/[PAMELA software]/DarthVader/TrackerLevel2/src/TrkLevel2.cpp
ViewVC logotype

Diff of /DarthVader/TrackerLevel2/src/TrkLevel2.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 1.2 by pam-fi, Thu Jun 1 09:03:09 2006 UTC revision 1.45 by pam-fi, Sat Mar 22 08:32:50 2008 UTC
# Line 4  Line 4 
4   */   */
5  #include <TrkLevel2.h>  #include <TrkLevel2.h>
6  #include <iostream>  #include <iostream>
7    #include <math.h>
8  using namespace std;  using namespace std;
9  //......................................  //......................................
10  // F77 routines  // F77 routines
# Line 11  using namespace std; Line 12  using namespace std;
12  extern "C" {      extern "C" {    
13      void dotrack_(int*, double*, double*, double*, double*, int*);      void dotrack_(int*, double*, double*, double*, double*, int*);
14      void dotrack2_(int*, double*, double*, double*, double*,double*, double*, double*,int*);      void dotrack2_(int*, double*, double*, double*, double*,double*, double*, double*,int*);
15      int  readb_(const char*);      void mini2_(int*,int*,int*);
16        void guess_();
17        void gufld_(float*, float*);
18        float risxeta2_(float *);
19        float risxeta3_(float *);
20        float risxeta4_(float *);
21        float risyeta2_(float *);
22  }  }
23    
24  //--------------------------------------  //--------------------------------------
25  //  //
26  //  //
27  //--------------------------------------  //--------------------------------------
28  TrkTrack::TrkTrack(){  TrkTrack::TrkTrack(){
29      image = 0;  //    cout << "TrkTrack::TrkTrack()" << endl;
30        seqno = -1;
31        image = -1;
32      chi2  = 0;      chi2  = 0;
33        nstep = 0;
34      for(int it1=0;it1<5;it1++){      for(int it1=0;it1<5;it1++){
35          al[it1] = 0;          al[it1] = 0;
36          for(int it2=0;it2<5;it2++)          for(int it2=0;it2<5;it2++)coval[it1][it2] = 0;
             coval[it1][it2] = 0;  
37      };      };
38      for(int ip=0;ip<6;ip++){      for(int ip=0;ip<6;ip++){
39          xgood[ip]  = 0;          xgood[ip]  = 0;
# Line 33  TrkTrack::TrkTrack(){ Line 43  TrkTrack::TrkTrack(){
43          zm[ip]     = 0;          zm[ip]     = 0;
44          resx[ip]   = 0;          resx[ip]   = 0;
45          resy[ip]   = 0;          resy[ip]   = 0;
46            tailx[ip]   = 0;
47            taily[ip]   = 0;
48          xv[ip]     = 0;          xv[ip]     = 0;
49          yv[ip]     = 0;          yv[ip]     = 0;
50          zv[ip]     = 0;          zv[ip]     = 0;
# Line 40  TrkTrack::TrkTrack(){ Line 52  TrkTrack::TrkTrack(){
52          ayv[ip]    = 0;          ayv[ip]    = 0;
53          dedx_x[ip] = 0;          dedx_x[ip] = 0;
54          dedx_y[ip] = 0;          dedx_y[ip] = 0;
55      };              multmaxx[ip] = 0;
56            multmaxy[ip] = 0;
57            seedx[ip]  = 0;  
58            seedy[ip]  = 0;
59            xpu[ip]    = 0;  
60            ypu[ip]    = 0;  
61    
62        };
63        
64    //     TrkParams::SetTrackingMode();
65    //     TrkParams::SetPrecisionFactor();
66    //     TrkParams::SetStepMin();
67        TrkParams::SetMiniDefault();
68        TrkParams::SetPFA();
69    
70        int ngf = TrkParams::nGF;
71        for(int i=0; i<ngf; i++){
72            xGF[i] = 0.;
73            yGF[i] = 0.;
74        }
75    
76    
77  };  };
78  //--------------------------------------  //--------------------------------------
79  //  //
80  //  //
81  //--------------------------------------  //--------------------------------------
82  TrkTrack::TrkTrack(const TrkTrack& t){  TrkTrack::TrkTrack(const TrkTrack& t){
83        seqno = t.seqno;
84      image = t.image;      image = t.image;
85      chi2  = t.chi2;      chi2  = t.chi2;
86        nstep = t.nstep;
87      for(int it1=0;it1<5;it1++){      for(int it1=0;it1<5;it1++){
88          al[it1] = t.al[it1];          al[it1] = t.al[it1];
89          for(int it2=0;it2<5;it2++)          for(int it2=0;it2<5;it2++)coval[it1][it2] = t.coval[it1][it2];
             coval[it1][it2] = t.coval[it1][it2];  
90      };      };
91      for(int ip=0;ip<6;ip++){      for(int ip=0;ip<6;ip++){
92          xgood[ip]  = t.xgood[ip];          xgood[ip]  = t.xgood[ip];
# Line 62  TrkTrack::TrkTrack(const TrkTrack& t){ Line 96  TrkTrack::TrkTrack(const TrkTrack& t){
96          zm[ip]     = t.zm[ip];          zm[ip]     = t.zm[ip];
97          resx[ip]   = t.resx[ip];          resx[ip]   = t.resx[ip];
98          resy[ip]   = t.resy[ip];          resy[ip]   = t.resy[ip];
99            tailx[ip]  = t.tailx[ip];
100            taily[ip]  = t.taily[ip];
101          xv[ip]     = t.xv[ip];          xv[ip]     = t.xv[ip];
102          yv[ip]     = t.yv[ip];          yv[ip]     = t.yv[ip];
103          zv[ip]     = t.zv[ip];          zv[ip]     = t.zv[ip];
# Line 69  TrkTrack::TrkTrack(const TrkTrack& t){ Line 105  TrkTrack::TrkTrack(const TrkTrack& t){
105          ayv[ip]    = t.ayv[ip];          ayv[ip]    = t.ayv[ip];
106          dedx_x[ip] = t.dedx_x[ip];          dedx_x[ip] = t.dedx_x[ip];
107          dedx_y[ip] = t.dedx_y[ip];          dedx_y[ip] = t.dedx_y[ip];
108      };              multmaxx[ip] = t.multmaxx[ip];
109            multmaxy[ip] = t.multmaxy[ip];
110            seedx[ip]    = t.seedx[ip];  
111            seedy[ip]    = t.seedy[ip];
112            xpu[ip]      = t.xpu[ip];  
113            ypu[ip]      = t.ypu[ip];  
114        };
115    
116    //     TrkParams::SetTrackingMode();
117    //     TrkParams::SetPrecisionFactor();
118    //     TrkParams::SetStepMin();  
119        TrkParams::SetMiniDefault();
120        TrkParams::SetPFA();
121    
122        int ngf = TrkParams::nGF;
123        for(int i=0; i<ngf; i++){
124            xGF[i] = t.xGF[i];
125            yGF[i] = t.yGF[i];
126        }
127    };
128    //--------------------------------------
129    //
130    //
131    //--------------------------------------
132    void TrkTrack::Copy(TrkTrack& t){
133    
134        t.seqno = seqno;
135        t.image = image;
136        t.chi2  = chi2;
137        t.nstep = nstep;
138        for(int it1=0;it1<5;it1++){
139            t.al[it1] = al[it1];
140            for(int it2=0;it2<5;it2++)t.coval[it1][it2] = coval[it1][it2];
141        };
142        for(int ip=0;ip<6;ip++){
143            t.xgood[ip]  = xgood[ip];
144            t.ygood[ip]  = ygood[ip];
145            t.xm[ip]     = xm[ip];
146            t.ym[ip]     = ym[ip];
147            t.zm[ip]     = zm[ip];
148            t.resx[ip]   = resx[ip];
149            t.resy[ip]   = resy[ip];
150            t.tailx[ip]  = tailx[ip];
151            t.taily[ip]  = taily[ip];
152            t.xv[ip]     = xv[ip];
153            t.yv[ip]     = yv[ip];
154            t.zv[ip]     = zv[ip];
155            t.axv[ip]    = axv[ip];
156            t.ayv[ip]    = ayv[ip];
157            t.dedx_x[ip] = dedx_x[ip];
158            t.dedx_y[ip] = dedx_y[ip];
159            t.multmaxx[ip] = multmaxx[ip];
160            t.multmaxy[ip] = multmaxy[ip];
161            t.seedx[ip]    = seedx[ip];  
162            t.seedy[ip]    = seedy[ip];
163            t.xpu[ip]      = xpu[ip];  
164            t.ypu[ip]      = ypu[ip];  
165                
166        };
167        int ngf = TrkParams::nGF;
168        for(int i=0; i<ngf; i++){
169            t.xGF[i] = xGF[i];
170            t.yGF[i] = yGF[i];
171        }
172    
173        
174  };  };
175  //--------------------------------------  //--------------------------------------
176  //  //
# Line 81  TrkTrack::TrkTrack(const TrkTrack& t){ Line 182  TrkTrack::TrkTrack(const TrkTrack& t){
182   * @param t pointer to an object of the class Trajectory,   * @param t pointer to an object of the class Trajectory,
183   * which z coordinates should be previously initialized by calling the proper constructor ( Trajectory::Trajectory(int n, float* zin) ).   * which z coordinates should be previously initialized by calling the proper constructor ( Trajectory::Trajectory(int n, float* zin) ).
184   * @return error flag.   * @return error flag.
185     *
186     * >>> OBSOLETE !!! use TrkTrack::DoTrack2(Trajectory* t) instead
187     *
188   */   */
189  int TrkTrack::DoTrack(Trajectory* t){  int TrkTrack::DoTrack(Trajectory* t){
190    
191        cout << " int TrkTrack::DoTrack(Trajectory* t) --->> OBSOLETE !!! "<<endl;
192        cout << " use int TrkTrack::DoTrack2(Trajectory* t)"<<endl;
193    
194      double *dxout = new double[t->npoint];      double *dxout = new double[t->npoint];
195      double *dyout = new double[t->npoint];      double *dyout = new double[t->npoint];
196      double *dzin = new double[t->npoint];      double *dzin = new double[t->npoint];
# Line 94  int TrkTrack::DoTrack(Trajectory* t){ Line 201  int TrkTrack::DoTrack(Trajectory* t){
201      for (int i=0; i<5; i++)         dal[i]  = (double)al[i];      for (int i=0; i<5; i++)         dal[i]  = (double)al[i];
202      for (int i=0; i<t->npoint; i++) dzin[i] = (double)t->z[i];      for (int i=0; i<t->npoint; i++) dzin[i] = (double)t->z[i];
203    
204        TrkParams::Load(1);
205        if( !TrkParams::IsLoaded(1) ){
206            cout << "int TrkTrack::DoTrack(Trajectory* t) --- ERROR --- m.field not loaded"<<endl;
207            return 0;
208        }
209      dotrack_(&(t->npoint),dzin,dxout,dyout,dal,&ifail);      dotrack_(&(t->npoint),dzin,dxout,dyout,dal,&ifail);
210            
211      for (int i=0; i<t->npoint; i++){      for (int i=0; i<t->npoint; i++){
212          t->x[i] = (float)*dxout++;          t->x[i] = (float)*(dxout+i);
213          t->y[i] = (float)*dyout++;          t->y[i] = (float)*(dyout+i);
214      }      }
215    
216  //    delete [] dxout;      delete [] dxout;
217  //    delete [] dyout;      delete [] dyout;
218  //    delete [] dzin;      delete [] dzin;
219    
220      return ifail;      return ifail;
221  };  };
# Line 133  int TrkTrack::DoTrack2(Trajectory* t){ Line 245  int TrkTrack::DoTrack2(Trajectory* t){
245      for (int i=0; i<5; i++)         dal[i]  = (double)al[i];      for (int i=0; i<5; i++)         dal[i]  = (double)al[i];
246      for (int i=0; i<t->npoint; i++) dzin[i] = (double)t->z[i];      for (int i=0; i<t->npoint; i++) dzin[i] = (double)t->z[i];
247    
248        TrkParams::Load(1);
249        if( !TrkParams::IsLoaded(1) ){
250            cout << "int TrkTrack::DoTrack2(Trajectory* t) --- ERROR --- m.field not loaded"<<endl;
251            return 0;
252        }
253      dotrack2_(&(t->npoint),dzin,dxout,dyout,dthxout,dthyout,dtlout,dal,&ifail);      dotrack2_(&(t->npoint),dzin,dxout,dyout,dthxout,dthyout,dtlout,dal,&ifail);
254            
255      for (int i=0; i<t->npoint; i++){      for (int i=0; i<t->npoint; i++){
256          t->x[i]   = (float)*dxout++;          t->x[i]   = (float)*(dxout+i);
257          t->y[i]   = (float)*dyout++;          t->y[i]   = (float)*(dyout+i);
258          t->thx[i] = (float)*dthxout++;          t->thx[i] = (float)*(dthxout+i);
259          t->thy[i] = (float)*dthyout++;          t->thy[i] = (float)*(dthyout+i);
260          t->tl[i]  = (float)*dtlout++;          t->tl[i]  = (float)*(dtlout+i);
261      }      }
262    
263  //    delete [] dxout;      delete [] dxout;
264  //    delete [] dyout;      delete [] dyout;
265  //    delete [] dzin;      delete [] dzin;
266        delete [] dthxout;
267        delete [] dthyout;
268        delete [] dtlout;
269    
270      return ifail;      return ifail;
271  };  };
# Line 172  Float_t TrkTrack::GetDeflection(){ Line 292  Float_t TrkTrack::GetDeflection(){
292          return def;          return def;
293  };  };
294  //  //
295    /**
296     * Method to retrieve the dE/dx measured on a tracker view.
297     * @param ip plane (0-5)
298     * @param iv view (0=x 1=y)
299     */
300    Float_t TrkTrack::GetDEDX(int ip, int iv){
301        if(iv==0 && ip>=0 && ip<6)return fabs(dedx_x[ip]);
302        else if(iv==1 && ip>=0 && ip<6)return fabs(dedx_y[ip]);
303        else {
304            cout << "TrkTrack::GetDEDX(int ip, int iv) -- wrong input parameters "<<ip<<iv<<endl;
305            return 0.;
306        }
307    }
308    /**
309     * Method to evaluate the dE/dx measured on a tracker plane.
310     * The two measurements on x- and y-view are averaged.
311     * @param ip plane (0-5)
312     */
313    Float_t TrkTrack::GetDEDX(int ip){
314        if( (Int_t)XGood(ip)+(Int_t)YGood(ip) == 0 ) return 0;
315        return (GetDEDX(ip,0)+GetDEDX(ip,1))/((Int_t)XGood(ip)+(Int_t)YGood(ip));
316    };
317    
318    /**
319     * Method to evaluate the dE/dx averaged over all planes.
320     */
321  Float_t TrkTrack::GetDEDX(){  Float_t TrkTrack::GetDEDX(){
322          Float_t dedx=0;      Float_t dedx=0;
323          for(Int_t i=0; i<6; i++)dedx+=dedx_x[i]*xgood[i]+dedx_y[i]*ygood[i];      for(Int_t ip=0; ip<6; ip++)dedx+=GetDEDX(ip,0)*XGood(ip)+GetDEDX(ip,1)*YGood(ip);
324          dedx = dedx/(this->GetNX()+this->GetNY());      dedx = dedx/(GetNX()+GetNY());
325          return dedx;      return dedx;
326    };
327    /**
328     * Returns 1 if the cluster on a tracker view includes bad strips
329     * (at least one bad strip among the four strip used by p.f.a.)
330     * @param ip plane (0-5)
331     * @param iv view (0=x 1=y)
332     */
333    Bool_t TrkTrack::IsBad(int ip,int iv){
334        if(iv==0 && ip>=0 && ip<6)return (xgood[ip]<0) ;
335        else if(iv==1 && ip>=0 && ip<6)return (ygood[ip]<0) ;
336        else {
337            cout << "TrkTrack::IsBad(int ip, int iv) -- wrong input parameters "<<ip<<iv<<endl;
338            return 0.;
339        }
340    };
341    /**
342     * Returns 1 if the signal on a tracker view is saturated.
343     * @param ip plane (0-5)
344     * @param iv view (0=x 1=y)
345     */
346    Bool_t TrkTrack::IsSaturated(int ip,int iv){
347        if(iv==0 && ip>=0 && ip<6)return (dedx_x[ip]<0) ;
348        else if(iv==1 && ip>=0 && ip<6)return (dedx_y[ip]<0) ;
349        else {
350            cout << "TrkTrack::IsSaturated(int ip, int iv) -- wrong input parameters "<<ip<<iv<<endl;
351            return 0.;
352        }
353    };
354    /**
355     * Returns 1 if either the x or the y signal on a tracker plane is saturated.
356     * @param ip plane (0-5)
357     */
358    Bool_t TrkTrack::IsSaturated(int ip){
359        return (IsSaturated(ip,0)||IsSaturated(ip,1));
360    };
361    /**
362     * Returns 1 if there is at least a saturated signal along the track.
363     */
364    Bool_t TrkTrack::IsSaturated(){
365        for(int ip=0; ip<6; ip++)for(int iv=0; iv<2; iv++)if(IsSaturated(ip,iv))return true;
366        return false;
367    }
368    /**
369     * Returns the track "lever-arm" on the x view, defined as the distance (in planes) between
370     * the upper and lower x measurements (the maximum value of lever-arm is 6).
371     */
372    Int_t TrkTrack::GetLeverArmX(){
373        int first_plane = -1;
374        int last_plane  = -1;
375        for(Int_t ip=0; ip<6; ip++){
376            if( XGood(ip) && first_plane == -1 )first_plane = ip;
377            if( XGood(ip) && first_plane != -1 )last_plane = ip;
378        }
379        if( first_plane == -1 || last_plane == -1){
380            cout<< "Int_t TrkTrack::GetLeverArmX() -- XGood(ip) always false ??? "<<endl;
381            return 0;
382        }
383        return (last_plane-first_plane+1);
384    }
385    /**
386     * Returns the track "lever-arm" on the y view, defined as the distance (in planes) between
387     * the upper and lower y measurements (the maximum value of lever-arm is 6).
388     */
389    Int_t TrkTrack::GetLeverArmY(){
390        int first_plane = -1;
391        int last_plane  = -1;
392        for(Int_t ip=0; ip<6; ip++){
393            if( YGood(ip) && first_plane == -1 )first_plane = ip;
394            if( YGood(ip) && first_plane != -1 )last_plane = ip;
395        }
396        if( first_plane == -1 || last_plane == -1){
397            cout<< "Int_t TrkTrack::GetLeverArmY() -- YGood(ip) always false ??? "<<endl;
398            return 0;
399        }
400        return (last_plane-first_plane+1);
401    }
402    /**
403     * Returns the reduced chi-square of track x-projection
404     */
405    Float_t  TrkTrack::GetChi2X(){
406        float chiq=0;
407        for(int ip=0; ip<6; ip++)if(XGood(ip))chiq+= pow((xv[ip]-xm[ip])/resx[ip],2.);
408        if(GetNX()>3)chiq=chiq/(GetNX()-3);
409        else chiq=0;
410        if(chiq==0)cout << " Float_t  TrkTrack::GetChi2X() -- WARNING -- value not defined "<<chiq<<endl;
411        return chiq;
412    }
413    /**
414     * Returns the reduced chi-square of track y-projection
415     */
416    Float_t  TrkTrack::GetChi2Y(){
417        float chiq=0;
418        for(int ip=0; ip<6; ip++)if(YGood(ip))chiq+= pow((yv[ip]-ym[ip])/resy[ip],2.);
419        if(GetNY()>2)chiq=chiq/(GetNY()-2);
420        else chiq=0;
421        if(chiq==0)cout << " Float_t  TrkTrack::GetChi2Y() -- WARNING -- value not defined "<<chiq<<endl;
422        return chiq;
423    }
424    /**
425     * Returns the logarythm of the likeliwood-function of  track x-projection
426     */
427    Float_t TrkTrack::GetLnLX(){
428        float lnl=0;
429        for(int ip=0; ip<6; ip++)
430            if( XGood(ip) && tailx[ip]!=0 )
431                lnl += (tailx[ip]+1.) * log( (tailx[ip]*pow(resx[ip],2.) + pow(xv[ip]-xm[ip],2.)) / (tailx[ip]*pow(resx[ip],2)) );
432        if(GetNX()>3)lnl=lnl/(GetNX()-3);
433        else lnl=0;
434        if(lnl==0){
435            cout << " Float_t  TrkTrack::GetLnLX() -- WARNING -- value not defined "<<lnl<<endl;
436            Dump();
437        }
438        return lnl;
439        
440    }
441    /**
442     * Returns the logarythm of the likeliwood-function of  track y-projection
443     */
444    Float_t TrkTrack::GetLnLY(){
445        float lnl=0;
446        for(int ip=0; ip<6; ip++)
447            if( YGood(ip) && taily[ip]!=0 )
448                lnl += (taily[ip]+1.) * log( (taily[ip]*pow(resy[ip],2.) + pow(yv[ip]-ym[ip],2.)) / (taily[ip]*pow(resy[ip],2)) );
449        if(GetNY()>2)lnl=lnl/(GetNY()-2);
450        else lnl=0;
451        if(lnl==0){
452            cout << " Float_t  TrkTrack::GetLnLY() -- WARNING -- value not defined "<<lnl<<endl;
453            Dump();
454        }
455        return lnl;
456        
457    }
458    /**
459     * Returns the effective angle, relative to the sensor, on each plane.
460     * @param ip plane (0-5)
461     * @param iv view (0=x 1=y)
462     */
463    Float_t TrkTrack::GetEffectiveAngle(int ip, int iv){
464    
465        if(ip<0 || ip>5){
466            cout << "Float_t TrkTrack::GetEffectiveAngle(int "<<ip<<", int "<<iv<<") ==> wrong input"<<endl;
467            return 0.;
468        }
469    
470        float v[3]={xv[ip],yv[ip],zv[ip]};
471        //-----------------------------------------
472        // effective angle (relative to the sensor)
473        //-----------------------------------------
474        float axv_geo  = axv[ip];
475        float muhall_h = 297.61; //cm**2/Vs
476        float BY = TrkParams::GetBY(v);
477        float axv_eff = 0;
478        if(ip==5) axv_geo = -1*axv_geo;
479        if(ip==5) BY      = -1*BY;
480        axv_eff = 180.*atan( tan(axv_geo*acos(-1.)/180.) + muhall_h * BY * 0.0001)/acos(-1.);
481        //-----------------------------------------
482        // effective angle (relative to the sensor)
483        //-----------------------------------------
484        float ayv_geo = ayv[ip];
485        float muhall_e = 1258.18; //cm**2/Vs
486        float BX = TrkParams::GetBX(v);
487        float ayv_eff = 0;
488        ayv_eff = 180.*atan( tan(ayv_geo*acos(-1.)/180.) + muhall_e * BX * 0.0001)/acos(-1.);
489      
490        if     (iv==0)return axv_eff;
491        else if(iv==1)return ayv_eff;
492        else{
493            cout << "Float_t TrkTrack::GetEffectiveAngle(int "<<ip<<", int "<<iv<<") ==> wrong input"<<endl;
494            return 0.;
495        }
496      
497  };  };
498    
499  //--------------------------------------  //--------------------------------------
# Line 185  Float_t TrkTrack::GetDEDX(){ Line 502  Float_t TrkTrack::GetDEDX(){
502  //--------------------------------------  //--------------------------------------
503  void TrkTrack::Dump(){  void TrkTrack::Dump(){
504      cout << endl << "========== Track " ;      cout << endl << "========== Track " ;
505        cout << endl << "seq.  n. : "<< seqno;
506        cout << endl << "image n. : "<< image;
507      cout << endl << "al       : "; for(int i=0; i<5; i++)cout << al[i] << " ";      cout << endl << "al       : "; for(int i=0; i<5; i++)cout << al[i] << " ";
508      cout << endl << "chi^2    : "<< chi2;      cout << endl << "chi^2    : "<< chi2;
509      cout << endl << "xgood    : "; for(int i=0; i<6; i++)cout << xgood[i] ;      cout << endl << "n.step   : "<< nstep;
510      cout << endl << "ygood    : "; for(int i=0; i<6; i++)cout << ygood[i] ;      cout << endl << "xgood    : "; for(int i=0; i<6; i++)cout << XGood(i) ;
511        cout << endl << "ygood    : "; for(int i=0; i<6; i++)cout << YGood(i) ;
512      cout << endl << "xm       : "; for(int i=0; i<6; i++)cout << xm[i] << " ";      cout << endl << "xm       : "; for(int i=0; i<6; i++)cout << xm[i] << " ";
513      cout << endl << "ym       : "; for(int i=0; i<6; i++)cout << ym[i] << " ";      cout << endl << "ym       : "; for(int i=0; i<6; i++)cout << ym[i] << " ";
514      cout << endl << "zm       : "; for(int i=0; i<6; i++)cout << zm[i] << " ";      cout << endl << "zm       : "; for(int i=0; i<6; i++)cout << zm[i] << " ";
515        cout << endl << "xv       : "; for(int i=0; i<6; i++)cout << xv[i] << " ";
516        cout << endl << "yv       : "; for(int i=0; i<6; i++)cout << yv[i] << " ";
517        cout << endl << "zv       : "; for(int i=0; i<6; i++)cout << zv[i] << " ";
518        cout << endl << "resx     : "; for(int i=0; i<6; i++)cout << resx[i] << " ";
519        cout << endl << "resy     : "; for(int i=0; i<6; i++)cout << resy[i] << " ";
520        cout << endl << "tailx    : "; for(int i=0; i<6; i++)cout << tailx[i] << " ";
521        cout << endl << "taily    : "; for(int i=0; i<6; i++)cout << taily[i] << " ";
522        cout << endl << "coval    : "; for(int i=0; i<5; i++)cout << coval[0][i]<<" ";
523        cout << endl << "           "; for(int i=0; i<5; i++)cout << coval[1][i]<<" ";
524        cout << endl << "           "; for(int i=0; i<5; i++)cout << coval[2][i]<<" ";
525        cout << endl << "           "; for(int i=0; i<5; i++)cout << coval[3][i]<<" ";
526        cout << endl << "           "; for(int i=0; i<5; i++)cout << coval[4][i]<<" ";
527      cout << endl << "dedx_x   : "; for(int i=0; i<6; i++)cout << dedx_x[i] << " ";      cout << endl << "dedx_x   : "; for(int i=0; i<6; i++)cout << dedx_x[i] << " ";
528      cout << endl << "dedx_y   : "; for(int i=0; i<6; i++)cout << dedx_y[i] << " ";      cout << endl << "dedx_y   : "; for(int i=0; i<6; i++)cout << dedx_y[i] << " ";
529        cout << endl << "maxs x   : "; for(int i=0; i<6; i++)cout << GetClusterX_MaxStrip(i) << " ";
530        cout << endl << "maxs y   : "; for(int i=0; i<6; i++)cout << GetClusterY_MaxStrip(i) << " ";
531        cout << endl << "mult x   : "; for(int i=0; i<6; i++)cout << GetClusterX_Multiplicity(i) << " ";
532        cout << endl << "mult y   : "; for(int i=0; i<6; i++)cout << GetClusterY_Multiplicity(i) << " ";
533        cout << endl << "seed x   : "; for(int i=0; i<6; i++)cout << GetClusterX_Seed(i) << " ";
534        cout << endl << "seed y   : "; for(int i=0; i<6; i++)cout << GetClusterY_Seed(i) << " ";
535        cout << endl << "xpu      : "; for(int i=0; i<6; i++)cout << xpu[i] << " ";
536        cout << endl << "ypu      : "; for(int i=0; i<6; i++)cout << ypu[i] << " ";
537    
538        cout << endl;
539    }
540    /**
541     * Set the TrkTrack position measurements
542     */
543    void TrkTrack::SetMeasure(double *xmeas, double *ymeas, double *zmeas){
544        for(int i=0; i<6; i++) xm[i]=*xmeas++;
545        for(int i=0; i<6; i++) ym[i]=*ymeas++;
546        for(int i=0; i<6; i++) zm[i]=*zmeas++;
547    }
548    /**
549     * Set the TrkTrack position resolution
550     */
551    void TrkTrack::SetResolution(double *rx, double *ry){
552        for(int i=0; i<6; i++) resx[i]=*rx++;
553        for(int i=0; i<6; i++) resy[i]=*ry++;
554    }
555    /**
556     * Set the TrkTrack tails position resolution
557     */
558    void TrkTrack::SetTail(double *tx, double *ty, double factor){
559        for(int i=0; i<6; i++) tailx[i]=factor*(*tx++);
560        for(int i=0; i<6; i++) taily[i]=factor*(*ty++);
561    }
562    /**
563     * Set the TrkTrack Student parameter (resx,resy,tailx,taily)
564     * from previous gausian fit
565     *@param flag =0 standard, =1 with noise correction
566     */
567    void TrkTrack::SetStudentParam(int flag){
568        float sx[11]={0.000128242,
569                       0.000136942,
570                       0.000162718,
571                       0.000202644,
572                       0.00025597,
573                       0.000317456,
574                       0.000349048,
575                       0.000384638,
576                       0.000457295,
577                       0.000512319,
578                       0.000538573};
579        float tx[11]={1.79402,
580                       2.04876,
581                       2.88376,
582                       3.3,
583                       3.14084,
584                       4.07686,
585                       4.44736,
586                       3.5179,
587                       3.38697,
588                       3.45739,
589                       3.18627};
590        float sy[11]={0.000483075,
591                       0.000466925,
592                       0.000431658,
593                       0.000428317,
594                       0.000433854,
595                       0.000444044,
596                       0.000482098,
597                       0.000537579,
598                       0.000636279,
599                       0.000741998,
600                       0.000864261};
601        float ty[11]={0.997032,
602                       1.11147,
603                       1.18526,
604                       1.61404,
605                       2.21908,
606                       3.08959,
607                       4.48833,
608                       4.42687,
609                       4.65253,
610                       4.52043,
611                       4.29926};
612        int index;
613        float fact;
614        for(int i=0; i<6; i++) {
615            index = int((fabs(axv[i])+1.)/2.);
616            if(index>10) index=10;
617            tailx[i]=tx[index];
618            if(flag==1) {
619                if(fabs(axv[i])<=10.) fact = resx[i]/risxeta2_(&(axv[i]));
620                if(fabs(axv[i])>10.&&fabs(axv[i])<=15.) fact = resx[i]/risxeta3_(&(axv[i]));
621                if(fabs(axv[i])>15.) fact = resx[i]/risxeta4_(&(axv[i]));
622            } else fact = 1.;
623            resx[i] = sx[index]*fact;
624        }
625        for(int i=0; i<6; i++) {
626            index = int((fabs(ayv[i])+1.)/2.);
627            if(index>10) index=10;
628            taily[i]=ty[index];
629            if(flag==1) fact = resy[i]/risyeta2_(&(ayv[i]));
630            else fact = 1.;
631            resy[i] = sy[index]*fact;
632        }
633    }
634    /**
635     * Set the TrkTrack good measurement
636     */
637    void TrkTrack::SetGood(int *xg, int *yg){
638    
639        for(int i=0; i<6; i++) xgood[i]=*xg++;
640        for(int i=0; i<6; i++) ygood[i]=*yg++;
641    }
642    
643    /**
644     * Load the magnetic field
645     */
646    void TrkTrack::LoadField(TString path){
647        
648    //     strcpy(path_.path,path.Data());
649    //     path_.pathlen = path.Length();
650    //     path_.error   = 0;
651    //     readb_();
652    
653    //     TrkParams::SetTrackingMode();
654    //     TrkParams::SetPrecisionFactor();
655    //     TrkParams::SetStepMin();
656        TrkParams::SetMiniDefault();
657    
658        TrkParams::Set(path,1);
659        TrkParams::Load(1);
660    
661    };
662    
663    
664    /**
665     * Method to fill minimization-routine common
666     */
667    void TrkTrack::FillMiniStruct(cMini2track& track){
668    
669        for(int i=0; i<6; i++){
670    
671    //      cout << i<<" - "<<xgood[i]<<" "<<XGood(i)<<endl;
672    //      cout << i<<" - "<<ygood[i]<<" "<<YGood(i)<<endl;
673            track.xgood[i]=XGood(i);
674            track.ygood[i]=YGood(i);
675            
676            track.xm[i]=xm[i];
677            track.ym[i]=ym[i];
678            track.zm[i]=zm[i];
679            
680    //      --- temporaneo ----------------------------
681    //      andrebbe inserita la dimensione del sensore
682            float segment = 100.;
683            track.xm_a[i]=xm[i];
684            track.xm_b[i]=xm[i];
685            track.ym_a[i]=ym[i];
686            track.ym_b[i]=ym[i];
687            if(       XGood(i) && !YGood(i) ){
688                track.ym_a[i] = track.ym_a[i]+segment;
689                track.ym_b[i] = track.ym_b[i]-segment;
690            }else if( !XGood(i) && YGood(i)){
691                track.xm_a[i] = track.xm_a[i]+segment;
692                track.xm_b[i] = track.xm_b[i]-segment;
693            }
694    //      --- temporaneo ----------------------------
695            
696            track.resx[i]=resx[i];
697            track.resy[i]=resy[i];
698            track.tailx[i]=tailx[i];
699            track.taily[i]=taily[i];
700        }
701    
702        for(int i=0; i<5; i++) track.al[i]=al[i];
703        track.zini = 23.5;
704    // ZINI = 23.5 !!! it should be the same parameter in all codes
705        
706    }
707    /**
708     * Method to set values from  minimization-routine common
709     */
710    void TrkTrack::SetFromMiniStruct(cMini2track *track){
711    
712        for(int i=0; i<5; i++) {
713            al[i]=track->al[i];
714            for(int j=0; j<5; j++) coval[i][j]=track->cov[i][j];
715        }
716        chi2  = track->chi2;
717        nstep = track->nstep;
718        for(int i=0; i<6; i++){
719            xv[i]  = track->xv[i];
720            yv[i]  = track->yv[i];
721            zv[i]  = track->zv[i];
722            xm[i]  = track->xm[i];
723            ym[i]  = track->ym[i];
724            zm[i]  = track->zm[i];
725            axv[i] = track->axv[i];
726            ayv[i] = track->ayv[i];
727        }
728        
729  }  }
730    /**
731     * \brief Method to re-evaluate coordinates of clusters associated with a track.
732     *
733     * The method can be applied only after recovering level1 information
734     * (either by reprocessing single events from level0 or from  
735     * the TrkLevel1 branch, if present); it calls F77 subroutines that
736     * read the level1 common and fill the minimization-routine common.
737     * Some clusters can be excluded or added by means of the methods:
738     *
739     * TrkTrack::ResetXGood(int ip)
740     * TrkTrack::ResetYGood(int ip)
741     * TrkTrack::SetXGood(int ip, int cid, int is)
742     * TrkTrack::SetYGood(int ip, int cid, int is)
743     *
744     * NB! The method TrkTrack::SetGood(int *xg, int *yg) set the plane-mask (0-1)
745     * for the minimization-routine common. It deletes the cluster information
746     * (at least for the moment...) thus cannot be applied before
747     * TrkTrack::EvaluateClusterPositions().  
748     *
749     * Different p.f.a. can be applied by calling (once) the method:
750     *
751     * TrkParams::SetPFA(0); //Set ETA p.f.a.
752     *
753     * @see TrkParams::SetPFA(int)
754     */
755    Bool_t TrkTrack::EvaluateClusterPositions(){
756        
757    //     cout << "void TrkTrack::GetClusterositions() "<<endl;
758    
759        TrkParams::Load( );
760        if( !TrkParams::IsLoaded() )return false;
761        
762        for(int ip=0; ip<6; ip++){
763    //      cout << ip<<" ** "<<xm[ip]<<" / "<<ym[ip]<<endl;;
764            int icx = GetClusterX_ID(ip)+1;
765            int icy = GetClusterY_ID(ip)+1;
766            int sensor = GetSensor(ip)+1;//<< convenzione "Paolo"
767            if(ip==5 && sensor!=0)sensor=3-sensor;//<< convenzione "Elena"
768            int ladder = GetLadder(ip)+1;
769            float ax = axv[ip];
770            float ay = ayv[ip];
771            float v[3];
772            v[0]=xv[ip];
773            v[1]=yv[ip];
774            v[2]=zv[ip];
775            float bfx = 10*TrkParams::GetBX(v);//Tesla
776            float bfy = 10*TrkParams::GetBY(v);//Tesla
777            int ipp=ip+1;
778            xyzpam_(&ipp,&icx,&icy,&ladder,&sensor,&ax,&ay,&bfx,&bfy);
779            if(icx<0 || icy<0)return false;
780        }
781        return true;
782    }
783    /**
784     * \brief Tracking method. It calls F77 mini routine.
785     *
786     * @param pfixed Particle momentum. If pfixed=0 the momentum
787     * is left as a free parameter, otherwise it is fixed to the input value.
788     * @param fail Output flag (!=0 if the fit failed).
789     * @param iprint Flag to set debug mode ( 0 = no output; 1 = verbose; 2 = debug).
790     * @param froml1 Flag to re-evaluate positions (see TrkTrack::GetClusterPositions()).
791     *
792     * The option to re-evaluate positions can be used only after recovering
793     * level1 information, eg. by reprocessing the single event.
794     *
795     * Example:
796     *
797     * if( !event->GetTrkLevel0() )return false;
798     * event->GetTrkLevel0()->ProcessEvent(); // re-processing level0->level1
799     * int fail=0;
800     * event->GetTrkLevel2()->GetTrack(0)->Fit(0.,fail,0,1);
801     *
802     * @see EvaluateClusterPositions()
803     *
804     * The fitting procedure can be varied by changing the tracking mode,
805     * the fit-precision factor, the minimum number of step, etc.
806     * @see SetTrackingMode(int)
807     * @see SetPrecisionFactor(double)
808     * @see SetStepMin(int)
809     * @see SetDeltaB(int,double)
810     */
811    void TrkTrack::Fit(double pfixed, int& fail, int iprint, int froml1){
812    
813        float al_ini[] = {0.,0.,0.,0.,0.};
814    
815        TrkParams::Load( );
816        if( !TrkParams::IsLoaded() )return;
817    
818        extern cMini2track track_;
819        fail = 0;
820    
821        FillMiniStruct(track_);
822            
823        if(froml1!=0){
824            if( !EvaluateClusterPositions() ){
825                cout << "void TrkTrack::Fit("<<pfixed<<","<<fail<<","<<iprint<<","<<froml1<<") --- ERROR evaluating cluster positions "<<endl;
826                FillMiniStruct(track_) ;
827                fail = 1;
828                return;
829            }
830        }else{
831            FillMiniStruct(track_);
832        }
833        
834        // if fit variables have been reset, evaluate the initial guess
835        if(al[0]==-9999.&&al[1]==-9999.&&al[2]==-9999.&&al[3]==-9999.&&al[4]==-9999.)guess_();
836    
837        // --------------------- free momentum
838        if(pfixed==0.) {
839            track_.pfixed=0.;
840        }
841        // --------------------- fixed momentum
842        if(pfixed!=0.) {
843            al[4]=1./pfixed;    
844            track_.pfixed=pfixed;
845        }
846    
847        //  store temporarily the initial guess
848        for(int i=0; i<5; i++) al_ini[i]=track_.al[i];
849    
850        //  ------------------------------------------
851        //  call mini routine
852    //     TrkParams::Load(1);
853    //     if( !TrkParams::IsLoaded(1) ){
854    //      cout << "void TrkTrack::Fit(double pfixed, int& fail, int iprint) --- ERROR --- m.field not loaded"<<endl;
855    //      return;
856    //     }
857        int istep=0;
858        int ifail=0;
859        mini2_(&istep,&ifail, &iprint);
860        if(ifail!=0) {
861            if(iprint)cout << "ERROR: ifail= " << ifail << endl;
862            fail = 1;
863        }
864        //  ------------------------------------------
865        
866        SetFromMiniStruct(&track_);
867    
868        if(fail){
869            if(iprint)cout << " >>>> fit failed "<<endl;
870            for(int i=0; i<5; i++) al[i]=al_ini[i];
871        }
872    
873    };
874    /**
875     * Reset the fit parameters
876     */
877    void TrkTrack::FitReset(){
878        for(int i=0; i<5; i++) al[i]=-9999.;
879        chi2=0.;
880        nstep=0;
881    //     for(int i=0; i<6; i++) xv[i]=0.;
882    //     for(int i=0; i<6; i++) yv[i]=0.;
883    //     for(int i=0; i<6; i++) zv[i]=0.;
884    //     for(int i=0; i<6; i++) axv[i]=0.;
885    //     for(int i=0; i<6; i++) ayv[i]=0.;
886        for(int i=0; i<5; i++) {
887            for(int j=0; j<5; j++) coval[i][j]=0.;
888        }
889    }
890    /**
891     * Set the tracking mode
892     */
893    void TrkTrack::SetTrackingMode(int trackmode){
894        extern cMini2track track_;
895        track_.trackmode = trackmode;
896    }
897    /**
898     * Set the factor scale for tracking precision
899     */
900    void TrkTrack::SetPrecisionFactor(double fact){
901        extern cMini2track track_;
902        track_.fact = fact;
903    }
904    /**
905     * Set the minimum number of steps for tracking precision
906     */
907    void TrkTrack::SetStepMin(int istepmin){
908        extern cMini2track track_;
909        track_.istepmin = istepmin;
910    }
911    /**
912     * Set deltaB parameters (id=0,1). By default they are set to zero.
913     */
914    void TrkTrack::SetDeltaB(int id, double db){
915        if(id!=0 && id!=1)cout << "void TrkTrack::SetDeltaB(int id,double db) -- wrong input parameters: "<<id<<" "<<db<<endl;
916        TrkParams::SetDeltaB(id,db);
917    }
918    
919    /**
920     * Returns true if the track is inside the magnet cavity.
921     * @param toll Tolerance around the nominal volume (toll>0 define an inner fiducial volume)
922     */
923    Bool_t TrkTrack::IsInsideCavity(float toll){
924    
925    //     float xmagntop, ymagntop, xmagnbottom, ymagnbottom;
926    //     xmagntop = xv[0] + (ZMAGNHIGH-zv[0])*tan(acos(-1.0)*axv[0]/180.);
927    //     ymagntop = yv[0] + (ZMAGNHIGH-zv[0])*tan(acos(-1.0)*ayv[0]/180.);
928    //     xmagnbottom = xv[5] + (ZMAGNLOW-zv[5])*tan(acos(-1.0)*axv[5]/180.);
929    //     ymagnbottom = yv[5] + (ZMAGNLOW-zv[5])*tan(acos(-1.0)*ayv[5]/180.);
930    //     if( xmagntop>XMAGNLOW && xmagntop<XMAGNHIGH &&
931    //      ymagntop>YMAGNLOW && ymagntop<YMAGNHIGH &&
932    //      xmagnbottom>XMAGNLOW && xmagnbottom<XMAGNHIGH &&
933    //      ymagnbottom>YMAGNLOW && ymagnbottom<YMAGNHIGH ) return(true);
934    //     else return(false);
935    
936        int ngf = TrkParams::nGF;
937        for(int i=0; i<ngf; i++){
938            //
939    //      cout << endl << TrkParams::GF_element[i];
940            if(
941                TrkParams::GF_element[i].CompareTo("CUF") &&
942                TrkParams::GF_element[i].CompareTo("T2")  &&
943                TrkParams::GF_element[i].CompareTo("T3")  &&
944                TrkParams::GF_element[i].CompareTo("T4")  &&
945                TrkParams::GF_element[i].CompareTo("T5")  &&
946                TrkParams::GF_element[i].CompareTo("CLF") &&
947                true)continue;
948            // apply condition only within the cavity
949    //      cout << " -- "<<xGF[i]<<" "<<yGF[i];
950            if(
951                xGF[i] <= TrkParams::xGF_min[i] + toll ||
952                xGF[i] >= TrkParams::xGF_max[i] - toll ||
953                yGF[i] <= TrkParams::yGF_min[i] + toll ||
954                yGF[i] >= TrkParams::yGF_max[i] - toll ||
955                false){
956                
957                return false;
958            }
959        }
960        return true;
961    
962    
963    }
964    /**
965     * Returns true if the track is inside the nominal acceptance, which is defined
966     * by the intersection among magnet cavity, silicon-plane sensitive area and
967     * ToF sensitive area (nominal values from the official document used to
968     * calculate the geometrical factor)
969     */
970    Bool_t TrkTrack::IsInsideAcceptance(){
971    
972        int ngf = TrkParams::nGF;
973        for(int i=0; i<ngf; i++){
974            if(
975                xGF[i] <= TrkParams::xGF_min[i] ||
976                xGF[i] >= TrkParams::xGF_max[i] ||
977                yGF[i] <= TrkParams::yGF_min[i] ||
978                yGF[i] >= TrkParams::yGF_max[i] ||
979                false)return false;
980        }
981        return true;
982    
983    }
984    /**
985     * Method to retrieve ID (0,1,...) of x-cluster (if any) associated to this track.
986     * If no cluster is associated, ID=-1.
987     * @param ip Tracker plane (0-5)
988     */
989    Int_t TrkTrack::GetClusterX_ID(int ip){
990        return ((Int_t)fabs(xgood[ip]))%10000000-1;
991    };
992    /**
993     * Method to retrieve ID (0-xxx) of y-cluster (if any) associated to this track.
994     * If no cluster is associated, ID=-1.
995     * @param ip Tracker plane (0-5)
996     */
997    Int_t TrkTrack::GetClusterY_ID(int ip){
998        return ((Int_t)fabs(ygood[ip]))%10000000-1;
999    };
1000    
1001    /**
1002     * Method to retrieve the ladder (0-4, increasing x) traversed by the track on this plane.
1003     * If no ladder is traversed (dead area) the metod retuns -1.
1004     * @param ip Tracker plane (0-5)
1005     */
1006    Int_t TrkTrack::GetLadder(int ip){
1007        if(XGood(ip))return (Int_t)fabs(xgood[ip]/100000000)-1;
1008        if(YGood(ip))return (Int_t)fabs(ygood[ip]/100000000)-1;
1009        return -1;
1010    };
1011    /**
1012     * Method to retrieve the sensor (0-1, increasing y) traversed by the track on this plane.
1013     * If no sensor is traversed (dead area) the metod retuns -1.
1014     * @param ip Tracker plane (0-5)
1015     */
1016    Int_t TrkTrack::GetSensor(int ip){
1017        if(XGood(ip))return (Int_t)((Int_t)fabs(xgood[ip]/10000000)%10)-1;
1018        if(YGood(ip))return (Int_t)((Int_t)fabs(ygood[ip]/10000000)%10)-1;
1019        return -1;
1020    };
1021    
1022    /**
1023     * \brief Method to include a x-cluster to the track.
1024     * @param ip Tracker plane (0-5)
1025     * @param clid Cluster ID (0,1,...)
1026     * @param is Sensor (0-1, increasing y)
1027     * @see Fit(double pfixed, int& fail, int iprint, int froml1)
1028     */
1029    void TrkTrack::SetXGood(int ip, int clid, int is){
1030        int il=0;       //ladder (temporary)
1031        bool bad=false; //ladder (temporary)
1032        xgood[ip]=il*100000000+is*10000000+clid;
1033        if(bad)xgood[ip]=-xgood[ip];
1034    };
1035    /**
1036     * \brief Method to include a y-cluster to the track.
1037     * @param ip Tracker plane (0-5)
1038     * @param clid Cluster ID (0,1,...)
1039     * @param is Sensor (0-1)
1040     * @see Fit(double pfixed, int& fail, int iprint, int froml1)
1041     */
1042    void TrkTrack::SetYGood(int ip, int clid, int is){
1043        int il=0;       //ladder (temporary)
1044        bool bad=false; //ladder (temporary)
1045        ygood[ip]=il*100000000+is*10000000+clid;
1046        if(bad)ygood[ip]=-ygood[ip];
1047    };
1048    
1049    /**
1050     * \brief Average X
1051     * Average value of <xv>, evaluated from the first to the last hit x view.
1052     */
1053    Float_t TrkTrack::GetXav(){
1054    
1055        int first_plane = -1;
1056        int last_plane  = -1;
1057        for(Int_t ip=0; ip<6; ip++){
1058            if( XGood(ip) && first_plane == -1 )first_plane = ip;
1059            if( XGood(ip) && first_plane != -1 )last_plane = ip;
1060        }
1061        if( first_plane == -1 || last_plane == -1){
1062            return -100;
1063        }
1064        if( last_plane-first_plane+1 ==0 )return -100;
1065    
1066        Float_t av = 0;    
1067        for(int ip=first_plane; ip<=last_plane; ip++)av+=xv[ip];
1068        
1069        return (av/(last_plane-first_plane+1));    
1070    }
1071    /**
1072     * \brief Average Y
1073     * Average value of <yv>, evaluated from the first to the last hit x view.
1074     */
1075    Float_t TrkTrack::GetYav(){
1076    
1077        int first_plane = -1;
1078        int last_plane  = -1;
1079        for(Int_t ip=0; ip<6; ip++){
1080            if( XGood(ip) && first_plane == -1 )first_plane = ip;
1081            if( XGood(ip) && first_plane != -1 )last_plane = ip;
1082        }
1083        if( first_plane == -1 || last_plane == -1){
1084            return -100;
1085        }
1086        if( last_plane-first_plane+1 ==0 )return -100;
1087    
1088        Float_t av = 0;    
1089        for(int ip=first_plane; ip<=last_plane; ip++)av+=yv[ip];
1090    
1091        return (av/(last_plane-first_plane+1));    
1092    }
1093    /**
1094     * \brief Average Z
1095     * Average value of <zv>, evaluated from the first to the last hit x view.
1096     */
1097    Float_t TrkTrack::GetZav(){
1098    
1099        int first_plane = -1;
1100        int last_plane  = -1;
1101        for(Int_t ip=0; ip<6; ip++){
1102            if( XGood(ip) && first_plane == -1 )first_plane = ip;
1103            if( XGood(ip) && first_plane != -1 )last_plane = ip;
1104        }
1105        if( first_plane == -1 || last_plane == -1){
1106            return -100;
1107        }
1108        if( last_plane-first_plane+1 ==0 )return -100;
1109    
1110        Float_t av = 0;    
1111        for(int ip=first_plane; ip<=last_plane; ip++)av+=zv[ip];
1112        
1113        return (av/(last_plane-first_plane+1));    
1114    }
1115    
1116    /**
1117     * \brief Number of column traversed
1118     */
1119    Int_t TrkTrack::GetNColumns(){
1120        int sensors[] = {0,0,0,0,0,0};
1121        for(int ip=0; ip<6; ip++){
1122            int sensorid = GetLadder(ip)+3*GetSensor(ip);    
1123            if(XGood(ip)||YGood(ip))
1124                if(sensorid>=0 && sensorid<6)sensors[sensorid]=1;
1125        }
1126        int nsensors=0;
1127        for(int is=0; is<6; is++)nsensors += sensors[is];
1128        return nsensors;
1129    };
1130    /**
1131     * \brief Give the maximum energy release
1132     */
1133    Float_t TrkTrack::GetDEDX_max(int ip, int iv){
1134        Float_t max=0;
1135        int pfrom = 0;
1136        int pto   = 6;
1137        int vfrom = 0;
1138        int vto   = 2;
1139        if(ip>=0&&ip<6){
1140            pfrom = ip;
1141            pto   = ip+1;
1142        }
1143        if(iv>=0&&iv<2){
1144            vfrom = iv;
1145            vto   = iv+1;
1146        }
1147        for(int i=pfrom; i<pto; i++)
1148            for(int j=0; j<vto; j++)
1149                if(GetDEDX(i,j)>max)max=GetDEDX(i,j);
1150    
1151        return max;
1152    
1153    };
1154    
1155    /**
1156     * \brief Give the minimum energy release
1157     */
1158    Float_t TrkTrack::GetDEDX_min(int ip, int iv){
1159        Float_t min=100000000;
1160        int pfrom = 0;
1161        int pto   = 6;
1162        int vfrom = 0;
1163        int vto   = 2;
1164        if(ip>=0&&ip<6){
1165            pfrom = ip;
1166            pto   = ip+1;
1167        }
1168        if(iv>=0&&iv<2){
1169            vfrom = iv;
1170            vto   = iv+1;
1171        }
1172        for(int i=pfrom; i<pto; i++)
1173            for(int j=0; j<vto; j++)
1174                if(GetDEDX(i,j)<min)min=GetDEDX(i,j);
1175    
1176        return min;
1177    
1178    };
1179    
1180    /**
1181     * \brief Give the maximum spatial residual release
1182     */
1183    Float_t TrkTrack::GetResidual_max(int ip, int iv){
1184        Float_t max=0;
1185        int pfrom = 0;
1186        int pto   = 6;
1187        int vfrom = 0;
1188        int vto   = 2;
1189        if(ip>=0&&ip<6){
1190            pfrom = ip;
1191            pto   = ip+1;
1192        }
1193        if(iv>=0&&iv<2){
1194            vfrom = iv;
1195            vto   = iv+1;
1196        }
1197        for(int i=pfrom; i<pto; i++){
1198            for(int j=0; j<vto; j++){
1199                if(j==0 && XGood(i) && fabs(xm[i]-xv[i])>fabs(max))max=xv[i]-xm[i];
1200                if(j==1 && YGood(i) && fabs(ym[i]-yv[i])>fabs(max))max=yv[i]-ym[i];
1201            }
1202        }
1203        return max;
1204    
1205    };
1206    
1207    
1208    /**
1209     * \brief Give the maximum multiplicity on the x view
1210     */
1211    Int_t TrkTrack::GetClusterX_Multiplicity_max(){
1212        int max=0;
1213        for(int ip=0; ip<6; ip++)
1214            if(GetClusterX_Multiplicity(ip)>max)max=GetClusterX_Multiplicity(ip);
1215        return max;
1216    };
1217    /**
1218     * \brief Give the minimum multiplicity on the x view
1219     */
1220    Int_t TrkTrack::GetClusterX_Multiplicity_min(){
1221        int min=50;
1222        for(int ip=0; ip<6; ip++)
1223            if(GetClusterX_Multiplicity(ip)<min)min=GetClusterX_Multiplicity(ip);
1224        return min;
1225    };
1226    /**
1227     * \brief Give the maximum multiplicity on the x view
1228     */
1229    Int_t TrkTrack::GetClusterY_Multiplicity_max(){
1230        int max=0;
1231        for(int ip=0; ip<6; ip++)
1232            if(GetClusterY_Multiplicity(ip)>max)max=GetClusterY_Multiplicity(ip);
1233        return max;
1234    };
1235    /**
1236     * \brief Give the minimum multiplicity on the x view
1237     */
1238    Int_t TrkTrack::GetClusterY_Multiplicity_min(){
1239        int min=50;
1240        for(int ip=0; ip<6; ip++)
1241            if(GetClusterY_Multiplicity(ip)<min)min=GetClusterY_Multiplicity(ip);
1242        return min;
1243    };
1244    
1245    /**
1246     * \brief Give the minimum seed on the x view
1247     */
1248    Float_t TrkTrack::GetClusterX_Seed_min(){
1249        Float_t min=100000;
1250        for(int ip=0; ip<6; ip++)
1251            if(XGood(ip) && GetClusterX_Seed(ip)<min)min=GetClusterX_Seed(ip);
1252        return min;
1253    };
1254    /**
1255     * \brief Give the minimum seed on the x view
1256     */
1257    Float_t TrkTrack::GetClusterY_Seed_min(){
1258        Float_t min=100000;
1259        for(int ip=0; ip<6; ip++)
1260            if(YGood(ip) && GetClusterY_Seed(ip)<min)min=GetClusterY_Seed(ip);
1261        return min;
1262    };
1263    
1264    
1265    //--------------------------------------
1266    //
1267    //
1268    //--------------------------------------
1269    void TrkTrack::Clear(){
1270    //    cout << "TrkTrack::Clear()"<<endl;
1271        seqno = -1;
1272        image = -1;
1273        chi2  = 0;
1274        nstep = 0;
1275        for(int it1=0;it1<5;it1++){
1276            al[it1] = 0;
1277            for(int it2=0;it2<5;it2++)coval[it1][it2] = 0;
1278        };
1279        for(int ip=0;ip<6;ip++){
1280            xgood[ip]  = 0;
1281            ygood[ip]  = 0;
1282            xm[ip]     = 0;
1283            ym[ip]     = 0;
1284            zm[ip]     = 0;
1285            resx[ip]   = 0;
1286            resy[ip]   = 0;
1287            tailx[ip]  = 0;
1288            taily[ip]  = 0;
1289            xv[ip]     = 0;
1290            yv[ip]     = 0;
1291            zv[ip]     = 0;
1292            axv[ip]    = 0;
1293            ayv[ip]    = 0;
1294            dedx_x[ip] = 0;
1295            dedx_y[ip] = 0;
1296    
1297        };
1298        int ngf = TrkParams::nGF;
1299        for(int i=0; i<ngf; i++){
1300            xGF[i] = 0.;
1301            yGF[i] = 0.;
1302        }
1303    //     if(clx)clx->Clear();
1304    //     if(cly)cly->Clear();
1305    //    clx.Clear();
1306    //    cly.Clear();
1307    };
1308    //--------------------------------------
1309    //
1310    //
1311    //--------------------------------------
1312    void TrkTrack::Delete(){
1313    //    cout << "TrkTrack::Delete()"<<endl;
1314        Clear();
1315    //    if(clx)delete clx;
1316    //    if(cly)delete cly;
1317    };
1318    //--------------------------------------
1319    //
1320    //
1321    //--------------------------------------
1322    
1323  //--------------------------------------  //--------------------------------------
1324  //  //
1325  //  //
1326  //--------------------------------------  //--------------------------------------
1327  TrkSinglet::TrkSinglet(){  TrkSinglet::TrkSinglet(){
1328      plane    = 0;  //    cout << "TrkSinglet::TrkSinglet() " << GetUniqueID()<<endl;
1329      coord[0] = 0;  //     plane    = 0;
1330      coord[1] = 0;  //     coord[0] = 0;
1331      sgnl     = 0;  //     coord[1] = 0;
1332    //     sgnl     = 0;
1333    //     multmax  = 0;
1334    //    cls      = 0;
1335        Clear();
1336  };  };
1337  //--------------------------------------  //--------------------------------------
1338  //  //
1339  //  //
1340  //--------------------------------------  //--------------------------------------
1341  TrkSinglet::TrkSinglet(const TrkSinglet& s){  TrkSinglet::TrkSinglet(const TrkSinglet& s){
1342    //    cout << "TrkSinglet::TrkSinglet(const TrkSinglet& s) " << GetUniqueID()<<endl;
1343      plane    = s.plane;      plane    = s.plane;
1344      coord[0] = s.coord[0];      coord[0] = s.coord[0];
1345      coord[1] = s.coord[1];      coord[1] = s.coord[1];
1346      sgnl     = s.sgnl;      sgnl     = s.sgnl;
1347        multmax  = s.multmax;
1348    //      cls      = 0;//<<<<pointer
1349    //    cls      = TRef(s.cls);
1350  };  };
1351  //--------------------------------------  //--------------------------------------
1352  //  //
# Line 222  TrkSinglet::TrkSinglet(const TrkSinglet& Line 1355  TrkSinglet::TrkSinglet(const TrkSinglet&
1355  void TrkSinglet::Dump(){  void TrkSinglet::Dump(){
1356      int i=0;      int i=0;
1357      cout << endl << "========== Singlet " ;      cout << endl << "========== Singlet " ;
1358      cout << endl << "plane    : " << plane;      cout << endl << "plane        : " << plane;
1359      cout << endl << "coord[2] : "; while( i<2 && cout << coord[i] << " ") i++;      cout << endl << "coord[2]     : "; while( i<2 && cout << coord[i] << " ") i++;
1360      cout << endl << "sgnl     : " << sgnl;      cout << endl << "sgnl         : " << sgnl;
1361        cout << endl << "max.strip    : ";
1362        cout << endl << "multiplicity : ";
1363    }
1364    //--------------------------------------
1365    //
1366    //
1367    //--------------------------------------
1368    void TrkSinglet::Clear(){
1369    //    cout << "TrkSinglet::Clear() " << GetUniqueID()<<endl;
1370    //    cls=0;
1371        plane=-1;
1372        coord[0]=-999;
1373        coord[1]=-999;
1374        sgnl=0;
1375        multmax  = 0;
1376        
1377  }  }
1378  //--------------------------------------  //--------------------------------------
1379  //  //
1380  //  //
1381  //--------------------------------------  //--------------------------------------
1382  TrkLevel2::TrkLevel2(){  TrkLevel2::TrkLevel2(){
1383      good2    = -1;    //    cout <<"TrkLevel2::TrkLevel2()"<<endl;
1384      for(Int_t i=0; i<12 ; i++){      for(Int_t i=0; i<12 ; i++){
1385          crc[i] = -1;          good[i] = -1;
1386            VKmask[i] = 0;
1387            VKflag[i] = 0;  
1388      };      };
1389      Track    = new TClonesArray("TrkTrack");      Track    = 0;
1390      SingletX = new TClonesArray("TrkSinglet");      SingletX = 0;
1391      SingletY = new TClonesArray("TrkSinglet");      SingletY = 0;
1392    
1393    }
1394    //--------------------------------------
1395    //
1396    //
1397    //--------------------------------------
1398    void TrkLevel2::Set(){
1399        if(!Track)Track    = new TClonesArray("TrkTrack");
1400        if(!SingletX)SingletX = new TClonesArray("TrkSinglet");
1401        if(!SingletY)SingletY = new TClonesArray("TrkSinglet");
1402  }  }
1403  //--------------------------------------  //--------------------------------------
1404  //  //
1405  //  //
1406  //--------------------------------------  //--------------------------------------
1407  void TrkLevel2::Dump(){  void TrkLevel2::Dump(){
1408      TClonesArray &t  = *Track;          
1409      TClonesArray &sx = *SingletX;          //
     TClonesArray &sy = *SingletY;  
   
1410      cout << endl << endl << "=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-";      cout << endl << endl << "=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-";
1411      cout << endl << "good2    : " << good2;      cout << endl << "good     : "; for(int i=0; i<12; i++) cout << hex <<" 0x"<< good[i]<<dec;
1412      cout << endl << "crc      : "; for(int i=0; i<12; i++) cout << crc[i];      cout << endl << "ntrk()   : " << ntrk() ;
1413      cout << endl << "ntrk()   : " << this->ntrk() ;      cout << endl << "nclsx()  : " << nclsx();
1414      cout << endl << "nclsx()  : " << this->nclsx();      cout << endl << "nclsy()  : " << nclsy();
1415      cout << endl << "nclsy()  : " << this->nclsy();      if(Track){
1416      for(int i=0; i<this->ntrk(); i++)     ((TrkTrack *)t[i])->Dump();          TClonesArray &t  = *Track;
1417      for(int i=0; i<this->nclsx(); i++) ((TrkSinglet *)sx[i])->Dump();          for(int i=0; i<ntrk(); i++)     ((TrkTrack *)t[i])->Dump();
1418      for(int i=0; i<this->nclsy(); i++) ((TrkSinglet *)sy[i])->Dump();      }      
1419    //     if(SingletX){
1420    //      TClonesArray &sx = *SingletX;
1421    //      for(int i=0; i<nclsx(); i++) ((TrkSinglet *)sx[i])->Dump();
1422    //     }
1423    //     if(SingletY){
1424    //      TClonesArray &sy = *SingletY;
1425    //      for(int i=0; i<nclsy(); i++) ((TrkSinglet *)sy[i])->Dump();
1426    //     }
1427        cout << endl;
1428  }  }
1429    /**
1430     * \brief Dump processing status
1431     */
1432    void TrkLevel2::StatusDump(int view){
1433        cout << "DSP n. "<<view+1<<" status: "<<hex<<good[view]<<endl;    
1434    };
1435    /**
1436     * \brief Check event status
1437     *
1438     * Check the event status, according to a flag-mask given as input.
1439     * Return true if the view passes the check.
1440     *
1441     * @param view View number (0-11)
1442     * @param flagmask Mask of flags to check (eg. flagmask=0x111 no missing packet,
1443     *  no crc error, no software alarm)
1444     *
1445     * @see TrkLevel2 class definition to know how the status flag is defined
1446     *
1447     */
1448    Bool_t TrkLevel2::StatusCheck(int view, int flagmask){
1449    
1450        if( view<0 || view >= 12)return false;
1451        return !(good[view]&flagmask);
1452    
1453    };
1454    
1455    
1456  //--------------------------------------  //--------------------------------------
1457  //  //
1458  //  //
1459  //--------------------------------------  //--------------------------------------
1460  /**  /**
1461   * Fills a TrkLevel2 object with values from a struct cTrkLevel2 (to get data from F77 common).   * The method returns false if the viking-chip was masked  
1462     * either apriori ,on the basis of the mask read from the DB,
1463     * or run-by-run, on the basis of the calibration parameters)
1464     * @param iv Tracker view (0-11)
1465     * @param ivk Viking-chip number (0-23)
1466     */
1467    Bool_t TrkLevel2::GetVKMask(int iv, int ivk){
1468        Int_t whichbit = (Int_t)pow(2,ivk);
1469        return (whichbit&VKmask[iv])!=0;    
1470    }
1471    /**
1472     * The method returns false if the viking-chip was masked  
1473     * for this event due to common-noise computation failure.
1474     * @param iv Tracker view (0-11)
1475     * @param ivk Viking-chip number (0-23)
1476   */   */
1477  void TrkLevel2::FillCommonVar(cTrkLevel2 *l2){  Bool_t TrkLevel2::GetVKFlag(int iv, int ivk){
1478        Int_t whichbit = (Int_t)pow(2,ivk);
1479        return (whichbit&VKflag[iv])!=0;    
1480    }
1481    /**
1482     * The method returns true if the viking-chip was masked, either
1483     * forced (see TrkLevel2::GetVKMask(int,int)) or
1484     * for this event only (TrkLevel2::GetVKFlag(int,int)).
1485     * @param iv Tracker view (0-11)
1486     * @param ivk Viking-chip number (0-23)
1487     */
1488    Bool_t TrkLevel2::IsMaskedVK(int iv, int ivk){
1489        return !(GetVKMask(iv,ivk)&&GetVKFlag(iv,ivk) );
1490    };
1491    
1492    //--------------------------------------
1493    //
1494    //
1495    //--------------------------------------
1496    /**
1497     * Fills a TrkLevel2 object with values from a struct cTrkLevel2 (to get data from F77 common).
1498     * Ref to Level1 data (clusters) is also set. If l1==NULL no references are set.
1499     * (NB It make sense to set references only if events are stored in a tree that contains also the Level1 branch)
1500     */
1501    void TrkLevel2::SetFromLevel2Struct(cTrkLevel2 *l2, TrkLevel1 *l1){
1502    
1503    //    cout << "void TrkLevel2::SetFromLevel2Struct(cTrkLevel2 *l2, TrkLevel1 *l1)"<<endl;
1504        Clear();
1505    
1506  //  temporary objects:  //  temporary objects:
1507      TrkSinglet* t_singlet = new TrkSinglet();      TrkSinglet* t_singlet = new TrkSinglet();
1508      TrkTrack*   t_track   = new TrkTrack();      TrkTrack*   t_track   = new TrkTrack();
1509    
1510    //  -----------------
1511  //  general variables  //  general variables
1512      good2 = l2->good2;  //  -----------------
1513      for(Int_t i=0; i<12 ; i++){      for(Int_t i=0; i<12 ; i++){
1514          crc[i] = l2->crc[i];          good[i] = l2->good[i];
1515            VKmask[i]=0;
1516            VKflag[i]=0;
1517            for(Int_t ii=0; ii<24 ; ii++){
1518                Int_t setbit = (Int_t)pow(2,ii);
1519                if( l2->vkflag[ii][i]!=-1 )VKmask[i]=VKmask[i]|setbit;
1520                if( l2->vkflag[ii][i]!=0  )VKflag[i]=VKflag[i]|setbit;
1521            };
1522      };      };
1523    //  --------------
1524  //  *** TRACKS ***  //  *** TRACKS ***
1525    //  --------------
1526        if(!Track) Track = new TClonesArray("TrkTrack");
1527      TClonesArray &t = *Track;      TClonesArray &t = *Track;
1528    
1529      for(int i=0; i<l2->ntrk; i++){      for(int i=0; i<l2->ntrk; i++){
1530            t_track->seqno = i;// NBNBNBNB deve sempre essere = i
1531          t_track->image = l2->image[i]-1;          t_track->image = l2->image[i]-1;
1532          t_track->chi2  = l2->chi2_nt[i];          t_track->chi2  = l2->chi2_nt[i];
1533            t_track->nstep = l2->nstep_nt[i];
1534          for(int it1=0;it1<5;it1++){          for(int it1=0;it1<5;it1++){
1535              t_track->al[it1] = l2->al_nt[i][it1];              t_track->al[it1] = l2->al_nt[i][it1];
1536              for(int it2=0;it2<5;it2++)              for(int it2=0;it2<5;it2++)
1537                  t_track->coval[it1][it2] = l2->coval[i][it2][it1];                  t_track->coval[it1][it2] = l2->coval[i][it2][it1];
1538          };          };
1539          for(int ip=0;ip<6;ip++){          for(int ip=0;ip<6;ip++){
1540              t_track->xgood[ip]  = l2->xgood_nt[i][ip];              // ---------------------------------
1541              t_track->ygood[ip]  = l2->ygood_nt[i][ip];              // new implementation of xgood/ygood
1542                // ---------------------------------
1543                t_track->xgood[ip]  = l2->cltrx[i][ip]; //cluster ID
1544                t_track->ygood[ip]  = l2->cltry[i][ip]; //cluster ID
1545                t_track->xgood[ip] += 10000000*l2->ls[i][ip]; // ladder+sensor
1546                t_track->ygood[ip] += 10000000*l2->ls[i][ip]; // ladder+sensor
1547                if(l2->xbad[i][ip]>0)t_track->xgood[ip]=-t_track->xgood[ip];
1548                if(l2->ybad[i][ip]>0)t_track->ygood[ip]=-t_track->ygood[ip];
1549    //          if(l2->xbad[i][ip]>0 || l2->ybad[i][ip]>0){
1550    //          if(l2->dedx_x[i][ip]<0 || l2->dedx_y[i][ip]<0){
1551    //              cout << ip << " - "<< l2->cltrx[i][ip] << " "<<l2->cltry[i][ip]<<" "<<l2->ls[i][ip]<<endl;
1552    //              cout << ip << " - "<<t_track->xgood[ip]<<" "<<t_track->ygood[ip]<<endl;
1553    //              cout << ip << " - "<<t_track->GetClusterX_ID(ip)<<" "<<t_track->GetClusterY_ID(ip)<<" "<<t_track->GetLadder(ip)<<" "<<t_track->GetSensor(ip)<<endl;
1554    //              cout << ip << " - "<<t_track->BadClusterX(ip)<<" "<<t_track->BadClusterY(ip)<<endl;
1555    //              cout << ip << " - "<<t_track->SaturatedClusterX(ip)<<" "<<t_track->SaturatedClusterY(ip)<<endl;
1556    //          }
1557              t_track->xm[ip]     = l2->xm_nt[i][ip];              t_track->xm[ip]     = l2->xm_nt[i][ip];
1558              t_track->ym[ip]     = l2->ym_nt[i][ip];              t_track->ym[ip]     = l2->ym_nt[i][ip];
1559              t_track->zm[ip]     = l2->zm_nt[i][ip];              t_track->zm[ip]     = l2->zm_nt[i][ip];
1560              t_track->resx[ip]   = l2->resx_nt[i][ip];              t_track->resx[ip]   = l2->resx_nt[i][ip];
1561              t_track->resy[ip]   = l2->resy_nt[i][ip];              t_track->resy[ip]   = l2->resy_nt[i][ip];
1562                t_track->tailx[ip]  = l2->tailx[i][ip];
1563                t_track->taily[ip]  = l2->taily[i][ip];
1564              t_track->xv[ip]     = l2->xv_nt[i][ip];              t_track->xv[ip]     = l2->xv_nt[i][ip];
1565              t_track->yv[ip]     = l2->yv_nt[i][ip];              t_track->yv[ip]     = l2->yv_nt[i][ip];
1566              t_track->zv[ip]     = l2->zv_nt[i][ip];              t_track->zv[ip]     = l2->zv_nt[i][ip];
# Line 299  void TrkLevel2::FillCommonVar(cTrkLevel2 Line 1568  void TrkLevel2::FillCommonVar(cTrkLevel2
1568              t_track->ayv[ip]    = l2->ayv_nt[i][ip];              t_track->ayv[ip]    = l2->ayv_nt[i][ip];
1569              t_track->dedx_x[ip] = l2->dedx_x[i][ip];              t_track->dedx_x[ip] = l2->dedx_x[i][ip];
1570              t_track->dedx_y[ip] = l2->dedx_y[i][ip];              t_track->dedx_y[ip] = l2->dedx_y[i][ip];
1571                t_track->multmaxx[ip] = l2->multmaxx[i][ip];
1572                t_track->multmaxy[ip] = l2->multmaxy[i][ip];
1573                t_track->seedx[ip]  = l2->seedx[i][ip];  
1574                t_track->seedy[ip]  = l2->seedy[i][ip];
1575                t_track->xpu[ip]    = l2->xpu[i][ip];  
1576                t_track->ypu[ip]    = l2->ypu[i][ip];  
1577                //-----------------------------------------------------
1578                //-----------------------------------------------------
1579                //-----------------------------------------------------
1580                //-----------------------------------------------------
1581          };          };
1582            // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1583            // evaluated coordinates (to define GF)
1584            // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1585            int    ngf = TrkParams::nGF;
1586            float *zgf = TrkParams::zGF;
1587            Trajectory tgf = Trajectory(ngf,zgf);
1588            tgf.DoTrack2(t_track->al);//<<<< integrate the trajectory
1589            for(int ip=0; ip<ngf; ip++){
1590                t_track->xGF[ip] = tgf.x[ip];
1591                t_track->yGF[ip] = tgf.y[ip];
1592            }
1593            
1594    //      if(t_track->IsSaturated())t_track->Dump();
1595          new(t[i]) TrkTrack(*t_track);          new(t[i]) TrkTrack(*t_track);
1596          t_track->Clear();          t_track->Clear();
1597      };      };//end loop over track
1598    
1599    //  ----------------
1600  //  *** SINGLETS ***  //  *** SINGLETS ***
1601    //  ----------------
1602        if(!SingletX)SingletX = new TClonesArray("TrkSinglet");
1603      TClonesArray &sx = *SingletX;      TClonesArray &sx = *SingletX;
1604      for(int i=0; i<l2->nclsx; i++){      for(int i=0; i<l2->nclsx; i++){
1605          t_singlet->plane    = l2->planex[i];          t_singlet->plane    = l2->planex[i];
1606          t_singlet->coord[0] = l2->xs[i][0];          t_singlet->coord[0] = l2->xs[i][0];
1607          t_singlet->coord[1] = l2->xs[i][1];          t_singlet->coord[1] = l2->xs[i][1];
1608          t_singlet->sgnl     = l2->signlxs[i];          t_singlet->sgnl     = l2->signlxs[i];
1609            t_singlet->multmax = l2->multmaxsx[i];
1610            if(l2->sxbad[i]>0) t_singlet->multmax = -1*t_singlet->multmax;
1611            //-----------------------------------------------------
1612    //      if(l1) t_singlet->cls      = l1->GetCluster(l2->clsx[i]-1);
1613            //-----------------------------------------------------
1614          new(sx[i]) TrkSinglet(*t_singlet);          new(sx[i]) TrkSinglet(*t_singlet);
1615          t_singlet->Clear();          t_singlet->Clear();
1616      }      }
1617        if(!SingletY)SingletY = new TClonesArray("TrkSinglet");
1618      TClonesArray &sy = *SingletY;      TClonesArray &sy = *SingletY;
1619      for(int i=0; i<l2->nclsy; i++){      for(int i=0; i<l2->nclsy; i++){
1620          t_singlet->plane    = l2->planey[i];          t_singlet->plane    = l2->planey[i];
1621          t_singlet->coord[0] = l2->ys[i][0];          t_singlet->coord[0] = l2->ys[i][0];
1622          t_singlet->coord[1] = l2->ys[i][1];          t_singlet->coord[1] = l2->ys[i][1];
1623          t_singlet->sgnl     = l2->signlys[i];          t_singlet->sgnl     = l2->signlys[i];
1624            t_singlet->multmax  = l2->multmaxsy[i];
1625            if(l2->sybad[i]>0) t_singlet->multmax = -1*t_singlet->multmax;
1626            //-----------------------------------------------------
1627    //      if(l1) t_singlet->cls      = l1->GetCluster(l2->clsy[i]-1);
1628            //-----------------------------------------------------
1629          new(sy[i]) TrkSinglet(*t_singlet);          new(sy[i]) TrkSinglet(*t_singlet);
1630          t_singlet->Clear();          t_singlet->Clear();
1631          };      };
1632    
1633    
1634            
1635        delete t_track;
1636        delete t_singlet;
1637    }
1638    /**
1639     * Fills a struct cTrkLevel2 with values from a TrkLevel2 object (to put data into a F77 common).
1640     */
1641    
1642    void TrkLevel2::GetLevel2Struct(cTrkLevel2 *l2) const {
1643      
1644    //  general variables
1645    //    l2->good2 = good2 ;
1646        for(Int_t i=0; i<12 ; i++){
1647    //      l2->crc[i] = crc[i];
1648                    l2->good[i] = good[i];
1649        };
1650    //  *** TRACKS ***
1651    
1652        if(Track){
1653            l2->ntrk              =  Track->GetEntries();    
1654            for(Int_t i=0;i<l2->ntrk;i++){
1655                l2->image[i] = 1 + ((TrkTrack *)Track->At(i))->image;
1656                l2->chi2_nt[i] =  ((TrkTrack *)Track->At(i))->chi2;
1657                l2->nstep_nt[i] =  ((TrkTrack *)Track->At(i))->nstep;
1658                for(int it1=0;it1<5;it1++){
1659                    l2->al_nt[i][it1] = ((TrkTrack *)Track->At(i))->al[it1];
1660                    for(int it2=0;it2<5;it2++)
1661                        l2->coval[i][it2][it1] = ((TrkTrack *)Track->At(i))->coval[it1][it2];
1662                };
1663                for(int ip=0;ip<6;ip++){
1664                    l2->xgood_nt[i][ip] = ((TrkTrack *)Track->At(i))->XGood(ip);
1665                    l2->ygood_nt[i][ip] = ((TrkTrack *)Track->At(i))->YGood(ip);
1666                    l2->xm_nt[i][ip]    = ((TrkTrack *)Track->At(i))->xm[ip];
1667                    l2->ym_nt[i][ip]    = ((TrkTrack *)Track->At(i))->ym[ip];
1668                    l2->zm_nt[i][ip]    = ((TrkTrack *)Track->At(i))->zm[ip];
1669                    l2->resx_nt[i][ip]  = ((TrkTrack *)Track->At(i))->resx[ip];
1670                    l2->resy_nt[i][ip]  = ((TrkTrack *)Track->At(i))->resy[ip];
1671                    l2->tailx[i][ip]  = ((TrkTrack *)Track->At(i))->tailx[ip];
1672                    l2->taily[i][ip]  = ((TrkTrack *)Track->At(i))->taily[ip];
1673                    l2->xv_nt[i][ip]    = ((TrkTrack *)Track->At(i))->xv[ip];
1674                    l2->yv_nt[i][ip]    = ((TrkTrack *)Track->At(i))->yv[ip];
1675                    l2->zv_nt[i][ip]    = ((TrkTrack *)Track->At(i))->zv[ip];
1676                    l2->axv_nt[i][ip]   = ((TrkTrack *)Track->At(i))->axv[ip];
1677                    l2->ayv_nt[i][ip]   = ((TrkTrack *)Track->At(i))->ayv[ip];
1678                    l2->dedx_x[i][ip]   = ((TrkTrack *)Track->At(i))->dedx_x[ip];
1679                    l2->dedx_y[i][ip]   = ((TrkTrack *)Track->At(i))->dedx_y[ip];
1680                };
1681            }
1682        }
1683    //  *** SINGLETS ***    
1684        if(SingletX){
1685            l2->nclsx              = SingletX->GetEntries();
1686            for(Int_t i=0;i<l2->nclsx;i++){
1687                l2->planex[i]  = ((TrkSinglet *)SingletX->At(i))->plane;
1688                l2->xs[i][0]   = ((TrkSinglet *)SingletX->At(i))->coord[0];
1689                l2->xs[i][1]   = ((TrkSinglet *)SingletX->At(i))->coord[1];
1690                l2->signlxs[i] = ((TrkSinglet *)SingletX->At(i))->sgnl;
1691            }
1692        }
1693    
1694        if(SingletY){
1695            l2->nclsy              = SingletY->GetEntries();
1696            for(Int_t i=0;i<l2->nclsy;i++){
1697                l2->planey[i]  = ((TrkSinglet *)SingletY->At(i))->plane;
1698                l2->ys[i][0]   = ((TrkSinglet *)SingletY->At(i))->coord[0];
1699                l2->ys[i][1]   = ((TrkSinglet *)SingletY->At(i))->coord[1];
1700                l2->signlys[i] = ((TrkSinglet *)SingletY->At(i))->sgnl;
1701            }
1702        }
1703  }  }
1704  //--------------------------------------  //--------------------------------------
1705  //  //
1706  //  //
1707  //--------------------------------------  //--------------------------------------
1708  void TrkLevel2::Clear(){  void TrkLevel2::Clear(){
     good2    = -1;  
1709      for(Int_t i=0; i<12 ; i++){      for(Int_t i=0; i<12 ; i++){
1710          crc[i] = -1;          good[i] = -1;
1711            VKflag[i] = 0;
1712            VKmask[i] = 0;
1713      };      };
1714      Track->RemoveAll();  //    if(Track)Track->Clear("C");
1715      SingletX->RemoveAll();  //    if(SingletX)SingletX->Clear("C");
1716      SingletY->RemoveAll();  //    if(SingletY)SingletY->Clear("C");
1717        if(Track)Track->Delete();
1718        if(SingletX)SingletX->Delete();
1719        if(SingletY)SingletY->Delete();
1720    }
1721    // //--------------------------------------
1722    // //
1723    // //
1724    // //--------------------------------------
1725    void TrkLevel2::Delete(){
1726            
1727    //    cout << "void TrkLevel2::Delete()"<<endl;
1728        Clear();
1729        if(Track)delete Track;
1730        if(SingletX)delete SingletX;
1731        if(SingletY)delete SingletY;
1732    
1733  }  }
1734  //--------------------------------------  //--------------------------------------
1735  //  //
# Line 344  void TrkLevel2::Clear(){ Line 1739  void TrkLevel2::Clear(){
1739   * Sort physical tracks and stores them in a TObjectArray, ordering by increasing chi**2 value (in case of track image, it selects the one with lower chi**2). The total number of physical tracks is given by GetNTracks() and the it-th physical track can be retrieved by means of the method GetTrack(int it).   * Sort physical tracks and stores them in a TObjectArray, ordering by increasing chi**2 value (in case of track image, it selects the one with lower chi**2). The total number of physical tracks is given by GetNTracks() and the it-th physical track can be retrieved by means of the method GetTrack(int it).
1740   * This method is overridden by PamLevel2::GetTracks(), where calorimeter and TOF information is used.   * This method is overridden by PamLevel2::GetTracks(), where calorimeter and TOF information is used.
1741   */   */
1742  TClonesArray *TrkLevel2::GetTracks(){  TRefArray *TrkLevel2::GetTracks_NFitSorted(){
1743    
1744      TClonesArray *sorted = new TClonesArray("TrkTrack");      if(!Track)return 0;
     TClonesArray &t = *Track;  
     TClonesArray &ts = *sorted;  
     int N=this->ntrk();  
     vector<int> m(N); for(int i=0; i<N; i++)m[i]=1;  
1745    
1746        TRefArray *sorted = new TRefArray();
1747            
1748        TClonesArray &t  = *Track;
1749    //    TClonesArray &ts = *PhysicalTrack;
1750        int N = ntrk();
1751        vector<int> m(N); for(int i=0; i<N; i++)m[i]=1;
1752    //      int m[50]; for(int i=0; i<N; i++)m[i]=1;
1753            
1754      int indo=0;      int indo=0;
1755      int indi=0;      int indi=0;
1756      while(N != 0){      while(N > 0){
1757          float chi2ref=1000000;  //    while(N != 0){
1758          for(int i=0; i<this->ntrk(); i++){          int nfit =0;
1759              if(((TrkTrack *)t[i])->chi2 < chi2ref && m[i]==1){          float chi2ref = numeric_limits<float>::max();
1760                  chi2ref = ((TrkTrack *)t[i])->chi2;                  
1761                  indi = i;          // first loop to search maximum num. of fit points
1762            for(int i=0; i < ntrk(); i++){
1763                if( ((TrkTrack *)t[i])->GetNtot() >= nfit && m[i]==1){
1764                    nfit =    ((TrkTrack *)t[i])->GetNtot();
1765              }              }
1766          }          }
1767          if( ((TrkTrack *)t[indi])->image != -1 ){          //second loop to search minimum chi2 among selected
1768            for(int i=0; i<ntrk(); i++){
1769                Float_t chi2 = ((TrkTrack *)t[i])->chi2;
1770                if(chi2 < 0) chi2 = -chi2*1000;
1771                if(    chi2 < chi2ref
1772                       && ((TrkTrack *)t[i])->GetNtot() == nfit
1773                       && m[i]==1){
1774                    chi2ref = ((TrkTrack *)t[i])->chi2;
1775                    indi = i;
1776                };
1777            };
1778            if( ((TrkTrack *)t[indi])->HasImage() ){
1779              m[((TrkTrack *)t[indi])->image] = 0;              m[((TrkTrack *)t[indi])->image] = 0;
1780              N--;              N--;
1781          }          
1782          new(ts[indo]) TrkTrack(*(TrkTrack*)t[indi]);  //          cout << "i** "<< ((TrkTrack *)t[indi])->image << " " << nfiti <<" "<<chi2i<<endl;
1783            };
1784            sorted->Add( (TrkTrack*)t[indi] );      
1785                    
1786          m[indi] = 0;          m[indi] = 0;
1787    //      cout << "SORTED "<< indo << " "<< indi << " "<< N << " "<<((TrkTrack *)t[indi])->image<<" "<<chi2ref<<endl;
1788          N--;              N--;    
1789          indo++;          indo++;
1790      }      }
1791        m.clear();
1792    //    cout << "GetTracks_NFitSorted(it): Done"<< endl;
1793    
1794      return sorted;      return sorted;
1795    //    return PhysicalTrack;
1796  }  }
1797  //--------------------------------------  //--------------------------------------
1798  //  //
# Line 385  TClonesArray *TrkLevel2::GetTracks(){ Line 1806  TClonesArray *TrkLevel2::GetTracks(){
1806  TrkTrack *TrkLevel2::GetStoredTrack(int is){  TrkTrack *TrkLevel2::GetStoredTrack(int is){
1807    
1808      if(is >= this->ntrk()){      if(is >= this->ntrk()){
1809          cout << "** TrkLevel2 ** Track "<< is << "doen not exits! " << endl;          cout << "TrkTrack *TrkLevel2::GetStoredTrack(int) >> Track "<< is << "doen not exits! " << endl;
1810          cout << "                Stored tracks ntrk() = "<< this->ntrk() << endl;          cout << "Stored tracks ntrk() = "<< this->ntrk() << endl;
1811          return 0;          return 0;
1812      }      }
1813        if(!Track){
1814            cout << "TrkTrack *TrkLevel2::GetStoredTrack(int is) >> (TClonesArray*) Track ==0 "<<endl;
1815        };
1816      TClonesArray &t = *(Track);      TClonesArray &t = *(Track);
1817      TrkTrack *track = (TrkTrack*)t[is];      TrkTrack *track = (TrkTrack*)t[is];
1818      return track;      return track;
# Line 398  TrkTrack *TrkLevel2::GetStoredTrack(int Line 1822  TrkTrack *TrkLevel2::GetStoredTrack(int
1822  //  //
1823  //--------------------------------------  //--------------------------------------
1824  /**  /**
1825     * Retrieves the is-th stored X singlet.
1826     * @param it Singlet number, ranging from 0 to nclsx().
1827     */
1828    TrkSinglet *TrkLevel2::GetSingletX(int is){
1829    
1830            if(is >= this->nclsx()){
1831                    cout << "TrkSinglet *TrkLevel2::GetSingletX(int) >> Singlet "<< is << "doen not exits! " << endl;
1832                    cout << "Stored x-singlets nclsx() = "<< this->nclsx() << endl;
1833                    return 0;
1834            }
1835            if(!SingletX)return 0;
1836            TClonesArray &t = *(SingletX);
1837            TrkSinglet *singlet = (TrkSinglet*)t[is];
1838            return singlet;
1839    }
1840    //--------------------------------------
1841    //
1842    //
1843    //--------------------------------------
1844    /**
1845     * Retrieves the is-th stored Y singlet.
1846     * @param it Singlet number, ranging from 0 to nclsx().
1847     */
1848    TrkSinglet *TrkLevel2::GetSingletY(int is){
1849    
1850            if(is >= this->nclsy()){
1851                    cout << "TrkSinglet *TrkLevel2::GetSingletY(int) >> Singlet "<< is << "doen not exits! " << endl;
1852                    cout << "Stored y-singlets nclsx() = "<< this->nclsx() << endl;
1853                    return 0;
1854            }
1855            if(!SingletY)return 0;
1856            TClonesArray &t = *(SingletY);
1857            TrkSinglet *singlet = (TrkSinglet*)t[is];
1858            return singlet;
1859    }
1860    //--------------------------------------
1861    //
1862    //
1863    //--------------------------------------
1864    /**
1865   * Retrieves the it-th "physical" track, sorted by the method GetNTracks().   * Retrieves the it-th "physical" track, sorted by the method GetNTracks().
1866   * @param it Track number, ranging from 0 to GetNTracks().   * @param it Track number, ranging from 0 to GetNTracks().
1867   */   */
1868    
1869  TrkTrack *TrkLevel2::GetTrack(int it){  TrkTrack *TrkLevel2::GetTrack(int it){
1870            
1871      if(it >= this->GetNTracks()){          if(it >= this->GetNTracks()){
1872          cout << "** TrkLevel2 ** Track "<< it << "does not exits! " << endl;                  cout << "TrkTrack *TrkLevel2::GetTrack(int) >> Track "<< it << "does not exits! " << endl;
1873          cout << "                Physical tracks GetNTracks() = "<< this->ntrk() << endl;                  cout << "Physical tracks GetNTracks() = "<< this->ntrk() << endl;
1874          return 0;                  return 0;
1875      }          }
1876      TrkTrack *track = (TrkTrack*)(*(this->GetTracks()))[it];          
1877      return track;          TRefArray *sorted = GetTracks();  //TEMPORANEO  
1878            if(!sorted)return 0;
1879            TrkTrack *track = (TrkTrack*)sorted->At(it);
1880            sorted->Clear();
1881            delete sorted;
1882            return track;
1883  }  }
1884    /**
1885     * Give the number of "physical" tracks, sorted by the method GetTracks().
1886     */
1887    Int_t TrkLevel2::GetNTracks(){
1888                    
1889            Float_t ntot=0;
1890            if(!Track)return 0;
1891            TClonesArray &t = *Track;
1892            for(int i=0; i<ntrk(); i++) {    
1893                    if( ((TrkTrack *)t[i])->GetImageSeqNo() == -1 ) ntot+=1.;
1894                    else ntot+=0.5;
1895            }
1896            return (Int_t)ntot;
1897    
1898    };
1899  //--------------------------------------  //--------------------------------------
1900  //  //
1901  //  //
# Line 422  TrkTrack *TrkLevel2::GetTrack(int it){ Line 1907  TrkTrack *TrkLevel2::GetTrack(int it){
1907  TrkTrack *TrkLevel2::GetTrackImage(int it){  TrkTrack *TrkLevel2::GetTrackImage(int it){
1908    
1909      if(it >= this->GetNTracks()){      if(it >= this->GetNTracks()){
1910          cout << "** TrkLevel2 ** Track "<< it << "does not exits! " << endl;          cout << "TrkTrack *TrkLevel2::GetTrackImage(int) >> Track "<< it << "does not exits! " << endl;
1911          cout << "                Physical tracks GetNTracks() = "<< this->ntrk() << endl;          cout << "Physical tracks GetNTracks() = "<< this->ntrk() << endl;
1912          return 0;          return 0;
1913      }      }
1914      TrkTrack *track = (TrkTrack*)(*(this->GetTracks()))[it];          
1915        TRefArray* sorted = GetTracks(); //TEMPORANEO
1916        if(!sorted)return 0;
1917        TrkTrack *track = (TrkTrack*)sorted->At(it);
1918            
1919      if(!track->HasImage()){      if(!track->HasImage()){
1920          cout << "** TrkLevel2 ** Track "<< it << "does not have image! " << endl;          cout << "TrkTrack *TrkLevel2::GetTrackImage(int) >> Track "<< it << "does not have image! " << endl;
1921          return 0;          return 0;
1922      }      }
1923        if(!Track)return 0;
1924      TrkTrack *image = (TrkTrack*)(*Track)[track->image];      TrkTrack *image = (TrkTrack*)(*Track)[track->image];
1925    
1926        sorted->Delete();
1927        delete sorted;
1928    
1929      return image;      return image;
1930            
1931  }  }
# Line 443  TrkTrack *TrkLevel2::GetTrackImage(int i Line 1937  TrkTrack *TrkLevel2::GetTrackImage(int i
1937   * Loads the magnetic field.   * Loads the magnetic field.
1938   * @param s Path of the magnetic-field files.   * @param s Path of the magnetic-field files.
1939   */   */
1940  void TrkLevel2::LoadField(TString s){  void TrkLevel2::LoadField(TString path){
1941      readb_(s.Data());  //
1942    //     strcpy(path_.path,path.Data());
1943    //     path_.pathlen = path.Length();
1944    //     path_.error   = 0;
1945    //     readb_();
1946    
1947    //     TrkParams::SetTrackingMode();
1948    //     TrkParams::SetPrecisionFactor();
1949    //     TrkParams::SetStepMin();
1950        TrkParams::SetMiniDefault();
1951    
1952        TrkParams::Set(path,1);
1953        TrkParams::Load(1);
1954    
1955    //
1956    };
1957    // /**
1958    //  * Get BY (kGauss)
1959    //  * @param v (x,y,z) coordinates in cm
1960    //  */
1961    // float TrkLevel2::GetBX(float* v){
1962    //     float b[3];
1963    //     gufld_(v,b);
1964    //     return b[0]/10.;
1965    // }
1966    // /**
1967    //  * Get BY (kGauss)
1968    //  * @param v (x,y,z) coordinates in cm
1969    //  */
1970    // float TrkLevel2::GetBY(float* v){
1971    //     float b[3];
1972    //     gufld_(v,b);
1973    //     return b[1]/10.;
1974    // }
1975    // /**
1976    //  * Get BY (kGauss)
1977    //  * @param v (x,y,z) coordinates in cm
1978    //  */
1979    // float TrkLevel2::GetBZ(float* v){
1980    //     float b[3];
1981    //     gufld_(v,b);
1982    //     return b[2]/10.;
1983    // }
1984    //--------------------------------------
1985    //
1986    //
1987    //--------------------------------------
1988    /**
1989     * Get tracker-plane (mechanical) z-coordinate
1990     * @param plane_id plane index (1=TOP,2,3,4,5,6=BOTTOM)
1991     */
1992    Float_t TrkLevel2::GetZTrk(Int_t plane_id){
1993            switch(plane_id){
1994                    case 1: return ZTRK1;
1995                    case 2: return ZTRK2;
1996                    case 3: return ZTRK3;
1997                    case 4: return ZTRK4;
1998                    case 5: return ZTRK5;
1999                    case 6: return ZTRK6;
2000                    default: return 0.;
2001            };
2002  };  };
2003  //--------------------------------------  //--------------------------------------
2004  //  //
# Line 462  Trajectory::Trajectory(){ Line 2016  Trajectory::Trajectory(){
2016      thx = new float[npoint];      thx = new float[npoint];
2017      thy = new float[npoint];      thy = new float[npoint];
2018      tl = new float[npoint];      tl = new float[npoint];
2019      float dz = ((ZTRKUP)-(ZTRKDW))/(npoint-1);      float dz = ((ZTRK1)-(ZTRK6))/(npoint-1);
2020      for(int i=0; i<npoint; i++){      for(int i=0; i<npoint; i++){
2021          x[i] = 0;          x[i] = 0;
2022          y[i] = 0;          y[i] = 0;
2023          z[i] = (ZTRKUP) - i*dz;          z[i] = (ZTRK1) - i*dz;
2024          thx[i] = 0;          thx[i] = 0;
2025          thy[i] = 0;          thy[i] = 0;
2026          tl[i] = 0;          tl[i] = 0;
# Line 493  Trajectory::Trajectory(int n){ Line 2047  Trajectory::Trajectory(int n){
2047      thx = new float[npoint];      thx = new float[npoint];
2048      thy = new float[npoint];      thy = new float[npoint];
2049      tl = new float[npoint];      tl = new float[npoint];
2050      float dz = ((ZTRKUP)-(ZTRKDW))/(npoint-1);      float dz = ((ZTRK1)-(ZTRK6))/(npoint-1);
2051      for(int i=0; i<npoint; i++){      for(int i=0; i<npoint; i++){
2052          x[i] = 0;          x[i] = 0;
2053          y[i] = 0;          y[i] = 0;
2054          z[i] = (ZTRKUP) - i*dz;          z[i] = (ZTRK1) - i*dz;
2055          thx[i] = 0;          thx[i] = 0;
2056          thy[i] = 0;          thy[i] = 0;
2057          tl[i] = 0;          tl[i] = 0;
# Line 534  Trajectory::Trajectory(int n, float* zin Line 2088  Trajectory::Trajectory(int n, float* zin
2088      npoint=i;      npoint=i;
2089      if(npoint != n)cout << "NB! Trajectory created with "<<npoint<<" points"<<endl;      if(npoint != n)cout << "NB! Trajectory created with "<<npoint<<" points"<<endl;
2090  }  }
2091    void Trajectory::Delete(){
2092        
2093        if(x) delete [] x;
2094        if(y) delete [] y;
2095        if(z) delete [] z;
2096        if(thx) delete [] thx;
2097        if(thy) delete [] thy;
2098        if(tl) delete [] tl;
2099    
2100    }
2101  //--------------------------------------  //--------------------------------------
2102  //  //
2103  //  //
# Line 571  float Trajectory::GetLength(int ifirst, Line 2135  float Trajectory::GetLength(int ifirst,
2135      return l;      return l;
2136    
2137  }  }
2138    
2139    /**
2140     * Evaluates the trajectory in the apparatus associated to the track.
2141     * It integrates the equations of motion in the magnetic field. The magnetic field should be previously loaded ( by calling  TrkLevel2::LoadField() ), otherwise an error message is returned.  
2142     * @param t pointer to an object of the class Trajectory,
2143     * which z coordinates should be previously initialized by calling the proper constructor ( Trajectory::Trajectory(int n, float* zin) ).
2144     * @return error flag.
2145     */
2146    int Trajectory::DoTrack2(float* al){
2147    
2148    //      double *dxout   = new double[npoint];
2149    //      double *dyout   = new double[npoint];
2150    //      double *dthxout = new double[npoint];
2151    //      double *dthyout = new double[npoint];
2152    //      double *dtlout  = new double[npoint];
2153    //      double *dzin    = new double[npoint];
2154        
2155         double *dxout;
2156         double *dyout;
2157         double *dthxout;
2158         double *dthyout;
2159         double *dtlout;
2160         double *dzin;
2161    
2162         dxout   = (double*) malloc(npoint*sizeof(double));
2163         dyout   = (double*) malloc(npoint*sizeof(double));
2164         dthxout = (double*) malloc(npoint*sizeof(double));
2165         dthyout = (double*) malloc(npoint*sizeof(double));
2166         dtlout  = (double*) malloc(npoint*sizeof(double));
2167         dzin    = (double*) malloc(npoint*sizeof(double));
2168    
2169         double dal[5];
2170    
2171        int ifail = 0;
2172    
2173        for (int i=0; i<5; i++)      dal[i]  = (double)al[i];
2174        for (int i=0; i<npoint; i++) dzin[i] = (double)z[i];
2175    
2176        TrkParams::Load(1);
2177        if( !TrkParams::IsLoaded(1) ){
2178            cout << "int Trajectory::DoTrack2(float* al) --- ERROR --- m.field not loaded"<<endl;
2179            return 0;
2180        }
2181        dotrack2_(&(npoint),dzin,dxout,dyout,dthxout,dthyout,dtlout,dal,&ifail);
2182        
2183        for (int i=0; i<npoint; i++){
2184            x[i]   = (float)*(dxout+i);
2185            y[i]   = (float)*(dyout+i);
2186            thx[i] = (float)*(dthxout+i);
2187            thy[i] = (float)*(dthyout+i);
2188            tl[i]  = (float)*(dtlout+i);
2189        }
2190    
2191        if(dxout)  free( dxout );
2192        if(dyout)  free( dyout );
2193        if(dthxout)free( dthxout );
2194        if(dthyout)free( dthyout );
2195        if(dtlout) free( dtlout );
2196        if(dzin)   free( dzin );
2197    
2198    //      delete [] dxout;
2199    //      delete [] dyout;
2200    //      delete [] dthxout;
2201    //      delete [] dthyout;
2202    //      delete [] dtlout;
2203    //      delete [] dzin;
2204    
2205    
2206        return ifail;
2207    };
2208    
2209  ClassImp(TrkLevel2);  ClassImp(TrkLevel2);
2210  ClassImp(TrkSinglet);  ClassImp(TrkSinglet);
2211  ClassImp(TrkTrack);  ClassImp(TrkTrack);

Legend:
Removed from v.1.2  
changed lines
  Added in v.1.45

  ViewVC Help
Powered by ViewVC 1.1.23