/[PAMELA software]/DarthVader/TrackerLevel2/src/TrkLevel2.cpp
ViewVC logotype

Contents of /DarthVader/TrackerLevel2/src/TrkLevel2.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1.44 - (show annotations) (download)
Wed Mar 5 17:00:19 2008 UTC (16 years, 11 months ago) by pam-fi
Branch: MAIN
CVS Tags: v5r00
Changes since 1.43: +126 -24 lines
modified TrkSinglet, optimized DoTrack2, fixed bug in evaluation of effective angle

1 /**
2 * \file TrkLevel2.cpp
3 * \author Elena Vannuccini
4 */
5 #include <TrkLevel2.h>
6 #include <iostream>
7 #include <math.h>
8 using namespace std;
9 //......................................
10 // F77 routines
11 //......................................
12 extern "C" {
13 void dotrack_(int*, double*, double*, double*, double*, int*);
14 void dotrack2_(int*, double*, double*, double*, double*,double*, double*, double*,int*);
15 void mini2_(int*,int*,int*);
16 void guess_();
17 void gufld_(float*, float*);
18 float risxeta2_(float *);
19 float risxeta3_(float *);
20 float risxeta4_(float *);
21 float risyeta2_(float *);
22 }
23
24 //--------------------------------------
25 //
26 //
27 //--------------------------------------
28 TrkTrack::TrkTrack(){
29 // cout << "TrkTrack::TrkTrack()" << endl;
30 seqno = -1;
31 image = -1;
32 chi2 = 0;
33 nstep = 0;
34 for(int it1=0;it1<5;it1++){
35 al[it1] = 0;
36 for(int it2=0;it2<5;it2++)coval[it1][it2] = 0;
37 };
38 for(int ip=0;ip<6;ip++){
39 xgood[ip] = 0;
40 ygood[ip] = 0;
41 xm[ip] = 0;
42 ym[ip] = 0;
43 zm[ip] = 0;
44 resx[ip] = 0;
45 resy[ip] = 0;
46 tailx[ip] = 0;
47 taily[ip] = 0;
48 xv[ip] = 0;
49 yv[ip] = 0;
50 zv[ip] = 0;
51 axv[ip] = 0;
52 ayv[ip] = 0;
53 dedx_x[ip] = 0;
54 dedx_y[ip] = 0;
55 multmaxx[ip] = 0;
56 multmaxy[ip] = 0;
57 seedx[ip] = 0;
58 seedy[ip] = 0;
59 xpu[ip] = 0;
60 ypu[ip] = 0;
61
62 };
63
64 // TrkParams::SetTrackingMode();
65 // TrkParams::SetPrecisionFactor();
66 // TrkParams::SetStepMin();
67 TrkParams::SetMiniDefault();
68 TrkParams::SetPFA();
69
70 int ngf = TrkParams::nGF;
71 for(int i=0; i<ngf; i++){
72 xGF[i] = 0.;
73 yGF[i] = 0.;
74 }
75
76
77 };
78 //--------------------------------------
79 //
80 //
81 //--------------------------------------
82 TrkTrack::TrkTrack(const TrkTrack& t){
83 seqno = t.seqno;
84 image = t.image;
85 chi2 = t.chi2;
86 nstep = t.nstep;
87 for(int it1=0;it1<5;it1++){
88 al[it1] = t.al[it1];
89 for(int it2=0;it2<5;it2++)coval[it1][it2] = t.coval[it1][it2];
90 };
91 for(int ip=0;ip<6;ip++){
92 xgood[ip] = t.xgood[ip];
93 ygood[ip] = t.ygood[ip];
94 xm[ip] = t.xm[ip];
95 ym[ip] = t.ym[ip];
96 zm[ip] = t.zm[ip];
97 resx[ip] = t.resx[ip];
98 resy[ip] = t.resy[ip];
99 tailx[ip] = t.tailx[ip];
100 taily[ip] = t.taily[ip];
101 xv[ip] = t.xv[ip];
102 yv[ip] = t.yv[ip];
103 zv[ip] = t.zv[ip];
104 axv[ip] = t.axv[ip];
105 ayv[ip] = t.ayv[ip];
106 dedx_x[ip] = t.dedx_x[ip];
107 dedx_y[ip] = t.dedx_y[ip];
108 multmaxx[ip] = t.multmaxx[ip];
109 multmaxy[ip] = t.multmaxy[ip];
110 seedx[ip] = t.seedx[ip];
111 seedy[ip] = t.seedy[ip];
112 xpu[ip] = t.xpu[ip];
113 ypu[ip] = t.ypu[ip];
114 };
115
116 // TrkParams::SetTrackingMode();
117 // TrkParams::SetPrecisionFactor();
118 // TrkParams::SetStepMin();
119 TrkParams::SetMiniDefault();
120 TrkParams::SetPFA();
121
122 int ngf = TrkParams::nGF;
123 for(int i=0; i<ngf; i++){
124 xGF[i] = t.xGF[i];
125 yGF[i] = t.yGF[i];
126 }
127 };
128 //--------------------------------------
129 //
130 //
131 //--------------------------------------
132 void TrkTrack::Copy(TrkTrack& t){
133
134 t.seqno = seqno;
135 t.image = image;
136 t.chi2 = chi2;
137 t.nstep = nstep;
138 for(int it1=0;it1<5;it1++){
139 t.al[it1] = al[it1];
140 for(int it2=0;it2<5;it2++)t.coval[it1][it2] = coval[it1][it2];
141 };
142 for(int ip=0;ip<6;ip++){
143 t.xgood[ip] = xgood[ip];
144 t.ygood[ip] = ygood[ip];
145 t.xm[ip] = xm[ip];
146 t.ym[ip] = ym[ip];
147 t.zm[ip] = zm[ip];
148 t.resx[ip] = resx[ip];
149 t.resy[ip] = resy[ip];
150 t.tailx[ip] = tailx[ip];
151 t.taily[ip] = taily[ip];
152 t.xv[ip] = xv[ip];
153 t.yv[ip] = yv[ip];
154 t.zv[ip] = zv[ip];
155 t.axv[ip] = axv[ip];
156 t.ayv[ip] = ayv[ip];
157 t.dedx_x[ip] = dedx_x[ip];
158 t.dedx_y[ip] = dedx_y[ip];
159 t.multmaxx[ip] = multmaxx[ip];
160 t.multmaxy[ip] = multmaxy[ip];
161 t.seedx[ip] = seedx[ip];
162 t.seedy[ip] = seedy[ip];
163 t.xpu[ip] = xpu[ip];
164 t.ypu[ip] = ypu[ip];
165
166 };
167 int ngf = TrkParams::nGF;
168 for(int i=0; i<ngf; i++){
169 t.xGF[i] = xGF[i];
170 t.yGF[i] = yGF[i];
171 }
172
173
174 };
175 //--------------------------------------
176 //
177 //
178 //--------------------------------------
179 /**
180 * Evaluates the trajectory in the apparatus associated to the track.
181 * It integrates the equations of motion in the magnetic field. The magnetic field should be previously loaded ( by calling TrkLevel2::LoadField() ), otherwise an error message is returned.
182 * @param t pointer to an object of the class Trajectory,
183 * which z coordinates should be previously initialized by calling the proper constructor ( Trajectory::Trajectory(int n, float* zin) ).
184 * @return error flag.
185 *
186 * >>> OBSOLETE !!! use TrkTrack::DoTrack2(Trajectory* t) instead
187 *
188 */
189 int TrkTrack::DoTrack(Trajectory* t){
190
191 cout << " int TrkTrack::DoTrack(Trajectory* t) --->> OBSOLETE !!! "<<endl;
192 cout << " use int TrkTrack::DoTrack2(Trajectory* t)"<<endl;
193
194 double *dxout = new double[t->npoint];
195 double *dyout = new double[t->npoint];
196 double *dzin = new double[t->npoint];
197 double dal[5];
198
199 int ifail = 0;
200
201 for (int i=0; i<5; i++) dal[i] = (double)al[i];
202 for (int i=0; i<t->npoint; i++) dzin[i] = (double)t->z[i];
203
204 TrkParams::Load(1);
205 if( !TrkParams::IsLoaded(1) ){
206 cout << "int TrkTrack::DoTrack(Trajectory* t) --- ERROR --- m.field not loaded"<<endl;
207 return 0;
208 }
209 dotrack_(&(t->npoint),dzin,dxout,dyout,dal,&ifail);
210
211 for (int i=0; i<t->npoint; i++){
212 t->x[i] = (float)*dxout++;
213 t->y[i] = (float)*dyout++;
214 }
215
216 // delete [] dxout;
217 // delete [] dyout;
218 // delete [] dzin;
219
220 return ifail;
221 };
222 //--------------------------------------
223 //
224 //
225 //--------------------------------------
226 /**
227 * Evaluates the trajectory in the apparatus associated to the track.
228 * It integrates the equations of motion in the magnetic field. The magnetic field should be previously loaded ( by calling TrkLevel2::LoadField() ), otherwise an error message is returned.
229 * @param t pointer to an object of the class Trajectory,
230 * which z coordinates should be previously initialized by calling the proper constructor ( Trajectory::Trajectory(int n, float* zin) ).
231 * @return error flag.
232 */
233 int TrkTrack::DoTrack2(Trajectory* t){
234
235 double *dxout = new double[t->npoint];
236 double *dyout = new double[t->npoint];
237 double *dthxout = new double[t->npoint];
238 double *dthyout = new double[t->npoint];
239 double *dtlout = new double[t->npoint];
240 double *dzin = new double[t->npoint];
241 double dal[5];
242
243 int ifail = 0;
244
245 for (int i=0; i<5; i++) dal[i] = (double)al[i];
246 for (int i=0; i<t->npoint; i++) dzin[i] = (double)t->z[i];
247
248 TrkParams::Load(1);
249 if( !TrkParams::IsLoaded(1) ){
250 cout << "int TrkTrack::DoTrack2(Trajectory* t) --- ERROR --- m.field not loaded"<<endl;
251 return 0;
252 }
253 dotrack2_(&(t->npoint),dzin,dxout,dyout,dthxout,dthyout,dtlout,dal,&ifail);
254
255 for (int i=0; i<t->npoint; i++){
256 t->x[i] = (float)*dxout++;
257 t->y[i] = (float)*dyout++;
258 t->thx[i] = (float)*dthxout++;
259 t->thy[i] = (float)*dthyout++;
260 t->tl[i] = (float)*dtlout++;
261 }
262
263 // delete [] dxout;
264 // delete [] dyout;
265 // delete [] dzin;
266
267 return ifail;
268 };
269 //--------------------------------------
270 //
271 //
272 //--------------------------------------
273 //float TrkTrack::BdL(){
274 //};
275 //--------------------------------------
276 //
277 //
278 //--------------------------------------
279 Float_t TrkTrack::GetRigidity(){
280 Float_t rig=0;
281 if(chi2>0)rig=1./al[4];
282 if(rig<0) rig=-rig;
283 return rig;
284 };
285 //
286 Float_t TrkTrack::GetDeflection(){
287 Float_t def=0;
288 if(chi2>0)def=al[4];
289 return def;
290 };
291 //
292 /**
293 * Method to retrieve the dE/dx measured on a tracker view.
294 * @param ip plane (0-5)
295 * @param iv view (0=x 1=y)
296 */
297 Float_t TrkTrack::GetDEDX(int ip, int iv){
298 if(iv==0 && ip>=0 && ip<6)return fabs(dedx_x[ip]);
299 else if(iv==1 && ip>=0 && ip<6)return fabs(dedx_y[ip]);
300 else {
301 cout << "TrkTrack::GetDEDX(int ip, int iv) -- wrong input parameters "<<ip<<iv<<endl;
302 return 0.;
303 }
304 }
305 /**
306 * Method to evaluate the dE/dx measured on a tracker plane.
307 * The two measurements on x- and y-view are averaged.
308 * @param ip plane (0-5)
309 */
310 Float_t TrkTrack::GetDEDX(int ip){
311 if( (Int_t)XGood(ip)+(Int_t)YGood(ip) == 0 ) return 0;
312 return (GetDEDX(ip,0)+GetDEDX(ip,1))/((Int_t)XGood(ip)+(Int_t)YGood(ip));
313 };
314
315 /**
316 * Method to evaluate the dE/dx averaged over all planes.
317 */
318 Float_t TrkTrack::GetDEDX(){
319 Float_t dedx=0;
320 for(Int_t ip=0; ip<6; ip++)dedx+=GetDEDX(ip,0)*XGood(ip)+GetDEDX(ip,1)*YGood(ip);
321 dedx = dedx/(GetNX()+GetNY());
322 return dedx;
323 };
324 /**
325 * Returns 1 if the cluster on a tracker view includes bad strips
326 * (at least one bad strip among the four strip used by p.f.a.)
327 * @param ip plane (0-5)
328 * @param iv view (0=x 1=y)
329 */
330 Bool_t TrkTrack::IsBad(int ip,int iv){
331 if(iv==0 && ip>=0 && ip<6)return (xgood[ip]<0) ;
332 else if(iv==1 && ip>=0 && ip<6)return (ygood[ip]<0) ;
333 else {
334 cout << "TrkTrack::IsBad(int ip, int iv) -- wrong input parameters "<<ip<<iv<<endl;
335 return 0.;
336 }
337 };
338 /**
339 * Returns 1 if the signal on a tracker view is saturated.
340 * @param ip plane (0-5)
341 * @param iv view (0=x 1=y)
342 */
343 Bool_t TrkTrack::IsSaturated(int ip,int iv){
344 if(iv==0 && ip>=0 && ip<6)return (dedx_x[ip]<0) ;
345 else if(iv==1 && ip>=0 && ip<6)return (dedx_y[ip]<0) ;
346 else {
347 cout << "TrkTrack::IsSaturated(int ip, int iv) -- wrong input parameters "<<ip<<iv<<endl;
348 return 0.;
349 }
350 };
351 /**
352 * Returns 1 if either the x or the y signal on a tracker plane is saturated.
353 * @param ip plane (0-5)
354 */
355 Bool_t TrkTrack::IsSaturated(int ip){
356 return (IsSaturated(ip,0)||IsSaturated(ip,1));
357 };
358 /**
359 * Returns 1 if there is at least a saturated signal along the track.
360 */
361 Bool_t TrkTrack::IsSaturated(){
362 for(int ip=0; ip<6; ip++)for(int iv=0; iv<2; iv++)if(IsSaturated(ip,iv))return true;
363 return false;
364 }
365 /**
366 * Returns the track "lever-arm" on the x view, defined as the distance (in planes) between
367 * the upper and lower x measurements (the maximum value of lever-arm is 6).
368 */
369 Int_t TrkTrack::GetLeverArmX(){
370 int first_plane = -1;
371 int last_plane = -1;
372 for(Int_t ip=0; ip<6; ip++){
373 if( XGood(ip) && first_plane == -1 )first_plane = ip;
374 if( XGood(ip) && first_plane != -1 )last_plane = ip;
375 }
376 if( first_plane == -1 || last_plane == -1){
377 cout<< "Int_t TrkTrack::GetLeverArmX() -- XGood(ip) always false ??? "<<endl;
378 return 0;
379 }
380 return (last_plane-first_plane+1);
381 }
382 /**
383 * Returns the track "lever-arm" on the y view, defined as the distance (in planes) between
384 * the upper and lower y measurements (the maximum value of lever-arm is 6).
385 */
386 Int_t TrkTrack::GetLeverArmY(){
387 int first_plane = -1;
388 int last_plane = -1;
389 for(Int_t ip=0; ip<6; ip++){
390 if( YGood(ip) && first_plane == -1 )first_plane = ip;
391 if( YGood(ip) && first_plane != -1 )last_plane = ip;
392 }
393 if( first_plane == -1 || last_plane == -1){
394 cout<< "Int_t TrkTrack::GetLeverArmY() -- YGood(ip) always false ??? "<<endl;
395 return 0;
396 }
397 return (last_plane-first_plane+1);
398 }
399 /**
400 * Returns the reduced chi-square of track x-projection
401 */
402 Float_t TrkTrack::GetChi2X(){
403 float chiq=0;
404 for(int ip=0; ip<6; ip++)if(XGood(ip))chiq+= pow((xv[ip]-xm[ip])/resx[ip],2.);
405 if(GetNX()>3)chiq=chiq/(GetNX()-3);
406 else chiq=0;
407 if(chiq==0)cout << " Float_t TrkTrack::GetChi2X() -- WARNING -- value not defined "<<chiq<<endl;
408 return chiq;
409 }
410 /**
411 * Returns the reduced chi-square of track y-projection
412 */
413 Float_t TrkTrack::GetChi2Y(){
414 float chiq=0;
415 for(int ip=0; ip<6; ip++)if(YGood(ip))chiq+= pow((yv[ip]-ym[ip])/resy[ip],2.);
416 if(GetNY()>2)chiq=chiq/(GetNY()-2);
417 else chiq=0;
418 if(chiq==0)cout << " Float_t TrkTrack::GetChi2Y() -- WARNING -- value not defined "<<chiq<<endl;
419 return chiq;
420 }
421 /**
422 * Returns the logarythm of the likeliwood-function of track x-projection
423 */
424 Float_t TrkTrack::GetLnLX(){
425 float lnl=0;
426 for(int ip=0; ip<6; ip++)
427 if( XGood(ip) && tailx[ip]!=0 )
428 lnl += (tailx[ip]+1.) * log( (tailx[ip]*pow(resx[ip],2.) + pow(xv[ip]-xm[ip],2.)) / (tailx[ip]*pow(resx[ip],2)) );
429 if(GetNX()>3)lnl=lnl/(GetNX()-3);
430 else lnl=0;
431 if(lnl==0){
432 cout << " Float_t TrkTrack::GetLnLX() -- WARNING -- value not defined "<<lnl<<endl;
433 Dump();
434 }
435 return lnl;
436
437 }
438 /**
439 * Returns the logarythm of the likeliwood-function of track y-projection
440 */
441 Float_t TrkTrack::GetLnLY(){
442 float lnl=0;
443 for(int ip=0; ip<6; ip++)
444 if( YGood(ip) && taily[ip]!=0 )
445 lnl += (taily[ip]+1.) * log( (taily[ip]*pow(resy[ip],2.) + pow(yv[ip]-ym[ip],2.)) / (taily[ip]*pow(resy[ip],2)) );
446 if(GetNY()>2)lnl=lnl/(GetNY()-2);
447 else lnl=0;
448 if(lnl==0){
449 cout << " Float_t TrkTrack::GetLnLY() -- WARNING -- value not defined "<<lnl<<endl;
450 Dump();
451 }
452 return lnl;
453
454 }
455 /**
456 * Returns the effective angle, relative to the sensor, on each plane.
457 * @param ip plane (0-5)
458 * @param iv view (0=x 1=y)
459 */
460 Float_t TrkTrack::GetEffectiveAngle(int ip, int iv){
461
462 if(ip<0 || ip>5){
463 cout << "Float_t TrkTrack::GetEffectiveAngle(int "<<ip<<", int "<<iv<<") ==> wrong input"<<endl;
464 return 0.;
465 }
466
467 float v[3]={xv[ip],yv[ip],zv[ip]};
468 //-----------------------------------------
469 // effective angle (relative to the sensor)
470 //-----------------------------------------
471 float axv_geo = axv[ip];
472 float muhall_h = 297.61; //cm**2/Vs
473 float BY = TrkParams::GetBY(v);
474 float axv_eff = 0;
475 if(ip==5) axv_geo = -1*axv_geo;
476 if(ip==5) BY = -1*BY;
477 axv_eff = 180.*atan( tan(axv_geo*acos(-1.)/180.) + muhall_h * BY * 0.0001)/acos(-1.);
478 //-----------------------------------------
479 // effective angle (relative to the sensor)
480 //-----------------------------------------
481 float ayv_geo = ayv[ip];
482 float muhall_e = 1258.18; //cm**2/Vs
483 float BX = TrkParams::GetBX(v);
484 float ayv_eff = 0;
485 ayv_eff = 180.*atan( tan(ayv_geo*acos(-1.)/180.) + muhall_e * BX * 0.0001)/acos(-1.);
486
487 if (iv==0)return axv_eff;
488 else if(iv==1)return ayv_eff;
489 else{
490 cout << "Float_t TrkTrack::GetEffectiveAngle(int "<<ip<<", int "<<iv<<") ==> wrong input"<<endl;
491 return 0.;
492 }
493
494 };
495
496 //--------------------------------------
497 //
498 //
499 //--------------------------------------
500 void TrkTrack::Dump(){
501 cout << endl << "========== Track " ;
502 cout << endl << "seq. n. : "<< seqno;
503 cout << endl << "image n. : "<< image;
504 cout << endl << "al : "; for(int i=0; i<5; i++)cout << al[i] << " ";
505 cout << endl << "chi^2 : "<< chi2;
506 cout << endl << "n.step : "<< nstep;
507 cout << endl << "xgood : "; for(int i=0; i<6; i++)cout << XGood(i) ;
508 cout << endl << "ygood : "; for(int i=0; i<6; i++)cout << YGood(i) ;
509 cout << endl << "xm : "; for(int i=0; i<6; i++)cout << xm[i] << " ";
510 cout << endl << "ym : "; for(int i=0; i<6; i++)cout << ym[i] << " ";
511 cout << endl << "zm : "; for(int i=0; i<6; i++)cout << zm[i] << " ";
512 cout << endl << "xv : "; for(int i=0; i<6; i++)cout << xv[i] << " ";
513 cout << endl << "yv : "; for(int i=0; i<6; i++)cout << yv[i] << " ";
514 cout << endl << "zv : "; for(int i=0; i<6; i++)cout << zv[i] << " ";
515 cout << endl << "resx : "; for(int i=0; i<6; i++)cout << resx[i] << " ";
516 cout << endl << "resy : "; for(int i=0; i<6; i++)cout << resy[i] << " ";
517 cout << endl << "tailx : "; for(int i=0; i<6; i++)cout << tailx[i] << " ";
518 cout << endl << "taily : "; for(int i=0; i<6; i++)cout << taily[i] << " ";
519 cout << endl << "coval : "; for(int i=0; i<5; i++)cout << coval[0][i]<<" ";
520 cout << endl << " "; for(int i=0; i<5; i++)cout << coval[1][i]<<" ";
521 cout << endl << " "; for(int i=0; i<5; i++)cout << coval[2][i]<<" ";
522 cout << endl << " "; for(int i=0; i<5; i++)cout << coval[3][i]<<" ";
523 cout << endl << " "; for(int i=0; i<5; i++)cout << coval[4][i]<<" ";
524 cout << endl << "dedx_x : "; for(int i=0; i<6; i++)cout << dedx_x[i] << " ";
525 cout << endl << "dedx_y : "; for(int i=0; i<6; i++)cout << dedx_y[i] << " ";
526 cout << endl << "maxs x : "; for(int i=0; i<6; i++)cout << GetClusterX_MaxStrip(i) << " ";
527 cout << endl << "maxs y : "; for(int i=0; i<6; i++)cout << GetClusterY_MaxStrip(i) << " ";
528 cout << endl << "mult x : "; for(int i=0; i<6; i++)cout << GetClusterX_Multiplicity(i) << " ";
529 cout << endl << "mult y : "; for(int i=0; i<6; i++)cout << GetClusterY_Multiplicity(i) << " ";
530 cout << endl << "seed x : "; for(int i=0; i<6; i++)cout << GetClusterX_Seed(i) << " ";
531 cout << endl << "seed y : "; for(int i=0; i<6; i++)cout << GetClusterY_Seed(i) << " ";
532 cout << endl << "xpu : "; for(int i=0; i<6; i++)cout << xpu[i] << " ";
533 cout << endl << "ypu : "; for(int i=0; i<6; i++)cout << ypu[i] << " ";
534
535 cout << endl;
536 }
537 /**
538 * Set the TrkTrack position measurements
539 */
540 void TrkTrack::SetMeasure(double *xmeas, double *ymeas, double *zmeas){
541 for(int i=0; i<6; i++) xm[i]=*xmeas++;
542 for(int i=0; i<6; i++) ym[i]=*ymeas++;
543 for(int i=0; i<6; i++) zm[i]=*zmeas++;
544 }
545 /**
546 * Set the TrkTrack position resolution
547 */
548 void TrkTrack::SetResolution(double *rx, double *ry){
549 for(int i=0; i<6; i++) resx[i]=*rx++;
550 for(int i=0; i<6; i++) resy[i]=*ry++;
551 }
552 /**
553 * Set the TrkTrack tails position resolution
554 */
555 void TrkTrack::SetTail(double *tx, double *ty, double factor){
556 for(int i=0; i<6; i++) tailx[i]=factor*(*tx++);
557 for(int i=0; i<6; i++) taily[i]=factor*(*ty++);
558 }
559 /**
560 * Set the TrkTrack Student parameter (resx,resy,tailx,taily)
561 * from previous gausian fit
562 *@param flag =0 standard, =1 with noise correction
563 */
564 void TrkTrack::SetStudentParam(int flag){
565 float sx[11]={0.000128242,
566 0.000136942,
567 0.000162718,
568 0.000202644,
569 0.00025597,
570 0.000317456,
571 0.000349048,
572 0.000384638,
573 0.000457295,
574 0.000512319,
575 0.000538573};
576 float tx[11]={1.79402,
577 2.04876,
578 2.88376,
579 3.3,
580 3.14084,
581 4.07686,
582 4.44736,
583 3.5179,
584 3.38697,
585 3.45739,
586 3.18627};
587 float sy[11]={0.000483075,
588 0.000466925,
589 0.000431658,
590 0.000428317,
591 0.000433854,
592 0.000444044,
593 0.000482098,
594 0.000537579,
595 0.000636279,
596 0.000741998,
597 0.000864261};
598 float ty[11]={0.997032,
599 1.11147,
600 1.18526,
601 1.61404,
602 2.21908,
603 3.08959,
604 4.48833,
605 4.42687,
606 4.65253,
607 4.52043,
608 4.29926};
609 int index;
610 float fact;
611 for(int i=0; i<6; i++) {
612 index = int((fabs(axv[i])+1.)/2.);
613 if(index>10) index=10;
614 tailx[i]=tx[index];
615 if(flag==1) {
616 if(fabs(axv[i])<=10.) fact = resx[i]/risxeta2_(&(axv[i]));
617 if(fabs(axv[i])>10.&&fabs(axv[i])<=15.) fact = resx[i]/risxeta3_(&(axv[i]));
618 if(fabs(axv[i])>15.) fact = resx[i]/risxeta4_(&(axv[i]));
619 } else fact = 1.;
620 resx[i] = sx[index]*fact;
621 }
622 for(int i=0; i<6; i++) {
623 index = int((fabs(ayv[i])+1.)/2.);
624 if(index>10) index=10;
625 taily[i]=ty[index];
626 if(flag==1) fact = resy[i]/risyeta2_(&(ayv[i]));
627 else fact = 1.;
628 resy[i] = sy[index]*fact;
629 }
630 }
631 /**
632 * Set the TrkTrack good measurement
633 */
634 void TrkTrack::SetGood(int *xg, int *yg){
635
636 for(int i=0; i<6; i++) xgood[i]=*xg++;
637 for(int i=0; i<6; i++) ygood[i]=*yg++;
638 }
639
640 /**
641 * Load the magnetic field
642 */
643 void TrkTrack::LoadField(TString path){
644
645 // strcpy(path_.path,path.Data());
646 // path_.pathlen = path.Length();
647 // path_.error = 0;
648 // readb_();
649
650 // TrkParams::SetTrackingMode();
651 // TrkParams::SetPrecisionFactor();
652 // TrkParams::SetStepMin();
653 TrkParams::SetMiniDefault();
654
655 TrkParams::Set(path,1);
656 TrkParams::Load(1);
657
658 };
659
660
661 /**
662 * Method to fill minimization-routine common
663 */
664 void TrkTrack::FillMiniStruct(cMini2track& track){
665
666 for(int i=0; i<6; i++){
667
668 // cout << i<<" - "<<xgood[i]<<" "<<XGood(i)<<endl;
669 // cout << i<<" - "<<ygood[i]<<" "<<YGood(i)<<endl;
670 track.xgood[i]=XGood(i);
671 track.ygood[i]=YGood(i);
672
673 track.xm[i]=xm[i];
674 track.ym[i]=ym[i];
675 track.zm[i]=zm[i];
676
677 // --- temporaneo ----------------------------
678 // andrebbe inserita la dimensione del sensore
679 float segment = 100.;
680 track.xm_a[i]=xm[i];
681 track.xm_b[i]=xm[i];
682 track.ym_a[i]=ym[i];
683 track.ym_b[i]=ym[i];
684 if( XGood(i) && !YGood(i) ){
685 track.ym_a[i] = track.ym_a[i]+segment;
686 track.ym_b[i] = track.ym_b[i]-segment;
687 }else if( !XGood(i) && YGood(i)){
688 track.xm_a[i] = track.xm_a[i]+segment;
689 track.xm_b[i] = track.xm_b[i]-segment;
690 }
691 // --- temporaneo ----------------------------
692
693 track.resx[i]=resx[i];
694 track.resy[i]=resy[i];
695 track.tailx[i]=tailx[i];
696 track.taily[i]=taily[i];
697 }
698
699 for(int i=0; i<5; i++) track.al[i]=al[i];
700 track.zini = 23.5;
701 // ZINI = 23.5 !!! it should be the same parameter in all codes
702
703 }
704 /**
705 * Method to set values from minimization-routine common
706 */
707 void TrkTrack::SetFromMiniStruct(cMini2track *track){
708
709 for(int i=0; i<5; i++) {
710 al[i]=track->al[i];
711 for(int j=0; j<5; j++) coval[i][j]=track->cov[i][j];
712 }
713 chi2 = track->chi2;
714 nstep = track->nstep;
715 for(int i=0; i<6; i++){
716 xv[i] = track->xv[i];
717 yv[i] = track->yv[i];
718 zv[i] = track->zv[i];
719 xm[i] = track->xm[i];
720 ym[i] = track->ym[i];
721 zm[i] = track->zm[i];
722 axv[i] = track->axv[i];
723 ayv[i] = track->ayv[i];
724 }
725
726 }
727 /**
728 * \brief Method to re-evaluate coordinates of clusters associated with a track.
729 *
730 * The method can be applied only after recovering level1 information
731 * (either by reprocessing single events from level0 or from
732 * the TrkLevel1 branch, if present); it calls F77 subroutines that
733 * read the level1 common and fill the minimization-routine common.
734 * Some clusters can be excluded or added by means of the methods:
735 *
736 * TrkTrack::ResetXGood(int ip)
737 * TrkTrack::ResetYGood(int ip)
738 * TrkTrack::SetXGood(int ip, int cid, int is)
739 * TrkTrack::SetYGood(int ip, int cid, int is)
740 *
741 * NB! The method TrkTrack::SetGood(int *xg, int *yg) set the plane-mask (0-1)
742 * for the minimization-routine common. It deletes the cluster information
743 * (at least for the moment...) thus cannot be applied before
744 * TrkTrack::EvaluateClusterPositions().
745 *
746 * Different p.f.a. can be applied by calling (once) the method:
747 *
748 * TrkParams::SetPFA(0); //Set ETA p.f.a.
749 *
750 * @see TrkParams::SetPFA(int)
751 */
752 Bool_t TrkTrack::EvaluateClusterPositions(){
753
754 // cout << "void TrkTrack::GetClusterositions() "<<endl;
755
756 TrkParams::Load( );
757 if( !TrkParams::IsLoaded() )return false;
758
759 for(int ip=0; ip<6; ip++){
760 // cout << ip<<" ** "<<xm[ip]<<" / "<<ym[ip]<<endl;;
761 int icx = GetClusterX_ID(ip)+1;
762 int icy = GetClusterY_ID(ip)+1;
763 int sensor = GetSensor(ip)+1;//<< convenzione "Paolo"
764 if(ip==5 && sensor!=0)sensor=3-sensor;//<< convenzione "Elena"
765 int ladder = GetLadder(ip)+1;
766 float ax = axv[ip];
767 float ay = ayv[ip];
768 float v[3];
769 v[0]=xv[ip];
770 v[1]=yv[ip];
771 v[2]=zv[ip];
772 float bfx = 10*TrkParams::GetBX(v);//Tesla
773 float bfy = 10*TrkParams::GetBY(v);//Tesla
774 int ipp=ip+1;
775 xyzpam_(&ipp,&icx,&icy,&ladder,&sensor,&ax,&ay,&bfx,&bfy);
776 if(icx<0 || icy<0)return false;
777 }
778 return true;
779 }
780 /**
781 * \brief Tracking method. It calls F77 mini routine.
782 *
783 * @param pfixed Particle momentum. If pfixed=0 the momentum
784 * is left as a free parameter, otherwise it is fixed to the input value.
785 * @param fail Output flag (!=0 if the fit failed).
786 * @param iprint Flag to set debug mode ( 0 = no output; 1 = verbose; 2 = debug).
787 * @param froml1 Flag to re-evaluate positions (see TrkTrack::GetClusterPositions()).
788 *
789 * The option to re-evaluate positions can be used only after recovering
790 * level1 information, eg. by reprocessing the single event.
791 *
792 * Example:
793 *
794 * if( !event->GetTrkLevel0() )return false;
795 * event->GetTrkLevel0()->ProcessEvent(); // re-processing level0->level1
796 * int fail=0;
797 * event->GetTrkLevel2()->GetTrack(0)->Fit(0.,fail,0,1);
798 *
799 * @see EvaluateClusterPositions()
800 *
801 * The fitting procedure can be varied by changing the tracking mode,
802 * the fit-precision factor, the minimum number of step, etc.
803 * @see SetTrackingMode(int)
804 * @see SetPrecisionFactor(double)
805 * @see SetStepMin(int)
806 * @see SetDeltaB(int,double)
807 */
808 void TrkTrack::Fit(double pfixed, int& fail, int iprint, int froml1){
809
810 float al_ini[] = {0.,0.,0.,0.,0.};
811
812 TrkParams::Load( );
813 if( !TrkParams::IsLoaded() )return;
814
815 extern cMini2track track_;
816 fail = 0;
817
818 FillMiniStruct(track_);
819
820 if(froml1!=0){
821 if( !EvaluateClusterPositions() ){
822 cout << "void TrkTrack::Fit("<<pfixed<<","<<fail<<","<<iprint<<","<<froml1<<") --- ERROR evaluating cluster positions "<<endl;
823 FillMiniStruct(track_) ;
824 fail = 1;
825 return;
826 }
827 }else{
828 FillMiniStruct(track_);
829 }
830
831 // if fit variables have been reset, evaluate the initial guess
832 if(al[0]==-9999.&&al[1]==-9999.&&al[2]==-9999.&&al[3]==-9999.&&al[4]==-9999.)guess_();
833
834 // --------------------- free momentum
835 if(pfixed==0.) {
836 track_.pfixed=0.;
837 }
838 // --------------------- fixed momentum
839 if(pfixed!=0.) {
840 al[4]=1./pfixed;
841 track_.pfixed=pfixed;
842 }
843
844 // store temporarily the initial guess
845 for(int i=0; i<5; i++) al_ini[i]=track_.al[i];
846
847 // ------------------------------------------
848 // call mini routine
849 // TrkParams::Load(1);
850 // if( !TrkParams::IsLoaded(1) ){
851 // cout << "void TrkTrack::Fit(double pfixed, int& fail, int iprint) --- ERROR --- m.field not loaded"<<endl;
852 // return;
853 // }
854 int istep=0;
855 int ifail=0;
856 mini2_(&istep,&ifail, &iprint);
857 if(ifail!=0) {
858 if(iprint)cout << "ERROR: ifail= " << ifail << endl;
859 fail = 1;
860 }
861 // ------------------------------------------
862
863 SetFromMiniStruct(&track_);
864
865 if(fail){
866 if(iprint)cout << " >>>> fit failed "<<endl;
867 for(int i=0; i<5; i++) al[i]=al_ini[i];
868 }
869
870 };
871 /**
872 * Reset the fit parameters
873 */
874 void TrkTrack::FitReset(){
875 for(int i=0; i<5; i++) al[i]=-9999.;
876 chi2=0.;
877 nstep=0;
878 // for(int i=0; i<6; i++) xv[i]=0.;
879 // for(int i=0; i<6; i++) yv[i]=0.;
880 // for(int i=0; i<6; i++) zv[i]=0.;
881 // for(int i=0; i<6; i++) axv[i]=0.;
882 // for(int i=0; i<6; i++) ayv[i]=0.;
883 for(int i=0; i<5; i++) {
884 for(int j=0; j<5; j++) coval[i][j]=0.;
885 }
886 }
887 /**
888 * Set the tracking mode
889 */
890 void TrkTrack::SetTrackingMode(int trackmode){
891 extern cMini2track track_;
892 track_.trackmode = trackmode;
893 }
894 /**
895 * Set the factor scale for tracking precision
896 */
897 void TrkTrack::SetPrecisionFactor(double fact){
898 extern cMini2track track_;
899 track_.fact = fact;
900 }
901 /**
902 * Set the minimum number of steps for tracking precision
903 */
904 void TrkTrack::SetStepMin(int istepmin){
905 extern cMini2track track_;
906 track_.istepmin = istepmin;
907 }
908 /**
909 * Set deltaB parameters (id=0,1). By default they are set to zero.
910 */
911 void TrkTrack::SetDeltaB(int id, double db){
912 if(id!=0 && id!=1)cout << "void TrkTrack::SetDeltaB(int id,double db) -- wrong input parameters: "<<id<<" "<<db<<endl;
913 TrkParams::SetDeltaB(id,db);
914 }
915
916 /**
917 * Returns true if the track is inside the magnet cavity.
918 * @param toll Tolerance around the nominal volume (toll>0 define an inner fiducial volume)
919 */
920 Bool_t TrkTrack::IsInsideCavity(float toll){
921
922 // float xmagntop, ymagntop, xmagnbottom, ymagnbottom;
923 // xmagntop = xv[0] + (ZMAGNHIGH-zv[0])*tan(acos(-1.0)*axv[0]/180.);
924 // ymagntop = yv[0] + (ZMAGNHIGH-zv[0])*tan(acos(-1.0)*ayv[0]/180.);
925 // xmagnbottom = xv[5] + (ZMAGNLOW-zv[5])*tan(acos(-1.0)*axv[5]/180.);
926 // ymagnbottom = yv[5] + (ZMAGNLOW-zv[5])*tan(acos(-1.0)*ayv[5]/180.);
927 // if( xmagntop>XMAGNLOW && xmagntop<XMAGNHIGH &&
928 // ymagntop>YMAGNLOW && ymagntop<YMAGNHIGH &&
929 // xmagnbottom>XMAGNLOW && xmagnbottom<XMAGNHIGH &&
930 // ymagnbottom>YMAGNLOW && ymagnbottom<YMAGNHIGH ) return(true);
931 // else return(false);
932
933 int ngf = TrkParams::nGF;
934 for(int i=0; i<ngf; i++){
935 //
936 // cout << endl << TrkParams::GF_element[i];
937 if(
938 TrkParams::GF_element[i].CompareTo("CUF") &&
939 TrkParams::GF_element[i].CompareTo("T2") &&
940 TrkParams::GF_element[i].CompareTo("T3") &&
941 TrkParams::GF_element[i].CompareTo("T4") &&
942 TrkParams::GF_element[i].CompareTo("T5") &&
943 TrkParams::GF_element[i].CompareTo("CLF") &&
944 true)continue;
945 // apply condition only within the cavity
946 // cout << " -- "<<xGF[i]<<" "<<yGF[i];
947 if(
948 xGF[i] <= TrkParams::xGF_min[i] + toll ||
949 xGF[i] >= TrkParams::xGF_max[i] - toll ||
950 yGF[i] <= TrkParams::yGF_min[i] + toll ||
951 yGF[i] >= TrkParams::yGF_max[i] - toll ||
952 false){
953
954 return false;
955 }
956 }
957 return true;
958
959
960 }
961 /**
962 * Returns true if the track is inside the nominal acceptance, which is defined
963 * by the intersection among magnet cavity, silicon-plane sensitive area and
964 * ToF sensitive area (nominal values from the official document used to
965 * calculate the geometrical factor)
966 */
967 Bool_t TrkTrack::IsInsideAcceptance(){
968
969 int ngf = TrkParams::nGF;
970 for(int i=0; i<ngf; i++){
971 if(
972 xGF[i] <= TrkParams::xGF_min[i] ||
973 xGF[i] >= TrkParams::xGF_max[i] ||
974 yGF[i] <= TrkParams::yGF_min[i] ||
975 yGF[i] >= TrkParams::yGF_max[i] ||
976 false)return false;
977 }
978 return true;
979
980 }
981 /**
982 * Method to retrieve ID (0,1,...) of x-cluster (if any) associated to this track.
983 * If no cluster is associated, ID=-1.
984 * @param ip Tracker plane (0-5)
985 */
986 Int_t TrkTrack::GetClusterX_ID(int ip){
987 return ((Int_t)fabs(xgood[ip]))%10000000-1;
988 };
989 /**
990 * Method to retrieve ID (0-xxx) of y-cluster (if any) associated to this track.
991 * If no cluster is associated, ID=-1.
992 * @param ip Tracker plane (0-5)
993 */
994 Int_t TrkTrack::GetClusterY_ID(int ip){
995 return ((Int_t)fabs(ygood[ip]))%10000000-1;
996 };
997
998 /**
999 * Method to retrieve the ladder (0-4, increasing x) traversed by the track on this plane.
1000 * If no ladder is traversed (dead area) the metod retuns -1.
1001 * @param ip Tracker plane (0-5)
1002 */
1003 Int_t TrkTrack::GetLadder(int ip){
1004 if(XGood(ip))return (Int_t)fabs(xgood[ip]/100000000)-1;
1005 if(YGood(ip))return (Int_t)fabs(ygood[ip]/100000000)-1;
1006 return -1;
1007 };
1008 /**
1009 * Method to retrieve the sensor (0-1, increasing y) traversed by the track on this plane.
1010 * If no sensor is traversed (dead area) the metod retuns -1.
1011 * @param ip Tracker plane (0-5)
1012 */
1013 Int_t TrkTrack::GetSensor(int ip){
1014 if(XGood(ip))return (Int_t)((Int_t)fabs(xgood[ip]/10000000)%10)-1;
1015 if(YGood(ip))return (Int_t)((Int_t)fabs(ygood[ip]/10000000)%10)-1;
1016 return -1;
1017 };
1018
1019 /**
1020 * \brief Method to include a x-cluster to the track.
1021 * @param ip Tracker plane (0-5)
1022 * @param clid Cluster ID (0,1,...)
1023 * @param is Sensor (0-1, increasing y)
1024 * @see Fit(double pfixed, int& fail, int iprint, int froml1)
1025 */
1026 void TrkTrack::SetXGood(int ip, int clid, int is){
1027 int il=0; //ladder (temporary)
1028 bool bad=false; //ladder (temporary)
1029 xgood[ip]=il*100000000+is*10000000+clid;
1030 if(bad)xgood[ip]=-xgood[ip];
1031 };
1032 /**
1033 * \brief Method to include a y-cluster to the track.
1034 * @param ip Tracker plane (0-5)
1035 * @param clid Cluster ID (0,1,...)
1036 * @param is Sensor (0-1)
1037 * @see Fit(double pfixed, int& fail, int iprint, int froml1)
1038 */
1039 void TrkTrack::SetYGood(int ip, int clid, int is){
1040 int il=0; //ladder (temporary)
1041 bool bad=false; //ladder (temporary)
1042 ygood[ip]=il*100000000+is*10000000+clid;
1043 if(bad)ygood[ip]=-ygood[ip];
1044 };
1045
1046 /**
1047 * \brief Average X
1048 * Average value of <xv>, evaluated from the first to the last hit x view.
1049 */
1050 Float_t TrkTrack::GetXav(){
1051
1052 int first_plane = -1;
1053 int last_plane = -1;
1054 for(Int_t ip=0; ip<6; ip++){
1055 if( XGood(ip) && first_plane == -1 )first_plane = ip;
1056 if( XGood(ip) && first_plane != -1 )last_plane = ip;
1057 }
1058 if( first_plane == -1 || last_plane == -1){
1059 return -100;
1060 }
1061 if( last_plane-first_plane+1 ==0 )return -100;
1062
1063 Float_t av = 0;
1064 for(int ip=first_plane; ip<=last_plane; ip++)av+=xv[ip];
1065
1066 return (av/(last_plane-first_plane+1));
1067 }
1068 /**
1069 * \brief Average Y
1070 * Average value of <yv>, evaluated from the first to the last hit x view.
1071 */
1072 Float_t TrkTrack::GetYav(){
1073
1074 int first_plane = -1;
1075 int last_plane = -1;
1076 for(Int_t ip=0; ip<6; ip++){
1077 if( XGood(ip) && first_plane == -1 )first_plane = ip;
1078 if( XGood(ip) && first_plane != -1 )last_plane = ip;
1079 }
1080 if( first_plane == -1 || last_plane == -1){
1081 return -100;
1082 }
1083 if( last_plane-first_plane+1 ==0 )return -100;
1084
1085 Float_t av = 0;
1086 for(int ip=first_plane; ip<=last_plane; ip++)av+=yv[ip];
1087
1088 return (av/(last_plane-first_plane+1));
1089 }
1090 /**
1091 * \brief Average Z
1092 * Average value of <zv>, evaluated from the first to the last hit x view.
1093 */
1094 Float_t TrkTrack::GetZav(){
1095
1096 int first_plane = -1;
1097 int last_plane = -1;
1098 for(Int_t ip=0; ip<6; ip++){
1099 if( XGood(ip) && first_plane == -1 )first_plane = ip;
1100 if( XGood(ip) && first_plane != -1 )last_plane = ip;
1101 }
1102 if( first_plane == -1 || last_plane == -1){
1103 return -100;
1104 }
1105 if( last_plane-first_plane+1 ==0 )return -100;
1106
1107 Float_t av = 0;
1108 for(int ip=first_plane; ip<=last_plane; ip++)av+=zv[ip];
1109
1110 return (av/(last_plane-first_plane+1));
1111 }
1112
1113 /**
1114 * \brief Number of column traversed
1115 */
1116 Int_t TrkTrack::GetNColumns(){
1117 int sensors[] = {0,0,0,0,0,0};
1118 for(int ip=0; ip<6; ip++){
1119 int sensorid = GetLadder(ip)+3*GetSensor(ip);
1120 if(XGood(ip)||YGood(ip))
1121 if(sensorid>=0 && sensorid<6)sensors[sensorid]=1;
1122 }
1123 int nsensors=0;
1124 for(int is=0; is<6; is++)nsensors += sensors[is];
1125 return nsensors;
1126 };
1127 /**
1128 * \brief Give the maximum energy release
1129 */
1130 Float_t TrkTrack::GetDEDX_max(int ip, int iv){
1131 Float_t max=0;
1132 int pfrom = 0;
1133 int pto = 6;
1134 int vfrom = 0;
1135 int vto = 2;
1136 if(ip>=0&&ip<6){
1137 pfrom = ip;
1138 pto = ip+1;
1139 }
1140 if(iv>=0&&iv<2){
1141 vfrom = iv;
1142 vto = iv+1;
1143 }
1144 for(int i=pfrom; i<pto; i++)
1145 for(int j=0; j<vto; j++)
1146 if(GetDEDX(i,j)>max)max=GetDEDX(i,j);
1147
1148 return max;
1149
1150 };
1151
1152 /**
1153 * \brief Give the minimum energy release
1154 */
1155 Float_t TrkTrack::GetDEDX_min(int ip, int iv){
1156 Float_t min=100000000;
1157 int pfrom = 0;
1158 int pto = 6;
1159 int vfrom = 0;
1160 int vto = 2;
1161 if(ip>=0&&ip<6){
1162 pfrom = ip;
1163 pto = ip+1;
1164 }
1165 if(iv>=0&&iv<2){
1166 vfrom = iv;
1167 vto = iv+1;
1168 }
1169 for(int i=pfrom; i<pto; i++)
1170 for(int j=0; j<vto; j++)
1171 if(GetDEDX(i,j)<min)min=GetDEDX(i,j);
1172
1173 return min;
1174
1175 };
1176
1177 /**
1178 * \brief Give the maximum spatial residual release
1179 */
1180 Float_t TrkTrack::GetResidual_max(int ip, int iv){
1181 Float_t max=0;
1182 int pfrom = 0;
1183 int pto = 6;
1184 int vfrom = 0;
1185 int vto = 2;
1186 if(ip>=0&&ip<6){
1187 pfrom = ip;
1188 pto = ip+1;
1189 }
1190 if(iv>=0&&iv<2){
1191 vfrom = iv;
1192 vto = iv+1;
1193 }
1194 for(int i=pfrom; i<pto; i++){
1195 for(int j=0; j<vto; j++){
1196 if(j==0 && XGood(i) && fabs(xm[i]-xv[i])>fabs(max))max=xv[i]-xm[i];
1197 if(j==1 && YGood(i) && fabs(ym[i]-yv[i])>fabs(max))max=yv[i]-ym[i];
1198 }
1199 }
1200 return max;
1201
1202 };
1203
1204
1205 /**
1206 * \brief Give the maximum multiplicity on the x view
1207 */
1208 Int_t TrkTrack::GetClusterX_Multiplicity_max(){
1209 int max=0;
1210 for(int ip=0; ip<6; ip++)
1211 if(GetClusterX_Multiplicity(ip)>max)max=GetClusterX_Multiplicity(ip);
1212 return max;
1213 };
1214 /**
1215 * \brief Give the minimum multiplicity on the x view
1216 */
1217 Int_t TrkTrack::GetClusterX_Multiplicity_min(){
1218 int min=50;
1219 for(int ip=0; ip<6; ip++)
1220 if(GetClusterX_Multiplicity(ip)<min)min=GetClusterX_Multiplicity(ip);
1221 return min;
1222 };
1223 /**
1224 * \brief Give the maximum multiplicity on the x view
1225 */
1226 Int_t TrkTrack::GetClusterY_Multiplicity_max(){
1227 int max=0;
1228 for(int ip=0; ip<6; ip++)
1229 if(GetClusterY_Multiplicity(ip)>max)max=GetClusterY_Multiplicity(ip);
1230 return max;
1231 };
1232 /**
1233 * \brief Give the minimum multiplicity on the x view
1234 */
1235 Int_t TrkTrack::GetClusterY_Multiplicity_min(){
1236 int min=50;
1237 for(int ip=0; ip<6; ip++)
1238 if(GetClusterY_Multiplicity(ip)<min)min=GetClusterY_Multiplicity(ip);
1239 return min;
1240 };
1241
1242 /**
1243 * \brief Give the minimum seed on the x view
1244 */
1245 Float_t TrkTrack::GetClusterX_Seed_min(){
1246 Float_t min=100000;
1247 for(int ip=0; ip<6; ip++)
1248 if(XGood(ip) && GetClusterX_Seed(ip)<min)min=GetClusterX_Seed(ip);
1249 return min;
1250 };
1251 /**
1252 * \brief Give the minimum seed on the x view
1253 */
1254 Float_t TrkTrack::GetClusterY_Seed_min(){
1255 Float_t min=100000;
1256 for(int ip=0; ip<6; ip++)
1257 if(YGood(ip) && GetClusterY_Seed(ip)<min)min=GetClusterY_Seed(ip);
1258 return min;
1259 };
1260
1261
1262 //--------------------------------------
1263 //
1264 //
1265 //--------------------------------------
1266 void TrkTrack::Clear(){
1267 // cout << "TrkTrack::Clear()"<<endl;
1268 seqno = -1;
1269 image = -1;
1270 chi2 = 0;
1271 nstep = 0;
1272 for(int it1=0;it1<5;it1++){
1273 al[it1] = 0;
1274 for(int it2=0;it2<5;it2++)coval[it1][it2] = 0;
1275 };
1276 for(int ip=0;ip<6;ip++){
1277 xgood[ip] = 0;
1278 ygood[ip] = 0;
1279 xm[ip] = 0;
1280 ym[ip] = 0;
1281 zm[ip] = 0;
1282 resx[ip] = 0;
1283 resy[ip] = 0;
1284 tailx[ip] = 0;
1285 taily[ip] = 0;
1286 xv[ip] = 0;
1287 yv[ip] = 0;
1288 zv[ip] = 0;
1289 axv[ip] = 0;
1290 ayv[ip] = 0;
1291 dedx_x[ip] = 0;
1292 dedx_y[ip] = 0;
1293
1294 };
1295 int ngf = TrkParams::nGF;
1296 for(int i=0; i<ngf; i++){
1297 xGF[i] = 0.;
1298 yGF[i] = 0.;
1299 }
1300 // if(clx)clx->Clear();
1301 // if(cly)cly->Clear();
1302 // clx.Clear();
1303 // cly.Clear();
1304 };
1305 //--------------------------------------
1306 //
1307 //
1308 //--------------------------------------
1309 void TrkTrack::Delete(){
1310 // cout << "TrkTrack::Delete()"<<endl;
1311 Clear();
1312 // if(clx)delete clx;
1313 // if(cly)delete cly;
1314 };
1315 //--------------------------------------
1316 //
1317 //
1318 //--------------------------------------
1319
1320 //--------------------------------------
1321 //
1322 //
1323 //--------------------------------------
1324 TrkSinglet::TrkSinglet(){
1325 // cout << "TrkSinglet::TrkSinglet() " << GetUniqueID()<<endl;
1326 // plane = 0;
1327 // coord[0] = 0;
1328 // coord[1] = 0;
1329 // sgnl = 0;
1330 // multmax = 0;
1331 // cls = 0;
1332 Clear();
1333 };
1334 //--------------------------------------
1335 //
1336 //
1337 //--------------------------------------
1338 TrkSinglet::TrkSinglet(const TrkSinglet& s){
1339 // cout << "TrkSinglet::TrkSinglet(const TrkSinglet& s) " << GetUniqueID()<<endl;
1340 plane = s.plane;
1341 coord[0] = s.coord[0];
1342 coord[1] = s.coord[1];
1343 sgnl = s.sgnl;
1344 multmax = s.multmax;
1345 // cls = 0;//<<<<pointer
1346 // cls = TRef(s.cls);
1347 };
1348 //--------------------------------------
1349 //
1350 //
1351 //--------------------------------------
1352 void TrkSinglet::Dump(){
1353 int i=0;
1354 cout << endl << "========== Singlet " ;
1355 cout << endl << "plane : " << plane;
1356 cout << endl << "coord[2] : "; while( i<2 && cout << coord[i] << " ") i++;
1357 cout << endl << "sgnl : " << sgnl;
1358 cout << endl << "max.strip : ";
1359 cout << endl << "multiplicity : ";
1360 }
1361 //--------------------------------------
1362 //
1363 //
1364 //--------------------------------------
1365 void TrkSinglet::Clear(){
1366 // cout << "TrkSinglet::Clear() " << GetUniqueID()<<endl;
1367 // cls=0;
1368 plane=-1;
1369 coord[0]=-999;
1370 coord[1]=-999;
1371 sgnl=0;
1372 multmax = 0;
1373
1374 }
1375 //--------------------------------------
1376 //
1377 //
1378 //--------------------------------------
1379 TrkLevel2::TrkLevel2(){
1380 // cout <<"TrkLevel2::TrkLevel2()"<<endl;
1381 for(Int_t i=0; i<12 ; i++){
1382 good[i] = -1;
1383 VKmask[i] = 0;
1384 VKflag[i] = 0;
1385 };
1386 Track = 0;
1387 SingletX = 0;
1388 SingletY = 0;
1389
1390 }
1391 //--------------------------------------
1392 //
1393 //
1394 //--------------------------------------
1395 void TrkLevel2::Set(){
1396 if(!Track)Track = new TClonesArray("TrkTrack");
1397 if(!SingletX)SingletX = new TClonesArray("TrkSinglet");
1398 if(!SingletY)SingletY = new TClonesArray("TrkSinglet");
1399 }
1400 //--------------------------------------
1401 //
1402 //
1403 //--------------------------------------
1404 void TrkLevel2::Dump(){
1405
1406 //
1407 cout << endl << endl << "=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-";
1408 cout << endl << "good : "; for(int i=0; i<12; i++) cout << hex <<" 0x"<< good[i]<<dec;
1409 cout << endl << "ntrk() : " << ntrk() ;
1410 cout << endl << "nclsx() : " << nclsx();
1411 cout << endl << "nclsy() : " << nclsy();
1412 if(Track){
1413 TClonesArray &t = *Track;
1414 for(int i=0; i<ntrk(); i++) ((TrkTrack *)t[i])->Dump();
1415 }
1416 // if(SingletX){
1417 // TClonesArray &sx = *SingletX;
1418 // for(int i=0; i<nclsx(); i++) ((TrkSinglet *)sx[i])->Dump();
1419 // }
1420 // if(SingletY){
1421 // TClonesArray &sy = *SingletY;
1422 // for(int i=0; i<nclsy(); i++) ((TrkSinglet *)sy[i])->Dump();
1423 // }
1424 cout << endl;
1425 }
1426 /**
1427 * \brief Dump processing status
1428 */
1429 void TrkLevel2::StatusDump(int view){
1430 cout << "DSP n. "<<view+1<<" status: "<<hex<<good[view]<<endl;
1431 };
1432 /**
1433 * \brief Check event status
1434 *
1435 * Check the event status, according to a flag-mask given as input.
1436 * Return true if the view passes the check.
1437 *
1438 * @param view View number (0-11)
1439 * @param flagmask Mask of flags to check (eg. flagmask=0x111 no missing packet,
1440 * no crc error, no software alarm)
1441 *
1442 * @see TrkLevel2 class definition to know how the status flag is defined
1443 *
1444 */
1445 Bool_t TrkLevel2::StatusCheck(int view, int flagmask){
1446
1447 if( view<0 || view >= 12)return false;
1448 return !(good[view]&flagmask);
1449
1450 };
1451
1452
1453 //--------------------------------------
1454 //
1455 //
1456 //--------------------------------------
1457 /**
1458 * The method returns false if the viking-chip was masked
1459 * either apriori ,on the basis of the mask read from the DB,
1460 * or run-by-run, on the basis of the calibration parameters)
1461 * @param iv Tracker view (0-11)
1462 * @param ivk Viking-chip number (0-23)
1463 */
1464 Bool_t TrkLevel2::GetVKMask(int iv, int ivk){
1465 Int_t whichbit = (Int_t)pow(2,ivk);
1466 return (whichbit&VKmask[iv])!=0;
1467 }
1468 /**
1469 * The method returns false if the viking-chip was masked
1470 * for this event due to common-noise computation failure.
1471 * @param iv Tracker view (0-11)
1472 * @param ivk Viking-chip number (0-23)
1473 */
1474 Bool_t TrkLevel2::GetVKFlag(int iv, int ivk){
1475 Int_t whichbit = (Int_t)pow(2,ivk);
1476 return (whichbit&VKflag[iv])!=0;
1477 }
1478 /**
1479 * The method returns true if the viking-chip was masked, either
1480 * forced (see TrkLevel2::GetVKMask(int,int)) or
1481 * for this event only (TrkLevel2::GetVKFlag(int,int)).
1482 * @param iv Tracker view (0-11)
1483 * @param ivk Viking-chip number (0-23)
1484 */
1485 Bool_t TrkLevel2::IsMaskedVK(int iv, int ivk){
1486 return !(GetVKMask(iv,ivk)&&GetVKFlag(iv,ivk) );
1487 };
1488
1489 //--------------------------------------
1490 //
1491 //
1492 //--------------------------------------
1493 /**
1494 * Fills a TrkLevel2 object with values from a struct cTrkLevel2 (to get data from F77 common).
1495 * Ref to Level1 data (clusters) is also set. If l1==NULL no references are set.
1496 * (NB It make sense to set references only if events are stored in a tree that contains also the Level1 branch)
1497 */
1498 void TrkLevel2::SetFromLevel2Struct(cTrkLevel2 *l2, TrkLevel1 *l1){
1499
1500 // cout << "void TrkLevel2::SetFromLevel2Struct(cTrkLevel2 *l2, TrkLevel1 *l1)"<<endl;
1501 Clear();
1502
1503 // temporary objects:
1504 TrkSinglet* t_singlet = new TrkSinglet();
1505 TrkTrack* t_track = new TrkTrack();
1506
1507 // -----------------
1508 // general variables
1509 // -----------------
1510 for(Int_t i=0; i<12 ; i++){
1511 good[i] = l2->good[i];
1512 VKmask[i]=0;
1513 VKflag[i]=0;
1514 for(Int_t ii=0; ii<24 ; ii++){
1515 Int_t setbit = (Int_t)pow(2,ii);
1516 if( l2->vkflag[ii][i]!=-1 )VKmask[i]=VKmask[i]|setbit;
1517 if( l2->vkflag[ii][i]!=0 )VKflag[i]=VKflag[i]|setbit;
1518 };
1519 };
1520 // --------------
1521 // *** TRACKS ***
1522 // --------------
1523 if(!Track) Track = new TClonesArray("TrkTrack");
1524 TClonesArray &t = *Track;
1525
1526 for(int i=0; i<l2->ntrk; i++){
1527 t_track->seqno = i;// NBNBNBNB deve sempre essere = i
1528 t_track->image = l2->image[i]-1;
1529 t_track->chi2 = l2->chi2_nt[i];
1530 t_track->nstep = l2->nstep_nt[i];
1531 for(int it1=0;it1<5;it1++){
1532 t_track->al[it1] = l2->al_nt[i][it1];
1533 for(int it2=0;it2<5;it2++)
1534 t_track->coval[it1][it2] = l2->coval[i][it2][it1];
1535 };
1536 for(int ip=0;ip<6;ip++){
1537 // ---------------------------------
1538 // new implementation of xgood/ygood
1539 // ---------------------------------
1540 t_track->xgood[ip] = l2->cltrx[i][ip]; //cluster ID
1541 t_track->ygood[ip] = l2->cltry[i][ip]; //cluster ID
1542 t_track->xgood[ip] += 10000000*l2->ls[i][ip]; // ladder+sensor
1543 t_track->ygood[ip] += 10000000*l2->ls[i][ip]; // ladder+sensor
1544 if(l2->xbad[i][ip]>0)t_track->xgood[ip]=-t_track->xgood[ip];
1545 if(l2->ybad[i][ip]>0)t_track->ygood[ip]=-t_track->ygood[ip];
1546 // if(l2->xbad[i][ip]>0 || l2->ybad[i][ip]>0){
1547 // if(l2->dedx_x[i][ip]<0 || l2->dedx_y[i][ip]<0){
1548 // cout << ip << " - "<< l2->cltrx[i][ip] << " "<<l2->cltry[i][ip]<<" "<<l2->ls[i][ip]<<endl;
1549 // cout << ip << " - "<<t_track->xgood[ip]<<" "<<t_track->ygood[ip]<<endl;
1550 // cout << ip << " - "<<t_track->GetClusterX_ID(ip)<<" "<<t_track->GetClusterY_ID(ip)<<" "<<t_track->GetLadder(ip)<<" "<<t_track->GetSensor(ip)<<endl;
1551 // cout << ip << " - "<<t_track->BadClusterX(ip)<<" "<<t_track->BadClusterY(ip)<<endl;
1552 // cout << ip << " - "<<t_track->SaturatedClusterX(ip)<<" "<<t_track->SaturatedClusterY(ip)<<endl;
1553 // }
1554 t_track->xm[ip] = l2->xm_nt[i][ip];
1555 t_track->ym[ip] = l2->ym_nt[i][ip];
1556 t_track->zm[ip] = l2->zm_nt[i][ip];
1557 t_track->resx[ip] = l2->resx_nt[i][ip];
1558 t_track->resy[ip] = l2->resy_nt[i][ip];
1559 t_track->tailx[ip] = l2->tailx[i][ip];
1560 t_track->taily[ip] = l2->taily[i][ip];
1561 t_track->xv[ip] = l2->xv_nt[i][ip];
1562 t_track->yv[ip] = l2->yv_nt[i][ip];
1563 t_track->zv[ip] = l2->zv_nt[i][ip];
1564 t_track->axv[ip] = l2->axv_nt[i][ip];
1565 t_track->ayv[ip] = l2->ayv_nt[i][ip];
1566 t_track->dedx_x[ip] = l2->dedx_x[i][ip];
1567 t_track->dedx_y[ip] = l2->dedx_y[i][ip];
1568 t_track->multmaxx[ip] = l2->multmaxx[i][ip];
1569 t_track->multmaxy[ip] = l2->multmaxy[i][ip];
1570 t_track->seedx[ip] = l2->seedx[i][ip];
1571 t_track->seedy[ip] = l2->seedy[i][ip];
1572 t_track->xpu[ip] = l2->xpu[i][ip];
1573 t_track->ypu[ip] = l2->ypu[i][ip];
1574 //-----------------------------------------------------
1575 //-----------------------------------------------------
1576 //-----------------------------------------------------
1577 //-----------------------------------------------------
1578 };
1579 // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1580 // evaluated coordinates (to define GF)
1581 // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1582 int ngf = TrkParams::nGF;
1583 float *zgf = TrkParams::zGF;
1584 Trajectory tgf = Trajectory(ngf,zgf);
1585 tgf.DoTrack2(t_track->al);//<<<< integrate the trajectory
1586 for(int ip=0; ip<ngf; ip++){
1587 t_track->xGF[ip] = tgf.x[ip];
1588 t_track->yGF[ip] = tgf.y[ip];
1589 }
1590
1591 // if(t_track->IsSaturated())t_track->Dump();
1592 new(t[i]) TrkTrack(*t_track);
1593 t_track->Clear();
1594 };//end loop over track
1595
1596 // ----------------
1597 // *** SINGLETS ***
1598 // ----------------
1599 if(!SingletX)SingletX = new TClonesArray("TrkSinglet");
1600 TClonesArray &sx = *SingletX;
1601 for(int i=0; i<l2->nclsx; i++){
1602 t_singlet->plane = l2->planex[i];
1603 t_singlet->coord[0] = l2->xs[i][0];
1604 t_singlet->coord[1] = l2->xs[i][1];
1605 t_singlet->sgnl = l2->signlxs[i];
1606 t_singlet->multmax = l2->multmaxsx[i];
1607 if(l2->sxbad[i]>0) t_singlet->multmax = -1*t_singlet->multmax;
1608 //-----------------------------------------------------
1609 // if(l1) t_singlet->cls = l1->GetCluster(l2->clsx[i]-1);
1610 //-----------------------------------------------------
1611 new(sx[i]) TrkSinglet(*t_singlet);
1612 t_singlet->Clear();
1613 }
1614 if(!SingletY)SingletY = new TClonesArray("TrkSinglet");
1615 TClonesArray &sy = *SingletY;
1616 for(int i=0; i<l2->nclsy; i++){
1617 t_singlet->plane = l2->planey[i];
1618 t_singlet->coord[0] = l2->ys[i][0];
1619 t_singlet->coord[1] = l2->ys[i][1];
1620 t_singlet->sgnl = l2->signlys[i];
1621 t_singlet->multmax = l2->multmaxsy[i];
1622 if(l2->sybad[i]>0) t_singlet->multmax = -1*t_singlet->multmax;
1623 //-----------------------------------------------------
1624 // if(l1) t_singlet->cls = l1->GetCluster(l2->clsy[i]-1);
1625 //-----------------------------------------------------
1626 new(sy[i]) TrkSinglet(*t_singlet);
1627 t_singlet->Clear();
1628 };
1629
1630
1631
1632 delete t_track;
1633 delete t_singlet;
1634 }
1635 /**
1636 * Fills a struct cTrkLevel2 with values from a TrkLevel2 object (to put data into a F77 common).
1637 */
1638
1639 void TrkLevel2::GetLevel2Struct(cTrkLevel2 *l2) const {
1640
1641 // general variables
1642 // l2->good2 = good2 ;
1643 for(Int_t i=0; i<12 ; i++){
1644 // l2->crc[i] = crc[i];
1645 l2->good[i] = good[i];
1646 };
1647 // *** TRACKS ***
1648
1649 if(Track){
1650 l2->ntrk = Track->GetEntries();
1651 for(Int_t i=0;i<l2->ntrk;i++){
1652 l2->image[i] = 1 + ((TrkTrack *)Track->At(i))->image;
1653 l2->chi2_nt[i] = ((TrkTrack *)Track->At(i))->chi2;
1654 l2->nstep_nt[i] = ((TrkTrack *)Track->At(i))->nstep;
1655 for(int it1=0;it1<5;it1++){
1656 l2->al_nt[i][it1] = ((TrkTrack *)Track->At(i))->al[it1];
1657 for(int it2=0;it2<5;it2++)
1658 l2->coval[i][it2][it1] = ((TrkTrack *)Track->At(i))->coval[it1][it2];
1659 };
1660 for(int ip=0;ip<6;ip++){
1661 l2->xgood_nt[i][ip] = ((TrkTrack *)Track->At(i))->XGood(ip);
1662 l2->ygood_nt[i][ip] = ((TrkTrack *)Track->At(i))->YGood(ip);
1663 l2->xm_nt[i][ip] = ((TrkTrack *)Track->At(i))->xm[ip];
1664 l2->ym_nt[i][ip] = ((TrkTrack *)Track->At(i))->ym[ip];
1665 l2->zm_nt[i][ip] = ((TrkTrack *)Track->At(i))->zm[ip];
1666 l2->resx_nt[i][ip] = ((TrkTrack *)Track->At(i))->resx[ip];
1667 l2->resy_nt[i][ip] = ((TrkTrack *)Track->At(i))->resy[ip];
1668 l2->tailx[i][ip] = ((TrkTrack *)Track->At(i))->tailx[ip];
1669 l2->taily[i][ip] = ((TrkTrack *)Track->At(i))->taily[ip];
1670 l2->xv_nt[i][ip] = ((TrkTrack *)Track->At(i))->xv[ip];
1671 l2->yv_nt[i][ip] = ((TrkTrack *)Track->At(i))->yv[ip];
1672 l2->zv_nt[i][ip] = ((TrkTrack *)Track->At(i))->zv[ip];
1673 l2->axv_nt[i][ip] = ((TrkTrack *)Track->At(i))->axv[ip];
1674 l2->ayv_nt[i][ip] = ((TrkTrack *)Track->At(i))->ayv[ip];
1675 l2->dedx_x[i][ip] = ((TrkTrack *)Track->At(i))->dedx_x[ip];
1676 l2->dedx_y[i][ip] = ((TrkTrack *)Track->At(i))->dedx_y[ip];
1677 };
1678 }
1679 }
1680 // *** SINGLETS ***
1681 if(SingletX){
1682 l2->nclsx = SingletX->GetEntries();
1683 for(Int_t i=0;i<l2->nclsx;i++){
1684 l2->planex[i] = ((TrkSinglet *)SingletX->At(i))->plane;
1685 l2->xs[i][0] = ((TrkSinglet *)SingletX->At(i))->coord[0];
1686 l2->xs[i][1] = ((TrkSinglet *)SingletX->At(i))->coord[1];
1687 l2->signlxs[i] = ((TrkSinglet *)SingletX->At(i))->sgnl;
1688 }
1689 }
1690
1691 if(SingletY){
1692 l2->nclsy = SingletY->GetEntries();
1693 for(Int_t i=0;i<l2->nclsy;i++){
1694 l2->planey[i] = ((TrkSinglet *)SingletY->At(i))->plane;
1695 l2->ys[i][0] = ((TrkSinglet *)SingletY->At(i))->coord[0];
1696 l2->ys[i][1] = ((TrkSinglet *)SingletY->At(i))->coord[1];
1697 l2->signlys[i] = ((TrkSinglet *)SingletY->At(i))->sgnl;
1698 }
1699 }
1700 }
1701 //--------------------------------------
1702 //
1703 //
1704 //--------------------------------------
1705 void TrkLevel2::Clear(){
1706 for(Int_t i=0; i<12 ; i++){
1707 good[i] = -1;
1708 VKflag[i] = 0;
1709 VKmask[i] = 0;
1710 };
1711 // if(Track)Track->Clear("C");
1712 // if(SingletX)SingletX->Clear("C");
1713 // if(SingletY)SingletY->Clear("C");
1714 if(Track)Track->Delete();
1715 if(SingletX)SingletX->Delete();
1716 if(SingletY)SingletY->Delete();
1717 }
1718 // //--------------------------------------
1719 // //
1720 // //
1721 // //--------------------------------------
1722 void TrkLevel2::Delete(){
1723
1724 // cout << "void TrkLevel2::Delete()"<<endl;
1725 Clear();
1726 if(Track)delete Track;
1727 if(SingletX)delete SingletX;
1728 if(SingletY)delete SingletY;
1729
1730 }
1731 //--------------------------------------
1732 //
1733 //
1734 //--------------------------------------
1735 /**
1736 * Sort physical tracks and stores them in a TObjectArray, ordering by increasing chi**2 value (in case of track image, it selects the one with lower chi**2). The total number of physical tracks is given by GetNTracks() and the it-th physical track can be retrieved by means of the method GetTrack(int it).
1737 * This method is overridden by PamLevel2::GetTracks(), where calorimeter and TOF information is used.
1738 */
1739 TRefArray *TrkLevel2::GetTracks_NFitSorted(){
1740
1741 if(!Track)return 0;
1742
1743 TRefArray *sorted = new TRefArray();
1744
1745 TClonesArray &t = *Track;
1746 // TClonesArray &ts = *PhysicalTrack;
1747 int N = ntrk();
1748 vector<int> m(N); for(int i=0; i<N; i++)m[i]=1;
1749 // int m[50]; for(int i=0; i<N; i++)m[i]=1;
1750
1751 int indo=0;
1752 int indi=0;
1753 while(N > 0){
1754 // while(N != 0){
1755 int nfit =0;
1756 float chi2ref = numeric_limits<float>::max();
1757
1758 // first loop to search maximum num. of fit points
1759 for(int i=0; i < ntrk(); i++){
1760 if( ((TrkTrack *)t[i])->GetNtot() >= nfit && m[i]==1){
1761 nfit = ((TrkTrack *)t[i])->GetNtot();
1762 }
1763 }
1764 //second loop to search minimum chi2 among selected
1765 for(int i=0; i<ntrk(); i++){
1766 Float_t chi2 = ((TrkTrack *)t[i])->chi2;
1767 if(chi2 < 0) chi2 = -chi2*1000;
1768 if( chi2 < chi2ref
1769 && ((TrkTrack *)t[i])->GetNtot() == nfit
1770 && m[i]==1){
1771 chi2ref = ((TrkTrack *)t[i])->chi2;
1772 indi = i;
1773 };
1774 };
1775 if( ((TrkTrack *)t[indi])->HasImage() ){
1776 m[((TrkTrack *)t[indi])->image] = 0;
1777 N--;
1778
1779 // cout << "i** "<< ((TrkTrack *)t[indi])->image << " " << nfiti <<" "<<chi2i<<endl;
1780 };
1781 sorted->Add( (TrkTrack*)t[indi] );
1782
1783 m[indi] = 0;
1784 // cout << "SORTED "<< indo << " "<< indi << " "<< N << " "<<((TrkTrack *)t[indi])->image<<" "<<chi2ref<<endl;
1785 N--;
1786 indo++;
1787 }
1788 m.clear();
1789 // cout << "GetTracks_NFitSorted(it): Done"<< endl;
1790
1791 return sorted;
1792 // return PhysicalTrack;
1793 }
1794 //--------------------------------------
1795 //
1796 //
1797 //--------------------------------------
1798 /**
1799 * Retrieves the is-th stored track.
1800 * @param it Track number, ranging from 0 to ntrk().
1801 * Fitted tracks ( images included ) are stored in a TObjectArray ( TrkLevel2::Track ) in the same order they are returned by the F77 fitting routine.
1802 */
1803 TrkTrack *TrkLevel2::GetStoredTrack(int is){
1804
1805 if(is >= this->ntrk()){
1806 cout << "TrkTrack *TrkLevel2::GetStoredTrack(int) >> Track "<< is << "doen not exits! " << endl;
1807 cout << "Stored tracks ntrk() = "<< this->ntrk() << endl;
1808 return 0;
1809 }
1810 if(!Track){
1811 cout << "TrkTrack *TrkLevel2::GetStoredTrack(int is) >> (TClonesArray*) Track ==0 "<<endl;
1812 };
1813 TClonesArray &t = *(Track);
1814 TrkTrack *track = (TrkTrack*)t[is];
1815 return track;
1816 }
1817 //--------------------------------------
1818 //
1819 //
1820 //--------------------------------------
1821 /**
1822 * Retrieves the is-th stored X singlet.
1823 * @param it Singlet number, ranging from 0 to nclsx().
1824 */
1825 TrkSinglet *TrkLevel2::GetSingletX(int is){
1826
1827 if(is >= this->nclsx()){
1828 cout << "TrkSinglet *TrkLevel2::GetSingletX(int) >> Singlet "<< is << "doen not exits! " << endl;
1829 cout << "Stored x-singlets nclsx() = "<< this->nclsx() << endl;
1830 return 0;
1831 }
1832 if(!SingletX)return 0;
1833 TClonesArray &t = *(SingletX);
1834 TrkSinglet *singlet = (TrkSinglet*)t[is];
1835 return singlet;
1836 }
1837 //--------------------------------------
1838 //
1839 //
1840 //--------------------------------------
1841 /**
1842 * Retrieves the is-th stored Y singlet.
1843 * @param it Singlet number, ranging from 0 to nclsx().
1844 */
1845 TrkSinglet *TrkLevel2::GetSingletY(int is){
1846
1847 if(is >= this->nclsy()){
1848 cout << "TrkSinglet *TrkLevel2::GetSingletY(int) >> Singlet "<< is << "doen not exits! " << endl;
1849 cout << "Stored y-singlets nclsx() = "<< this->nclsx() << endl;
1850 return 0;
1851 }
1852 if(!SingletY)return 0;
1853 TClonesArray &t = *(SingletY);
1854 TrkSinglet *singlet = (TrkSinglet*)t[is];
1855 return singlet;
1856 }
1857 //--------------------------------------
1858 //
1859 //
1860 //--------------------------------------
1861 /**
1862 * Retrieves the it-th "physical" track, sorted by the method GetNTracks().
1863 * @param it Track number, ranging from 0 to GetNTracks().
1864 */
1865
1866 TrkTrack *TrkLevel2::GetTrack(int it){
1867
1868 if(it >= this->GetNTracks()){
1869 cout << "TrkTrack *TrkLevel2::GetTrack(int) >> Track "<< it << "does not exits! " << endl;
1870 cout << "Physical tracks GetNTracks() = "<< this->ntrk() << endl;
1871 return 0;
1872 }
1873
1874 TRefArray *sorted = GetTracks(); //TEMPORANEO
1875 if(!sorted)return 0;
1876 TrkTrack *track = (TrkTrack*)sorted->At(it);
1877 sorted->Clear();
1878 delete sorted;
1879 return track;
1880 }
1881 /**
1882 * Give the number of "physical" tracks, sorted by the method GetTracks().
1883 */
1884 Int_t TrkLevel2::GetNTracks(){
1885
1886 Float_t ntot=0;
1887 if(!Track)return 0;
1888 TClonesArray &t = *Track;
1889 for(int i=0; i<ntrk(); i++) {
1890 if( ((TrkTrack *)t[i])->GetImageSeqNo() == -1 ) ntot+=1.;
1891 else ntot+=0.5;
1892 }
1893 return (Int_t)ntot;
1894
1895 };
1896 //--------------------------------------
1897 //
1898 //
1899 //--------------------------------------
1900 /**
1901 * Retrieves (if present) the image of the it-th "physical" track, sorted by the method GetNTracks().
1902 * @param it Track number, ranging from 0 to GetNTracks().
1903 */
1904 TrkTrack *TrkLevel2::GetTrackImage(int it){
1905
1906 if(it >= this->GetNTracks()){
1907 cout << "TrkTrack *TrkLevel2::GetTrackImage(int) >> Track "<< it << "does not exits! " << endl;
1908 cout << "Physical tracks GetNTracks() = "<< this->ntrk() << endl;
1909 return 0;
1910 }
1911
1912 TRefArray* sorted = GetTracks(); //TEMPORANEO
1913 if(!sorted)return 0;
1914 TrkTrack *track = (TrkTrack*)sorted->At(it);
1915
1916 if(!track->HasImage()){
1917 cout << "TrkTrack *TrkLevel2::GetTrackImage(int) >> Track "<< it << "does not have image! " << endl;
1918 return 0;
1919 }
1920 if(!Track)return 0;
1921 TrkTrack *image = (TrkTrack*)(*Track)[track->image];
1922
1923 sorted->Delete();
1924 delete sorted;
1925
1926 return image;
1927
1928 }
1929 //--------------------------------------
1930 //
1931 //
1932 //--------------------------------------
1933 /**
1934 * Loads the magnetic field.
1935 * @param s Path of the magnetic-field files.
1936 */
1937 void TrkLevel2::LoadField(TString path){
1938 //
1939 // strcpy(path_.path,path.Data());
1940 // path_.pathlen = path.Length();
1941 // path_.error = 0;
1942 // readb_();
1943
1944 // TrkParams::SetTrackingMode();
1945 // TrkParams::SetPrecisionFactor();
1946 // TrkParams::SetStepMin();
1947 TrkParams::SetMiniDefault();
1948
1949 TrkParams::Set(path,1);
1950 TrkParams::Load(1);
1951
1952 //
1953 };
1954 // /**
1955 // * Get BY (kGauss)
1956 // * @param v (x,y,z) coordinates in cm
1957 // */
1958 // float TrkLevel2::GetBX(float* v){
1959 // float b[3];
1960 // gufld_(v,b);
1961 // return b[0]/10.;
1962 // }
1963 // /**
1964 // * Get BY (kGauss)
1965 // * @param v (x,y,z) coordinates in cm
1966 // */
1967 // float TrkLevel2::GetBY(float* v){
1968 // float b[3];
1969 // gufld_(v,b);
1970 // return b[1]/10.;
1971 // }
1972 // /**
1973 // * Get BY (kGauss)
1974 // * @param v (x,y,z) coordinates in cm
1975 // */
1976 // float TrkLevel2::GetBZ(float* v){
1977 // float b[3];
1978 // gufld_(v,b);
1979 // return b[2]/10.;
1980 // }
1981 //--------------------------------------
1982 //
1983 //
1984 //--------------------------------------
1985 /**
1986 * Get tracker-plane (mechanical) z-coordinate
1987 * @param plane_id plane index (1=TOP,2,3,4,5,6=BOTTOM)
1988 */
1989 Float_t TrkLevel2::GetZTrk(Int_t plane_id){
1990 switch(plane_id){
1991 case 1: return ZTRK1;
1992 case 2: return ZTRK2;
1993 case 3: return ZTRK3;
1994 case 4: return ZTRK4;
1995 case 5: return ZTRK5;
1996 case 6: return ZTRK6;
1997 default: return 0.;
1998 };
1999 };
2000 //--------------------------------------
2001 //
2002 //
2003 //--------------------------------------
2004 /**
2005 * Trajectory default constructor.
2006 * (By default is created with z-coordinates inside the tracking volume)
2007 */
2008 Trajectory::Trajectory(){
2009 npoint = 10;
2010 x = new float[npoint];
2011 y = new float[npoint];
2012 z = new float[npoint];
2013 thx = new float[npoint];
2014 thy = new float[npoint];
2015 tl = new float[npoint];
2016 float dz = ((ZTRK1)-(ZTRK6))/(npoint-1);
2017 for(int i=0; i<npoint; i++){
2018 x[i] = 0;
2019 y[i] = 0;
2020 z[i] = (ZTRK1) - i*dz;
2021 thx[i] = 0;
2022 thy[i] = 0;
2023 tl[i] = 0;
2024 }
2025 }
2026 //--------------------------------------
2027 //
2028 //
2029 //--------------------------------------
2030 /**
2031 * Trajectory constructor.
2032 * (By default is created with z-coordinates inside the tracking volume)
2033 * \param n Number of points
2034 */
2035 Trajectory::Trajectory(int n){
2036 if(n<=0){
2037 cout << "NB! Trajectory must have at least 1 point >>> created with 10 points" << endl;
2038 n=10;
2039 }
2040 npoint = n;
2041 x = new float[npoint];
2042 y = new float[npoint];
2043 z = new float[npoint];
2044 thx = new float[npoint];
2045 thy = new float[npoint];
2046 tl = new float[npoint];
2047 float dz = ((ZTRK1)-(ZTRK6))/(npoint-1);
2048 for(int i=0; i<npoint; i++){
2049 x[i] = 0;
2050 y[i] = 0;
2051 z[i] = (ZTRK1) - i*dz;
2052 thx[i] = 0;
2053 thy[i] = 0;
2054 tl[i] = 0;
2055 }
2056 }
2057 //--------------------------------------
2058 //
2059 //
2060 //--------------------------------------
2061 /**
2062 * Trajectory constructor.
2063 * \param n Number of points
2064 * \param pz Pointer to float array, defining z coordinates
2065 */
2066 Trajectory::Trajectory(int n, float* zin){
2067 npoint = 10;
2068 if(n>0)npoint = n;
2069 x = new float[npoint];
2070 y = new float[npoint];
2071 z = new float[npoint];
2072 thx = new float[npoint];
2073 thy = new float[npoint];
2074 tl = new float[npoint];
2075 int i=0;
2076 do{
2077 x[i] = 0;
2078 y[i] = 0;
2079 z[i] = zin[i];
2080 thx[i] = 0;
2081 thy[i] = 0;
2082 tl[i] = 0;
2083 i++;
2084 }while(zin[i-1] > zin[i] && i < npoint);
2085 npoint=i;
2086 if(npoint != n)cout << "NB! Trajectory created with "<<npoint<<" points"<<endl;
2087 }
2088 void Trajectory::Delete(){
2089
2090 if(x) delete [] x;
2091 if(y) delete [] y;
2092 if(z) delete [] z;
2093 if(thx) delete [] thx;
2094 if(thy) delete [] thy;
2095 if(tl) delete [] tl;
2096
2097 }
2098 //--------------------------------------
2099 //
2100 //
2101 //--------------------------------------
2102 /**
2103 * Dump the trajectory coordinates.
2104 */
2105 void Trajectory::Dump(){
2106 cout <<endl<< "Trajectory ========== "<<endl;
2107 for (int i=0; i<npoint; i++){
2108 cout << i <<" >> " << x[i] <<" "<< y[i] <<" "<< z[i] ;
2109 cout <<" -- " << thx[i] <<" "<< thy[i] ;
2110 cout <<" -- " << tl[i] << endl;
2111 };
2112 }
2113 //--------------------------------------
2114 //
2115 //
2116 //--------------------------------------
2117 /**
2118 * Get trajectory length between two points
2119 * @param ifirst first point (default 0)
2120 * @param ilast last point (default npoint)
2121 */
2122 float Trajectory::GetLength(int ifirst, int ilast){
2123 if( ifirst<0 ) ifirst = 0;
2124 if( ilast>=npoint) ilast = npoint-1;
2125 float l=0;
2126 for(int i=ifirst;i<=ilast;i++){
2127 l=l+tl[i];
2128 };
2129 if(z[ilast] > ZINI)l=l-tl[ilast];
2130 if(z[ifirst] < ZINI) l=l-tl[ifirst];
2131
2132 return l;
2133
2134 }
2135
2136 /**
2137 * Evaluates the trajectory in the apparatus associated to the track.
2138 * It integrates the equations of motion in the magnetic field. The magnetic field should be previously loaded ( by calling TrkLevel2::LoadField() ), otherwise an error message is returned.
2139 * @param t pointer to an object of the class Trajectory,
2140 * which z coordinates should be previously initialized by calling the proper constructor ( Trajectory::Trajectory(int n, float* zin) ).
2141 * @return error flag.
2142 */
2143 int Trajectory::DoTrack2(float* al){
2144
2145 double *dxout = new double[npoint];
2146 double *dyout = new double[npoint];
2147 double *dthxout = new double[npoint];
2148 double *dthyout = new double[npoint];
2149 double *dtlout = new double[npoint];
2150 double *dzin = new double[npoint];
2151 double dal[5];
2152
2153 int ifail = 0;
2154
2155 for (int i=0; i<5; i++) dal[i] = (double)al[i];
2156 for (int i=0; i<npoint; i++) dzin[i] = (double)z[i];
2157
2158 TrkParams::Load(1);
2159 if( !TrkParams::IsLoaded(1) ){
2160 cout << "int Trajectory::DoTrack2(float* al) --- ERROR --- m.field not loaded"<<endl;
2161 return 0;
2162 }
2163 dotrack2_(&(npoint),dzin,dxout,dyout,dthxout,dthyout,dtlout,dal,&ifail);
2164
2165 for (int i=0; i<npoint; i++){
2166 x[i] = (float)*dxout++;
2167 y[i] = (float)*dyout++;
2168 thx[i] = (float)*dthxout++;
2169 thy[i] = (float)*dthyout++;
2170 tl[i] = (float)*dtlout++;
2171 }
2172
2173 return ifail;
2174 };
2175
2176 ClassImp(TrkLevel2);
2177 ClassImp(TrkSinglet);
2178 ClassImp(TrkTrack);
2179 ClassImp(Trajectory);

  ViewVC Help
Powered by ViewVC 1.1.23