusterositions() "<<endl;
805    
806        TrkParams::Load(1);
807        if( !TrkParams::IsLoaded(1) ){
808            cout << "Bool_t TrkTrack::EvaluateClusterPositions() ---ERROR--- m.field not loaded "<<endl;
809            return false;
810        }    
811        TrkParams::Load(4);
812        if( !TrkParams::IsLoaded(4) ){
813            cout << "Bool_t TrkTrack::EvaluateClusterPositions() ---ERROR--- p.f.a. par. not loaded "<<endl;
814            return false;
815        }
816        TrkParams::Load(5);
817        if( !TrkParams::IsLoaded(5) ){
818            cout << "Bool_t TrkTrack::EvaluateClusterPositions() ---ERROR--- alignment par. not loaded "<<endl;
819            return false;
820        }
821    
822        for(int ip=0; ip<6; ip++){
823    //      cout << ip<<" ** "<<xm[ip]<<" / "<<ym[ip]<<endl;;
824            int icx = GetClusterX_ID(ip)+1;//0=no-cluster,1-N
825            int icy = GetClusterY_ID(ip)+1;//0=no-cluster,1-N
826            int sensor = GetSensor(ip)+1;//<< convenzione "Paolo"
827            if(ip==5 && sensor!=0)sensor=3-sensor;//<< convenzione "Elena"
828            int ladder = GetLadder(ip)+1;
829            float ax = axv[ip];
830            float ay = ayv[ip];
831            float v[3];
832            v[0]=xv[ip];
833            v[1]=yv[ip];
834            v[2]=zv[ip];
835            float bfx = 10*TrkParams::GetBX(v);//Tesla
836            float bfy = 10*TrkParams::GetBY(v);//Tesla
837            int ipp=ip+1;
838            xyzpam_(&ipp,&icx,&icy,&ladder,&sensor,&ax,&ay,&bfx,&bfy);
839            //      if(icx<0 || icy<0)return false;
840        }
841        return true;
842    }
843    /**
844     * \brief Tracking method. It calls F77 mini routine.
845     *
846     * @param pfixed Particle momentum. If pfixed=0 the momentum
847     * is left as a free parameter, otherwise it is fixed to the input value.
848     * @param fail Output flag (!=0 if the fit failed).
849     * @param iprint Flag to set debug mode ( 0 = no output; 1 = verbose; 2 = debug).
850     * @param froml1 Flag to re-evaluate positions (see TrkTrack::GetClusterPositions()).
851     *
852     * The option to re-evaluate positions can be used only after recovering
853     * level1 information, eg. by reprocessing the single event.
854     *
855     * Example:
856     *
857     * if( !event->GetTrkLevel0() )return false;
858     * event->GetTrkLevel0()->ProcessEvent(); // re-processing level0->level1
859     * int fail=0;
860     * event->GetTrkLevel2()->GetTrack(0)->Fit(0.,fail,0,1);
861     *
862     * @see EvaluateClusterPositions()
863     *
864     * The fitting procedure can be varied by changing the tracking mode,
865     * the fit-precision factor, the minimum number of step, etc.
866     * @see SetTrackingMode(int)
867     * @see SetPrecisionFactor(double)
868     * @see SetStepMin(int)
869     * @see SetDeltaB(int,double)
870     */
871    void TrkTrack::Fit(double pfixed, int& fail, int iprint, int froml1){
872    
873        TrkParams::Load(1);
874        if( !TrkParams::IsLoaded(1) ){
875            cout << "void TrkTrack::Fit(double,int&,int,int) ---ERROR--- m.field not loaded "<<endl;
876            return;
877        }
878        TrkParams::Load(5);
879        if( !TrkParams::IsLoaded(5) ){
880            cout << "void TrkTrack::Fit(double,int&,int,int) ---ERROR--- align.param. not loaded "<<endl;
881            return;
882        }
883    
884        float al_ini[] = {0.,0.,0.,0.,0.};
885    
886        extern cMini2track track_;
887        fail = 0;
888    
889        //    FillMiniStruct(track_);
890            
891        if(froml1!=0){
892            if( !EvaluateClusterPositions() ){
893                cout << "void TrkTrack::Fit("<<pfixed<<","<<fail<<","<<iprint<<","<<froml1<<") --- ERROR evaluating cluster positions "<<endl;
894                FillMiniStruct(track_) ;
895                fail = 1;
896                return;
897            }
898        }else{
899            FillMiniStruct(track_);
900        }
901        
902        // if fit variables have been reset, evaluate the initial guess
903        if(al[0]==-9999.&&al[1]==-9999.&&al[2]==-9999.&&al[3]==-9999.&&al[4]==-9999.)guess_();
904    
905        // --------------------- free momentum
906        if(pfixed==0.) {
907            track_.pfixed=0.;
908        }
909        // --------------------- fixed momentum
910        if(pfixed!=0.) {
911            al[4]=1./pfixed;    
912            track_.pfixed=pfixed;
913        }
914    
915        //  store temporarily the initial guess
916        for(int i=0; i<5; i++) al_ini[i]=track_.al[i];
917    
918        //  ------------------------------------------
919        //  call mini routine
920        //  ------------------------------------------
921        int istep=0;
922        int ifail=0;
923        mini2_(&istep,&ifail, &iprint);
924        if(ifail!=0) {
925            if(iprint)cout << "ERROR: ifail= " << ifail << endl;
926            fail = 1;
927        }
928        if(chi2!=chi2){
929            if(iprint)cout << "ERROR: chi2= " << chi2 << endl;      
930            FitReset();
931            fail = 1;      
932        }
933        //  ------------------------------------------
934        
935        SetFromMiniStruct(&track_);
936    
937        if(fail){
938            if(iprint)cout << " >>>> fit failed "<<endl;
939            for(int i=0; i<5; i++) al[i]=al_ini[i];
940        }
941    
942    };
943    /**
944     * Reset the fit parameters
945     */
946    void TrkTrack::FitReset(){
947        for(int i=0; i<5; i++) al[i]=-9999.;
948        chi2=0.;
949        nstep=0;
950    //     for(int i=0; i<6; i++) xv[i]=0.;
951    //     for(int i=0; i<6; i++) yv[i]=0.;
952    //     for(int i=0; i<6; i++) zv[i]=0.;
953    //     for(int i=0; i<6; i++) axv[i]=0.;
954    //     for(int i=0; i<6; i++) ayv[i]=0.;
955        for(int i=0; i<5; i++) {
956            for(int j=0; j<5; j++) coval[i][j]=0.;
957        }
958    }
959    /**
960     * Set the tracking mode
961     */
962    void TrkTrack::SetTrackingMode(int trackmode){
963        extern cMini2track track_;
964        track_.trackmode = trackmode;
965    }
966    /**
967     * Set the factor scale for tracking precision
968     */
969    void TrkTrack::SetPrecisionFactor(double fact){
970        extern cMini2track track_;
971        track_.fact = fact;
972    }
973    /**
974     * Set the minimum number of steps for tracking precision
975     */
976    void TrkTrack::SetStepMin(int istepmin){
977        extern cMini2track track_;
978        track_.istepmin = istepmin;
979    }
980    /**
981     * Set deltaB parameters (id=0,1). By default they are set to zero.
982     */
983    void TrkTrack::SetDeltaB(int id, double db){
984        if(id!=0 && id!=1)cout << "void TrkTrack::SetDeltaB(int id,double db) -- wrong input parameters: "<<id<<" "<<db<<endl;
985        TrkParams::SetDeltaB(id,db);
986    }
987    
988    /**
989     * Returns true if the track is inside the magnet cavity.
990     * @param toll Tolerance around the nominal volume (toll>0 define an inner fiducial volume)
991     */
992    Bool_t TrkTrack::IsInsideCavity(float toll){
993    
994    //     float xmagntop, ymagntop, xmagnbottom, ymagnbottom;
995    //     xmagntop = xv[0] + (ZMAGNHIGH-zv[0])*tan(acos(-1.0)*axv[0]/180.);
996    //     ymagntop = yv[0] + (ZMAGNHIGH-zv[0])*tan(acos(-1.0)*ayv[0]/180.);
997    //     xmagnbottom = xv[5] + (ZMAGNLOW-zv[5])*tan(acos(-1.0)*axv[5]/180.);
998    //     ymagnbottom = yv[5] + (ZMAGNLOW-zv[5])*tan(acos(-1.0)*ayv[5]/180.);
999    //     if( xmagntop>XMAGNLOW && xmagntop<XMAGNHIGH &&
1000    //      ymagntop>YMAGNLOW && ymagntop<YMAGNHIGH &&
1001    //      xmagnbottom>XMAGNLOW && xmagnbottom<XMAGNHIGH &&
1002    //      ymagnbottom>YMAGNLOW && ymagnbottom<YMAGNHIGH ) return(true);
1003    //     else return(false);
1004    
1005        int ngf = TrkParams::nGF;
1006        for(int i=0; i<ngf; i++){
1007            //
1008    //      cout << endl << TrkParams::GF_element[i];
1009            if(
1010                TrkParams::GF_element[i].CompareTo("CUF") &&
1011                TrkParams::GF_element[i].CompareTo("T2")  &&
1012                TrkParams::GF_element[i].CompareTo("T3")  &&
1013                TrkParams::GF_element[i].CompareTo("T4")  &&
1014                TrkParams::GF_element[i].CompareTo("T5")  &&
1015                TrkParams::GF_element[i].CompareTo("CLF") &&
1016                true)continue;
1017            // apply condition only within the cavity
1018    //      cout << " -- "<<xGF[i]<<" "<<yGF[i];
1019            if(
1020                xGF[i] <= TrkParams::xGF_min[i] + toll ||
1021                xGF[i] >= TrkParams::xGF_max[i] - toll ||
1022                yGF[i] <= TrkParams::yGF_min[i] + toll ||
1023                yGF[i] >= TrkParams::yGF_max[i] - toll ||
1024                false){
1025                
1026                return false;
1027            }
1028        }
1029        return true;
1030    
1031    
1032    }
1033    /**
1034     * Returns true if the track is inside the nominal acceptance, which is defined
1035     * by the intersection among magnet cavity, silicon-plane sensitive area and
1036     * ToF sensitive area (nominal values from the official document used to
1037     * calculate the geometrical factor)
1038     * @param toll Tolerance around the nominal volume (toll>0 define an inner fiducial volume)
1039     */
1040    // Bool_t TrkTrack::IsInsideAcceptance(){
1041    
1042    //     int ngf = TrkParams::nGF;
1043    //     for(int i=0; i<ngf; i++){
1044    //      if(
1045    //          xGF[i] <= TrkParams::xGF_min[i] ||
1046    //          xGF[i] >= TrkParams::xGF_max[i] ||
1047    //          yGF[i] <= TrkParams::yGF_min[i] ||
1048    //          yGF[i] >= TrkParams::yGF_max[i] ||
1049    //          false)return false;
1050    //     }
1051    //     return true;
1052    
1053    // }
1054    Bool_t TrkTrack::IsInsideAcceptance(float toll){
1055    
1056    
1057        int ngf = TrkParams::nGF;
1058        for(int i=0; i<ngf; i++){
1059            //
1060    //      cout << endl << TrkParams::GF_element[i];
1061            if(
1062                TrkParams::GF_element[i].CompareTo("S11") &&
1063                TrkParams::GF_element[i].CompareTo("S12") &&
1064                TrkParams::GF_element[i].CompareTo("S21") &&
1065                TrkParams::GF_element[i].CompareTo("S22") &&
1066                TrkParams::GF_element[i].CompareTo("T1")  &&
1067                TrkParams::GF_element[i].CompareTo("CUF") &&
1068                TrkParams::GF_element[i].CompareTo("T2")  &&
1069                TrkParams::GF_element[i].CompareTo("T3")  &&
1070                TrkParams::GF_element[i].CompareTo("T4")  &&
1071                TrkParams::GF_element[i].CompareTo("T5")  &&
1072                TrkParams::GF_element[i].CompareTo("CLF") &&
1073                TrkParams::GF_element[i].CompareTo("T6")  &&
1074                TrkParams::GF_element[i].CompareTo("S31") &&
1075                TrkParams::GF_element[i].CompareTo("S32") &&
1076                true)continue;
1077            // apply condition only within the cavity
1078    //      cout << " -- "<<xGF[i]<<" "<<yGF[i];
1079            if(
1080                xGF[i] <= TrkParams::xGF_min[i] + toll ||
1081                xGF[i] >= TrkParams::xGF_max[i] - toll ||
1082                yGF[i] <= TrkParams::yGF_min[i] + toll ||
1083                yGF[i] >= TrkParams::yGF_max[i] - toll ||
1084                false){
1085                
1086                return false;
1087            }
1088        }
1089        return true;
1090    }
1091    
1092    /**
1093     * Returns true if the track is inside one of the surfaces which define the
1094     * geometrical acceptance.
1095     * @param surf tag of the surface (possible values are: S11 S12 S21 S22 T1
1096     * CUF T2 T3 T4 T5 CLF T6 S31 S32).
1097     * @param toll  Tolerance around the nominal surface (toll>0 define an inner
1098     * fiducial surface)
1099    */
1100    Bool_t TrkTrack::IsInsideGFSurface(const char* surf, float toll){
1101    
1102    
1103        int ngf = TrkParams::nGF;
1104        bool SURFOK = false;
1105        for(int i=0; i<ngf; i++){
1106            if(  !TrkParams::GF_element[i].CompareTo(surf)  ){
1107                SURFOK=true;
1108                if(
1109                    xGF[i] > TrkParams::xGF_min[i] + toll &&
1110                    xGF[i] < TrkParams::xGF_max[i] - toll &&
1111                    yGF[i] > TrkParams::yGF_min[i] + toll &&
1112                    yGF[i] < TrkParams::yGF_max[i] - toll &&
1113                    true)return true;
1114            }
1115        }
1116        if( !SURFOK )cout << " Bool_t TrkTrack::IsInsideGFSurface(char* surf, float toll) --> suface "<<surf<<" not defined "<<endl;
1117        return false;
1118    
1119    }
1120    
1121    /**
1122     * Method to retrieve ID (0,1,...) of x-cluster (if any) associated to this track.
1123     * If no cluster is associated, ID=-1.
1124     * @param ip Tracker plane (0-5)
1125     */
1126    Int_t TrkTrack::GetClusterX_ID(int ip){
1127        return ((Int_t)fabs(xgood[ip]))%10000000-1;
1128    };
1129    /**
1130     * Method to retrieve ID (0-xxx) of y-cluster (if any) associated to this track.
1131     * If no cluster is associated, ID=-1.
1132     * @param ip Tracker plane (0-5)
1133     */
1134    Int_t TrkTrack::GetClusterY_ID(int ip){
1135        return ((Int_t)fabs(ygood[ip]))%10000000-1;
1136    };
1137    
1138    /**
1139     * Method to retrieve the ladder (0-2, increasing x) traversed by the track on this plane.
1140     * If no ladder is traversed (dead area) the metod retuns -1.
1141     * @param ip Tracker plane (0-5)
1142     */
1143    Int_t TrkTrack::GetLadder(int ip){
1144        if(XGood(ip))return (Int_t)fabs(xgood[ip]/100000000)-1;
1145        if(YGood(ip))return (Int_t)fabs(ygood[ip]/100000000)-1;
1146        return -1;
1147    };
1148    /**
1149     * Method to retrieve the sensor (0-1, increasing y) traversed by the track on this plane.
1150     * If no sensor is traversed (dead area) the metod retuns -1.
1151     * @param ip Tracker plane (0-5)
1152     */
1153    Int_t TrkTrack::GetSensor(int ip){
1154        if(XGood(ip))return (Int_t)((Int_t)fabs(xgood[ip]/10000000)%10)-1;
1155        if(YGood(ip))return (Int_t)((Int_t)fabs(ygood[ip]/10000000)%10)-1;
1156        return -1;
1157    };
1158    
1159    /**
1160     * \brief Method to include a x-cluster to the track.
1161     * @param ip Tracker plane (0-5)
1162     * @param clid Cluster ID (0 = no-cluster, 1,2,... otherwise )
1163     * @param il Ladder (0-2, increasing x, -1 if no sensitive area is hit)
1164     * @param is Sensor (0-1, increasing y, -1 if no sensitive area is hit)
1165     * @param bad True if the cluster contains bad strips  
1166     * @see Fit(double pfixed, int& fail, int iprint, int froml1)
1167     */
1168    void TrkTrack::SetXGood(int ip, int clid, int il, int is, bool bad){
1169    //    int il=0;       //ladder (temporary)
1170    //    bool bad=false; //ladder (temporary)
1171        if(ip<0||ip>5||clid<1||il<-1||il>2||is<-1||is>1)
1172            cout << " void TrkTrack::SetXGood(int,int,int,int,bool) --> MA SEI DI COCCIO?!?!"<<endl;
1173        xgood[ip]=(il+1)*100000000+(is+1)*10000000+clid;
1174        if(bad)xgood[ip]=-xgood[ip];
1175    };
1176    /**
1177     * \brief Method to include a y-cluster to the track.
1178     * @param ip Tracker plane (0-5)
1179     * @param clid Cluster ID (0 = no-cluster, 1,2,... otherwise )
1180     * @param il Ladder (0-2, increasing x, -1 if no sensitive area is hit)
1181     * @param is Sensor (0-1, increasing y, -1 if no sensitive area is hit)
1182     * @param bad True if the cluster contains bad strips  
1183     * @see Fit(double pfixed, int& fail, int iprint, int froml1)
1184     */
1185    void TrkTrack::SetYGood(int ip, int clid, int il, int is, bool bad){
1186    //    int il=0;       //ladder (temporary)
1187    //    bool bad=false; //ladder (temporary)
1188        if(ip<0||ip>5||clid<1||il<-1||il>2||is<-1||is>1)
1189            cout << " void TrkTrack::SetYGood(int,int,int,int,bool) --> MA SEI DI COCCIO?!?!"<<endl;
1190        ygood[ip]=(il+1)*100000000+(is+1)*10000000+clid;
1191        if(bad)ygood[ip]=-ygood[ip];
1192    };
1193    
1194    /**
1195     * \brief Average X
1196     * Average value of <xv>, evaluated from the first to the last hit x view.
1197     */
1198    Float_t TrkTrack::GetXav(){
1199    
1200        int first_plane = -1;
1201        int last_plane  = -1;
1202        for(Int_t ip=0; ip<6; ip++){
1203            if( XGood(ip) && first_plane == -1 )first_plane = ip;
1204            if( XGood(ip) && first_plane != -1 )last_plane = ip;
1205        }
1206        if( first_plane == -1 || last_plane == -1){
1207            return -100;
1208        }
1209        if( last_plane-first_plane+1 ==0 )return -100;
1210    
1211        Float_t av = 0;    
1212        for(int ip=first_plane; ip<=last_plane; ip++)av+=xv[ip];
1213        
1214        return (av/(last_plane-first_plane+1));    
1215    }
1216    /**
1217     * \brief Average Y
1218     * Average value of <yv>, evaluated from the first to the last hit x view.
1219     */
1220    Float_t TrkTrack::GetYav(){
1221    
1222        int first_plane = -1;
1223        int last_plane  = -1;
1224        for(Int_t ip=0; ip<6; ip++){
1225            if( XGood(ip) && first_plane == -1 )first_plane = ip;
1226            if( XGood(ip) && first_plane != -1 )last_plane = ip;
1227        }
1228        if( first_plane == -1 || last_plane == -1){
1229            return -100;
1230        }
1231        if( last_plane-first_plane+1 ==0 )return -100;
1232    
1233        Float_t av = 0;    
1234        for(int ip=first_plane; ip<=last_plane; ip++)av+=yv[ip];
1235    
1236        return (av/(last_plane-first_plane+1));    
1237    }
1238    /**
1239     * \brief Average Z
1240     * Average value of <zv>, evaluated from the first to the last hit x view.
1241     */
1242    Float_t TrkTrack::GetZav(){
1243    
1244        int first_plane = -1;
1245        int last_plane  = -1;
1246        for(Int_t ip=0; ip<6; ip++){
1247            if( XGood(ip) && first_plane == -1 )first_plane = ip;
1248            if( XGood(ip) && first_plane != -1 )last_plane = ip;
1249        }
1250        if( first_plane == -1 || last_plane == -1){
1251            return -100;
1252        }
1253        if( last_plane-first_plane+1 ==0 )return -100;
1254    
1255        Float_t av = 0;    
1256        for(int ip=first_plane; ip<=last_plane; ip++)av+=zv[ip];
1257        
1258        return (av/(last_plane-first_plane+1));    
1259    }
1260    
1261    /**
1262     * \brief Number of column traversed
1263     */
1264    Int_t TrkTrack::GetNColumns(){
1265        int sensors[] = {0,0,0,0,0,0};
1266        for(int ip=0; ip<6; ip++){
1267            int sensorid = GetLadder(ip)+3*GetSensor(ip);    
1268            if(XGood(ip)||YGood(ip))
1269                if(sensorid>=0 && sensorid<6)sensors[sensorid]=1;
1270        }
1271        int nsensors=0;
1272        for(int is=0; is<6; is++)nsensors += sensors[is];
1273        return nsensors;
1274    };
1275    /**
1276     * \brief Give the maximum energy release
1277     */
1278    Float_t TrkTrack::GetDEDX_max(int ip, int iv){
1279        Float_t max=0;
1280        int pfrom = 0;
1281        int pto   = 6;
1282        int vfrom = 0;
1283        int vto   = 2;
1284        if(ip>=0&&ip<6){
1285            pfrom = ip;
1286            pto   = ip+1;
1287        }
1288        if(iv>=0&&iv<2){
1289            vfrom = iv;
1290            vto   = iv+1;
1291        }
1292        for(int i=pfrom; i<pto; i++)
1293            for(int j=vfrom; j<vto; j++){
1294                if(j==0 && XGood(i) && GetDEDX(i,j)>max)max=GetDEDX(i,j);
1295                if(j==1 && YGood(i) && GetDEDX(i,j)>max)max=GetDEDX(i,j);
1296            }
1297        return max;
1298    
1299    };
1300    
1301    /**
1302     * \brief Give the minimum energy release
1303     */
1304    Float_t TrkTrack::GetDEDX_min(int ip, int iv){
1305        Float_t min=100000000;
1306        int pfrom = 0;
1307        int pto   = 6;
1308        int vfrom = 0;
1309        int vto   = 2;
1310        if(ip>=0&&ip<6){
1311            pfrom = ip;
1312            pto   = ip+1;
1313        }
1314        if(iv>=0&&iv<2){
1315            vfrom = iv;
1316            vto   = iv+1;
1317        }
1318        for(int i=pfrom; i<pto; i++)
1319            for(int j=vfrom; j<vto; j++){
1320                if(j==0 && XGood(i) && GetDEDX(i,j)<min)min=GetDEDX(i,j);
1321                if(j==1 && YGood(i) && GetDEDX(i,j)<min)min=GetDEDX(i,j);
1322            }
1323        return min;
1324    
1325    };
1326    
1327    /**
1328     * \brief Give the maximum spatial residual  
1329     */
1330    Float_t TrkTrack::GetResidual_max(int ip, int iv){
1331        Float_t max=0;
1332        int pfrom = 0;
1333        int pto   = 6;
1334        int vfrom = 0;
1335        int vto   = 2;
1336        if(ip>=0&&ip<6){
1337            pfrom = ip;
1338            pto   = ip+1;
1339        }
1340        if(iv>=0&&iv<2){
1341            vfrom = iv;
1342            vto   = iv+1;
1343        }
1344        for(int i=pfrom; i<pto; i++){
1345            for(int j=vfrom; j<vto; j++){
1346                if(j==0 && XGood(i) && fabs(xm[i]-xv[i])>fabs(max))max=xm[i]-xv[i];
1347                if(j==1 && YGood(i) && fabs(ym[i]-yv[i])>fabs(max))max=ym[i]-yv[i];
1348            }
1349        }
1350        return max;
1351    
1352      for (int i=0; i<5; i++)         dal[i]  = (double)al[i];  };
1353      for (int i=0; i<t->npoint; i++) dzin[i] = (double)t->z[i];  /**
1354     * \brief Give the anerage spatial residual
1355     */
1356    Float_t TrkTrack::GetResidual_av(int ip, int iv){
1357        //
1358    //Sum$((xm>-50)*(xm-xv)/resx)/sqrt(TrkTrack.GetNX()*TrkTrack.GetChi2X())<0.3
1359    
1360      dotrack2_(&(t->npoint),dzin,dxout,dyout,dthxout,dthyout,dtlout,dal,&ifail);      Float_t av  = 0.;
1361            int     nav = 0;
1362      for (int i=0; i<t->npoint; i++){      //
1363          t->x[i]   = (float)*dxout++;      int pfrom = 0;
1364          t->y[i]   = (float)*dyout++;      int pto   = 6;
1365          t->thx[i] = (float)*dthxout++;      int vfrom = 0;
1366          t->thy[i] = (float)*dthyout++;      int vto   = 2;
1367          t->tl[i]  = (float)*dtlout++;      if(ip>=0&&ip<6){
1368            pfrom = ip;
1369            pto   = ip+1;
1370        }
1371        if(iv>=0&&iv<2){
1372            vfrom = iv;
1373            vto   = iv+1;
1374        }
1375        for(int i=pfrom; i<pto; i++){
1376            for(int j=vfrom; j<vto; j++){
1377                nav++;
1378                if(j==0 && XGood(i)) av += (xm[i]-xv[i])/resx[i];
1379                if(j==1 && YGood(i)) av += (ym[i]-yv[i])/resy[i];
1380            }
1381      }      }
1382        if(nav==0)return -100.;
1383        return av/nav;
1384    
1385  //    delete [] dxout;  };
 //    delete [] dyout;  
 //    delete [] dzin;  
1386    
1387      return ifail;  
1388    /**
1389     * \brief Give the maximum multiplicity on the x view
1390     */
1391    Int_t TrkTrack::GetClusterX_Multiplicity_max(){
1392        int max=0;
1393        for(int ip=0; ip<6; ip++)
1394            if(GetClusterX_Multiplicity(ip)>max)max=GetClusterX_Multiplicity(ip);
1395        return max;
1396    };
1397    /**
1398     * \brief Give the minimum multiplicity on the x view
1399     */
1400    Int_t TrkTrack::GetClusterX_Multiplicity_min(){
1401        int min=50;
1402        for(int ip=0; ip<6; ip++)
1403            if(GetClusterX_Multiplicity(ip)<min)min=GetClusterX_Multiplicity(ip);
1404        return min;
1405    };
1406    /**
1407     * \brief Give the maximum multiplicity on the x view
1408     */
1409    Int_t TrkTrack::GetClusterY_Multiplicity_max(){
1410        int max=0;
1411        for(int ip=0; ip<6; ip++)
1412            if(GetClusterY_Multiplicity(ip)>max)max=GetClusterY_Multiplicity(ip);
1413        return max;
1414    };
1415    /**
1416     * \brief Give the minimum multiplicity on the x view
1417     */
1418    Int_t TrkTrack::GetClusterY_Multiplicity_min(){
1419        int min=50;
1420        for(int ip=0; ip<6; ip++)
1421            if(GetClusterY_Multiplicity(ip)<min)min=GetClusterY_Multiplicity(ip);
1422        return min;
1423    };
1424    
1425    /**
1426     * \brief Give the minimum seed on the x view
1427     */
1428    Float_t TrkTrack::GetClusterX_Seed_min(){
1429        Float_t min=100000;
1430        for(int ip=0; ip<6; ip++)
1431            if(XGood(ip) && GetClusterX_Seed(ip)<min)min=GetClusterX_Seed(ip);
1432        return min;
1433    };
1434    /**
1435     * \brief Give the minimum seed on the x view
1436     */
1437    Float_t TrkTrack::GetClusterY_Seed_min(){
1438        Float_t min=100000;
1439        for(int ip=0; ip<6; ip++)
1440            if(YGood(ip) && GetClusterY_Seed(ip)<min)min=GetClusterY_Seed(ip);
1441        return min;
1442  };  };
1443    
1444    
1445  //--------------------------------------  //--------------------------------------
1446  //  //
1447  //  //
1448  //--------------------------------------  //--------------------------------------
1449  //float TrkTrack::BdL(){  void TrkTrack::Clear(){
1450  //};  //    cout << "TrkTrack::Clear()"<<endl;
1451        seqno = -1;
1452        image = -1;
1453        chi2  = 0;
1454        nstep = 0;
1455        for(int it1=0;it1<5;it1++){
1456            al[it1] = 0;
1457            for(int it2=0;it2<5;it2++)coval[it1][it2] = 0;
1458        };
1459        for(int ip=0;ip<6;ip++){
1460            xgood[ip]  = 0;
1461            ygood[ip]  = 0;
1462            xm[ip]     = 0;
1463            ym[ip]     = 0;
1464            zm[ip]     = 0;
1465            resx[ip]   = 0;
1466            resy[ip]   = 0;
1467            tailx[ip]  = 0;
1468            taily[ip]  = 0;
1469            xv[ip]     = 0;
1470            yv[ip]     = 0;
1471            zv[ip]     = 0;
1472            axv[ip]    = 0;
1473            ayv[ip]    = 0;
1474            dedx_x[ip] = 0;
1475            dedx_y[ip] = 0;
1476    
1477        };
1478        int ngf = TrkParams::nGF;
1479        for(int i=0; i<ngf; i++){
1480            xGF[i] = 0.;
1481            yGF[i] = 0.;
1482        }
1483    //     if(clx)clx->Clear();
1484    //     if(cly)cly->Clear();
1485    //    clx.Clear();
1486    //    cly.Clear();
1487    };
1488  //--------------------------------------  //--------------------------------------
1489  //  //
1490  //  //
1491  //--------------------------------------  //--------------------------------------
1492  Float_t TrkTrack::GetRigidity(){  void TrkTrack::Delete(){
1493          Float_t rig=0;  //    cout << "TrkTrack::Delete()"<<endl;
1494          if(chi2>0)rig=1./al[4];      Clear();
1495          if(rig<0) rig=-rig;  //    if(clx)delete clx;
1496          return rig;  //    if(cly)delete cly;
 };  
 //  
 Float_t TrkTrack::GetDeflection(){  
         Float_t def=0;  
         if(chi2>0)def=al[4];  
         return def;  
 };  
 //  
 Float_t TrkTrack::GetDEDX(){  
         Float_t dedx=0;  
         for(Int_t i=0; i<6; i++)dedx+=dedx_x[i]*xgood[i]+dedx_y[i]*ygood[i];  
         dedx = dedx/(this->GetNX()+this->GetNY());  
         return dedx;  
1497  };  };
   
1498  //--------------------------------------  //--------------------------------------
1499  //  //
1500  //  //
1501  //--------------------------------------  //--------------------------------------
1502  void TrkTrack::Dump(){  
     cout << endl << "========== Track " ;  
     cout << endl << "al       : "; for(int i=0; i<5; i++)cout << al[i] << " ";  
     cout << endl << "chi^2    : "<< chi2;  
     cout << endl << "xgood    : "; for(int i=0; i<6; i++)cout << xgood[i] ;  
     cout << endl << "ygood    : "; for(int i=0; i<6; i++)cout << ygood[i] ;  
     cout << endl << "xm       : "; for(int i=0; i<6; i++)cout << xm[i] << " ";  
     cout << endl << "ym       : "; for(int i=0; i<6; i++)cout << ym[i] << " ";  
     cout << endl << "zm       : "; for(int i=0; i<6; i++)cout << zm[i] << " ";  
     cout << endl << "dedx_x   : "; for(int i=0; i<6; i++)cout << dedx_x[i] << " ";  
     cout << endl << "dedx_y   : "; for(int i=0; i<6; i++)cout << dedx_y[i] << " ";  
 }  
1503  //--------------------------------------  //--------------------------------------
1504  //  //
1505  //  //
1506  //--------------------------------------  //--------------------------------------
1507  TrkSinglet::TrkSinglet(){  TrkSinglet::TrkSinglet(){
1508      plane    = 0;  //    cout << "TrkSinglet::TrkSinglet() " << GetUniqueID()<<endl;
1509      coord[0] = 0;  //     plane    = 0;
1510      coord[1] = 0;  //     coord[0] = 0;
1511      sgnl     = 0;  //     coord[1] = 0;
1512    //     sgnl     = 0;
1513    //     multmax  = 0;
1514    //    cls      = 0;
1515        Clear();
1516  };  };
1517  //--------------------------------------  //--------------------------------------
1518  //  //
1519  //  //
1520  //--------------------------------------  //--------------------------------------
1521  TrkSinglet::TrkSinglet(const TrkSinglet& s){  TrkSinglet::TrkSinglet(const TrkSinglet& s){
1522    //    cout << "TrkSinglet::TrkSinglet(const TrkSinglet& s) " << GetUniqueID()<<endl;
1523      plane    = s.plane;      plane    = s.plane;
1524      coord[0] = s.coord[0];      coord[0] = s.coord[0];
1525      coord[1] = s.coord[1];      coord[1] = s.coord[1];
1526      sgnl     = s.sgnl;      sgnl     = s.sgnl;
1527        multmax  = s.multmax;
1528    //      cls      = 0;//<<<<pointer
1529    //    cls      = TRef(s.cls);
1530  };  };
1531  //--------------------------------------  //--------------------------------------
1532  //  //
# Line 222  TrkSinglet::TrkSinglet(const TrkSinglet& Line 1535  TrkSinglet::TrkSinglet(const TrkSinglet&
1535  void TrkSinglet::Dump(){  void TrkSinglet::Dump(){
1536      int i=0;      int i=0;
1537      cout << endl << "========== Singlet " ;      cout << endl << "========== Singlet " ;
1538      cout << endl << "plane    : " << plane;      cout << endl << "plane        : " << plane;
1539      cout << endl << "coord[2] : "; while( i<2 && cout << coord[i] << " ") i++;      cout << endl << "coord[2]     : "; while( i<2 && cout << coord[i] << " ") i++;
1540      cout << endl << "sgnl     : " << sgnl;      cout << endl << "sgnl         : " << sgnl;
1541        cout << endl << "max.strip    : ";
1542        cout << endl << "multiplicity : ";
1543    }
1544    //--------------------------------------
1545    //
1546    //
1547    //--------------------------------------
1548    void TrkSinglet::Clear(){
1549    //    cout << "TrkSinglet::Clear() " << GetUniqueID()<<endl;
1550    //    cls=0;
1551        plane=-1;
1552        coord[0]=-999;
1553        coord[1]=-999;
1554        sgnl=0;
1555        multmax  = 0;
1556        
1557  }  }
1558  //--------------------------------------  //--------------------------------------
1559  //  //
1560  //  //
1561  //--------------------------------------  //--------------------------------------
1562  TrkLevel2::TrkLevel2(){  TrkLevel2::TrkLevel2(){
1563      good2    = -1;    //    cout <<"TrkLevel2::TrkLevel2()"<<endl;
1564      for(Int_t i=0; i<12 ; i++){      for(Int_t i=0; i<12 ; i++){
1565          crc[i] = -1;          good[i] = -1;
1566            VKmask[i] = 0;
1567            VKflag[i] = 0;  
1568      };      };
1569      Track    = new TClonesArray("TrkTrack");      Track    = 0;
1570      SingletX = new TClonesArray("TrkSinglet");      SingletX = 0;
1571      SingletY = new TClonesArray("TrkSinglet");      SingletY = 0;
1572    
1573    }
1574    //--------------------------------------
1575    //
1576    //
1577    //--------------------------------------
1578    void TrkLevel2::Set(){
1579        if(!Track)Track    = new TClonesArray("TrkTrack");
1580        if(!SingletX)SingletX = new TClonesArray("TrkSinglet");
1581        if(!SingletY)SingletY = new TClonesArray("TrkSinglet");
1582  }  }
1583  //--------------------------------------  //--------------------------------------
1584  //  //
1585  //  //
1586  //--------------------------------------  //--------------------------------------
1587  void TrkLevel2::Dump(){  void TrkLevel2::Dump(){
1588      TClonesArray &t  = *Track;          
1589      TClonesArray &sx = *SingletX;          //
     TClonesArray &sy = *SingletY;  
   
1590      cout << endl << endl << "=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-";      cout << endl << endl << "=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-";
1591      cout << endl << "good2    : " << good2;      cout << endl << "good     : "; for(int i=0; i<12; i++) cout << hex <<" 0x"<< good[i]<<dec;
1592      cout << endl << "crc      : "; for(int i=0; i<12; i++) cout << crc[i];      cout << endl << "ntrk()   : " << ntrk() ;
1593      cout << endl << "ntrk()   : " << this->ntrk() ;      cout << endl << "nclsx()  : " << nclsx();
1594      cout << endl << "nclsx()  : " << this->nclsx();      cout << endl << "nclsy()  : " << nclsy();
1595      cout << endl << "nclsy()  : " << this->nclsy();      if(Track){
1596      for(int i=0; i<this->ntrk(); i++)     ((TrkTrack *)t[i])->Dump();          TClonesArray &t  = *Track;
1597      for(int i=0; i<this->nclsx(); i++) ((TrkSinglet *)sx[i])->Dump();          for(int i=0; i<ntrk(); i++)     ((TrkTrack *)t[i])->Dump();
1598      for(int i=0; i<this->nclsy(); i++) ((TrkSinglet *)sy[i])->Dump();      }      
1599    //     if(SingletX){
1600    //      TClonesArray &sx = *SingletX;
1601    //      for(int i=0; i<nclsx(); i++) ((TrkSinglet *)sx[i])->Dump();
1602    //     }
1603    //     if(SingletY){
1604    //      TClonesArray &sy = *SingletY;
1605    //      for(int i=0; i<nclsy(); i++) ((TrkSinglet *)sy[i])->Dump();
1606    //     }
1607        cout << endl;
1608    }
1609    /**
1610     * \brief Dump processing status
1611     */
1612    void TrkLevel2::StatusDump(int view){
1613        cout << "DSP n. "<<view+1<<" status: "<<hex<<good[view]<<endl;    
1614    };
1615    /**
1616     * \brief Check event status
1617     *
1618     * Check the event status, according to a flag-mask given as input.
1619     * Return true if the view passes the check.
1620     *
1621     * @param view View number (0-11)
1622     * @param flagmask Mask of flags to check (eg. flagmask=0x111 no missing packet,
1623     *  no crc error, no software alarm)
1624     *
1625     * @see TrkLevel2 class definition to know how the status flag is defined
1626     *
1627     */
1628    Bool_t TrkLevel2::StatusCheck(int view, int flagmask){
1629    
1630        if( view<0 || view >= 12)return false;
1631        return !(good[view]&flagmask);
1632    
1633    };
1634    
1635    
1636    //--------------------------------------
1637    //
1638    //
1639    //--------------------------------------
1640    /**
1641     * The method returns false if the viking-chip was masked  
1642     * either apriori ,on the basis of the mask read from the DB,
1643     * or run-by-run, on the basis of the calibration parameters)
1644     * @param iv Tracker view (0-11)
1645     * @param ivk Viking-chip number (0-23)
1646     */
1647    Bool_t TrkLevel2::GetVKMask(int iv, int ivk){
1648        Int_t whichbit = (Int_t)pow(2,ivk);
1649        return (whichbit&VKmask[iv])!=0;    
1650    }
1651    /**
1652     * The method returns false if the viking-chip was masked  
1653     * for this event due to common-noise computation failure.
1654     * @param iv Tracker view (0-11)
1655     * @param ivk Viking-chip number (0-23)
1656     */
1657    Bool_t TrkLevel2::GetVKFlag(int iv, int ivk){
1658        Int_t whichbit = (Int_t)pow(2,ivk);
1659        return (whichbit&VKflag[iv])!=0;    
1660  }  }
1661    /**
1662     * The method returns true if the viking-chip was masked, either
1663     * forced (see TrkLevel2::GetVKMask(int,int)) or
1664     * for this event only (TrkLevel2::GetVKFlag(int,int)).
1665     * @param iv Tracker view (0-11)
1666     * @param ivk Viking-chip number (0-23)
1667     */
1668    Bool_t TrkLevel2::IsMaskedVK(int iv, int ivk){
1669        return !(GetVKMask(iv,ivk)&&GetVKFlag(iv,ivk) );
1670    };
1671    
1672  //--------------------------------------  //--------------------------------------
1673  //  //
1674  //  //
1675  //--------------------------------------  //--------------------------------------
1676  /**  /**
1677   * Fills a TrkLevel2 object with values from a struct cTrkLevel2 (to get data from F77 common).   * Fills a TrkLevel2 object with values from a struct cTrkLevel2 (to get data from F77 common).
1678     * Ref to Level1 data (clusters) is also set. If l1==NULL no references are set.
1679     * (NB It make sense to set references only if events are stored in a tree that contains also the Level1 branch)
1680   */   */
1681  void TrkLevel2::FillCommonVar(cTrkLevel2 *l2){  void TrkLevel2::SetFromLevel2Struct(cTrkLevel2 *l2, TrkLevel1 *l1){
1682    
1683    //    cout << "void TrkLevel2::SetFromLevel2Struct(cTrkLevel2 *l2, TrkLevel1 *l1)"<<endl;
1684        Clear();
1685    
1686  //  temporary objects:  //  temporary objects:
1687      TrkSinglet* t_singlet = new TrkSinglet();      TrkSinglet* t_singlet = new TrkSinglet();
1688      TrkTrack*   t_track   = new TrkTrack();      TrkTrack*   t_track   = new TrkTrack();
1689    
1690    //  -----------------
1691  //  general variables  //  general variables
1692      good2 = l2->good2;  //  -----------------
1693      for(Int_t i=0; i<12 ; i++){      for(Int_t i=0; i<12 ; i++){
1694          crc[i] = l2->crc[i];          good[i] = l2->good[i];
1695            VKmask[i]=0;
1696            VKflag[i]=0;
1697            for(Int_t ii=0; ii<24 ; ii++){
1698                Int_t setbit = (Int_t)pow(2,ii);
1699                if( l2->vkflag[ii][i]!=-1 )VKmask[i]=VKmask[i]|setbit;
1700                if( l2->vkflag[ii][i]!=0  )VKflag[i]=VKflag[i]|setbit;
1701            };
1702      };      };
1703    //  --------------
1704  //  *** TRACKS ***  //  *** TRACKS ***
1705    //  --------------
1706        if(!Track) Track = new TClonesArray("TrkTrack");
1707      TClonesArray &t = *Track;      TClonesArray &t = *Track;
1708    
1709      for(int i=0; i<l2->ntrk; i++){      for(int i=0; i<l2->ntrk; i++){
1710            t_track->seqno = i;// NBNBNBNB deve sempre essere = i
1711          t_track->image = l2->image[i]-1;          t_track->image = l2->image[i]-1;
1712          t_track->chi2  = l2->chi2_nt[i];          t_track->chi2  = l2->chi2_nt[i];
1713            t_track->nstep = l2->nstep_nt[i];
1714          for(int it1=0;it1<5;it1++){          for(int it1=0;it1<5;it1++){
1715              t_track->al[it1] = l2->al_nt[i][it1];              t_track->al[it1] = l2->al_nt[i][it1];
1716              for(int it2=0;it2<5;it2++)              for(int it2=0;it2<5;it2++)
1717                  t_track->coval[it1][it2] = l2->coval[i][it2][it1];                  t_track->coval[it1][it2] = l2->coval[i][it2][it1];
1718          };          };
1719          for(int ip=0;ip<6;ip++){          for(int ip=0;ip<6;ip++){
1720              t_track->xgood[ip]  = l2->xgood_nt[i][ip];              // ---------------------------------
1721              t_track->ygood[ip]  = l2->ygood_nt[i][ip];              // new implementation of xgood/ygood
1722                // ---------------------------------
1723                t_track->xgood[ip]  = l2->cltrx[i][ip]; //cluster ID
1724                t_track->ygood[ip]  = l2->cltry[i][ip]; //cluster ID
1725                t_track->xgood[ip] += 10000000*l2->ls[i][ip]; // ladder+sensor
1726                t_track->ygood[ip] += 10000000*l2->ls[i][ip]; // ladder+sensor
1727                if(l2->xbad[i][ip]>0)t_track->xgood[ip]=-t_track->xgood[ip];
1728                if(l2->ybad[i][ip]>0)t_track->ygood[ip]=-t_track->ygood[ip];
1729    //          if(l2->xbad[i][ip]>0 || l2->ybad[i][ip]>0){
1730    //          if(l2->dedx_x[i][ip]<0 || l2->dedx_y[i][ip]<0){
1731    //              cout << ip << " - "<< l2->cltrx[i][ip] << " "<<l2->cltry[i][ip]<<" "<<l2->ls[i][ip]<<endl;
1732    //              cout << ip << " - "<<t_track->xgood[ip]<<" "<<t_track->ygood[ip]<<endl;
1733    //              cout << ip << " - "<<t_track->GetClusterX_ID(ip)<<" "<<t_track->GetClusterY_ID(ip)<<" "<<t_track->GetLadder(ip)<<" "<<t_track->GetSensor(ip)<<endl;
1734    //              cout << ip << " - "<<t_track->BadClusterX(ip)<<" "<<t_track->BadClusterY(ip)<<endl;
1735    //              cout << ip << " - "<<t_track->SaturatedClusterX(ip)<<" "<<t_track->SaturatedClusterY(ip)<<endl;
1736    //          }
1737              t_track->xm[ip]     = l2->xm_nt[i][ip];              t_track->xm[ip]     = l2->xm_nt[i][ip];
1738              t_track->ym[ip]     = l2->ym_nt[i][ip];              t_track->ym[ip]     = l2->ym_nt[i][ip];
1739              t_track->zm[ip]     = l2->zm_nt[i][ip];              t_track->zm[ip]     = l2->zm_nt[i][ip];
1740              t_track->resx[ip]   = l2->resx_nt[i][ip];              t_track->resx[ip]   = l2->resx_nt[i][ip];
1741              t_track->resy[ip]   = l2->resy_nt[i][ip];              t_track->resy[ip]   = l2->resy_nt[i][ip];
1742                t_track->tailx[ip]  = l2->tailx[i][ip];
1743                t_track->taily[ip]  = l2->taily[i][ip];
1744              t_track->xv[ip]     = l2->xv_nt[i][ip];              t_track->xv[ip]     = l2->xv_nt[i][ip];
1745              t_track->yv[ip]     = l2->yv_nt[i][ip];              t_track->yv[ip]     = l2->yv_nt[i][ip];
1746              t_track->zv[ip]     = l2->zv_nt[i][ip];              t_track->zv[ip]     = l2->zv_nt[i][ip];
# Line 299  void TrkLevel2::FillCommonVar(cTrkLevel2 Line 1748  void TrkLevel2::FillCommonVar(cTrkLevel2
1748              t_track->ayv[ip]    = l2->ayv_nt[i][ip];              t_track->ayv[ip]    = l2->ayv_nt[i][ip];
1749              t_track->dedx_x[ip] = l2->dedx_x[i][ip];              t_track->dedx_x[ip] = l2->dedx_x[i][ip];
1750              t_track->dedx_y[ip] = l2->dedx_y[i][ip];              t_track->dedx_y[ip] = l2->dedx_y[i][ip];
1751                t_track->multmaxx[ip] = l2->multmaxx[i][ip];
1752                t_track->multmaxy[ip] = l2->multmaxy[i][ip];
1753                t_track->seedx[ip]  = l2->seedx[i][ip];  
1754                t_track->seedy[ip]  = l2->seedy[i][ip];
1755                t_track->xpu[ip]    = l2->xpu[i][ip];  
1756                t_track->ypu[ip]    = l2->ypu[i][ip];  
1757                //-----------------------------------------------------
1758                //-----------------------------------------------------
1759                //-----------------------------------------------------
1760                //-----------------------------------------------------
1761          };          };
1762            // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1763            // evaluated coordinates (to define GF)
1764            // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1765            int    ngf = TrkParams::nGF;
1766            float *zgf = TrkParams::zGF;
1767            Trajectory tgf = Trajectory(ngf,zgf);
1768            tgf.DoTrack(t_track->al);//<<<< integrate the trajectory
1769            for(int ip=0; ip<ngf; ip++){
1770                t_track->xGF[ip] = tgf.x[ip];
1771                t_track->yGF[ip] = tgf.y[ip];
1772            }
1773            
1774    //      if(t_track->IsSaturated())t_track->Dump();
1775          new(t[i]) TrkTrack(*t_track);          new(t[i]) TrkTrack(*t_track);
1776          t_track->Clear();          t_track->Clear();
1777      };      };//end loop over track
1778    
1779    //  ----------------
1780  //  *** SINGLETS ***  //  *** SINGLETS ***
1781    //  ----------------
1782        if(!SingletX)SingletX = new TClonesArray("TrkSinglet");
1783      TClonesArray &sx = *SingletX;      TClonesArray &sx = *SingletX;
1784      for(int i=0; i<l2->nclsx; i++){      for(int i=0; i<l2->nclsx; i++){
1785          t_singlet->plane    = l2->planex[i];          t_singlet->plane    = l2->planex[i];
1786          t_singlet->coord[0] = l2->xs[i][0];          t_singlet->coord[0] = l2->xs[i][0];
1787          t_singlet->coord[1] = l2->xs[i][1];          t_singlet->coord[1] = l2->xs[i][1];
1788          t_singlet->sgnl     = l2->signlxs[i];          t_singlet->sgnl     = l2->signlxs[i];
1789            t_singlet->multmax = l2->multmaxsx[i];
1790            if(l2->sxbad[i]>0) t_singlet->multmax = -1*t_singlet->multmax;
1791            //-----------------------------------------------------
1792    //      if(l1) t_singlet->cls      = l1->GetCluster(l2->clsx[i]-1);
1793            //-----------------------------------------------------
1794          new(sx[i]) TrkSinglet(*t_singlet);          new(sx[i]) TrkSinglet(*t_singlet);
1795          t_singlet->Clear();          t_singlet->Clear();
1796      }      }
1797        if(!SingletY)SingletY = new TClonesArray("TrkSinglet");
1798      TClonesArray &sy = *SingletY;      TClonesArray &sy = *SingletY;
1799      for(int i=0; i<l2->nclsy; i++){      for(int i=0; i<l2->nclsy; i++){
1800          t_singlet->plane    = l2->planey[i];          t_singlet->plane    = l2->planey[i];
1801          t_singlet->coord[0] = l2->ys[i][0];          t_singlet->coord[0] = l2->ys[i][0];
1802          t_singlet->coord[1] = l2->ys[i][1];          t_singlet->coord[1] = l2->ys[i][1];
1803          t_singlet->sgnl     = l2->signlys[i];          t_singlet->sgnl     = l2->signlys[i];
1804            t_singlet->multmax  = l2->multmaxsy[i];
1805            if(l2->sybad[i]>0) t_singlet->multmax = -1*t_singlet->multmax;
1806            //-----------------------------------------------------
1807    //      if(l1) t_singlet->cls      = l1->GetCluster(l2->clsy[i]-1);
1808            //-----------------------------------------------------
1809          new(sy[i]) TrkSinglet(*t_singlet);          new(sy[i]) TrkSinglet(*t_singlet);
1810          t_singlet->Clear();          t_singlet->Clear();
1811          };      };
1812    
1813    
1814            
1815        delete t_track;
1816        delete t_singlet;
1817    }
1818    /**
1819     * Fills a struct cTrkLevel2 with values from a TrkLevel2 object (to put data into a F77 common).
1820     */
1821    
1822    void TrkLevel2::GetLevel2Struct(cTrkLevel2 *l2) const {
1823      
1824    //  general variables
1825    //    l2->good2 = good2 ;
1826        for(Int_t i=0; i<12 ; i++){
1827    //      l2->crc[i] = crc[i];
1828                    l2->good[i] = good[i];
1829        };
1830    //  *** TRACKS ***
1831    
1832        if(Track){
1833            l2->ntrk              =  Track->GetEntries();    
1834            for(Int_t i=0;i<l2->ntrk;i++){
1835                l2->image[i] = 1 + ((TrkTrack *)Track->At(i))->image;
1836                l2->chi2_nt[i] =  ((TrkTrack *)Track->At(i))->chi2;
1837                l2->nstep_nt[i] =  ((TrkTrack *)Track->At(i))->nstep;
1838                for(int it1=0;it1<5;it1++){
1839                    l2->al_nt[i][it1] = ((TrkTrack *)Track->At(i))->al[it1];
1840                    for(int it2=0;it2<5;it2++)
1841                        l2->coval[i][it2][it1] = ((TrkTrack *)Track->At(i))->coval[it1][it2];
1842                };
1843                for(int ip=0;ip<6;ip++){
1844                    l2->xgood_nt[i][ip] = ((TrkTrack *)Track->At(i))->XGood(ip);
1845                    l2->ygood_nt[i][ip] = ((TrkTrack *)Track->At(i))->YGood(ip);
1846                    l2->xm_nt[i][ip]    = ((TrkTrack *)Track->At(i))->xm[ip];
1847                    l2->ym_nt[i][ip]    = ((TrkTrack *)Track->At(i))->ym[ip];
1848                    l2->zm_nt[i][ip]    = ((TrkTrack *)Track->At(i))->zm[ip];
1849                    l2->resx_nt[i][ip]  = ((TrkTrack *)Track->At(i))->resx[ip];
1850                    l2->resy_nt[i][ip]  = ((TrkTrack *)Track->At(i))->resy[ip];
1851                    l2->tailx[i][ip]  = ((TrkTrack *)Track->At(i))->tailx[ip];
1852                    l2->taily[i][ip]  = ((TrkTrack *)Track->At(i))->taily[ip];
1853                    l2->xv_nt[i][ip]    = ((TrkTrack *)Track->At(i))->xv[ip];
1854                    l2->yv_nt[i][ip]    = ((TrkTrack *)Track->At(i))->yv[ip];
1855                    l2->zv_nt[i][ip]    = ((TrkTrack *)Track->At(i))->zv[ip];
1856                    l2->axv_nt[i][ip]   = ((TrkTrack *)Track->At(i))->axv[ip];
1857                    l2->ayv_nt[i][ip]   = ((TrkTrack *)Track->At(i))->ayv[ip];
1858                    l2->dedx_x[i][ip]   = ((TrkTrack *)Track->At(i))->dedx_x[ip];
1859                    l2->dedx_y[i][ip]   = ((TrkTrack *)Track->At(i))->dedx_y[ip];
1860                };
1861            }
1862        }
1863    //  *** SINGLETS ***    
1864        if(SingletX){
1865            l2->nclsx              = SingletX->GetEntries();
1866            for(Int_t i=0;i<l2->nclsx;i++){
1867                l2->planex[i]  = ((TrkSinglet *)SingletX->At(i))->plane;
1868                l2->xs[i][0]   = ((TrkSinglet *)SingletX->At(i))->coord[0];
1869                l2->xs[i][1]   = ((TrkSinglet *)SingletX->At(i))->coord[1];
1870                l2->signlxs[i] = ((TrkSinglet *)SingletX->At(i))->sgnl;
1871            }
1872        }
1873    
1874        if(SingletY){
1875            l2->nclsy              = SingletY->GetEntries();
1876            for(Int_t i=0;i<l2->nclsy;i++){
1877                l2->planey[i]  = ((TrkSinglet *)SingletY->At(i))->plane;
1878                l2->ys[i][0]   = ((TrkSinglet *)SingletY->At(i))->coord[0];
1879                l2->ys[i][1]   = ((TrkSinglet *)SingletY->At(i))->coord[1];
1880                l2->signlys[i] = ((TrkSinglet *)SingletY->At(i))->sgnl;
1881            }
1882        }
1883  }  }
1884  //--------------------------------------  //--------------------------------------
1885  //  //
1886  //  //
1887  //--------------------------------------  //--------------------------------------
1888  void TrkLevel2::Clear(){  void TrkLevel2::Clear(){
     good2    = -1;  
1889      for(Int_t i=0; i<12 ; i++){      for(Int_t i=0; i<12 ; i++){
1890          crc[i] = -1;          good[i] = -1;
1891            VKflag[i] = 0;
1892            VKmask[i] = 0;
1893      };      };
1894      Track->RemoveAll();  //    if(Track)Track->Clear("C");
1895      SingletX->RemoveAll();  //    if(SingletX)SingletX->Clear("C");
1896      SingletY->RemoveAll();  //    if(SingletY)SingletY->Clear("C");
1897        if(Track)Track->Delete();
1898        if(SingletX)SingletX->Delete();
1899        if(SingletY)SingletY->Delete();
1900    }
1901    // //--------------------------------------
1902    // //
1903    // //
1904    // //--------------------------------------
1905    void TrkLevel2::Delete(){
1906            
1907    //    cout << "void TrkLevel2::Delete()"<<endl;
1908        Clear();
1909        if(Track)delete Track;
1910        if(SingletX)delete SingletX;
1911        if(SingletY)delete SingletY;
1912    
1913  }  }
1914  //--------------------------------------  //--------------------------------------
1915  //  //
# Line 344  void TrkLevel2::Clear(){ Line 1919  void TrkLevel2::Clear(){
1919   * Sort physical tracks and stores them in a TObjectArray, ordering by increasing chi**2 value (in case of track image, it selects the one with lower chi**2). The total number of physical tracks is given by GetNTracks() and the it-th physical track can be retrieved by means of the method GetTrack(int it).   * Sort physical tracks and stores them in a TObjectArray, ordering by increasing chi**2 value (in case of track image, it selects the one with lower chi**2). The total number of physical tracks is given by GetNTracks() and the it-th physical track can be retrieved by means of the method GetTrack(int it).
1920   * This method is overridden by PamLevel2::GetTracks(), where calorimeter and TOF information is used.   * This method is overridden by PamLevel2::GetTracks(), where calorimeter and TOF information is used.
1921   */   */
1922  TClonesArray *TrkLevel2::GetTracks(){  TRefArray *TrkLevel2::GetTracks_NFitSorted(){
1923    
1924      TClonesArray *sorted = new TClonesArray("TrkTrack");      if(!Track)return 0;
     TClonesArray &t = *Track;  
     TClonesArray &ts = *sorted;  
     int N=this->ntrk();  
     vector<int> m(N); for(int i=0; i<N; i++)m[i]=1;  
1925    
1926        //    TRefArray *sorted = new TRefArray();
1927        TRefArray *sorted = NULL;
1928            
1929        TClonesArray &t  = *Track;
1930    //    TClonesArray &ts = *PhysicalTrack;
1931        int N = ntrk();
1932        vector<int> m(N); for(int i=0; i<N; i++)m[i]=1;
1933    //      int m[50]; for(int i=0; i<N; i++)m[i]=1;
1934            
1935      int indo=0;      int indo=0;
1936      int indi=0;      int indi=0;
1937      while(N != 0){      while(N > 0){
1938          float chi2ref=1000000;  //    while(N != 0){
1939          for(int i=0; i<this->ntrk(); i++){          int nfit =0;
1940              if(((TrkTrack *)t[i])->chi2 < chi2ref && m[i]==1){          float chi2ref = numeric_limits<float>::max();
1941                  chi2ref = ((TrkTrack *)t[i])->chi2;                  
1942                  indi = i;          // first loop to search maximum num. of fit points
1943            for(int i=0; i < ntrk(); i++){
1944                if( ((TrkTrack *)t[i])->GetNtot() >= nfit && m[i]==1){
1945                    nfit =    ((TrkTrack *)t[i])->GetNtot();
1946              }              }
1947          }          }
1948          if( ((TrkTrack *)t[indi])->image != -1 ){          //second loop to search minimum chi2 among selected
1949            for(int i=0; i<ntrk(); i++){
1950                Float_t chi2 = ((TrkTrack *)t[i])->chi2;
1951                if(chi2 < 0) chi2 = -chi2*1000;
1952                if(    chi2 < chi2ref
1953                       && ((TrkTrack *)t[i])->GetNtot() == nfit
1954                       && m[i]==1){
1955                    chi2ref = ((TrkTrack *)t[i])->chi2;
1956                    indi = i;
1957                };
1958            };
1959            if( ((TrkTrack *)t[indi])->HasImage() ){
1960              m[((TrkTrack *)t[indi])->image] = 0;              m[((TrkTrack *)t[indi])->image] = 0;
1961              N--;              N--;
1962          }          
1963          new(ts[indo]) TrkTrack(*(TrkTrack*)t[indi]);  //          cout << "i** "<< ((TrkTrack *)t[indi])->image << " " << nfiti <<" "<<chi2i<<endl;
1964            };
1965            if(!sorted)sorted = new TRefArray( TProcessID::GetProcessWithUID(t[indi]));
1966            sorted->Add( (TrkTrack*)t[indi] );      
1967                    
1968          m[indi] = 0;          m[indi] = 0;
1969    //      cout << "SORTED "<< indo << " "<< indi << " "<< N << " "<<((TrkTrack *)t[indi])->image<<" "<<chi2ref<<endl;
1970          N--;              N--;    
1971          indo++;          indo++;
1972      }      }
1973        m.clear();
1974    //    cout << "GetTracks_NFitSorted(it): Done"<< endl;
1975    
1976      return sorted;      return sorted;
1977    //    return PhysicalTrack;
1978  }  }
1979  //--------------------------------------  //--------------------------------------
1980  //  //
# Line 385  TClonesArray *TrkLevel2::GetTracks(){ Line 1988  TClonesArray *TrkLevel2::GetTracks(){
1988  TrkTrack *TrkLevel2::GetStoredTrack(int is){  TrkTrack *TrkLevel2::GetStoredTrack(int is){
1989    
1990      if(is >= this->ntrk()){      if(is >= this->ntrk()){
1991          cout << "** TrkLevel2 ** Track "<< is << "doen not exits! " << endl;          cout << "TrkTrack *TrkLevel2::GetStoredTrack(int) >> Track "<< is << "doen not exits! " << endl;
1992          cout << "                Stored tracks ntrk() = "<< this->ntrk() << endl;          cout << "Stored tracks ntrk() = "<< this->ntrk() << endl;
1993          return 0;          return 0;
1994      }      }
1995        if(!Track){
1996            cout << "TrkTrack *TrkLevel2::GetStoredTrack(int is) >> (TClonesArray*) Track ==0 "<<endl;
1997        };
1998      TClonesArray &t = *(Track);      TClonesArray &t = *(Track);
1999      TrkTrack *track = (TrkTrack*)t[is];      TrkTrack *track = (TrkTrack*)t[is];
2000      return track;      return track;
# Line 398  TrkTrack *TrkLevel2::GetStoredTrack(int Line 2004  TrkTrack *TrkLevel2::GetStoredTrack(int
2004  //  //
2005  //--------------------------------------  //--------------------------------------
2006  /**  /**
2007     * Retrieves the is-th stored X singlet.
2008     * @param it Singlet number, ranging from 0 to nclsx().
2009     */
2010    TrkSinglet *TrkLevel2::GetSingletX(int is){
2011    
2012            if(is >= this->nclsx()){
2013                    cout << "TrkSinglet *TrkLevel2::GetSingletX(int) >> Singlet "<< is << "doen not exits! " << endl;
2014                    cout << "Stored x-singlets nclsx() = "<< this->nclsx() << endl;
2015                    return 0;
2016            }
2017            if(!SingletX)return 0;
2018            TClonesArray &t = *(SingletX);
2019            TrkSinglet *singlet = (TrkSinglet*)t[is];
2020            return singlet;
2021    }
2022    //--------------------------------------
2023    //
2024    //
2025    //--------------------------------------
2026    /**
2027     * Retrieves the is-th stored Y singlet.
2028     * @param it Singlet number, ranging from 0 to nclsx().
2029     */
2030    TrkSinglet *TrkLevel2::GetSingletY(int is){
2031    
2032            if(is >= this->nclsy()){
2033                    cout << "TrkSinglet *TrkLevel2::GetSingletY(int) >> Singlet "<< is << "doen not exits! " << endl;
2034                    cout << "Stored y-singlets nclsx() = "<< this->nclsx() << endl;
2035                    return 0;
2036            }
2037            if(!SingletY)return 0;
2038            TClonesArray &t = *(SingletY);
2039            TrkSinglet *singlet = (TrkSinglet*)t[is];
2040            return singlet;
2041    }
2042    //--------------------------------------
2043    //
2044    //
2045    //--------------------------------------
2046    /**
2047   * Retrieves the it-th "physical" track, sorted by the method GetNTracks().   * Retrieves the it-th "physical" track, sorted by the method GetNTracks().
2048   * @param it Track number, ranging from 0 to GetNTracks().   * @param it Track number, ranging from 0 to GetNTracks().
2049   */   */
2050    
2051  TrkTrack *TrkLevel2::GetTrack(int it){  TrkTrack *TrkLevel2::GetTrack(int it){
2052            
2053      if(it >= this->GetNTracks()){          if(it >= this->GetNTracks()){
2054          cout << "** TrkLevel2 ** Track "<< it << "does not exits! " << endl;                  cout << "TrkTrack *TrkLevel2::GetTrack(int) >> Track "<< it << "does not exits! " << endl;
2055          cout << "                Physical tracks GetNTracks() = "<< this->ntrk() << endl;                  cout << "Physical tracks GetNTracks() = "<< this->ntrk() << endl;
2056          return 0;                  return 0;
2057      }          }
2058      TrkTrack *track = (TrkTrack*)(*(this->GetTracks()))[it];          
2059      return track;          TRefArray *sorted = GetTracks();  //TEMPORANEO  
2060            if(!sorted)return 0;
2061            TrkTrack *track = (TrkTrack*)sorted->At(it);
2062            sorted->Clear();
2063            delete sorted;
2064            return track;
2065  }  }
2066    /**
2067     * Give the number of "physical" tracks, sorted by the method GetTracks().
2068     */
2069    Int_t TrkLevel2::GetNTracks(){
2070                    
2071            Float_t ntot=0;
2072            if(!Track)return 0;
2073            TClonesArray &t = *Track;
2074            for(int i=0; i<ntrk(); i++) {    
2075                    if( ((TrkTrack *)t[i])->GetImageSeqNo() == -1 ) ntot+=1.;
2076                    else ntot+=0.5;
2077            }
2078            return (Int_t)ntot;
2079    
2080    };
2081  //--------------------------------------  //--------------------------------------
2082  //  //
2083  //  //
# Line 422  TrkTrack *TrkLevel2::GetTrack(int it){ Line 2089  TrkTrack *TrkLevel2::GetTrack(int it){
2089  TrkTrack *TrkLevel2::GetTrackImage(int it){  TrkTrack *TrkLevel2::GetTrackImage(int it){
2090    
2091      if(it >= this->GetNTracks()){      if(it >= this->GetNTracks()){
2092          cout << "** TrkLevel2 ** Track "<< it << "does not exits! " << endl;          cout << "TrkTrack *TrkLevel2::GetTrackImage(int) >> Track "<< it << "does not exits! " << endl;
2093          cout << "                Physical tracks GetNTracks() = "<< this->ntrk() << endl;          cout << "Physical tracks GetNTracks() = "<< this->ntrk() << endl;
2094          return 0;          return 0;
2095      }      }
2096      TrkTrack *track = (TrkTrack*)(*(this->GetTracks()))[it];          
2097        TRefArray* sorted = GetTracks(); //TEMPORANEO
2098        if(!sorted)return 0;
2099        TrkTrack *track = (TrkTrack*)sorted->At(it);
2100            
2101      if(!track->HasImage()){      if(!track->HasImage()){
2102          cout << "** TrkLevel2 ** Track "<< it << "does not have image! " << endl;          cout << "TrkTrack *TrkLevel2::GetTrackImage(int) >> Track "<< it << "does not have image! " << endl;
2103          return 0;          return 0;
2104      }      }
2105        if(!Track)return 0;
2106      TrkTrack *image = (TrkTrack*)(*Track)[track->image];      TrkTrack *image = (TrkTrack*)(*Track)[track->image];
2107    
2108        sorted->Delete();
2109        delete sorted;
2110    
2111      return image;      return image;
2112            
2113  }  }
# Line 443  TrkTrack *TrkLevel2::GetTrackImage(int i Line 2119  TrkTrack *TrkLevel2::GetTrackImage(int i
2119   * Loads the magnetic field.   * Loads the magnetic field.
2120   * @param s Path of the magnetic-field files.   * @param s Path of the magnetic-field files.
2121   */   */
2122  void TrkLevel2::LoadField(TString s){  void TrkLevel2::LoadField(TString path){
2123      readb_(s.Data());  //
2124    //     strcpy(path_.path,path.Data());
2125    //     path_.pathlen = path.Length();
2126    //     path_.error   = 0;
2127    //     readb_();
2128    
2129    //     TrkParams::SetTrackingMode();
2130    //     TrkParams::SetPrecisionFactor();
2131    //     TrkParams::SetStepMin();
2132        TrkParams::SetMiniDefault();
2133    
2134        TrkParams::Set(path,1);
2135        TrkParams::Load(1);
2136        if( !TrkParams::IsLoaded(1) ){
2137            cout << "void TrkLevel2::LoadField(TString path) --- ERROR --- m.field not loaded"<<endl;
2138        }
2139    
2140    //
2141    };
2142    // /**
2143    //  * Get BY (kGauss)
2144    //  * @param v (x,y,z) coordinates in cm
2145    //  */
2146    // float TrkLevel2::GetBX(float* v){
2147    //     float b[3];
2148    //     gufld_(v,b);
2149    //     return b[0]/10.;
2150    // }
2151    // /**
2152    //  * Get BY (kGauss)
2153    //  * @param v (x,y,z) coordinates in cm
2154    //  */
2155    // float TrkLevel2::GetBY(float* v){
2156    //     float b[3];
2157    //     gufld_(v,b);
2158    //     return b[1]/10.;
2159    // }
2160    // /**
2161    //  * Get BY (kGauss)
2162    //  * @param v (x,y,z) coordinates in cm
2163    //  */
2164    // float TrkLevel2::GetBZ(float* v){
2165    //     float b[3];
2166    //     gufld_(v,b);
2167    //     return b[2]/10.;
2168    // }
2169    //--------------------------------------
2170    //
2171    //
2172    //--------------------------------------
2173    /**
2174     * Get tracker-plane (mechanical) z-coordinate
2175     * @param plane_id plane index (1=TOP,2,3,4,5,6=BOTTOM)
2176     */
2177    Float_t TrkLevel2::GetZTrk(Int_t plane_id){
2178            switch(plane_id){
2179                    case 1: return ZTRK1;
2180                    case 2: return ZTRK2;
2181                    case 3: return ZTRK3;
2182                    case 4: return ZTRK4;
2183                    case 5: return ZTRK5;
2184                    case 6: return ZTRK6;
2185                    default: return 0.;
2186            };
2187  };  };
2188  //--------------------------------------  //--------------------------------------
2189  //  //
# Line 455  void TrkLevel2::LoadField(TString s){ Line 2194  void TrkLevel2::LoadField(TString s){
2194   * (By default is created with z-coordinates inside the tracking volume)   * (By default is created with z-coordinates inside the tracking volume)
2195    */    */
2196  Trajectory::Trajectory(){  Trajectory::Trajectory(){
2197      npoint = 10;      npoint = 6;
2198      x = new float[npoint];      x = new float[npoint];
2199      y = new float[npoint];      y = new float[npoint];
2200      z = new float[npoint];      z = new float[npoint];
2201      thx = new float[npoint];      thx = new float[npoint];
2202      thy = new float[npoint];      thy = new float[npoint];
2203      tl = new float[npoint];      tl = new float[npoint];
2204      float dz = ((ZTRKUP)-(ZTRKDW))/(npoint-1);      float dz = ((ZTRK1)-(ZTRK6))/(npoint-1);
2205      for(int i=0; i<npoint; i++){      for(int i=0; i<npoint; i++){
2206          x[i] = 0;          x[i] = 0;
2207          y[i] = 0;          y[i] = 0;
2208          z[i] = (ZTRKUP) - i*dz;          z[i] = (ZTRK1) - i*dz;
2209          thx[i] = 0;          thx[i] = 0;
2210          thy[i] = 0;          thy[i] = 0;
2211          tl[i] = 0;          tl[i] = 0;
# Line 493  Trajectory::Trajectory(int n){ Line 2232  Trajectory::Trajectory(int n){
2232      thx = new float[npoint];      thx = new float[npoint];
2233      thy = new float[npoint];      thy = new float[npoint];
2234      tl = new float[npoint];      tl = new float[npoint];
2235      float dz = ((ZTRKUP)-(ZTRKDW))/(npoint-1);      float dz = ((ZTRK1)-(ZTRK6))/(npoint-1);
2236      for(int i=0; i<npoint; i++){      for(int i=0; i<npoint; i++){
2237          x[i] = 0;          x[i] = 0;
2238          y[i] = 0;          y[i] = 0;
2239          z[i] = (ZTRKUP) - i*dz;          z[i] = (ZTRK1) - i*dz;
2240          thx[i] = 0;          thx[i] = 0;
2241          thy[i] = 0;          thy[i] = 0;
2242          tl[i] = 0;          tl[i] = 0;
# Line 522  Trajectory::Trajectory(int n, float* zin Line 2261  Trajectory::Trajectory(int n, float* zin
2261      thy = new float[npoint];      thy = new float[npoint];
2262      tl = new float[npoint];      tl = new float[npoint];
2263      int i=0;      int i=0;
2264      do{      do{      
2265          x[i] = 0;          x[i] = 0.;
2266          y[i] = 0;          y[i] = 0.;
2267          z[i] = zin[i];          z[i] = zin[i];
2268          thx[i] = 0;          thx[i] = 0.;
2269          thy[i] = 0;          thy[i] = 0.;
2270          tl[i] = 0;          tl[i] = 0.;
2271          i++;                      i++;            
2272      }while(zin[i-1] > zin[i] && i < npoint);      }while(zin[i-1] > zin[i] && i < npoint);
2273      npoint=i;      npoint=i;
2274      if(npoint != n)cout << "NB! Trajectory created with "<<npoint<<" points"<<endl;      if(npoint != n)cout << "NB! Trajectory created with "<<npoint<<" points instean of "<<n<<endl;
2275        //    Dump();
2276    }
2277    void Trajectory::Delete(){
2278        
2279        if(x) delete [] x;
2280        if(y) delete [] y;
2281        if(z) delete [] z;
2282        if(thx) delete [] thx;
2283        if(thy) delete [] thy;
2284        if(tl) delete [] tl;
2285    
2286  }  }
2287  //--------------------------------------  //--------------------------------------
2288  //  //
# Line 571  float Trajectory::GetLength(int ifirst, Line 2321  float Trajectory::GetLength(int ifirst,
2321      return l;      return l;
2322    
2323  }  }
2324    
2325    /**
2326     * Evaluates the trajectory in the apparatus associated to the track.
2327     * It integrates the equations of motion in the magnetic field.
2328     * @param al Track state-vector (X0,Y0,sin(theta),phi,deflection).
2329     * @param zini z-coordinate of the reference plane (Z0).
2330     * @return error flag.
2331     *
2332     * This method is needed when you want to integrate the particle trajectory
2333     * starting from a track state-vector relative to an arbitrary reference plane.
2334     * The default reference plane, used by the tracker routines, is at zini=23.5.
2335     * If you give as input the track state-vector from a TrkTrack object,
2336     * you can use Trajectory::DoTrack(float* al) instead.
2337     */
2338    int Trajectory::DoTrack(float* al, float zini){
2339    
2340    //      double *dxout   = new double[npoint];
2341    //      double *dyout   = new double[npoint];
2342    //      double *dthxout = new double[npoint];
2343    //      double *dthyout = new double[npoint];
2344    //      double *dtlout  = new double[npoint];
2345    //      double *dzin    = new double[npoint];
2346        
2347        double *dxout;
2348        double *dyout;
2349        double *dthxout;
2350        double *dthyout;
2351        double *dtlout;
2352        double *dzin;
2353        
2354        dxout   = (double*) malloc(npoint*sizeof(double));
2355        dyout   = (double*) malloc(npoint*sizeof(double));
2356        dthxout = (double*) malloc(npoint*sizeof(double));
2357        dthyout = (double*) malloc(npoint*sizeof(double));
2358        dtlout  = (double*) malloc(npoint*sizeof(double));
2359        dzin    = (double*) malloc(npoint*sizeof(double));
2360        
2361        double dal[5];
2362    
2363        double dzini = (double)zini;
2364    
2365        int ifail = 0;
2366        
2367        for (int i=0; i<5; i++)      dal[i]  = (double)al[i];
2368        for (int i=0; i<npoint; i++) dzin[i] = (double)z[i];
2369    
2370        TrkParams::Load(1);
2371        if( !TrkParams::IsLoaded(1) ){
2372            cout << "int Trajectory::DoTrack(float* al) --- ERROR --- m.field not loaded"<<endl;
2373            return 0;
2374        }
2375    //    dotrack2_(&(npoint),dzin,dxout,dyout,dthxout,dthyout,dtlout,dal,&ifail);
2376        dotrack3_(&(npoint),dzin,dxout,dyout,dthxout,dthyout,dtlout,dal,&dzini,&ifail);
2377        
2378        for (int i=0; i<npoint; i++){
2379            x[i]   = (float)*(dxout+i);
2380            y[i]   = (float)*(dyout+i);
2381            thx[i] = (float)*(dthxout+i);
2382            thy[i] = (float)*(dthyout+i);
2383            tl[i]  = (float)*(dtlout+i);
2384        }
2385    
2386        if(dxout)  free( dxout );
2387        if(dyout)  free( dyout );
2388        if(dthxout)free( dthxout );
2389        if(dthyout)free( dthyout );
2390        if(dtlout) free( dtlout );
2391        if(dzin)   free( dzin );
2392    
2393    //      delete [] dxout;
2394    //      delete [] dyout;
2395    //      delete [] dthxout;
2396    //      delete [] dthyout;
2397    //      delete [] dtlout;
2398    //      delete [] dzin;
2399    
2400    
2401        return ifail;
2402    };
2403    
2404    /**
2405     *
2406     * >>> OBSOLETE !!! use Trajectory::DoTrack(float* al, float zini) instead
2407     *
2408     */
2409    int Trajectory::DoTrack2(float* al, float zini){
2410    
2411        cout << endl;
2412        cout << " int Trajectory::DoTrack2(float* al, float zini) --->> NB NB !! this method is going to be eliminated !!! "<<endl;
2413        cout << " >>>> replace it with TrkTrack::DoTrack(Trajectory* t) <<<<"<<endl;
2414        cout << " (Sorry Wolfgang!! Don't be totally confused!! By Elena)"<<endl;
2415        cout << endl;
2416    
2417        return DoTrack(al,zini);
2418    
2419    };
2420    
2421    
2422    
2423  ClassImp(TrkLevel2);  ClassImp(TrkLevel2);
2424  ClassImp(TrkSinglet);  ClassImp(TrkSinglet);
2425  ClassImp(TrkTrack);  ClassImp(TrkTrack);

Legend:
Removed from v.1.2  
changed lines
  Added in v.1.57

  ViewVC Help
Powered by ViewVC 1.1.23