/** * \file TrkLevel2.cpp * \author Elena Vannuccini */ #include <TrkLevel2.h> #include <iostream> #include <math.h> using namespace std; //...................................... // F77 routines //...................................... extern "C" { void dotrack_(int*, double*, double*, double*, double*, int*); void dotrack2_(int*, double*, double*, double*, double*,double*, double*, double*,int*); void mini2_(int*,int*,int*); void guess_(); void gufld_(float*, float*); float risxeta2_(float *); float risxeta3_(float *); float risxeta4_(float *); float risyeta2_(float *); } //-------------------------------------- // // //-------------------------------------- TrkTrack::TrkTrack(){ // cout << "TrkTrack::TrkTrack()" << endl; seqno = -1; image = -1; chi2 = 0; nstep = 0; for(int it1=0;it1<5;it1++){ al[it1] = 0; for(int it2=0;it2<5;it2++)coval[it1][it2] = 0; }; for(int ip=0;ip<6;ip++){ xgood[ip] = 0; ygood[ip] = 0; xm[ip] = 0; ym[ip] = 0; zm[ip] = 0; resx[ip] = 0; resy[ip] = 0; tailx[ip] = 0; taily[ip] = 0; xv[ip] = 0; yv[ip] = 0; zv[ip] = 0; axv[ip] = 0; ayv[ip] = 0; dedx_x[ip] = 0; dedx_y[ip] = 0; multmaxx[ip] = 0; multmaxy[ip] = 0; seedx[ip] = 0; seedy[ip] = 0; xpu[ip] = 0; ypu[ip] = 0; }; // TrkParams::SetTrackingMode(); // TrkParams::SetPrecisionFactor(); // TrkParams::SetStepMin(); TrkParams::SetMiniDefault(); TrkParams::SetPFA(); int ngf = TrkParams::nGF; for(int i=0; i<ngf; i++){ xGF[i] = 0.; yGF[i] = 0.; } }; //-------------------------------------- // // //-------------------------------------- TrkTrack::TrkTrack(const TrkTrack& t){ seqno = t.seqno; image = t.image; chi2 = t.chi2; nstep = t.nstep; for(int it1=0;it1<5;it1++){ al[it1] = t.al[it1]; for(int it2=0;it2<5;it2++)coval[it1][it2] = t.coval[it1][it2]; }; for(int ip=0;ip<6;ip++){ xgood[ip] = t.xgood[ip]; ygood[ip] = t.ygood[ip]; xm[ip] = t.xm[ip]; ym[ip] = t.ym[ip]; zm[ip] = t.zm[ip]; resx[ip] = t.resx[ip]; resy[ip] = t.resy[ip]; tailx[ip] = t.tailx[ip]; taily[ip] = t.taily[ip]; xv[ip] = t.xv[ip]; yv[ip] = t.yv[ip]; zv[ip] = t.zv[ip]; axv[ip] = t.axv[ip]; ayv[ip] = t.ayv[ip]; dedx_x[ip] = t.dedx_x[ip]; dedx_y[ip] = t.dedx_y[ip]; multmaxx[ip] = t.multmaxx[ip]; multmaxy[ip] = t.multmaxy[ip]; seedx[ip] = t.seedx[ip]; seedy[ip] = t.seedy[ip]; xpu[ip] = t.xpu[ip]; ypu[ip] = t.ypu[ip]; }; // TrkParams::SetTrackingMode(); // TrkParams::SetPrecisionFactor(); // TrkParams::SetStepMin(); TrkParams::SetMiniDefault(); TrkParams::SetPFA(); int ngf = TrkParams::nGF; for(int i=0; i<ngf; i++){ xGF[i] = t.xGF[i]; yGF[i] = t.yGF[i]; } }; //-------------------------------------- // // //-------------------------------------- void TrkTrack::Copy(TrkTrack& t){ t.seqno = seqno; t.image = image; t.chi2 = chi2; t.nstep = nstep; for(int it1=0;it1<5;it1++){ t.al[it1] = al[it1]; for(int it2=0;it2<5;it2++)t.coval[it1][it2] = coval[it1][it2]; }; for(int ip=0;ip<6;ip++){ t.xgood[ip] = xgood[ip]; t.ygood[ip] = ygood[ip]; t.xm[ip] = xm[ip]; t.ym[ip] = ym[ip]; t.zm[ip] = zm[ip]; t.resx[ip] = resx[ip]; t.resy[ip] = resy[ip]; t.tailx[ip] = tailx[ip]; t.taily[ip] = taily[ip]; t.xv[ip] = xv[ip]; t.yv[ip] = yv[ip]; t.zv[ip] = zv[ip]; t.axv[ip] = axv[ip]; t.ayv[ip] = ayv[ip]; t.dedx_x[ip] = dedx_x[ip]; t.dedx_y[ip] = dedx_y[ip]; t.multmaxx[ip] = multmaxx[ip]; t.multmaxy[ip] = multmaxy[ip]; t.seedx[ip] = seedx[ip]; t.seedy[ip] = seedy[ip]; t.xpu[ip] = xpu[ip]; t.ypu[ip] = ypu[ip]; }; int ngf = TrkParams::nGF; for(int i=0; i<ngf; i++){ t.xGF[i] = xGF[i]; t.yGF[i] = yGF[i]; } }; //-------------------------------------- // // //-------------------------------------- /** * Evaluates the trajectory in the apparatus associated to the track. * It integrates the equations of motion in the magnetic field. The magnetic field should be previously loaded ( by calling TrkLevel2::LoadField() ), otherwise an error message is returned. * @param t pointer to an object of the class Trajectory, * which z coordinates should be previously initialized by calling the proper constructor ( Trajectory::Trajectory(int n, float* zin) ). * @return error flag. * * >>> OBSOLETE !!! use TrkTrack::DoTrack2(Trajectory* t) instead * */ int TrkTrack::DoTrack(Trajectory* t){ cout << " int TrkTrack::DoTrack(Trajectory* t) --->> OBSOLETE !!! "<<endl; cout << " use int TrkTrack::DoTrack2(Trajectory* t)"<<endl; double *dxout = new double[t->npoint]; double *dyout = new double[t->npoint]; double *dzin = new double[t->npoint]; double dal[5]; int ifail = 0; for (int i=0; i<5; i++) dal[i] = (double)al[i]; for (int i=0; i<t->npoint; i++) dzin[i] = (double)t->z[i]; TrkParams::Load(1); if( !TrkParams::IsLoaded(1) ){ cout << "int TrkTrack::DoTrack(Trajectory* t) --- ERROR --- m.field not loaded"<<endl; return 0; } dotrack_(&(t->npoint),dzin,dxout,dyout,dal,&ifail); for (int i=0; i<t->npoint; i++){ t->x[i] = (float)*(dxout+i); t->y[i] = (float)*(dyout+i); } delete [] dxout; delete [] dyout; delete [] dzin; return ifail; }; //-------------------------------------- // // //-------------------------------------- /** * Evaluates the trajectory in the apparatus associated to the track. * It integrates the equations of motion in the magnetic field. The magnetic field should be previously loaded ( by calling TrkLevel2::LoadField() ), otherwise an error message is returned. * @param t pointer to an object of the class Trajectory, * which z coordinates should be previously initialized by calling the proper constructor ( Trajectory::Trajectory(int n, float* zin) ). * @return error flag. */ int TrkTrack::DoTrack2(Trajectory* t){ double *dxout = new double[t->npoint]; double *dyout = new double[t->npoint]; double *dthxout = new double[t->npoint]; double *dthyout = new double[t->npoint]; double *dtlout = new double[t->npoint]; double *dzin = new double[t->npoint]; double dal[5]; int ifail = 0; for (int i=0; i<5; i++) dal[i] = (double)al[i]; for (int i=0; i<t->npoint; i++) dzin[i] = (double)t->z[i]; TrkParams::Load(1); if( !TrkParams::IsLoaded(1) ){ cout << "int TrkTrack::DoTrack2(Trajectory* t) --- ERROR --- m.field not loaded"<<endl; return 0; } dotrack2_(&(t->npoint),dzin,dxout,dyout,dthxout,dthyout,dtlout,dal,&ifail); for (int i=0; i<t->npoint; i++){ t->x[i] = (float)*(dxout+i); t->y[i] = (float)*(dyout+i); t->thx[i] = (float)*(dthxout+i); t->thy[i] = (float)*(dthyout+i); t->tl[i] = (float)*(dtlout+i); } delete [] dxout; delete [] dyout; delete [] dzin; delete [] dthxout; delete [] dthyout; delete [] dtlout; return ifail; }; //-------------------------------------- // // //-------------------------------------- //float TrkTrack::BdL(){ //}; //-------------------------------------- // // //-------------------------------------- Float_t TrkTrack::GetRigidity(){ Float_t rig=0; if(chi2>0)rig=1./al[4]; if(rig<0) rig=-rig; return rig; }; // Float_t TrkTrack::GetDeflection(){ Float_t def=0; if(chi2>0)def=al[4]; return def; }; // /** * Method to retrieve the dE/dx measured on a tracker view. * @param ip plane (0-5) * @param iv view (0=x 1=y) */ Float_t TrkTrack::GetDEDX(int ip, int iv){ if(iv==0 && ip>=0 && ip<6)return fabs(dedx_x[ip]); else if(iv==1 && ip>=0 && ip<6)return fabs(dedx_y[ip]); else { cout << "TrkTrack::GetDEDX(int ip, int iv) -- wrong input parameters "<<ip<<iv<<endl; return 0.; } } /** * Method to evaluate the dE/dx measured on a tracker plane. * The two measurements on x- and y-view are averaged. * @param ip plane (0-5) */ Float_t TrkTrack::GetDEDX(int ip){ if( (Int_t)XGood(ip)+(Int_t)YGood(ip) == 0 ) return 0; return (GetDEDX(ip,0)+GetDEDX(ip,1))/((Int_t)XGood(ip)+(Int_t)YGood(ip)); }; /** * Method to evaluate the dE/dx averaged over all planes. */ Float_t TrkTrack::GetDEDX(){ Float_t dedx=0; for(Int_t ip=0; ip<6; ip++)dedx+=GetDEDX(ip,0)*XGood(ip)+GetDEDX(ip,1)*YGood(ip); dedx = dedx/(GetNX()+GetNY()); return dedx; }; /** * Returns 1 if the cluster on a tracker view includes bad strips * (at least one bad strip among the four strip used by p.f.a.) * @param ip plane (0-5) * @param iv view (0=x 1=y) */ Bool_t TrkTrack::IsBad(int ip,int iv){ if(iv==0 && ip>=0 && ip<6)return (xgood[ip]<0) ; else if(iv==1 && ip>=0 && ip<6)return (ygood[ip]<0) ; else { cout << "TrkTrack::IsBad(int ip, int iv) -- wrong input parameters "<<ip<<iv<<endl; return 0.; } }; /** * Returns 1 if the signal on a tracker view is saturated. * @param ip plane (0-5) * @param iv view (0=x 1=y) */ Bool_t TrkTrack::IsSaturated(int ip,int iv){ if(iv==0 && ip>=0 && ip<6)return (dedx_x[ip]<0) ; else if(iv==1 && ip>=0 && ip<6)return (dedx_y[ip]<0) ; else { cout << "TrkTrack::IsSaturated(int ip, int iv) -- wrong input parameters "<<ip<<iv<<endl; return 0.; } }; /** * Returns 1 if either the x or the y signal on a tracker plane is saturated. * @param ip plane (0-5) */ Bool_t TrkTrack::IsSaturated(int ip){ return (IsSaturated(ip,0)||IsSaturated(ip,1)); }; /** * Returns 1 if there is at least a saturated signal along the track. */ Bool_t TrkTrack::IsSaturated(){ for(int ip=0; ip<6; ip++)for(int iv=0; iv<2; iv++)if(IsSaturated(ip,iv))return true; return false; } /** * Returns the track "lever-arm" on the x view, defined as the distance (in planes) between * the upper and lower x measurements (the maximum value of lever-arm is 6). */ Int_t TrkTrack::GetLeverArmX(){ int first_plane = -1; int last_plane = -1; for(Int_t ip=0; ip<6; ip++){ if( XGood(ip) && first_plane == -1 )first_plane = ip; if( XGood(ip) && first_plane != -1 )last_plane = ip; } if( first_plane == -1 || last_plane == -1){ cout<< "Int_t TrkTrack::GetLeverArmX() -- XGood(ip) always false ??? "<<endl; return 0; } return (last_plane-first_plane+1); } /** * Returns the track "lever-arm" on the y view, defined as the distance (in planes) between * the upper and lower y measurements (the maximum value of lever-arm is 6). */ Int_t TrkTrack::GetLeverArmY(){ int first_plane = -1; int last_plane = -1; for(Int_t ip=0; ip<6; ip++){ if( YGood(ip) && first_plane == -1 )first_plane = ip; if( YGood(ip) && first_plane != -1 )last_plane = ip; } if( first_plane == -1 || last_plane == -1){ cout<< "Int_t TrkTrack::GetLeverArmY() -- YGood(ip) always false ??? "<<endl; return 0; } return (last_plane-first_plane+1); } /** * Returns the track "lever-arm" on the x+y view, defined as the distance (in planes) between * the upper and lower x,y (couple) measurements (the maximum value of lever-arm is 6). */ Int_t TrkTrack::GetLeverArmXY(){ int first_plane = -1; int last_plane = -1; for(Int_t ip=0; ip<6; ip++){ if( XGood(ip)*YGood(ip) && first_plane == -1 )first_plane = ip; if( XGood(ip)*YGood(ip) && first_plane != -1 )last_plane = ip; } if( first_plane == -1 || last_plane == -1){ cout<< "Int_t TrkTrack::GetLeverArmXY() -- XGood(ip)*YGood(ip) always false ??? "<<endl; return 0; } return (last_plane-first_plane+1); } /** * Returns the reduced chi-square of track x-projection */ Float_t TrkTrack::GetChi2X(){ float chiq=0; for(int ip=0; ip<6; ip++)if(XGood(ip))chiq+= pow((xv[ip]-xm[ip])/resx[ip],2.); if(GetNX()>3)chiq=chiq/(GetNX()-3); else chiq=0; if(chiq==0)cout << " Float_t TrkTrack::GetChi2X() -- WARNING -- value not defined "<<chiq<<endl; return chiq; } /** * Returns the reduced chi-square of track y-projection */ Float_t TrkTrack::GetChi2Y(){ float chiq=0; for(int ip=0; ip<6; ip++)if(YGood(ip))chiq+= pow((yv[ip]-ym[ip])/resy[ip],2.); if(GetNY()>2)chiq=chiq/(GetNY()-2); else chiq=0; if(chiq==0)cout << " Float_t TrkTrack::GetChi2Y() -- WARNING -- value not defined "<<chiq<<endl; return chiq; } /** * Returns the logarythm of the likeliwood-function of track x-projection */ Float_t TrkTrack::GetLnLX(){ float lnl=0; for(int ip=0; ip<6; ip++) if( XGood(ip) && tailx[ip]!=0 ) lnl += (tailx[ip]+1.) * log( (tailx[ip]*pow(resx[ip],2.) + pow(xv[ip]-xm[ip],2.)) / (tailx[ip]*pow(resx[ip],2)) ); if(GetNX()>3)lnl=lnl/(GetNX()-3); else lnl=0; if(lnl==0){ cout << " Float_t TrkTrack::GetLnLX() -- WARNING -- value not defined "<<lnl<<endl; Dump(); } return lnl; } /** * Returns the logarythm of the likeliwood-function of track y-projection */ Float_t TrkTrack::GetLnLY(){ float lnl=0; for(int ip=0; ip<6; ip++) if( YGood(ip) && taily[ip]!=0 ) lnl += (taily[ip]+1.) * log( (taily[ip]*pow(resy[ip],2.) + pow(yv[ip]-ym[ip],2.)) / (taily[ip]*pow(resy[ip],2)) ); if(GetNY()>2)lnl=lnl/(GetNY()-2); else lnl=0; if(lnl==0){ cout << " Float_t TrkTrack::GetLnLY() -- WARNING -- value not defined "<<lnl<<endl; Dump(); } return lnl; } /** * Returns the effective angle, relative to the sensor, on each plane. * @param ip plane (0-5) * @param iv view (0=x 1=y) */ Float_t TrkTrack::GetEffectiveAngle(int ip, int iv){ if(ip<0 || ip>5){ cout << "Float_t TrkTrack::GetEffectiveAngle(int "<<ip<<", int "<<iv<<") ==> wrong input"<<endl; return 0.; } float v[3]={xv[ip],yv[ip],zv[ip]}; //----------------------------------------- // effective angle (relative to the sensor) //----------------------------------------- float axv_geo = axv[ip]; float muhall_h = 297.61; //cm**2/Vs float BY = TrkParams::GetBY(v); float axv_eff = 0; if(ip==5) axv_geo = -1*axv_geo; if(ip==5) BY = -1*BY; axv_eff = 180.*atan( tan(axv_geo*acos(-1.)/180.) + muhall_h * BY * 0.0001)/acos(-1.); //----------------------------------------- // effective angle (relative to the sensor) //----------------------------------------- float ayv_geo = ayv[ip]; float muhall_e = 1258.18; //cm**2/Vs float BX = TrkParams::GetBX(v); float ayv_eff = 0; ayv_eff = 180.*atan( tan(ayv_geo*acos(-1.)/180.) + muhall_e * BX * 0.0001)/acos(-1.); if (iv==0)return axv_eff; else if(iv==1)return ayv_eff; else{ cout << "Float_t TrkTrack::GetEffectiveAngle(int "<<ip<<", int "<<iv<<") ==> wrong input"<<endl; return 0.; } }; //-------------------------------------- // // //-------------------------------------- void TrkTrack::Dump(){ cout << endl << "========== Track " ; cout << endl << "seq. n. : "<< seqno; cout << endl << "image n. : "<< image; cout << endl << "al : "; for(int i=0; i<5; i++)cout << al[i] << " "; cout << endl << "chi^2 : "<< chi2; cout << endl << "n.step : "<< nstep; cout << endl << "xgood : "; for(int i=0; i<6; i++)cout << XGood(i) ; cout << endl << "ygood : "; for(int i=0; i<6; i++)cout << YGood(i) ; cout << endl << "xm : "; for(int i=0; i<6; i++)cout << xm[i] << " "; cout << endl << "ym : "; for(int i=0; i<6; i++)cout << ym[i] << " "; cout << endl << "zm : "; for(int i=0; i<6; i++)cout << zm[i] << " "; cout << endl << "xv : "; for(int i=0; i<6; i++)cout << xv[i] << " "; cout << endl << "yv : "; for(int i=0; i<6; i++)cout << yv[i] << " "; cout << endl << "zv : "; for(int i=0; i<6; i++)cout << zv[i] << " "; cout << endl << "resx : "; for(int i=0; i<6; i++)cout << resx[i] << " "; cout << endl << "resy : "; for(int i=0; i<6; i++)cout << resy[i] << " "; cout << endl << "tailx : "; for(int i=0; i<6; i++)cout << tailx[i] << " "; cout << endl << "taily : "; for(int i=0; i<6; i++)cout << taily[i] << " "; cout << endl << "coval : "; for(int i=0; i<5; i++)cout << coval[0][i]<<" "; cout << endl << " "; for(int i=0; i<5; i++)cout << coval[1][i]<<" "; cout << endl << " "; for(int i=0; i<5; i++)cout << coval[2][i]<<" "; cout << endl << " "; for(int i=0; i<5; i++)cout << coval[3][i]<<" "; cout << endl << " "; for(int i=0; i<5; i++)cout << coval[4][i]<<" "; cout << endl << "dedx_x : "; for(int i=0; i<6; i++)cout << dedx_x[i] << " "; cout << endl << "dedx_y : "; for(int i=0; i<6; i++)cout << dedx_y[i] << " "; cout << endl << "maxs x : "; for(int i=0; i<6; i++)cout << GetClusterX_MaxStrip(i) << " "; cout << endl << "maxs y : "; for(int i=0; i<6; i++)cout << GetClusterY_MaxStrip(i) << " "; cout << endl << "mult x : "; for(int i=0; i<6; i++)cout << GetClusterX_Multiplicity(i) << " "; cout << endl << "mult y : "; for(int i=0; i<6; i++)cout << GetClusterY_Multiplicity(i) << " "; cout << endl << "seed x : "; for(int i=0; i<6; i++)cout << GetClusterX_Seed(i) << " "; cout << endl << "seed y : "; for(int i=0; i<6; i++)cout << GetClusterY_Seed(i) << " "; cout << endl << "xpu : "; for(int i=0; i<6; i++)cout << xpu[i] << " "; cout << endl << "ypu : "; for(int i=0; i<6; i++)cout << ypu[i] << " "; cout << endl; } /** * Set the TrkTrack position measurements */ void TrkTrack::SetMeasure(double *xmeas, double *ymeas, double *zmeas){ for(int i=0; i<6; i++) xm[i]=*xmeas++; for(int i=0; i<6; i++) ym[i]=*ymeas++; for(int i=0; i<6; i++) zm[i]=*zmeas++; } /** * Set the TrkTrack position resolution */ void TrkTrack::SetResolution(double *rx, double *ry){ for(int i=0; i<6; i++) resx[i]=*rx++; for(int i=0; i<6; i++) resy[i]=*ry++; } /** * Set the TrkTrack tails position resolution */ void TrkTrack::SetTail(double *tx, double *ty, double factor){ for(int i=0; i<6; i++) tailx[i]=factor*(*tx++); for(int i=0; i<6; i++) taily[i]=factor*(*ty++); } /** * Set the TrkTrack Student parameter (resx,resy,tailx,taily) * from previous gausian fit *@param flag =0 standard, =1 with noise correction */ void TrkTrack::SetStudentParam(int flag){ float sx[11]={0.000128242, 0.000136942, 0.000162718, 0.000202644, 0.00025597, 0.000317456, 0.000349048, 0.000384638, 0.000457295, 0.000512319, 0.000538573}; float tx[11]={1.79402, 2.04876, 2.88376, 3.3, 3.14084, 4.07686, 4.44736, 3.5179, 3.38697, 3.45739, 3.18627}; float sy[11]={0.000483075, 0.000466925, 0.000431658, 0.000428317, 0.000433854, 0.000444044, 0.000482098, 0.000537579, 0.000636279, 0.000741998, 0.000864261}; float ty[11]={0.997032, 1.11147, 1.18526, 1.61404, 2.21908, 3.08959, 4.48833, 4.42687, 4.65253, 4.52043, 4.29926}; int index; float fact; for(int i=0; i<6; i++) { index = int((fabs(axv[i])+1.)/2.); if(index>10) index=10; tailx[i]=tx[index]; if(flag==1) { if(fabs(axv[i])<=10.) fact = resx[i]/risxeta2_(&(axv[i])); if(fabs(axv[i])>10.&&fabs(axv[i])<=15.) fact = resx[i]/risxeta3_(&(axv[i])); if(fabs(axv[i])>15.) fact = resx[i]/risxeta4_(&(axv[i])); } else fact = 1.; resx[i] = sx[index]*fact; } for(int i=0; i<6; i++) { index = int((fabs(ayv[i])+1.)/2.); if(index>10) index=10; taily[i]=ty[index]; if(flag==1) fact = resy[i]/risyeta2_(&(ayv[i])); else fact = 1.; resy[i] = sy[index]*fact; } } /** * Set the TrkTrack good measurement */ void TrkTrack::SetGood(int *xg, int *yg){ for(int i=0; i<6; i++) xgood[i]=*xg++; for(int i=0; i<6; i++) ygood[i]=*yg++; } /** * Load the magnetic field */ void TrkTrack::LoadField(TString path){ // strcpy(path_.path,path.Data()); // path_.pathlen = path.Length(); // path_.error = 0; // readb_(); // TrkParams::SetTrackingMode(); // TrkParams::SetPrecisionFactor(); // TrkParams::SetStepMin(); TrkParams::SetMiniDefault(); TrkParams::Set(path,1); TrkParams::Load(1); if( !TrkParams::IsLoaded(1) ){ cout << "void TrkTrack::LoadField(TString path) --- ERROR --- m.field not loaded"<<endl; } }; /** * Method to fill minimization-routine common */ void TrkTrack::FillMiniStruct(cMini2track& track){ for(int i=0; i<6; i++){ // cout << i<<" - "<<xgood[i]<<" "<<XGood(i)<<endl; // cout << i<<" - "<<ygood[i]<<" "<<YGood(i)<<endl; track.xgood[i]=XGood(i); track.ygood[i]=YGood(i); track.xm[i]=xm[i]; track.ym[i]=ym[i]; track.zm[i]=zm[i]; // --- temporaneo ---------------------------- // float segment = 100.; // track.xm_a[i]=xm[i]; // track.xm_b[i]=xm[i]; // track.ym_a[i]=ym[i]; // track.ym_b[i]=ym[i]; // if( XGood(i) && !YGood(i) ){ // track.ym_a[i] = track.ym_a[i]+segment; // track.ym_b[i] = track.ym_b[i]-segment; // }else if( !XGood(i) && YGood(i)){ // track.xm_a[i] = track.xm_a[i]+segment; // track.xm_b[i] = track.xm_b[i]-segment; // } // --- temporaneo ---------------------------- if( XGood(i) || YGood(i) ){ double segment = 2.;//cm // NB: i parametri di allineamento hanno una notazione particolare!!! // sensor = 0 (hybrid side), 1 // ladder = 0-2 (increasing x) // plane = 0-5 (from bottom to top!!!) int is = (int)GetSensor(i); if(i==5)is=1-is; int ip = 5-i; int il = (int)GetLadder(i); double omega = 0.; double beta = 0.; double gamma = 0.; if( (is < 0 || is > 1 || ip < 0 || ip > 5 || il < 0 || il > 2) && true){ // se il piano risulta colpito, ladder e sensore devono essere // assegnati correttamente cout << " void TrkTrack::FillMiniStruct(cMini2track&) --- WARNING --- sensor not defined, cannot read alignment parameters "<<endl; cout << " is ip il = "<<is<<" "<<ip<<" "<<il<<endl; }else{ omega = alignparameters_.omega[is][il][ip]; beta = alignparameters_.beta[is][il][ip]; gamma = alignparameters_.gamma[is][il][ip]; } if( XGood(i) && !YGood(i) ){ track.xm_a[i] = xm[i] - omega * segment; track.ym_a[i] = ym[i] + segment; // track.zm_a[i] = zm[i] + beta * segment;//not used yet track.xm_b[i] = xm[i] + omega * segment; track.ym_b[i] = ym[i] - segment; // track.zm_b[i] = zm[i] - beta * segment;//not used yet }else if( !XGood(i) && YGood(i) ){ track.xm_a[i] = xm[i] + segment; track.ym_a[i] = ym[i] + omega * segment; // track.zm_a[i] = zm[i] - gamma * segment;//not used yet track.xm_b[i] = xm[i] - segment; track.ym_b[i] = ym[i] - omega * segment; // track.zm_b[i] = zm[i] + gamma * segment;//not used yet } } track.resx[i]=resx[i]; track.resy[i]=resy[i]; track.tailx[i]=tailx[i]; track.taily[i]=taily[i]; } for(int i=0; i<5; i++) track.al[i]=al[i]; track.zini = 23.5; // ZINI = 23.5 !!! it should be the same parameter in all codes } /** * Method to set values from minimization-routine common */ void TrkTrack::SetFromMiniStruct(cMini2track *track){ for(int i=0; i<5; i++) { al[i]=track->al[i]; for(int j=0; j<5; j++) coval[i][j]=track->cov[i][j]; } chi2 = track->chi2; nstep = track->nstep; for(int i=0; i<6; i++){ xv[i] = track->xv[i]; yv[i] = track->yv[i]; zv[i] = track->zv[i]; xm[i] = track->xm[i]; ym[i] = track->ym[i]; zm[i] = track->zm[i]; axv[i] = track->axv[i]; ayv[i] = track->ayv[i]; } } /** * \brief Method to re-evaluate coordinates of clusters associated with a track. * * The method can be applied only after recovering level1 information * (either by reprocessing single events from level0 or from * the TrkLevel1 branch, if present); it calls F77 subroutines that * read the level1 common and fill the minimization-routine common. * Some clusters can be excluded or added by means of the methods: * * TrkTrack::ResetXGood(int ip) * TrkTrack::ResetYGood(int ip) * TrkTrack::SetXGood(int ip, int cid, int is) * TrkTrack::SetYGood(int ip, int cid, int is) * * NB! The method TrkTrack::SetGood(int *xg, int *yg) set the plane-mask (0-1) * for the minimization-routine common. It deletes the cluster information * (at least for the moment...) thus cannot be applied before * TrkTrack::EvaluateClusterPositions(). * * Different p.f.a. can be applied by calling (once) the method: * * TrkParams::SetPFA(0); //Set ETA p.f.a. * * @see TrkParams::SetPFA(int) */ Bool_t TrkTrack::EvaluateClusterPositions(){ // cout << "void TrkTrack::GetClusterositions() "<<endl; bool OK=true; TrkParams::Load(1); if( !TrkParams::IsLoaded(1) )cout << "Bool_t TrkTrack::EvaluateClusterPositions() ---ERROR--- m.field not loaded "<<endl; TrkParams::Load(4); if( !TrkParams::IsLoaded(4) )cout << "Bool_t TrkTrack::EvaluateClusterPositions() ---ERROR--- p.f.a. par. not loaded "<<endl; TrkParams::Load(5); if( !TrkParams::IsLoaded(5) )cout << "Bool_t TrkTrack::EvaluateClusterPositions() ---ERROR--- alignment par. not loaded "<<endl; if(!OK)return false; for(int ip=0; ip<6; ip++){ // cout << ip<<" ** "<<xm[ip]<<" / "<<ym[ip]<<endl;; int icx = GetClusterX_ID(ip)+1; int icy = GetClusterY_ID(ip)+1; int sensor = GetSensor(ip)+1;//<< convenzione "Paolo" if(ip==5 && sensor!=0)sensor=3-sensor;//<< convenzione "Elena" int ladder = GetLadder(ip)+1; float ax = axv[ip]; float ay = ayv[ip]; float v[3]; v[0]=xv[ip]; v[1]=yv[ip]; v[2]=zv[ip]; float bfx = 10*TrkParams::GetBX(v);//Tesla float bfy = 10*TrkParams::GetBY(v);//Tesla int ipp=ip+1; xyzpam_(&ipp,&icx,&icy,&ladder,&sensor,&ax,&ay,&bfx,&bfy); if(icx<0 || icy<0)return false; } return true; } /** * \brief Tracking method. It calls F77 mini routine. * * @param pfixed Particle momentum. If pfixed=0 the momentum * is left as a free parameter, otherwise it is fixed to the input value. * @param fail Output flag (!=0 if the fit failed). * @param iprint Flag to set debug mode ( 0 = no output; 1 = verbose; 2 = debug). * @param froml1 Flag to re-evaluate positions (see TrkTrack::GetClusterPositions()). * * The option to re-evaluate positions can be used only after recovering * level1 information, eg. by reprocessing the single event. * * Example: * * if( !event->GetTrkLevel0() )return false; * event->GetTrkLevel0()->ProcessEvent(); // re-processing level0->level1 * int fail=0; * event->GetTrkLevel2()->GetTrack(0)->Fit(0.,fail,0,1); * * @see EvaluateClusterPositions() * * The fitting procedure can be varied by changing the tracking mode, * the fit-precision factor, the minimum number of step, etc. * @see SetTrackingMode(int) * @see SetPrecisionFactor(double) * @see SetStepMin(int) * @see SetDeltaB(int,double) */ void TrkTrack::Fit(double pfixed, int& fail, int iprint, int froml1){ bool OK=true; TrkParams::Load(1); if( !TrkParams::IsLoaded(1) )cout << "void TrkTrack::Fit(double,int&,int,int) ---ERROR--- m.field not loaded "<<endl; if(!OK)return; float al_ini[] = {0.,0.,0.,0.,0.}; extern cMini2track track_; fail = 0; FillMiniStruct(track_); if(froml1!=0){ if( !EvaluateClusterPositions() ){ cout << "void TrkTrack::Fit("<<pfixed<<","<<fail<<","<<iprint<<","<<froml1<<") --- ERROR evaluating cluster positions "<<endl; FillMiniStruct(track_) ; fail = 1; return; } }else{ FillMiniStruct(track_); } // if fit variables have been reset, evaluate the initial guess if(al[0]==-9999.&&al[1]==-9999.&&al[2]==-9999.&&al[3]==-9999.&&al[4]==-9999.)guess_(); // --------------------- free momentum if(pfixed==0.) { track_.pfixed=0.; } // --------------------- fixed momentum if(pfixed!=0.) { al[4]=1./pfixed; track_.pfixed=pfixed; } // store temporarily the initial guess for(int i=0; i<5; i++) al_ini[i]=track_.al[i]; // ------------------------------------------ // call mini routine // ------------------------------------------ int istep=0; int ifail=0; mini2_(&istep,&ifail, &iprint); if(ifail!=0) { if(iprint)cout << "ERROR: ifail= " << ifail << endl; fail = 1; } // ------------------------------------------ SetFromMiniStruct(&track_); if(fail){ if(iprint)cout << " >>>> fit failed "<<endl; for(int i=0; i<5; i++) al[i]=al_ini[i]; } }; /** * Reset the fit parameters */ void TrkTrack::FitReset(){ for(int i=0; i<5; i++) al[i]=-9999.; chi2=0.; nstep=0; // for(int i=0; i<6; i++) xv[i]=0.; // for(int i=0; i<6; i++) yv[i]=0.; // for(int i=0; i<6; i++) zv[i]=0.; // for(int i=0; i<6; i++) axv[i]=0.; // for(int i=0; i<6; i++) ayv[i]=0.; for(int i=0; i<5; i++) { for(int j=0; j<5; j++) coval[i][j]=0.; } } /** * Set the tracking mode */ void TrkTrack::SetTrackingMode(int trackmode){ extern cMini2track track_; track_.trackmode = trackmode; } /** * Set the factor scale for tracking precision */ void TrkTrack::SetPrecisionFactor(double fact){ extern cMini2track track_; track_.fact = fact; } /** * Set the minimum number of steps for tracking precision */ void TrkTrack::SetStepMin(int istepmin){ extern cMini2track track_; track_.istepmin = istepmin; } /** * Set deltaB parameters (id=0,1). By default they are set to zero. */ void TrkTrack::SetDeltaB(int id, double db){ if(id!=0 && id!=1)cout << "void TrkTrack::SetDeltaB(int id,double db) -- wrong input parameters: "<<id<<" "<<db<<endl; TrkParams::SetDeltaB(id,db); } /** * Returns true if the track is inside the magnet cavity. * @param toll Tolerance around the nominal volume (toll>0 define an inner fiducial volume) */ Bool_t TrkTrack::IsInsideCavity(float toll){ // float xmagntop, ymagntop, xmagnbottom, ymagnbottom; // xmagntop = xv[0] + (ZMAGNHIGH-zv[0])*tan(acos(-1.0)*axv[0]/180.); // ymagntop = yv[0] + (ZMAGNHIGH-zv[0])*tan(acos(-1.0)*ayv[0]/180.); // xmagnbottom = xv[5] + (ZMAGNLOW-zv[5])*tan(acos(-1.0)*axv[5]/180.); // ymagnbottom = yv[5] + (ZMAGNLOW-zv[5])*tan(acos(-1.0)*ayv[5]/180.); // if( xmagntop>XMAGNLOW && xmagntop<XMAGNHIGH && // ymagntop>YMAGNLOW && ymagntop<YMAGNHIGH && // xmagnbottom>XMAGNLOW && xmagnbottom<XMAGNHIGH && // ymagnbottom>YMAGNLOW && ymagnbottom<YMAGNHIGH ) return(true); // else return(false); int ngf = TrkParams::nGF; for(int i=0; i<ngf; i++){ // // cout << endl << TrkParams::GF_element[i]; if( TrkParams::GF_element[i].CompareTo("CUF") && TrkParams::GF_element[i].CompareTo("T2") && TrkParams::GF_element[i].CompareTo("T3") && TrkParams::GF_element[i].CompareTo("T4") && TrkParams::GF_element[i].CompareTo("T5") && TrkParams::GF_element[i].CompareTo("CLF") && true)continue; // apply condition only within the cavity // cout << " -- "<<xGF[i]<<" "<<yGF[i]; if( xGF[i] <= TrkParams::xGF_min[i] + toll || xGF[i] >= TrkParams::xGF_max[i] - toll || yGF[i] <= TrkParams::yGF_min[i] + toll || yGF[i] >= TrkParams::yGF_max[i] - toll || false){ return false; } } return true; } /** * Returns true if the track is inside the nominal acceptance, which is defined * by the intersection among magnet cavity, silicon-plane sensitive area and * ToF sensitive area (nominal values from the official document used to * calculate the geometrical factor) */ Bool_t TrkTrack::IsInsideAcceptance(){ int ngf = TrkParams::nGF; for(int i=0; i<ngf; i++){ if( xGF[i] <= TrkParams::xGF_min[i] || xGF[i] >= TrkParams::xGF_max[i] || yGF[i] <= TrkParams::yGF_min[i] || yGF[i] >= TrkParams::yGF_max[i] || false)return false; } return true; } /** * Method to retrieve ID (0,1,...) of x-cluster (if any) associated to this track. * If no cluster is associated, ID=-1. * @param ip Tracker plane (0-5) */ Int_t TrkTrack::GetClusterX_ID(int ip){ return ((Int_t)fabs(xgood[ip]))%10000000-1; }; /** * Method to retrieve ID (0-xxx) of y-cluster (if any) associated to this track. * If no cluster is associated, ID=-1. * @param ip Tracker plane (0-5) */ Int_t TrkTrack::GetClusterY_ID(int ip){ return ((Int_t)fabs(ygood[ip]))%10000000-1; }; /** * Method to retrieve the ladder (0-2, increasing x) traversed by the track on this plane. * If no ladder is traversed (dead area) the metod retuns -1. * @param ip Tracker plane (0-5) */ Int_t TrkTrack::GetLadder(int ip){ if(XGood(ip))return (Int_t)fabs(xgood[ip]/100000000)-1; if(YGood(ip))return (Int_t)fabs(ygood[ip]/100000000)-1; return -1; }; /** * Method to retrieve the sensor (0-1, increasing y) traversed by the track on this plane. * If no sensor is traversed (dead area) the metod retuns -1. * @param ip Tracker plane (0-5) */ Int_t TrkTrack::GetSensor(int ip){ if(XGood(ip))return (Int_t)((Int_t)fabs(xgood[ip]/10000000)%10)-1; if(YGood(ip))return (Int_t)((Int_t)fabs(ygood[ip]/10000000)%10)-1; return -1; }; /** * \brief Method to include a x-cluster to the track. * @param ip Tracker plane (0-5) * @param clid Cluster ID (0 = no-cluster, 1,2,... otherwise ) * @param il Ladder (0-2, increasing x, -1 if no sensitive area is hit) * @param is Sensor (0-1, increasing y, -1 if no sensitive area is hit) * @param bad True if the cluster contains bad strips * @see Fit(double pfixed, int& fail, int iprint, int froml1) */ void TrkTrack::SetXGood(int ip, int clid, int il, int is, bool bad){ // int il=0; //ladder (temporary) // bool bad=false; //ladder (temporary) if(ip<0||ip>5||clid<0||il<-1||il>2||is<-1||is>1) cout << " void TrkTrack::SetXGood(int,int,int,int,bool) --> MA SEI DI COCCIO?!?!"<<endl; xgood[ip]=(il+1)*100000000+(is+1)*10000000+clid; if(bad)xgood[ip]=-xgood[ip]; }; /** * \brief Method to include a y-cluster to the track. * @param ip Tracker plane (0-5) * @param clid Cluster ID (0 = no-cluster, 1,2,... otherwise ) * @param il Ladder (0-2, increasing x, -1 if no sensitive area is hit) * @param is Sensor (0-1, increasing y, -1 if no sensitive area is hit) * @param bad True if the cluster contains bad strips * @see Fit(double pfixed, int& fail, int iprint, int froml1) */ void TrkTrack::SetYGood(int ip, int clid, int il, int is, bool bad){ // int il=0; //ladder (temporary) // bool bad=false; //ladder (temporary) if(ip<0||ip>5||clid<0||il<-1||il>2||is<-1||is>1) cout << " void TrkTrack::SetYGood(int,int,int,int,bool) --> MA SEI DI COCCIO?!?!"<<endl; ygood[ip]=(il+1)*100000000+(is+1)*10000000+clid; if(bad)ygood[ip]=-ygood[ip]; }; /** * \brief Average X * Average value of <xv>, evaluated from the first to the last hit x view. */ Float_t TrkTrack::GetXav(){ int first_plane = -1; int last_plane = -1; for(Int_t ip=0; ip<6; ip++){ if( XGood(ip) && first_plane == -1 )first_plane = ip; if( XGood(ip) && first_plane != -1 )last_plane = ip; } if( first_plane == -1 || last_plane == -1){ return -100; } if( last_plane-first_plane+1 ==0 )return -100; Float_t av = 0; for(int ip=first_plane; ip<=last_plane; ip++)av+=xv[ip]; return (av/(last_plane-first_plane+1)); } /** * \brief Average Y * Average value of <yv>, evaluated from the first to the last hit x view. */ Float_t TrkTrack::GetYav(){ int first_plane = -1; int last_plane = -1; for(Int_t ip=0; ip<6; ip++){ if( XGood(ip) && first_plane == -1 )first_plane = ip; if( XGood(ip) && first_plane != -1 )last_plane = ip; } if( first_plane == -1 || last_plane == -1){ return -100; } if( last_plane-first_plane+1 ==0 )return -100; Float_t av = 0; for(int ip=first_plane; ip<=last_plane; ip++)av+=yv[ip]; return (av/(last_plane-first_plane+1)); } /** * \brief Average Z * Average value of <zv>, evaluated from the first to the last hit x view. */ Float_t TrkTrack::GetZav(){ int first_plane = -1; int last_plane = -1; for(Int_t ip=0; ip<6; ip++){ if( XGood(ip) && first_plane == -1 )first_plane = ip; if( XGood(ip) && first_plane != -1 )last_plane = ip; } if( first_plane == -1 || last_plane == -1){ return -100; } if( last_plane-first_plane+1 ==0 )return -100; Float_t av = 0; for(int ip=first_plane; ip<=last_plane; ip++)av+=zv[ip]; return (av/(last_plane-first_plane+1)); } /** * \brief Number of column traversed */ Int_t TrkTrack::GetNColumns(){ int sensors[] = {0,0,0,0,0,0}; for(int ip=0; ip<6; ip++){ int sensorid = GetLadder(ip)+3*GetSensor(ip); if(XGood(ip)||YGood(ip)) if(sensorid>=0 && sensorid<6)sensors[sensorid]=1; } int nsensors=0; for(int is=0; is<6; is++)nsensors += sensors[is]; return nsensors; }; /** * \brief Give the maximum energy release */ Float_t TrkTrack::GetDEDX_max(int ip, int iv){ Float_t max=0; int pfrom = 0; int pto = 6; int vfrom = 0; int vto = 2; if(ip>=0&&ip<6){ pfrom = ip; pto = ip+1; } if(iv>=0&&iv<2){ vfrom = iv; vto = iv+1; } for(int i=pfrom; i<pto; i++) for(int j=vfrom; j<vto; j++){ if(j==0 && XGood(i) && GetDEDX(i,j)>max)max=GetDEDX(i,j); if(j==1 && YGood(i) && GetDEDX(i,j)>max)max=GetDEDX(i,j); } return max; }; /** * \brief Give the minimum energy release */ Float_t TrkTrack::GetDEDX_min(int ip, int iv){ Float_t min=100000000; int pfrom = 0; int pto = 6; int vfrom = 0; int vto = 2; if(ip>=0&&ip<6){ pfrom = ip; pto = ip+1; } if(iv>=0&&iv<2){ vfrom = iv; vto = iv+1; } for(int i=pfrom; i<pto; i++) for(int j=vfrom; j<vto; j++){ if(j==0 && XGood(i) && GetDEDX(i,j)<min)min=GetDEDX(i,j); if(j==1 && YGood(i) && GetDEDX(i,j)<min)min=GetDEDX(i,j); } return min; }; /** * \brief Give the maximum spatial residual */ Float_t TrkTrack::GetResidual_max(int ip, int iv){ Float_t max=0; int pfrom = 0; int pto = 6; int vfrom = 0; int vto = 2; if(ip>=0&&ip<6){ pfrom = ip; pto = ip+1; } if(iv>=0&&iv<2){ vfrom = iv; vto = iv+1; } for(int i=pfrom; i<pto; i++){ for(int j=vfrom; j<vto; j++){ if(j==0 && XGood(i) && fabs(xm[i]-xv[i])>fabs(max))max=xm[i]-xv[i]; if(j==1 && YGood(i) && fabs(ym[i]-yv[i])>fabs(max))max=ym[i]-yv[i]; } } return max; }; /** * \brief Give the anerage spatial residual */ Float_t TrkTrack::GetResidual_av(int ip, int iv){ // //Sum$((xm>-50)*(xm-xv)/resx)/sqrt(TrkTrack.GetNX()*TrkTrack.GetChi2X())<0.3 Float_t av = 0.; int nav = 0; // int pfrom = 0; int pto = 6; int vfrom = 0; int vto = 2; if(ip>=0&&ip<6){ pfrom = ip; pto = ip+1; } if(iv>=0&&iv<2){ vfrom = iv; vto = iv+1; } for(int i=pfrom; i<pto; i++){ for(int j=vfrom; j<vto; j++){ nav++; if(j==0 && XGood(i)) av += (xm[i]-xv[i])/resx[i]; if(j==1 && YGood(i)) av += (ym[i]-yv[i])/resy[i]; } } if(nav==0)return -100.; return av/nav; }; /** * \brief Give the maximum multiplicity on the x view */ Int_t TrkTrack::GetClusterX_Multiplicity_max(){ int max=0; for(int ip=0; ip<6; ip++) if(GetClusterX_Multiplicity(ip)>max)max=GetClusterX_Multiplicity(ip); return max; }; /** * \brief Give the minimum multiplicity on the x view */ Int_t TrkTrack::GetClusterX_Multiplicity_min(){ int min=50; for(int ip=0; ip<6; ip++) if(GetClusterX_Multiplicity(ip)<min)min=GetClusterX_Multiplicity(ip); return min; }; /** * \brief Give the maximum multiplicity on the x view */ Int_t TrkTrack::GetClusterY_Multiplicity_max(){ int max=0; for(int ip=0; ip<6; ip++) if(GetClusterY_Multiplicity(ip)>max)max=GetClusterY_Multiplicity(ip); return max; }; /** * \brief Give the minimum multiplicity on the x view */ Int_t TrkTrack::GetClusterY_Multiplicity_min(){ int min=50; for(int ip=0; ip<6; ip++) if(GetClusterY_Multiplicity(ip)<min)min=GetClusterY_Multiplicity(ip); return min; }; /** * \brief Give the minimum seed on the x view */ Float_t TrkTrack::GetClusterX_Seed_min(){ Float_t min=100000; for(int ip=0; ip<6; ip++) if(XGood(ip) && GetClusterX_Seed(ip)<min)min=GetClusterX_Seed(ip); return min; }; /** * \brief Give the minimum seed on the x view */ Float_t TrkTrack::GetClusterY_Seed_min(){ Float_t min=100000; for(int ip=0; ip<6; ip++) if(YGood(ip) && GetClusterY_Seed(ip)<min)min=GetClusterY_Seed(ip); return min; }; //-------------------------------------- // // //-------------------------------------- void TrkTrack::Clear(){ // cout << "TrkTrack::Clear()"<<endl; seqno = -1; image = -1; chi2 = 0; nstep = 0; for(int it1=0;it1<5;it1++){ al[it1] = 0; for(int it2=0;it2<5;it2++)coval[it1][it2] = 0; }; for(int ip=0;ip<6;ip++){ xgood[ip] = 0; ygood[ip] = 0; xm[ip] = 0; ym[ip] = 0; zm[ip] = 0; resx[ip] = 0; resy[ip] = 0; tailx[ip] = 0; taily[ip] = 0; xv[ip] = 0; yv[ip] = 0; zv[ip] = 0; axv[ip] = 0; ayv[ip] = 0; dedx_x[ip] = 0; dedx_y[ip] = 0; }; int ngf = TrkParams::nGF; for(int i=0; i<ngf; i++){ xGF[i] = 0.; yGF[i] = 0.; } // if(clx)clx->Clear(); // if(cly)cly->Clear(); // clx.Clear(); // cly.Clear(); }; //-------------------------------------- // // //-------------------------------------- void TrkTrack::Delete(){ // cout << "TrkTrack::Delete()"<<endl; Clear(); // if(clx)delete clx; // if(cly)delete cly; }; //-------------------------------------- // // //-------------------------------------- //-------------------------------------- // // //-------------------------------------- TrkSinglet::TrkSinglet(){ // cout << "TrkSinglet::TrkSinglet() " << GetUniqueID()<<endl; // plane = 0; // coord[0] = 0; // coord[1] = 0; // sgnl = 0; // multmax = 0; // cls = 0; Clear(); }; //-------------------------------------- // // //-------------------------------------- TrkSinglet::TrkSinglet(const TrkSinglet& s){ // cout << "TrkSinglet::TrkSinglet(const TrkSinglet& s) " << GetUniqueID()<<endl; plane = s.plane; coord[0] = s.coord[0]; coord[1] = s.coord[1]; sgnl = s.sgnl; multmax = s.multmax; // cls = 0;//<<<<pointer // cls = TRef(s.cls); }; //-------------------------------------- // // //-------------------------------------- void TrkSinglet::Dump(){ int i=0; cout << endl << "========== Singlet " ; cout << endl << "plane : " << plane; cout << endl << "coord[2] : "; while( i<2 && cout << coord[i] << " ") i++; cout << endl << "sgnl : " << sgnl; cout << endl << "max.strip : "; cout << endl << "multiplicity : "; } //-------------------------------------- // // //-------------------------------------- void TrkSinglet::Clear(){ // cout << "TrkSinglet::Clear() " << GetUniqueID()<<endl; // cls=0; plane=-1; coord[0]=-999; coord[1]=-999; sgnl=0; multmax = 0; } //-------------------------------------- // // //-------------------------------------- TrkLevel2::TrkLevel2(){ // cout <<"TrkLevel2::TrkLevel2()"<<endl; for(Int_t i=0; i<12 ; i++){ good[i] = -1; VKmask[i] = 0; VKflag[i] = 0; }; Track = 0; SingletX = 0; SingletY = 0; } //-------------------------------------- // // //-------------------------------------- void TrkLevel2::Set(){ if(!Track)Track = new TClonesArray("TrkTrack"); if(!SingletX)SingletX = new TClonesArray("TrkSinglet"); if(!SingletY)SingletY = new TClonesArray("TrkSinglet"); } //-------------------------------------- // // //-------------------------------------- void TrkLevel2::Dump(){ // cout << endl << endl << "=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-"; cout << endl << "good : "; for(int i=0; i<12; i++) cout << hex <<" 0x"<< good[i]<<dec; cout << endl << "ntrk() : " << ntrk() ; cout << endl << "nclsx() : " << nclsx(); cout << endl << "nclsy() : " << nclsy(); if(Track){ TClonesArray &t = *Track; for(int i=0; i<ntrk(); i++) ((TrkTrack *)t[i])->Dump(); } // if(SingletX){ // TClonesArray &sx = *SingletX; // for(int i=0; i<nclsx(); i++) ((TrkSinglet *)sx[i])->Dump(); // } // if(SingletY){ // TClonesArray &sy = *SingletY; // for(int i=0; i<nclsy(); i++) ((TrkSinglet *)sy[i])->Dump(); // } cout << endl; } /** * \brief Dump processing status */ void TrkLevel2::StatusDump(int view){ cout << "DSP n. "<<view+1<<" status: "<<hex<<good[view]<<endl; }; /** * \brief Check event status * * Check the event status, according to a flag-mask given as input. * Return true if the view passes the check. * * @param view View number (0-11) * @param flagmask Mask of flags to check (eg. flagmask=0x111 no missing packet, * no crc error, no software alarm) * * @see TrkLevel2 class definition to know how the status flag is defined * */ Bool_t TrkLevel2::StatusCheck(int view, int flagmask){ if( view<0 || view >= 12)return false; return !(good[view]&flagmask); }; //-------------------------------------- // // //-------------------------------------- /** * The method returns false if the viking-chip was masked * either apriori ,on the basis of the mask read from the DB, * or run-by-run, on the basis of the calibration parameters) * @param iv Tracker view (0-11) * @param ivk Viking-chip number (0-23) */ Bool_t TrkLevel2::GetVKMask(int iv, int ivk){ Int_t whichbit = (Int_t)pow(2,ivk); return (whichbit&VKmask[iv])!=0; } /** * The method returns false if the viking-chip was masked * for this event due to common-noise computation failure. * @param iv Tracker view (0-11) * @param ivk Viking-chip number (0-23) */ Bool_t TrkLevel2::GetVKFlag(int iv, int ivk){ Int_t whichbit = (Int_t)pow(2,ivk); return (whichbit&VKflag[iv])!=0; } /** * The method returns true if the viking-chip was masked, either * forced (see TrkLevel2::GetVKMask(int,int)) or * for this event only (TrkLevel2::GetVKFlag(int,int)). * @param iv Tracker view (0-11) * @param ivk Viking-chip number (0-23) */ Bool_t TrkLevel2::IsMaskedVK(int iv, int ivk){ return !(GetVKMask(iv,ivk)&&GetVKFlag(iv,ivk) ); }; //-------------------------------------- // // //-------------------------------------- /** * Fills a TrkLevel2 object with values from a struct cTrkLevel2 (to get data from F77 common). * Ref to Level1 data (clusters) is also set. If l1==NULL no references are set. * (NB It make sense to set references only if events are stored in a tree that contains also the Level1 branch) */ void TrkLevel2::SetFromLevel2Struct(cTrkLevel2 *l2, TrkLevel1 *l1){ // cout << "void TrkLevel2::SetFromLevel2Struct(cTrkLevel2 *l2, TrkLevel1 *l1)"<<endl; Clear(); // temporary objects: TrkSinglet* t_singlet = new TrkSinglet(); TrkTrack* t_track = new TrkTrack(); // ----------------- // general variables // ----------------- for(Int_t i=0; i<12 ; i++){ good[i] = l2->good[i]; VKmask[i]=0; VKflag[i]=0; for(Int_t ii=0; ii<24 ; ii++){ Int_t setbit = (Int_t)pow(2,ii); if( l2->vkflag[ii][i]!=-1 )VKmask[i]=VKmask[i]|setbit; if( l2->vkflag[ii][i]!=0 )VKflag[i]=VKflag[i]|setbit; }; }; // -------------- // *** TRACKS *** // -------------- if(!Track) Track = new TClonesArray("TrkTrack"); TClonesArray &t = *Track; for(int i=0; i<l2->ntrk; i++){ t_track->seqno = i;// NBNBNBNB deve sempre essere = i t_track->image = l2->image[i]-1; t_track->chi2 = l2->chi2_nt[i]; t_track->nstep = l2->nstep_nt[i]; for(int it1=0;it1<5;it1++){ t_track->al[it1] = l2->al_nt[i][it1]; for(int it2=0;it2<5;it2++) t_track->coval[it1][it2] = l2->coval[i][it2][it1]; }; for(int ip=0;ip<6;ip++){ // --------------------------------- // new implementation of xgood/ygood // --------------------------------- t_track->xgood[ip] = l2->cltrx[i][ip]; //cluster ID t_track->ygood[ip] = l2->cltry[i][ip]; //cluster ID t_track->xgood[ip] += 10000000*l2->ls[i][ip]; // ladder+sensor t_track->ygood[ip] += 10000000*l2->ls[i][ip]; // ladder+sensor if(l2->xbad[i][ip]>0)t_track->xgood[ip]=-t_track->xgood[ip]; if(l2->ybad[i][ip]>0)t_track->ygood[ip]=-t_track->ygood[ip]; // if(l2->xbad[i][ip]>0 || l2->ybad[i][ip]>0){ // if(l2->dedx_x[i][ip]<0 || l2->dedx_y[i][ip]<0){ // cout << ip << " - "<< l2->cltrx[i][ip] << " "<<l2->cltry[i][ip]<<" "<<l2->ls[i][ip]<<endl; // cout << ip << " - "<<t_track->xgood[ip]<<" "<<t_track->ygood[ip]<<endl; // cout << ip << " - "<<t_track->GetClusterX_ID(ip)<<" "<<t_track->GetClusterY_ID(ip)<<" "<<t_track->GetLadder(ip)<<" "<<t_track->GetSensor(ip)<<endl; // cout << ip << " - "<<t_track->BadClusterX(ip)<<" "<<t_track->BadClusterY(ip)<<endl; // cout << ip << " - "<<t_track->SaturatedClusterX(ip)<<" "<<t_track->SaturatedClusterY(ip)<<endl; // } t_track->xm[ip] = l2->xm_nt[i][ip]; t_track->ym[ip] = l2->ym_nt[i][ip]; t_track->zm[ip] = l2->zm_nt[i][ip]; t_track->resx[ip] = l2->resx_nt[i][ip]; t_track->resy[ip] = l2->resy_nt[i][ip]; t_track->tailx[ip] = l2->tailx[i][ip]; t_track->taily[ip] = l2->taily[i][ip]; t_track->xv[ip] = l2->xv_nt[i][ip]; t_track->yv[ip] = l2->yv_nt[i][ip]; t_track->zv[ip] = l2->zv_nt[i][ip]; t_track->axv[ip] = l2->axv_nt[i][ip]; t_track->ayv[ip] = l2->ayv_nt[i][ip]; t_track->dedx_x[ip] = l2->dedx_x[i][ip]; t_track->dedx_y[ip] = l2->dedx_y[i][ip]; t_track->multmaxx[ip] = l2->multmaxx[i][ip]; t_track->multmaxy[ip] = l2->multmaxy[i][ip]; t_track->seedx[ip] = l2->seedx[i][ip]; t_track->seedy[ip] = l2->seedy[i][ip]; t_track->xpu[ip] = l2->xpu[i][ip]; t_track->ypu[ip] = l2->ypu[i][ip]; //----------------------------------------------------- //----------------------------------------------------- //----------------------------------------------------- //----------------------------------------------------- }; // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // evaluated coordinates (to define GF) // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ int ngf = TrkParams::nGF; float *zgf = TrkParams::zGF; Trajectory tgf = Trajectory(ngf,zgf); tgf.DoTrack2(t_track->al);//<<<< integrate the trajectory for(int ip=0; ip<ngf; ip++){ t_track->xGF[ip] = tgf.x[ip]; t_track->yGF[ip] = tgf.y[ip]; } // if(t_track->IsSaturated())t_track->Dump(); new(t[i]) TrkTrack(*t_track); t_track->Clear(); };//end loop over track // ---------------- // *** SINGLETS *** // ---------------- if(!SingletX)SingletX = new TClonesArray("TrkSinglet"); TClonesArray &sx = *SingletX; for(int i=0; i<l2->nclsx; i++){ t_singlet->plane = l2->planex[i]; t_singlet->coord[0] = l2->xs[i][0]; t_singlet->coord[1] = l2->xs[i][1]; t_singlet->sgnl = l2->signlxs[i]; t_singlet->multmax = l2->multmaxsx[i]; if(l2->sxbad[i]>0) t_singlet->multmax = -1*t_singlet->multmax; //----------------------------------------------------- // if(l1) t_singlet->cls = l1->GetCluster(l2->clsx[i]-1); //----------------------------------------------------- new(sx[i]) TrkSinglet(*t_singlet); t_singlet->Clear(); } if(!SingletY)SingletY = new TClonesArray("TrkSinglet"); TClonesArray &sy = *SingletY; for(int i=0; i<l2->nclsy; i++){ t_singlet->plane = l2->planey[i]; t_singlet->coord[0] = l2->ys[i][0]; t_singlet->coord[1] = l2->ys[i][1]; t_singlet->sgnl = l2->signlys[i]; t_singlet->multmax = l2->multmaxsy[i]; if(l2->sybad[i]>0) t_singlet->multmax = -1*t_singlet->multmax; //----------------------------------------------------- // if(l1) t_singlet->cls = l1->GetCluster(l2->clsy[i]-1); //----------------------------------------------------- new(sy[i]) TrkSinglet(*t_singlet); t_singlet->Clear(); }; delete t_track; delete t_singlet; } /** * Fills a struct cTrkLevel2 with values from a TrkLevel2 object (to put data into a F77 common). */ void TrkLevel2::GetLevel2Struct(cTrkLevel2 *l2) const { // general variables // l2->good2 = good2 ; for(Int_t i=0; i<12 ; i++){ // l2->crc[i] = crc[i]; l2->good[i] = good[i]; }; // *** TRACKS *** if(Track){ l2->ntrk = Track->GetEntries(); for(Int_t i=0;i<l2->ntrk;i++){ l2->image[i] = 1 + ((TrkTrack *)Track->At(i))->image; l2->chi2_nt[i] = ((TrkTrack *)Track->At(i))->chi2; l2->nstep_nt[i] = ((TrkTrack *)Track->At(i))->nstep; for(int it1=0;it1<5;it1++){ l2->al_nt[i][it1] = ((TrkTrack *)Track->At(i))->al[it1]; for(int it2=0;it2<5;it2++) l2->coval[i][it2][it1] = ((TrkTrack *)Track->At(i))->coval[it1][it2]; }; for(int ip=0;ip<6;ip++){ l2->xgood_nt[i][ip] = ((TrkTrack *)Track->At(i))->XGood(ip); l2->ygood_nt[i][ip] = ((TrkTrack *)Track->At(i))->YGood(ip); l2->xm_nt[i][ip] = ((TrkTrack *)Track->At(i))->xm[ip]; l2->ym_nt[i][ip] = ((TrkTrack *)Track->At(i))->ym[ip]; l2->zm_nt[i][ip] = ((TrkTrack *)Track->At(i))->zm[ip]; l2->resx_nt[i][ip] = ((TrkTrack *)Track->At(i))->resx[ip]; l2->resy_nt[i][ip] = ((TrkTrack *)Track->At(i))->resy[ip]; l2->tailx[i][ip] = ((TrkTrack *)Track->At(i))->tailx[ip]; l2->taily[i][ip] = ((TrkTrack *)Track->At(i))->taily[ip]; l2->xv_nt[i][ip] = ((TrkTrack *)Track->At(i))->xv[ip]; l2->yv_nt[i][ip] = ((TrkTrack *)Track->At(i))->yv[ip]; l2->zv_nt[i][ip] = ((TrkTrack *)Track->At(i))->zv[ip]; l2->axv_nt[i][ip] = ((TrkTrack *)Track->At(i))->axv[ip]; l2->ayv_nt[i][ip] = ((TrkTrack *)Track->At(i))->ayv[ip]; l2->dedx_x[i][ip] = ((TrkTrack *)Track->At(i))->dedx_x[ip]; l2->dedx_y[i][ip] = ((TrkTrack *)Track->At(i))->dedx_y[ip]; }; } } // *** SINGLETS *** if(SingletX){ l2->nclsx = SingletX->GetEntries(); for(Int_t i=0;i<l2->nclsx;i++){ l2->planex[i] = ((TrkSinglet *)SingletX->At(i))->plane; l2->xs[i][0] = ((TrkSinglet *)SingletX->At(i))->coord[0]; l2->xs[i][1] = ((TrkSinglet *)SingletX->At(i))->coord[1]; l2->signlxs[i] = ((TrkSinglet *)SingletX->At(i))->sgnl; } } if(SingletY){ l2->nclsy = SingletY->GetEntries(); for(Int_t i=0;i<l2->nclsy;i++){ l2->planey[i] = ((TrkSinglet *)SingletY->At(i))->plane; l2->ys[i][0] = ((TrkSinglet *)SingletY->At(i))->coord[0]; l2->ys[i][1] = ((TrkSinglet *)SingletY->At(i))->coord[1]; l2->signlys[i] = ((TrkSinglet *)SingletY->At(i))->sgnl; } } } //-------------------------------------- // // //-------------------------------------- void TrkLevel2::Clear(){ for(Int_t i=0; i<12 ; i++){ good[i] = -1; VKflag[i] = 0; VKmask[i] = 0; }; // if(Track)Track->Clear("C"); // if(SingletX)SingletX->Clear("C"); // if(SingletY)SingletY->Clear("C"); if(Track)Track->Delete(); if(SingletX)SingletX->Delete(); if(SingletY)SingletY->Delete(); } // //-------------------------------------- // // // // // //-------------------------------------- void TrkLevel2::Delete(){ // cout << "void TrkLevel2::Delete()"<<endl; Clear(); if(Track)delete Track; if(SingletX)delete SingletX; if(SingletY)delete SingletY; } //-------------------------------------- // // //-------------------------------------- /** * Sort physical tracks and stores them in a TObjectArray, ordering by increasing chi**2 value (in case of track image, it selects the one with lower chi**2). The total number of physical tracks is given by GetNTracks() and the it-th physical track can be retrieved by means of the method GetTrack(int it). * This method is overridden by PamLevel2::GetTracks(), where calorimeter and TOF information is used. */ TRefArray *TrkLevel2::GetTracks_NFitSorted(){ if(!Track)return 0; TRefArray *sorted = new TRefArray(); TClonesArray &t = *Track; // TClonesArray &ts = *PhysicalTrack; int N = ntrk(); vector<int> m(N); for(int i=0; i<N; i++)m[i]=1; // int m[50]; for(int i=0; i<N; i++)m[i]=1; int indo=0; int indi=0; while(N > 0){ // while(N != 0){ int nfit =0; float chi2ref = numeric_limits<float>::max(); // first loop to search maximum num. of fit points for(int i=0; i < ntrk(); i++){ if( ((TrkTrack *)t[i])->GetNtot() >= nfit && m[i]==1){ nfit = ((TrkTrack *)t[i])->GetNtot(); } } //second loop to search minimum chi2 among selected for(int i=0; i<ntrk(); i++){ Float_t chi2 = ((TrkTrack *)t[i])->chi2; if(chi2 < 0) chi2 = -chi2*1000; if( chi2 < chi2ref && ((TrkTrack *)t[i])->GetNtot() == nfit && m[i]==1){ chi2ref = ((TrkTrack *)t[i])->chi2; indi = i; }; }; if( ((TrkTrack *)t[indi])->HasImage() ){ m[((TrkTrack *)t[indi])->image] = 0; N--; // cout << "i** "<< ((TrkTrack *)t[indi])->image << " " << nfiti <<" "<<chi2i<<endl; }; sorted->Add( (TrkTrack*)t[indi] ); m[indi] = 0; // cout << "SORTED "<< indo << " "<< indi << " "<< N << " "<<((TrkTrack *)t[indi])->image<<" "<<chi2ref<<endl; N--; indo++; } m.clear(); // cout << "GetTracks_NFitSorted(it): Done"<< endl; return sorted; // return PhysicalTrack; } //-------------------------------------- // // //-------------------------------------- /** * Retrieves the is-th stored track. * @param it Track number, ranging from 0 to ntrk(). * Fitted tracks ( images included ) are stored in a TObjectArray ( TrkLevel2::Track ) in the same order they are returned by the F77 fitting routine. */ TrkTrack *TrkLevel2::GetStoredTrack(int is){ if(is >= this->ntrk()){ cout << "TrkTrack *TrkLevel2::GetStoredTrack(int) >> Track "<< is << "doen not exits! " << endl; cout << "Stored tracks ntrk() = "<< this->ntrk() << endl; return 0; } if(!Track){ cout << "TrkTrack *TrkLevel2::GetStoredTrack(int is) >> (TClonesArray*) Track ==0 "<<endl; }; TClonesArray &t = *(Track); TrkTrack *track = (TrkTrack*)t[is]; return track; } //-------------------------------------- // // //-------------------------------------- /** * Retrieves the is-th stored X singlet. * @param it Singlet number, ranging from 0 to nclsx(). */ TrkSinglet *TrkLevel2::GetSingletX(int is){ if(is >= this->nclsx()){ cout << "TrkSinglet *TrkLevel2::GetSingletX(int) >> Singlet "<< is << "doen not exits! " << endl; cout << "Stored x-singlets nclsx() = "<< this->nclsx() << endl; return 0; } if(!SingletX)return 0; TClonesArray &t = *(SingletX); TrkSinglet *singlet = (TrkSinglet*)t[is]; return singlet; } //-------------------------------------- // // //-------------------------------------- /** * Retrieves the is-th stored Y singlet. * @param it Singlet number, ranging from 0 to nclsx(). */ TrkSinglet *TrkLevel2::GetSingletY(int is){ if(is >= this->nclsy()){ cout << "TrkSinglet *TrkLevel2::GetSingletY(int) >> Singlet "<< is << "doen not exits! " << endl; cout << "Stored y-singlets nclsx() = "<< this->nclsx() << endl; return 0; } if(!SingletY)return 0; TClonesArray &t = *(SingletY); TrkSinglet *singlet = (TrkSinglet*)t[is]; return singlet; } //-------------------------------------- // // //-------------------------------------- /** * Retrieves the it-th "physical" track, sorted by the method GetNTracks(). * @param it Track number, ranging from 0 to GetNTracks(). */ TrkTrack *TrkLevel2::GetTrack(int it){ if(it >= this->GetNTracks()){ cout << "TrkTrack *TrkLevel2::GetTrack(int) >> Track "<< it << "does not exits! " << endl; cout << "Physical tracks GetNTracks() = "<< this->ntrk() << endl; return 0; } TRefArray *sorted = GetTracks(); //TEMPORANEO if(!sorted)return 0; TrkTrack *track = (TrkTrack*)sorted->At(it); sorted->Clear(); delete sorted; return track; } /** * Give the number of "physical" tracks, sorted by the method GetTracks(). */ Int_t TrkLevel2::GetNTracks(){ Float_t ntot=0; if(!Track)return 0; TClonesArray &t = *Track; for(int i=0; i<ntrk(); i++) { if( ((TrkTrack *)t[i])->GetImageSeqNo() == -1 ) ntot+=1.; else ntot+=0.5; } return (Int_t)ntot; }; //-------------------------------------- // // //-------------------------------------- /** * Retrieves (if present) the image of the it-th "physical" track, sorted by the method GetNTracks(). * @param it Track number, ranging from 0 to GetNTracks(). */ TrkTrack *TrkLevel2::GetTrackImage(int it){ if(it >= this->GetNTracks()){ cout << "TrkTrack *TrkLevel2::GetTrackImage(int) >> Track "<< it << "does not exits! " << endl; cout << "Physical tracks GetNTracks() = "<< this->ntrk() << endl; return 0; } TRefArray* sorted = GetTracks(); //TEMPORANEO if(!sorted)return 0; TrkTrack *track = (TrkTrack*)sorted->At(it); if(!track->HasImage()){ cout << "TrkTrack *TrkLevel2::GetTrackImage(int) >> Track "<< it << "does not have image! " << endl; return 0; } if(!Track)return 0; TrkTrack *image = (TrkTrack*)(*Track)[track->image]; sorted->Delete(); delete sorted; return image; } //-------------------------------------- // // //-------------------------------------- /** * Loads the magnetic field. * @param s Path of the magnetic-field files. */ void TrkLevel2::LoadField(TString path){ // // strcpy(path_.path,path.Data()); // path_.pathlen = path.Length(); // path_.error = 0; // readb_(); // TrkParams::SetTrackingMode(); // TrkParams::SetPrecisionFactor(); // TrkParams::SetStepMin(); TrkParams::SetMiniDefault(); TrkParams::Set(path,1); TrkParams::Load(1); if( !TrkParams::IsLoaded(1) ){ cout << "void TrkLevel2::LoadField(TString path) --- ERROR --- m.field not loaded"<<endl; } // }; // /** // * Get BY (kGauss) // * @param v (x,y,z) coordinates in cm // */ // float TrkLevel2::GetBX(float* v){ // float b[3]; // gufld_(v,b); // return b[0]/10.; // } // /** // * Get BY (kGauss) // * @param v (x,y,z) coordinates in cm // */ // float TrkLevel2::GetBY(float* v){ // float b[3]; // gufld_(v,b); // return b[1]/10.; // } // /** // * Get BY (kGauss) // * @param v (x,y,z) coordinates in cm // */ // float TrkLevel2::GetBZ(float* v){ // float b[3]; // gufld_(v,b); // return b[2]/10.; // } //-------------------------------------- // // //-------------------------------------- /** * Get tracker-plane (mechanical) z-coordinate * @param plane_id plane index (1=TOP,2,3,4,5,6=BOTTOM) */ Float_t TrkLevel2::GetZTrk(Int_t plane_id){ switch(plane_id){ case 1: return ZTRK1; case 2: return ZTRK2; case 3: return ZTRK3; case 4: return ZTRK4; case 5: return ZTRK5; case 6: return ZTRK6; default: return 0.; }; }; //-------------------------------------- // // //-------------------------------------- /** * Trajectory default constructor. * (By default is created with z-coordinates inside the tracking volume) */ Trajectory::Trajectory(){ npoint = 10; x = new float[npoint]; y = new float[npoint]; z = new float[npoint]; thx = new float[npoint]; thy = new float[npoint]; tl = new float[npoint]; float dz = ((ZTRK1)-(ZTRK6))/(npoint-1); for(int i=0; i<npoint; i++){ x[i] = 0; y[i] = 0; z[i] = (ZTRK1) - i*dz; thx[i] = 0; thy[i] = 0; tl[i] = 0; } } //-------------------------------------- // // //-------------------------------------- /** * Trajectory constructor. * (By default is created with z-coordinates inside the tracking volume) * \param n Number of points */ Trajectory::Trajectory(int n){ if(n<=0){ cout << "NB! Trajectory must have at least 1 point >>> created with 10 points" << endl; n=10; } npoint = n; x = new float[npoint]; y = new float[npoint]; z = new float[npoint]; thx = new float[npoint]; thy = new float[npoint]; tl = new float[npoint]; float dz = ((ZTRK1)-(ZTRK6))/(npoint-1); for(int i=0; i<npoint; i++){ x[i] = 0; y[i] = 0; z[i] = (ZTRK1) - i*dz; thx[i] = 0; thy[i] = 0; tl[i] = 0; } } //-------------------------------------- // // //-------------------------------------- /** * Trajectory constructor. * \param n Number of points * \param pz Pointer to float array, defining z coordinates */ Trajectory::Trajectory(int n, float* zin){ npoint = 10; if(n>0)npoint = n; x = new float[npoint]; y = new float[npoint]; z = new float[npoint]; thx = new float[npoint]; thy = new float[npoint]; tl = new float[npoint]; int i=0; do{ x[i] = 0; y[i] = 0; z[i] = zin[i]; thx[i] = 0; thy[i] = 0; tl[i] = 0; i++; }while(zin[i-1] > zin[i] && i < npoint); npoint=i; if(npoint != n)cout << "NB! Trajectory created with "<<npoint<<" points"<<endl; } void Trajectory::Delete(){ if(x) delete [] x; if(y) delete [] y; if(z) delete [] z; if(thx) delete [] thx; if(thy) delete [] thy; if(tl) delete [] tl; } //-------------------------------------- // // //-------------------------------------- /** * Dump the trajectory coordinates. */ void Trajectory::Dump(){ cout <<endl<< "Trajectory ========== "<<endl; for (int i=0; i<npoint; i++){ cout << i <<" >> " << x[i] <<" "<< y[i] <<" "<< z[i] ; cout <<" -- " << thx[i] <<" "<< thy[i] ; cout <<" -- " << tl[i] << endl; }; } //-------------------------------------- // // //-------------------------------------- /** * Get trajectory length between two points * @param ifirst first point (default 0) * @param ilast last point (default npoint) */ float Trajectory::GetLength(int ifirst, int ilast){ if( ifirst<0 ) ifirst = 0; if( ilast>=npoint) ilast = npoint-1; float l=0; for(int i=ifirst;i<=ilast;i++){ l=l+tl[i]; }; if(z[ilast] > ZINI)l=l-tl[ilast]; if(z[ifirst] < ZINI) l=l-tl[ifirst]; return l; } /** * Evaluates the trajectory in the apparatus associated to the track. * It integrates the equations of motion in the magnetic field. The magnetic field should be previously loaded ( by calling TrkLevel2::LoadField() ), otherwise an error message is returned. * @param t pointer to an object of the class Trajectory, * which z coordinates should be previously initialized by calling the proper constructor ( Trajectory::Trajectory(int n, float* zin) ). * @return error flag. */ int Trajectory::DoTrack2(float* al){ // double *dxout = new double[npoint]; // double *dyout = new double[npoint]; // double *dthxout = new double[npoint]; // double *dthyout = new double[npoint]; // double *dtlout = new double[npoint]; // double *dzin = new double[npoint]; double *dxout; double *dyout; double *dthxout; double *dthyout; double *dtlout; double *dzin; dxout = (double*) malloc(npoint*sizeof(double)); dyout = (double*) malloc(npoint*sizeof(double)); dthxout = (double*) malloc(npoint*sizeof(double)); dthyout = (double*) malloc(npoint*sizeof(double)); dtlout = (double*) malloc(npoint*sizeof(double)); dzin = (double*) malloc(npoint*sizeof(double)); double dal[5]; int ifail = 0; for (int i=0; i<5; i++) dal[i] = (double)al[i]; for (int i=0; i<npoint; i++) dzin[i] = (double)z[i]; TrkParams::Load(1); if( !TrkParams::IsLoaded(1) ){ cout << "int Trajectory::DoTrack2(float* al) --- ERROR --- m.field not loaded"<<endl; return 0; } dotrack2_(&(npoint),dzin,dxout,dyout,dthxout,dthyout,dtlout,dal,&ifail); for (int i=0; i<npoint; i++){ x[i] = (float)*(dxout+i); y[i] = (float)*(dyout+i); thx[i] = (float)*(dthxout+i); thy[i] = (float)*(dthyout+i); tl[i] = (float)*(dtlout+i); } if(dxout) free( dxout ); if(dyout) free( dyout ); if(dthxout)free( dthxout ); if(dthyout)free( dthyout ); if(dtlout) free( dtlout ); if(dzin) free( dzin ); // delete [] dxout; // delete [] dyout; // delete [] dthxout; // delete [] dthyout; // delete [] dtlout; // delete [] dzin; return ifail; }; ClassImp(TrkLevel2); ClassImp(TrkSinglet); ClassImp(TrkTrack); ClassImp(Trajectory);