/[PAMELA software]/DarthVader/TrackerLevel2/src/TrkLevel2.cpp
ViewVC logotype

Contents of /DarthVader/TrackerLevel2/src/TrkLevel2.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1.43 - (show annotations) (download)
Tue Jan 22 08:55:07 2008 UTC (17 years ago) by pam-fi
Branch: MAIN
Changes since 1.42: +220 -4 lines
ome new methods

1 /**
2 * \file TrkLevel2.cpp
3 * \author Elena Vannuccini
4 */
5 #include <TrkLevel2.h>
6 #include <iostream>
7 #include <math.h>
8 using namespace std;
9 //......................................
10 // F77 routines
11 //......................................
12 extern "C" {
13 void dotrack_(int*, double*, double*, double*, double*, int*);
14 void dotrack2_(int*, double*, double*, double*, double*,double*, double*, double*,int*);
15 void mini2_(int*,int*,int*);
16 void guess_();
17 void gufld_(float*, float*);
18 float risxeta2_(float *);
19 float risxeta3_(float *);
20 float risxeta4_(float *);
21 float risyeta2_(float *);
22 }
23
24 //--------------------------------------
25 //
26 //
27 //--------------------------------------
28 TrkTrack::TrkTrack(){
29 // cout << "TrkTrack::TrkTrack()" << endl;
30 seqno = -1;
31 image = -1;
32 chi2 = 0;
33 nstep = 0;
34 for(int it1=0;it1<5;it1++){
35 al[it1] = 0;
36 for(int it2=0;it2<5;it2++)coval[it1][it2] = 0;
37 };
38 for(int ip=0;ip<6;ip++){
39 xgood[ip] = 0;
40 ygood[ip] = 0;
41 xm[ip] = 0;
42 ym[ip] = 0;
43 zm[ip] = 0;
44 resx[ip] = 0;
45 resy[ip] = 0;
46 tailx[ip] = 0;
47 taily[ip] = 0;
48 xv[ip] = 0;
49 yv[ip] = 0;
50 zv[ip] = 0;
51 axv[ip] = 0;
52 ayv[ip] = 0;
53 dedx_x[ip] = 0;
54 dedx_y[ip] = 0;
55 multmaxx[ip] = 0;
56 multmaxy[ip] = 0;
57 seedx[ip] = 0;
58 seedy[ip] = 0;
59 xpu[ip] = 0;
60 ypu[ip] = 0;
61
62 };
63
64 // TrkParams::SetTrackingMode();
65 // TrkParams::SetPrecisionFactor();
66 // TrkParams::SetStepMin();
67 TrkParams::SetMiniDefault();
68 TrkParams::SetPFA();
69
70 };
71 //--------------------------------------
72 //
73 //
74 //--------------------------------------
75 TrkTrack::TrkTrack(const TrkTrack& t){
76 seqno = t.seqno;
77 image = t.image;
78 chi2 = t.chi2;
79 nstep = t.nstep;
80 for(int it1=0;it1<5;it1++){
81 al[it1] = t.al[it1];
82 for(int it2=0;it2<5;it2++)coval[it1][it2] = t.coval[it1][it2];
83 };
84 for(int ip=0;ip<6;ip++){
85 xgood[ip] = t.xgood[ip];
86 ygood[ip] = t.ygood[ip];
87 xm[ip] = t.xm[ip];
88 ym[ip] = t.ym[ip];
89 zm[ip] = t.zm[ip];
90 resx[ip] = t.resx[ip];
91 resy[ip] = t.resy[ip];
92 tailx[ip] = t.tailx[ip];
93 taily[ip] = t.taily[ip];
94 xv[ip] = t.xv[ip];
95 yv[ip] = t.yv[ip];
96 zv[ip] = t.zv[ip];
97 axv[ip] = t.axv[ip];
98 ayv[ip] = t.ayv[ip];
99 dedx_x[ip] = t.dedx_x[ip];
100 dedx_y[ip] = t.dedx_y[ip];
101 multmaxx[ip] = t.multmaxx[ip];
102 multmaxy[ip] = t.multmaxy[ip];
103 seedx[ip] = t.seedx[ip];
104 seedy[ip] = t.seedy[ip];
105 xpu[ip] = t.xpu[ip];
106 ypu[ip] = t.ypu[ip];
107 };
108
109 // TrkParams::SetTrackingMode();
110 // TrkParams::SetPrecisionFactor();
111 // TrkParams::SetStepMin();
112 TrkParams::SetMiniDefault();
113 TrkParams::SetPFA();
114
115 };
116 //--------------------------------------
117 //
118 //
119 //--------------------------------------
120 void TrkTrack::Copy(TrkTrack& t){
121
122 t.seqno = seqno;
123 t.image = image;
124 t.chi2 = chi2;
125 t.nstep = nstep;
126 for(int it1=0;it1<5;it1++){
127 t.al[it1] = al[it1];
128 for(int it2=0;it2<5;it2++)t.coval[it1][it2] = coval[it1][it2];
129 };
130 for(int ip=0;ip<6;ip++){
131 t.xgood[ip] = xgood[ip];
132 t.ygood[ip] = ygood[ip];
133 t.xm[ip] = xm[ip];
134 t.ym[ip] = ym[ip];
135 t.zm[ip] = zm[ip];
136 t.resx[ip] = resx[ip];
137 t.resy[ip] = resy[ip];
138 t.tailx[ip] = tailx[ip];
139 t.taily[ip] = taily[ip];
140 t.xv[ip] = xv[ip];
141 t.yv[ip] = yv[ip];
142 t.zv[ip] = zv[ip];
143 t.axv[ip] = axv[ip];
144 t.ayv[ip] = ayv[ip];
145 t.dedx_x[ip] = dedx_x[ip];
146 t.dedx_y[ip] = dedx_y[ip];
147 t.multmaxx[ip] = multmaxx[ip];
148 t.multmaxy[ip] = multmaxy[ip];
149 t.seedx[ip] = seedx[ip];
150 t.seedy[ip] = seedy[ip];
151 t.xpu[ip] = xpu[ip];
152 t.ypu[ip] = ypu[ip];
153
154 };
155
156
157 };
158 //--------------------------------------
159 //
160 //
161 //--------------------------------------
162 /**
163 * Evaluates the trajectory in the apparatus associated to the track.
164 * It integrates the equations of motion in the magnetic field. The magnetic field should be previously loaded ( by calling TrkLevel2::LoadField() ), otherwise an error message is returned.
165 * @param t pointer to an object of the class Trajectory,
166 * which z coordinates should be previously initialized by calling the proper constructor ( Trajectory::Trajectory(int n, float* zin) ).
167 * @return error flag.
168 */
169 int TrkTrack::DoTrack(Trajectory* t){
170
171 double *dxout = new double[t->npoint];
172 double *dyout = new double[t->npoint];
173 double *dzin = new double[t->npoint];
174 double dal[5];
175
176 int ifail = 0;
177
178 for (int i=0; i<5; i++) dal[i] = (double)al[i];
179 for (int i=0; i<t->npoint; i++) dzin[i] = (double)t->z[i];
180
181 TrkParams::Load(1);
182 if( !TrkParams::IsLoaded(1) ){
183 cout << "int TrkTrack::DoTrack(Trajectory* t) --- ERROR --- m.field not loaded"<<endl;
184 return 0;
185 }
186 dotrack_(&(t->npoint),dzin,dxout,dyout,dal,&ifail);
187
188 for (int i=0; i<t->npoint; i++){
189 t->x[i] = (float)*dxout++;
190 t->y[i] = (float)*dyout++;
191 }
192
193 // delete [] dxout;
194 // delete [] dyout;
195 // delete [] dzin;
196
197 return ifail;
198 };
199 //--------------------------------------
200 //
201 //
202 //--------------------------------------
203 /**
204 * Evaluates the trajectory in the apparatus associated to the track.
205 * It integrates the equations of motion in the magnetic field. The magnetic field should be previously loaded ( by calling TrkLevel2::LoadField() ), otherwise an error message is returned.
206 * @param t pointer to an object of the class Trajectory,
207 * which z coordinates should be previously initialized by calling the proper constructor ( Trajectory::Trajectory(int n, float* zin) ).
208 * @return error flag.
209 */
210 int TrkTrack::DoTrack2(Trajectory* t){
211
212 double *dxout = new double[t->npoint];
213 double *dyout = new double[t->npoint];
214 double *dthxout = new double[t->npoint];
215 double *dthyout = new double[t->npoint];
216 double *dtlout = new double[t->npoint];
217 double *dzin = new double[t->npoint];
218 double dal[5];
219
220 int ifail = 0;
221
222 for (int i=0; i<5; i++) dal[i] = (double)al[i];
223 for (int i=0; i<t->npoint; i++) dzin[i] = (double)t->z[i];
224
225 TrkParams::Load(1);
226 if( !TrkParams::IsLoaded(1) ){
227 cout << "int TrkTrack::DoTrack2(Trajectory* t) --- ERROR --- m.field not loaded"<<endl;
228 return 0;
229 }
230 dotrack2_(&(t->npoint),dzin,dxout,dyout,dthxout,dthyout,dtlout,dal,&ifail);
231
232 for (int i=0; i<t->npoint; i++){
233 t->x[i] = (float)*dxout++;
234 t->y[i] = (float)*dyout++;
235 t->thx[i] = (float)*dthxout++;
236 t->thy[i] = (float)*dthyout++;
237 t->tl[i] = (float)*dtlout++;
238 }
239
240 // delete [] dxout;
241 // delete [] dyout;
242 // delete [] dzin;
243
244 return ifail;
245 };
246 //--------------------------------------
247 //
248 //
249 //--------------------------------------
250 //float TrkTrack::BdL(){
251 //};
252 //--------------------------------------
253 //
254 //
255 //--------------------------------------
256 Float_t TrkTrack::GetRigidity(){
257 Float_t rig=0;
258 if(chi2>0)rig=1./al[4];
259 if(rig<0) rig=-rig;
260 return rig;
261 };
262 //
263 Float_t TrkTrack::GetDeflection(){
264 Float_t def=0;
265 if(chi2>0)def=al[4];
266 return def;
267 };
268 //
269 /**
270 * Method to retrieve the dE/dx measured on a tracker view.
271 * @param ip plane (0-5)
272 * @param iv view (0=x 1=y)
273 */
274 Float_t TrkTrack::GetDEDX(int ip, int iv){
275 if(iv==0 && ip>=0 && ip<6)return fabs(dedx_x[ip]);
276 else if(iv==1 && ip>=0 && ip<6)return fabs(dedx_y[ip]);
277 else {
278 cout << "TrkTrack::GetDEDX(int ip, int iv) -- wrong input parameters "<<ip<<iv<<endl;
279 return 0.;
280 }
281 }
282 /**
283 * Method to evaluate the dE/dx measured on a tracker plane.
284 * The two measurements on x- and y-view are averaged.
285 * @param ip plane (0-5)
286 */
287 Float_t TrkTrack::GetDEDX(int ip){
288 if( (Int_t)XGood(ip)+(Int_t)YGood(ip) == 0 ) return 0;
289 return (GetDEDX(ip,0)+GetDEDX(ip,1))/((Int_t)XGood(ip)+(Int_t)YGood(ip));
290 };
291
292 /**
293 * Method to evaluate the dE/dx averaged over all planes.
294 */
295 Float_t TrkTrack::GetDEDX(){
296 Float_t dedx=0;
297 for(Int_t ip=0; ip<6; ip++)dedx+=GetDEDX(ip,0)*XGood(ip)+GetDEDX(ip,1)*YGood(ip);
298 dedx = dedx/(GetNX()+GetNY());
299 return dedx;
300 };
301 /**
302 * Returns 1 if the cluster on a tracker view includes bad strips.
303 * @param ip plane (0-5)
304 * @param iv view (0=x 1=y)
305 */
306 Bool_t TrkTrack::IsBad(int ip,int iv){
307 if(iv==0 && ip>=0 && ip<6)return (xgood[ip]<0) ;
308 else if(iv==1 && ip>=0 && ip<6)return (ygood[ip]<0) ;
309 else {
310 cout << "TrkTrack::IsBad(int ip, int iv) -- wrong input parameters "<<ip<<iv<<endl;
311 return 0.;
312 }
313 };
314 /**
315 * Returns 1 if the signal on a tracker view is saturated.
316 * @param ip plane (0-5)
317 * @param iv view (0=x 1=y)
318 */
319 Bool_t TrkTrack::IsSaturated(int ip,int iv){
320 if(iv==0 && ip>=0 && ip<6)return (dedx_x[ip]<0) ;
321 else if(iv==1 && ip>=0 && ip<6)return (dedx_y[ip]<0) ;
322 else {
323 cout << "TrkTrack::IsSaturated(int ip, int iv) -- wrong input parameters "<<ip<<iv<<endl;
324 return 0.;
325 }
326 };
327 /**
328 * Returns 1 if either the x or the y signal on a tracker plane is saturated.
329 * @param ip plane (0-5)
330 */
331 Bool_t TrkTrack::IsSaturated(int ip){
332 return (IsSaturated(ip,0)||IsSaturated(ip,1));
333 };
334 /**
335 * Returns 1 if there is at least a saturated signal along the track.
336 */
337 Bool_t TrkTrack::IsSaturated(){
338 for(int ip=0; ip<6; ip++)for(int iv=0; iv<2; iv++)if(IsSaturated(ip,iv))return true;
339 return false;
340 }
341 /**
342 * Returns the track "lever-arm" on the x view, defined as the distance (in planes) between
343 * the upper and lower x measurements (the maximum value of lever-arm is 6).
344 */
345 Int_t TrkTrack::GetLeverArmX(){
346 int first_plane = -1;
347 int last_plane = -1;
348 for(Int_t ip=0; ip<6; ip++){
349 if( XGood(ip) && first_plane == -1 )first_plane = ip;
350 if( XGood(ip) && first_plane != -1 )last_plane = ip;
351 }
352 if( first_plane == -1 || last_plane == -1){
353 cout<< "Int_t TrkTrack::GetLeverArmX() -- XGood(ip) always false ??? "<<endl;
354 return 0;
355 }
356 return (last_plane-first_plane+1);
357 }
358 /**
359 * Returns the track "lever-arm" on the y view, defined as the distance (in planes) between
360 * the upper and lower y measurements (the maximum value of lever-arm is 6).
361 */
362 Int_t TrkTrack::GetLeverArmY(){
363 int first_plane = -1;
364 int last_plane = -1;
365 for(Int_t ip=0; ip<6; ip++){
366 if( YGood(ip) && first_plane == -1 )first_plane = ip;
367 if( YGood(ip) && first_plane != -1 )last_plane = ip;
368 }
369 if( first_plane == -1 || last_plane == -1){
370 cout<< "Int_t TrkTrack::GetLeverArmY() -- YGood(ip) always false ??? "<<endl;
371 return 0;
372 }
373 return (last_plane-first_plane+1);
374 }
375 /**
376 * Returns the reduced chi-square of track x-projection
377 */
378 Float_t TrkTrack::GetChi2X(){
379 float chiq=0;
380 for(int ip=0; ip<6; ip++)if(XGood(ip))chiq+= pow((xv[ip]-xm[ip])/resx[ip],2.);
381 if(GetNX()>3)chiq=chiq/(GetNX()-3);
382 else chiq=0;
383 if(chiq==0)cout << " Float_t TrkTrack::GetChi2X() -- WARNING -- value not defined "<<chiq<<endl;
384 return chiq;
385 }
386 /**
387 * Returns the reduced chi-square of track y-projection
388 */
389 Float_t TrkTrack::GetChi2Y(){
390 float chiq=0;
391 for(int ip=0; ip<6; ip++)if(YGood(ip))chiq+= pow((yv[ip]-ym[ip])/resy[ip],2.);
392 if(GetNY()>2)chiq=chiq/(GetNY()-2);
393 else chiq=0;
394 if(chiq==0)cout << " Float_t TrkTrack::GetChi2Y() -- WARNING -- value not defined "<<chiq<<endl;
395 return chiq;
396 }
397 /**
398 * Returns the logarythm of the likeliwood-function of track x-projection
399 */
400 Float_t TrkTrack::GetLnLX(){
401 float lnl=0;
402 for(int ip=0; ip<6; ip++)
403 if( XGood(ip) && tailx[ip]!=0 )
404 lnl += (tailx[ip]+1.) * log( (tailx[ip]*pow(resx[ip],2.) + pow(xv[ip]-xm[ip],2.)) / (tailx[ip]*pow(resx[ip],2)) );
405 if(GetNX()>3)lnl=lnl/(GetNX()-3);
406 else lnl=0;
407 if(lnl==0){
408 cout << " Float_t TrkTrack::GetLnLX() -- WARNING -- value not defined "<<lnl<<endl;
409 Dump();
410 }
411 return lnl;
412
413 }
414 /**
415 * Returns the logarythm of the likeliwood-function of track y-projection
416 */
417 Float_t TrkTrack::GetLnLY(){
418 float lnl=0;
419 for(int ip=0; ip<6; ip++)
420 if( YGood(ip) && taily[ip]!=0 )
421 lnl += (taily[ip]+1.) * log( (taily[ip]*pow(resy[ip],2.) + pow(yv[ip]-ym[ip],2.)) / (taily[ip]*pow(resy[ip],2)) );
422 if(GetNY()>2)lnl=lnl/(GetNY()-2);
423 else lnl=0;
424 if(lnl==0){
425 cout << " Float_t TrkTrack::GetLnLY() -- WARNING -- value not defined "<<lnl<<endl;
426 Dump();
427 }
428 return lnl;
429
430 }
431 /**
432 * Returns the effective angle, relative to the sensor, on each plane.
433 * @param ip plane (0-5)
434 * @param iv view (0=x 1=y)
435 */
436 Float_t TrkTrack::GetEffectiveAngle(int ip, int iv){
437
438 if(ip<0 || ip>5){
439 cout << "Float_t TrkTrack::GetEffectiveAngle(int "<<ip<<", int "<<iv<<") ==> wrong input"<<endl;
440 return 0.;
441 }
442
443 float v[3]={xv[ip],yv[ip],zv[ip]};
444 //-----------------------------------------
445 // effective angle (relative to the sensor)
446 //-----------------------------------------
447 float axv_geo = axv[ip];
448 float muhall_h = 297.61; //cm**2/Vs
449 float BY = TrkParams::GetBY(v);
450 float axv_eff = 0;
451 if(ip==5) axv_geo = -1*axv_geo;
452 if(ip==5) BY = -1*BY;
453 axv_eff = 180.*atan( tan(axv_geo*acos(-1.)/180.) + muhall_h * BY * 0.0001)/acos(-1.);
454 //-----------------------------------------
455 // effective angle (relative to the sensor)
456 //-----------------------------------------
457 float ayv_geo = ayv[ip];
458 float muhall_e = 1258.18; //cm**2/Vs
459 float BX = TrkParams::GetBX(v);
460 float ayv_eff = 0;
461 ayv_eff = 180.*atan( tan(ayv_geo*acos(-1.)/180.) + muhall_e * BX * 0.0001)/acos(-1.);
462
463 if (iv==0)return axv_eff;
464 else if(iv==1)return ayv_eff;
465 else{
466 cout << "Float_t TrkTrack::GetEffectiveAngle(int "<<ip<<", int "<<iv<<") ==> wrong input"<<endl;
467 return 0.;
468 }
469
470 };
471
472 //--------------------------------------
473 //
474 //
475 //--------------------------------------
476 void TrkTrack::Dump(){
477 cout << endl << "========== Track " ;
478 cout << endl << "seq. n. : "<< seqno;
479 cout << endl << "image n. : "<< image;
480 cout << endl << "al : "; for(int i=0; i<5; i++)cout << al[i] << " ";
481 cout << endl << "chi^2 : "<< chi2;
482 cout << endl << "n.step : "<< nstep;
483 cout << endl << "xgood : "; for(int i=0; i<6; i++)cout << XGood(i) ;
484 cout << endl << "ygood : "; for(int i=0; i<6; i++)cout << YGood(i) ;
485 cout << endl << "xm : "; for(int i=0; i<6; i++)cout << xm[i] << " ";
486 cout << endl << "ym : "; for(int i=0; i<6; i++)cout << ym[i] << " ";
487 cout << endl << "zm : "; for(int i=0; i<6; i++)cout << zm[i] << " ";
488 cout << endl << "xv : "; for(int i=0; i<6; i++)cout << xv[i] << " ";
489 cout << endl << "yv : "; for(int i=0; i<6; i++)cout << yv[i] << " ";
490 cout << endl << "zv : "; for(int i=0; i<6; i++)cout << zv[i] << " ";
491 cout << endl << "resx : "; for(int i=0; i<6; i++)cout << resx[i] << " ";
492 cout << endl << "resy : "; for(int i=0; i<6; i++)cout << resy[i] << " ";
493 cout << endl << "tailx : "; for(int i=0; i<6; i++)cout << tailx[i] << " ";
494 cout << endl << "taily : "; for(int i=0; i<6; i++)cout << taily[i] << " ";
495 cout << endl << "coval : "; for(int i=0; i<5; i++)cout << coval[0][i]<<" ";
496 cout << endl << " "; for(int i=0; i<5; i++)cout << coval[1][i]<<" ";
497 cout << endl << " "; for(int i=0; i<5; i++)cout << coval[2][i]<<" ";
498 cout << endl << " "; for(int i=0; i<5; i++)cout << coval[3][i]<<" ";
499 cout << endl << " "; for(int i=0; i<5; i++)cout << coval[4][i]<<" ";
500 cout << endl << "dedx_x : "; for(int i=0; i<6; i++)cout << dedx_x[i] << " ";
501 cout << endl << "dedx_y : "; for(int i=0; i<6; i++)cout << dedx_y[i] << " ";
502 cout << endl << "maxs x : "; for(int i=0; i<6; i++)cout << GetClusterX_MaxStrip(i) << " ";
503 cout << endl << "maxs y : "; for(int i=0; i<6; i++)cout << GetClusterY_MaxStrip(i) << " ";
504 cout << endl << "mult x : "; for(int i=0; i<6; i++)cout << GetClusterX_Multiplicity(i) << " ";
505 cout << endl << "mult y : "; for(int i=0; i<6; i++)cout << GetClusterY_Multiplicity(i) << " ";
506 cout << endl << "seed x : "; for(int i=0; i<6; i++)cout << GetClusterX_Seed(i) << " ";
507 cout << endl << "seed y : "; for(int i=0; i<6; i++)cout << GetClusterY_Seed(i) << " ";
508 cout << endl << "xpu : "; for(int i=0; i<6; i++)cout << xpu[i] << " ";
509 cout << endl << "ypu : "; for(int i=0; i<6; i++)cout << ypu[i] << " ";
510
511 cout << endl;
512 }
513 /**
514 * Set the TrkTrack position measurements
515 */
516 void TrkTrack::SetMeasure(double *xmeas, double *ymeas, double *zmeas){
517 for(int i=0; i<6; i++) xm[i]=*xmeas++;
518 for(int i=0; i<6; i++) ym[i]=*ymeas++;
519 for(int i=0; i<6; i++) zm[i]=*zmeas++;
520 }
521 /**
522 * Set the TrkTrack position resolution
523 */
524 void TrkTrack::SetResolution(double *rx, double *ry){
525 for(int i=0; i<6; i++) resx[i]=*rx++;
526 for(int i=0; i<6; i++) resy[i]=*ry++;
527 }
528 /**
529 * Set the TrkTrack tails position resolution
530 */
531 void TrkTrack::SetTail(double *tx, double *ty, double factor){
532 for(int i=0; i<6; i++) tailx[i]=factor*(*tx++);
533 for(int i=0; i<6; i++) taily[i]=factor*(*ty++);
534 }
535 /**
536 * Set the TrkTrack Student parameter (resx,resy,tailx,taily)
537 * from previous gausian fit
538 *@param flag =0 standard, =1 with noise correction
539 */
540 void TrkTrack::SetStudentParam(int flag){
541 float sx[11]={0.000128242,
542 0.000136942,
543 0.000162718,
544 0.000202644,
545 0.00025597,
546 0.000317456,
547 0.000349048,
548 0.000384638,
549 0.000457295,
550 0.000512319,
551 0.000538573};
552 float tx[11]={1.79402,
553 2.04876,
554 2.88376,
555 3.3,
556 3.14084,
557 4.07686,
558 4.44736,
559 3.5179,
560 3.38697,
561 3.45739,
562 3.18627};
563 float sy[11]={0.000483075,
564 0.000466925,
565 0.000431658,
566 0.000428317,
567 0.000433854,
568 0.000444044,
569 0.000482098,
570 0.000537579,
571 0.000636279,
572 0.000741998,
573 0.000864261};
574 float ty[11]={0.997032,
575 1.11147,
576 1.18526,
577 1.61404,
578 2.21908,
579 3.08959,
580 4.48833,
581 4.42687,
582 4.65253,
583 4.52043,
584 4.29926};
585 int index;
586 float fact;
587 for(int i=0; i<6; i++) {
588 index = int((fabs(axv[i])+1.)/2.);
589 if(index>10) index=10;
590 tailx[i]=tx[index];
591 if(flag==1) {
592 if(fabs(axv[i])<=10.) fact = resx[i]/risxeta2_(&(axv[i]));
593 if(fabs(axv[i])>10.&&fabs(axv[i])<=15.) fact = resx[i]/risxeta3_(&(axv[i]));
594 if(fabs(axv[i])>15.) fact = resx[i]/risxeta4_(&(axv[i]));
595 } else fact = 1.;
596 resx[i] = sx[index]*fact;
597 }
598 for(int i=0; i<6; i++) {
599 index = int((fabs(ayv[i])+1.)/2.);
600 if(index>10) index=10;
601 taily[i]=ty[index];
602 if(flag==1) fact = resy[i]/risyeta2_(&(ayv[i]));
603 else fact = 1.;
604 resy[i] = sy[index]*fact;
605 }
606 }
607 /**
608 * Set the TrkTrack good measurement
609 */
610 void TrkTrack::SetGood(int *xg, int *yg){
611
612 for(int i=0; i<6; i++) xgood[i]=*xg++;
613 for(int i=0; i<6; i++) ygood[i]=*yg++;
614 }
615
616 /**
617 * Load the magnetic field
618 */
619 void TrkTrack::LoadField(TString path){
620
621 // strcpy(path_.path,path.Data());
622 // path_.pathlen = path.Length();
623 // path_.error = 0;
624 // readb_();
625
626 // TrkParams::SetTrackingMode();
627 // TrkParams::SetPrecisionFactor();
628 // TrkParams::SetStepMin();
629 TrkParams::SetMiniDefault();
630
631 TrkParams::Set(path,1);
632 TrkParams::Load(1);
633
634 };
635
636
637 /**
638 * Method to fill minimization-routine common
639 */
640 void TrkTrack::FillMiniStruct(cMini2track& track){
641
642 for(int i=0; i<6; i++){
643
644 // cout << i<<" - "<<xgood[i]<<" "<<XGood(i)<<endl;
645 // cout << i<<" - "<<ygood[i]<<" "<<YGood(i)<<endl;
646 track.xgood[i]=XGood(i);
647 track.ygood[i]=YGood(i);
648
649 track.xm[i]=xm[i];
650 track.ym[i]=ym[i];
651 track.zm[i]=zm[i];
652
653 // --- temporaneo ----------------------------
654 // andrebbe inserita la dimensione del sensore
655 float segment = 100.;
656 track.xm_a[i]=xm[i];
657 track.xm_b[i]=xm[i];
658 track.ym_a[i]=ym[i];
659 track.ym_b[i]=ym[i];
660 if( XGood(i) && !YGood(i) ){
661 track.ym_a[i] = track.ym_a[i]+segment;
662 track.ym_b[i] = track.ym_b[i]-segment;
663 }else if( !XGood(i) && YGood(i)){
664 track.xm_a[i] = track.xm_a[i]+segment;
665 track.xm_b[i] = track.xm_b[i]-segment;
666 }
667 // --- temporaneo ----------------------------
668
669 track.resx[i]=resx[i];
670 track.resy[i]=resy[i];
671 track.tailx[i]=tailx[i];
672 track.taily[i]=taily[i];
673 }
674
675 for(int i=0; i<5; i++) track.al[i]=al[i];
676 track.zini = 23.5;
677 // ZINI = 23.5 !!! it should be the same parameter in all codes
678
679 }
680 /**
681 * Method to set values from minimization-routine common
682 */
683 void TrkTrack::SetFromMiniStruct(cMini2track *track){
684
685 for(int i=0; i<5; i++) {
686 al[i]=track->al[i];
687 for(int j=0; j<5; j++) coval[i][j]=track->cov[i][j];
688 }
689 chi2 = track->chi2;
690 nstep = track->nstep;
691 for(int i=0; i<6; i++){
692 xv[i] = track->xv[i];
693 yv[i] = track->yv[i];
694 zv[i] = track->zv[i];
695 xm[i] = track->xm[i];
696 ym[i] = track->ym[i];
697 zm[i] = track->zm[i];
698 axv[i] = track->axv[i];
699 ayv[i] = track->ayv[i];
700 }
701
702 }
703 /**
704 * \brief Method to re-evaluate coordinates of clusters associated with a track.
705 *
706 * The method can be applied only after recovering level1 information
707 * (either by reprocessing single events from level0 or from
708 * the TrkLevel1 branch, if present); it calls F77 subroutines that
709 * read the level1 common and fill the minimization-routine common.
710 * Some clusters can be excluded or added by means of the methods:
711 *
712 * TrkTrack::ResetXGood(int ip)
713 * TrkTrack::ResetYGood(int ip)
714 * TrkTrack::SetXGood(int ip, int cid, int is)
715 * TrkTrack::SetYGood(int ip, int cid, int is)
716 *
717 * NB! The method TrkTrack::SetGood(int *xg, int *yg) set the plane-mask (0-1)
718 * for the minimization-routine common. It deletes the cluster information
719 * (at least for the moment...) thus cannot be applied before
720 * TrkTrack::EvaluateClusterPositions().
721 *
722 * Different p.f.a. can be applied by calling (once) the method:
723 *
724 * TrkParams::SetPFA(0); //Set ETA p.f.a.
725 *
726 * @see TrkParams::SetPFA(int)
727 */
728 Bool_t TrkTrack::EvaluateClusterPositions(){
729
730 // cout << "void TrkTrack::GetClusterositions() "<<endl;
731
732 TrkParams::Load( );
733 if( !TrkParams::IsLoaded() )return false;
734
735 for(int ip=0; ip<6; ip++){
736 // cout << ip<<" ** "<<xm[ip]<<" / "<<ym[ip]<<endl;;
737 int icx = GetClusterX_ID(ip)+1;
738 int icy = GetClusterY_ID(ip)+1;
739 int sensor = GetSensor(ip)+1;//<< convenzione "Paolo"
740 if(ip==5 && sensor!=0)sensor=3-sensor;//<< convenzione "Elena"
741 int ladder = GetLadder(ip)+1;
742 float ax = axv[ip];
743 float ay = ayv[ip];
744 float v[3];
745 v[0]=xv[ip];
746 v[1]=yv[ip];
747 v[2]=zv[ip];
748 float bfx = 10*TrkParams::GetBX(v);//Tesla
749 float bfy = 10*TrkParams::GetBY(v);//Tesla
750 int ipp=ip+1;
751 xyzpam_(&ipp,&icx,&icy,&ladder,&sensor,&ax,&ay,&bfx,&bfy);
752 if(icx<0 || icy<0)return false;
753 }
754 return true;
755 }
756 /**
757 * \brief Tracking method. It calls F77 mini routine.
758 *
759 * @param pfixed Particle momentum. If pfixed=0 the momentum
760 * is left as a free parameter, otherwise it is fixed to the input value.
761 * @param fail Output flag (!=0 if the fit failed).
762 * @param iprint Flag to set debug mode ( 0 = no output; 1 = verbose; 2 = debug).
763 * @param froml1 Flag to re-evaluate positions (see TrkTrack::GetClusterPositions()).
764 *
765 * The option to re-evaluate positions can be used only after recovering
766 * level1 information, eg. by reprocessing the single event.
767 *
768 * Example:
769 *
770 * if( !event->GetTrkLevel0() )return false;
771 * event->GetTrkLevel0()->ProcessEvent(); // re-processing level0->level1
772 * int fail=0;
773 * event->GetTrkLevel2()->GetTrack(0)->Fit(0.,fail,0,1);
774 *
775 * @see EvaluateClusterPositions()
776 *
777 * The fitting procedure can be varied by changing the tracking mode,
778 * the fit-precision factor, the minimum number of step, etc.
779 * @see SetTrackingMode(int)
780 * @see SetPrecisionFactor(double)
781 * @see SetStepMin(int)
782 * @see SetDeltaB(int,double)
783 */
784 void TrkTrack::Fit(double pfixed, int& fail, int iprint, int froml1){
785
786 float al_ini[] = {0.,0.,0.,0.,0.};
787
788 TrkParams::Load( );
789 if( !TrkParams::IsLoaded() )return;
790
791 extern cMini2track track_;
792 fail = 0;
793
794 FillMiniStruct(track_);
795
796 if(froml1!=0){
797 if( !EvaluateClusterPositions() ){
798 cout << "void TrkTrack::Fit("<<pfixed<<","<<fail<<","<<iprint<<","<<froml1<<") --- ERROR evaluating cluster positions "<<endl;
799 FillMiniStruct(track_) ;
800 fail = 1;
801 return;
802 }
803 }else{
804 FillMiniStruct(track_);
805 }
806
807 // if fit variables have been reset, evaluate the initial guess
808 if(al[0]==-9999.&&al[1]==-9999.&&al[2]==-9999.&&al[3]==-9999.&&al[4]==-9999.)guess_();
809
810 // --------------------- free momentum
811 if(pfixed==0.) {
812 track_.pfixed=0.;
813 }
814 // --------------------- fixed momentum
815 if(pfixed!=0.) {
816 al[4]=1./pfixed;
817 track_.pfixed=pfixed;
818 }
819
820 // store temporarily the initial guess
821 for(int i=0; i<5; i++) al_ini[i]=track_.al[i];
822
823 // ------------------------------------------
824 // call mini routine
825 // TrkParams::Load(1);
826 // if( !TrkParams::IsLoaded(1) ){
827 // cout << "void TrkTrack::Fit(double pfixed, int& fail, int iprint) --- ERROR --- m.field not loaded"<<endl;
828 // return;
829 // }
830 int istep=0;
831 int ifail=0;
832 mini2_(&istep,&ifail, &iprint);
833 if(ifail!=0) {
834 if(iprint)cout << "ERROR: ifail= " << ifail << endl;
835 fail = 1;
836 }
837 // ------------------------------------------
838
839 SetFromMiniStruct(&track_);
840
841 if(fail){
842 if(iprint)cout << " >>>> fit failed "<<endl;
843 for(int i=0; i<5; i++) al[i]=al_ini[i];
844 }
845
846 };
847 /**
848 * Reset the fit parameters
849 */
850 void TrkTrack::FitReset(){
851 for(int i=0; i<5; i++) al[i]=-9999.;
852 chi2=0.;
853 nstep=0;
854 // for(int i=0; i<6; i++) xv[i]=0.;
855 // for(int i=0; i<6; i++) yv[i]=0.;
856 // for(int i=0; i<6; i++) zv[i]=0.;
857 // for(int i=0; i<6; i++) axv[i]=0.;
858 // for(int i=0; i<6; i++) ayv[i]=0.;
859 for(int i=0; i<5; i++) {
860 for(int j=0; j<5; j++) coval[i][j]=0.;
861 }
862 }
863 /**
864 * Set the tracking mode
865 */
866 void TrkTrack::SetTrackingMode(int trackmode){
867 extern cMini2track track_;
868 track_.trackmode = trackmode;
869 }
870 /**
871 * Set the factor scale for tracking precision
872 */
873 void TrkTrack::SetPrecisionFactor(double fact){
874 extern cMini2track track_;
875 track_.fact = fact;
876 }
877 /**
878 * Set the minimum number of steps for tracking precision
879 */
880 void TrkTrack::SetStepMin(int istepmin){
881 extern cMini2track track_;
882 track_.istepmin = istepmin;
883 }
884 /**
885 * Set deltaB parameters (id=0,1). By default they are set to zero.
886 */
887 void TrkTrack::SetDeltaB(int id, double db){
888 if(id!=0 && id!=1)cout << "void TrkTrack::SetDeltaB(int id,double db) -- wrong input parameters: "<<id<<" "<<db<<endl;
889 TrkParams::SetDeltaB(id,db);
890 }
891
892 /**
893 * Returns 1 if the track is inside the magnet cavity
894 * Set the minimum number of steps for tracking precision
895 */
896 Bool_t TrkTrack::IsInsideCavity(){
897 float xmagntop, ymagntop, xmagnbottom, ymagnbottom;
898 xmagntop = xv[0] + (ZMAGNHIGH-zv[0])*tan(acos(-1.0)*axv[0]/180.);
899 ymagntop = yv[0] + (ZMAGNHIGH-zv[0])*tan(acos(-1.0)*ayv[0]/180.);
900 xmagnbottom = xv[5] + (ZMAGNLOW-zv[5])*tan(acos(-1.0)*axv[5]/180.);
901 ymagnbottom = yv[5] + (ZMAGNLOW-zv[5])*tan(acos(-1.0)*ayv[5]/180.);
902 if( xmagntop>XMAGNLOW && xmagntop<XMAGNHIGH &&
903 ymagntop>YMAGNLOW && ymagntop<YMAGNHIGH &&
904 xmagnbottom>XMAGNLOW && xmagnbottom<XMAGNHIGH &&
905 ymagnbottom>YMAGNLOW && ymagnbottom<YMAGNHIGH ) return(true);
906 else return(false);
907 }
908 /**
909 * Method to retrieve ID (0,1,...) of x-cluster (if any) associated to this track.
910 * If no cluster is associated, ID=-1.
911 * @param ip Tracker plane (0-5)
912 */
913 Int_t TrkTrack::GetClusterX_ID(int ip){
914 return ((Int_t)fabs(xgood[ip]))%10000000-1;
915 };
916 /**
917 * Method to retrieve ID (0-xxx) of y-cluster (if any) associated to this track.
918 * If no cluster is associated, ID=-1.
919 * @param ip Tracker plane (0-5)
920 */
921 Int_t TrkTrack::GetClusterY_ID(int ip){
922 return ((Int_t)fabs(ygood[ip]))%10000000-1;
923 };
924
925 /**
926 * Method to retrieve the ladder (0-4, increasing x) traversed by the track on this plane.
927 * If no ladder is traversed (dead area) the metod retuns -1.
928 * @param ip Tracker plane (0-5)
929 */
930 Int_t TrkTrack::GetLadder(int ip){
931 if(XGood(ip))return (Int_t)fabs(xgood[ip]/100000000)-1;
932 if(YGood(ip))return (Int_t)fabs(ygood[ip]/100000000)-1;
933 return -1;
934 };
935 /**
936 * Method to retrieve the sensor (0-1, increasing y) traversed by the track on this plane.
937 * If no sensor is traversed (dead area) the metod retuns -1.
938 * @param ip Tracker plane (0-5)
939 */
940 Int_t TrkTrack::GetSensor(int ip){
941 if(XGood(ip))return (Int_t)((Int_t)fabs(xgood[ip]/10000000)%10)-1;
942 if(YGood(ip))return (Int_t)((Int_t)fabs(ygood[ip]/10000000)%10)-1;
943 return -1;
944 };
945
946 /**
947 * \brief Method to include a x-cluster to the track.
948 * @param ip Tracker plane (0-5)
949 * @param clid Cluster ID (0,1,...)
950 * @param is Sensor (0-1, increasing y)
951 * @see Fit(double pfixed, int& fail, int iprint, int froml1)
952 */
953 void TrkTrack::SetXGood(int ip, int clid, int is){
954 int il=0; //ladder (temporary)
955 bool bad=false; //ladder (temporary)
956 xgood[ip]=il*100000000+is*10000000+clid;
957 if(bad)xgood[ip]=-xgood[ip];
958 };
959 /**
960 * \brief Method to include a y-cluster to the track.
961 * @param ip Tracker plane (0-5)
962 * @param clid Cluster ID (0,1,...)
963 * @param is Sensor (0-1)
964 * @see Fit(double pfixed, int& fail, int iprint, int froml1)
965 */
966 void TrkTrack::SetYGood(int ip, int clid, int is){
967 int il=0; //ladder (temporary)
968 bool bad=false; //ladder (temporary)
969 ygood[ip]=il*100000000+is*10000000+clid;
970 if(bad)ygood[ip]=-ygood[ip];
971 };
972
973 /**
974 * \brief Average X
975 * Average value of <xv>, evaluated from the first to the last hit x view.
976 */
977 Float_t TrkTrack::GetXav(){
978
979 int first_plane = -1;
980 int last_plane = -1;
981 for(Int_t ip=0; ip<6; ip++){
982 if( XGood(ip) && first_plane == -1 )first_plane = ip;
983 if( XGood(ip) && first_plane != -1 )last_plane = ip;
984 }
985 if( first_plane == -1 || last_plane == -1){
986 return -100;
987 }
988 if( last_plane-first_plane+1 ==0 )return -100;
989
990 Float_t av = 0;
991 for(int ip=first_plane; ip<=last_plane; ip++)av+=xv[ip];
992
993 return (av/(last_plane-first_plane+1));
994 }
995 /**
996 * \brief Average Y
997 * Average value of <yv>, evaluated from the first to the last hit x view.
998 */
999 Float_t TrkTrack::GetYav(){
1000
1001 int first_plane = -1;
1002 int last_plane = -1;
1003 for(Int_t ip=0; ip<6; ip++){
1004 if( XGood(ip) && first_plane == -1 )first_plane = ip;
1005 if( XGood(ip) && first_plane != -1 )last_plane = ip;
1006 }
1007 if( first_plane == -1 || last_plane == -1){
1008 return -100;
1009 }
1010 if( last_plane-first_plane+1 ==0 )return -100;
1011
1012 Float_t av = 0;
1013 for(int ip=first_plane; ip<=last_plane; ip++)av+=yv[ip];
1014
1015 return (av/(last_plane-first_plane+1));
1016 }
1017 /**
1018 * \brief Average Z
1019 * Average value of <zv>, evaluated from the first to the last hit x view.
1020 */
1021 Float_t TrkTrack::GetZav(){
1022
1023 int first_plane = -1;
1024 int last_plane = -1;
1025 for(Int_t ip=0; ip<6; ip++){
1026 if( XGood(ip) && first_plane == -1 )first_plane = ip;
1027 if( XGood(ip) && first_plane != -1 )last_plane = ip;
1028 }
1029 if( first_plane == -1 || last_plane == -1){
1030 return -100;
1031 }
1032 if( last_plane-first_plane+1 ==0 )return -100;
1033
1034 Float_t av = 0;
1035 for(int ip=first_plane; ip<=last_plane; ip++)av+=zv[ip];
1036
1037 return (av/(last_plane-first_plane+1));
1038 }
1039
1040 /**
1041 * \brief Number of column traversed
1042 */
1043 Int_t TrkTrack::GetNColumns(){
1044 int sensors[] = {0,0,0,0,0,0};
1045 for(int ip=0; ip<6; ip++){
1046 int sensorid = GetLadder(ip)+3*GetSensor(ip);
1047 if(XGood(ip)||YGood(ip))
1048 if(sensorid>=0 && sensorid<6)sensors[sensorid]=1;
1049 }
1050 int nsensors=0;
1051 for(int is=0; is<6; is++)nsensors += sensors[is];
1052 return nsensors;
1053 };
1054 /**
1055 * \brief Give the maximum energy release
1056 */
1057 Float_t TrkTrack::GetDEDX_max(int ip, int iv){
1058 Float_t max=0;
1059 int pfrom = 0;
1060 int pto = 6;
1061 int vfrom = 0;
1062 int vto = 2;
1063 if(ip>=0&&ip<6){
1064 pfrom = ip;
1065 pto = ip+1;
1066 }
1067 if(iv>=0&&iv<2){
1068 vfrom = iv;
1069 vto = iv+1;
1070 }
1071 for(int i=pfrom; i<pto; i++)
1072 for(int j=0; j<vto; j++)
1073 if(GetDEDX(i,j)>max)max=GetDEDX(i,j);
1074
1075 return max;
1076
1077 };
1078
1079 /**
1080 * \brief Give the minimum energy release
1081 */
1082 Float_t TrkTrack::GetDEDX_min(int ip, int iv){
1083 Float_t min=100000000;
1084 int pfrom = 0;
1085 int pto = 6;
1086 int vfrom = 0;
1087 int vto = 2;
1088 if(ip>=0&&ip<6){
1089 pfrom = ip;
1090 pto = ip+1;
1091 }
1092 if(iv>=0&&iv<2){
1093 vfrom = iv;
1094 vto = iv+1;
1095 }
1096 for(int i=pfrom; i<pto; i++)
1097 for(int j=0; j<vto; j++)
1098 if(GetDEDX(i,j)<min)min=GetDEDX(i,j);
1099
1100 return min;
1101
1102 };
1103
1104 /**
1105 * \brief Give the maximum spatial residual release
1106 */
1107 Float_t TrkTrack::GetResidual_max(int ip, int iv){
1108 Float_t max=0;
1109 int pfrom = 0;
1110 int pto = 6;
1111 int vfrom = 0;
1112 int vto = 2;
1113 if(ip>=0&&ip<6){
1114 pfrom = ip;
1115 pto = ip+1;
1116 }
1117 if(iv>=0&&iv<2){
1118 vfrom = iv;
1119 vto = iv+1;
1120 }
1121 for(int i=pfrom; i<pto; i++){
1122 for(int j=0; j<vto; j++){
1123 if(j==0 && XGood(i) && fabs(xm[i]-xv[i])>fabs(max))max=xv[i]-xm[i];
1124 if(j==1 && YGood(i) && fabs(ym[i]-yv[i])>fabs(max))max=yv[i]-ym[i];
1125 }
1126 }
1127 return max;
1128
1129 };
1130
1131
1132 /**
1133 * \brief Give the maximum multiplicity on the x view
1134 */
1135 Int_t TrkTrack::GetClusterX_Multiplicity_max(){
1136 int max=0;
1137 for(int ip=0; ip<6; ip++)
1138 if(GetClusterX_Multiplicity(ip)>max)max=GetClusterX_Multiplicity(ip);
1139 return max;
1140 };
1141 /**
1142 * \brief Give the minimum multiplicity on the x view
1143 */
1144 Int_t TrkTrack::GetClusterX_Multiplicity_min(){
1145 int min=50;
1146 for(int ip=0; ip<6; ip++)
1147 if(GetClusterX_Multiplicity(ip)<min)min=GetClusterX_Multiplicity(ip);
1148 return min;
1149 };
1150 /**
1151 * \brief Give the maximum multiplicity on the x view
1152 */
1153 Int_t TrkTrack::GetClusterY_Multiplicity_max(){
1154 int max=0;
1155 for(int ip=0; ip<6; ip++)
1156 if(GetClusterY_Multiplicity(ip)>max)max=GetClusterY_Multiplicity(ip);
1157 return max;
1158 };
1159 /**
1160 * \brief Give the minimum multiplicity on the x view
1161 */
1162 Int_t TrkTrack::GetClusterY_Multiplicity_min(){
1163 int min=50;
1164 for(int ip=0; ip<6; ip++)
1165 if(GetClusterY_Multiplicity(ip)<min)min=GetClusterY_Multiplicity(ip);
1166 return min;
1167 };
1168
1169 /**
1170 * \brief Give the minimum seed on the x view
1171 */
1172 Float_t TrkTrack::GetClusterX_Seed_min(){
1173 Float_t min=100000;
1174 for(int ip=0; ip<6; ip++)
1175 if(XGood(ip) && GetClusterX_Seed(ip)<min)min=GetClusterX_Seed(ip);
1176 return min;
1177 };
1178 /**
1179 * \brief Give the minimum seed on the x view
1180 */
1181 Float_t TrkTrack::GetClusterY_Seed_min(){
1182 Float_t min=100000;
1183 for(int ip=0; ip<6; ip++)
1184 if(YGood(ip) && GetClusterY_Seed(ip)<min)min=GetClusterY_Seed(ip);
1185 return min;
1186 };
1187
1188
1189 //--------------------------------------
1190 //
1191 //
1192 //--------------------------------------
1193 void TrkTrack::Clear(){
1194 // cout << "TrkTrack::Clear()"<<endl;
1195 seqno = -1;
1196 image = -1;
1197 chi2 = 0;
1198 nstep = 0;
1199 for(int it1=0;it1<5;it1++){
1200 al[it1] = 0;
1201 for(int it2=0;it2<5;it2++)coval[it1][it2] = 0;
1202 };
1203 for(int ip=0;ip<6;ip++){
1204 xgood[ip] = 0;
1205 ygood[ip] = 0;
1206 xm[ip] = 0;
1207 ym[ip] = 0;
1208 zm[ip] = 0;
1209 resx[ip] = 0;
1210 resy[ip] = 0;
1211 tailx[ip] = 0;
1212 taily[ip] = 0;
1213 xv[ip] = 0;
1214 yv[ip] = 0;
1215 zv[ip] = 0;
1216 axv[ip] = 0;
1217 ayv[ip] = 0;
1218 dedx_x[ip] = 0;
1219 dedx_y[ip] = 0;
1220
1221 };
1222 // if(clx)clx->Clear();
1223 // if(cly)cly->Clear();
1224 // clx.Clear();
1225 // cly.Clear();
1226 };
1227 //--------------------------------------
1228 //
1229 //
1230 //--------------------------------------
1231 void TrkTrack::Delete(){
1232 // cout << "TrkTrack::Delete()"<<endl;
1233 Clear();
1234 // if(clx)delete clx;
1235 // if(cly)delete cly;
1236 };
1237 //--------------------------------------
1238 //
1239 //
1240 //--------------------------------------
1241
1242 //--------------------------------------
1243 //
1244 //
1245 //--------------------------------------
1246 TrkSinglet::TrkSinglet(){
1247 // cout << "TrkSinglet::TrkSinglet() " << GetUniqueID()<<endl;
1248 plane = 0;
1249 coord[0] = 0;
1250 coord[1] = 0;
1251 sgnl = 0;
1252 // cls = 0;
1253 };
1254 //--------------------------------------
1255 //
1256 //
1257 //--------------------------------------
1258 TrkSinglet::TrkSinglet(const TrkSinglet& s){
1259 // cout << "TrkSinglet::TrkSinglet(const TrkSinglet& s) " << GetUniqueID()<<endl;
1260 plane = s.plane;
1261 coord[0] = s.coord[0];
1262 coord[1] = s.coord[1];
1263 sgnl = s.sgnl;
1264 // cls = 0;//<<<<pointer
1265 // cls = TRef(s.cls);
1266 };
1267 //--------------------------------------
1268 //
1269 //
1270 //--------------------------------------
1271 void TrkSinglet::Dump(){
1272 int i=0;
1273 cout << endl << "========== Singlet " ;
1274 cout << endl << "plane : " << plane;
1275 cout << endl << "coord[2] : "; while( i<2 && cout << coord[i] << " ") i++;
1276 cout << endl << "sgnl : " << sgnl;
1277 }
1278 //--------------------------------------
1279 //
1280 //
1281 //--------------------------------------
1282 void TrkSinglet::Clear(){
1283 // cout << "TrkSinglet::Clear() " << GetUniqueID()<<endl;
1284 // cls=0;
1285 plane=-1;
1286 coord[0]=-999;
1287 coord[1]=-999;
1288 sgnl=0;
1289
1290 }
1291 //--------------------------------------
1292 //
1293 //
1294 //--------------------------------------
1295 TrkLevel2::TrkLevel2(){
1296 // cout <<"TrkLevel2::TrkLevel2()"<<endl;
1297 for(Int_t i=0; i<12 ; i++){
1298 good[i] = -1;
1299 VKmask[i] = 0;
1300 VKflag[i] = 0;
1301 };
1302 Track = 0;
1303 SingletX = 0;
1304 SingletY = 0;
1305
1306 }
1307 //--------------------------------------
1308 //
1309 //
1310 //--------------------------------------
1311 void TrkLevel2::Set(){
1312 if(!Track)Track = new TClonesArray("TrkTrack");
1313 if(!SingletX)SingletX = new TClonesArray("TrkSinglet");
1314 if(!SingletY)SingletY = new TClonesArray("TrkSinglet");
1315 }
1316 //--------------------------------------
1317 //
1318 //
1319 //--------------------------------------
1320 void TrkLevel2::Dump(){
1321
1322 //
1323 cout << endl << endl << "=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-";
1324 cout << endl << "good : "; for(int i=0; i<12; i++) cout << hex <<" 0x"<< good[i]<<dec;
1325 cout << endl << "ntrk() : " << ntrk() ;
1326 cout << endl << "nclsx() : " << nclsx();
1327 cout << endl << "nclsy() : " << nclsy();
1328 if(Track){
1329 TClonesArray &t = *Track;
1330 for(int i=0; i<ntrk(); i++) ((TrkTrack *)t[i])->Dump();
1331 }
1332 // if(SingletX){
1333 // TClonesArray &sx = *SingletX;
1334 // for(int i=0; i<nclsx(); i++) ((TrkSinglet *)sx[i])->Dump();
1335 // }
1336 // if(SingletY){
1337 // TClonesArray &sy = *SingletY;
1338 // for(int i=0; i<nclsy(); i++) ((TrkSinglet *)sy[i])->Dump();
1339 // }
1340 cout << endl;
1341 }
1342 /**
1343 * \brief Dump processing status
1344 */
1345 void TrkLevel2::StatusDump(int view){
1346 cout << "DSP n. "<<view+1<<" status: "<<hex<<good[view]<<endl;
1347 };
1348 /**
1349 * \brief Check event status
1350 *
1351 * Check the event status, according to a flag-mask given as input.
1352 * Return true if the view passes the check.
1353 *
1354 * @param view View number (0-11)
1355 * @param flagmask Mask of flags to check (eg. flagmask=0x111 no missing packet,
1356 * no crc error, no software alarm)
1357 *
1358 * @see TrkLevel2 class definition to know how the status flag is defined
1359 *
1360 */
1361 Bool_t TrkLevel2::StatusCheck(int view, int flagmask){
1362
1363 if( view<0 || view >= 12)return false;
1364 return !(good[view]&flagmask);
1365
1366 };
1367
1368
1369 //--------------------------------------
1370 //
1371 //
1372 //--------------------------------------
1373 /**
1374 * The method returns false if the viking-chip was masked
1375 * either apriori ,on the basis of the mask read from the DB,
1376 * or run-by-run, on the basis of the calibration parameters)
1377 * @param iv Tracker view (0-11)
1378 * @param ivk Viking-chip number (0-23)
1379 */
1380 Bool_t TrkLevel2::GetVKMask(int iv, int ivk){
1381 Int_t whichbit = (Int_t)pow(2,ivk);
1382 return (whichbit&VKmask[iv])!=0;
1383 }
1384 /**
1385 * The method returns false if the viking-chip was masked
1386 * for this event due to common-noise computation failure.
1387 * @param iv Tracker view (0-11)
1388 * @param ivk Viking-chip number (0-23)
1389 */
1390 Bool_t TrkLevel2::GetVKFlag(int iv, int ivk){
1391 Int_t whichbit = (Int_t)pow(2,ivk);
1392 return (whichbit&VKflag[iv])!=0;
1393 }
1394 /**
1395 * The method returns true if the viking-chip was masked, either
1396 * forced (see TrkLevel2::GetVKMask(int,int)) or
1397 * for this event only (TrkLevel2::GetVKFlag(int,int)).
1398 * @param iv Tracker view (0-11)
1399 * @param ivk Viking-chip number (0-23)
1400 */
1401 Bool_t TrkLevel2::IsMaskedVK(int iv, int ivk){
1402 return !(GetVKMask(iv,ivk)&&GetVKFlag(iv,ivk) );
1403 };
1404
1405 //--------------------------------------
1406 //
1407 //
1408 //--------------------------------------
1409 /**
1410 * Fills a TrkLevel2 object with values from a struct cTrkLevel2 (to get data from F77 common).
1411 * Ref to Level1 data (clusters) is also set. If l1==NULL no references are set.
1412 * (NB It make sense to set references only if events are stored in a tree that contains also the Level1 branch)
1413 */
1414 void TrkLevel2::SetFromLevel2Struct(cTrkLevel2 *l2, TrkLevel1 *l1){
1415
1416 // cout << "void TrkLevel2::SetFromLevel2Struct(cTrkLevel2 *l2, TrkLevel1 *l1)"<<endl;
1417 Clear();
1418
1419 // temporary objects:
1420 TrkSinglet* t_singlet = new TrkSinglet();
1421 TrkTrack* t_track = new TrkTrack();
1422
1423 // -----------------
1424 // general variables
1425 // -----------------
1426 for(Int_t i=0; i<12 ; i++){
1427 good[i] = l2->good[i];
1428 VKmask[i]=0;
1429 VKflag[i]=0;
1430 for(Int_t ii=0; ii<24 ; ii++){
1431 Int_t setbit = (Int_t)pow(2,ii);
1432 if( l2->vkflag[ii][i]!=-1 )VKmask[i]=VKmask[i]|setbit;
1433 if( l2->vkflag[ii][i]!=0 )VKflag[i]=VKflag[i]|setbit;
1434 };
1435 };
1436 // --------------
1437 // *** TRACKS ***
1438 // --------------
1439 if(!Track) Track = new TClonesArray("TrkTrack");
1440 TClonesArray &t = *Track;
1441
1442 for(int i=0; i<l2->ntrk; i++){
1443 t_track->seqno = i;// NBNBNBNB deve sempre essere = i
1444 t_track->image = l2->image[i]-1;
1445 t_track->chi2 = l2->chi2_nt[i];
1446 t_track->nstep = l2->nstep_nt[i];
1447 for(int it1=0;it1<5;it1++){
1448 t_track->al[it1] = l2->al_nt[i][it1];
1449 for(int it2=0;it2<5;it2++)
1450 t_track->coval[it1][it2] = l2->coval[i][it2][it1];
1451 };
1452 for(int ip=0;ip<6;ip++){
1453 // ---------------------------------
1454 // new implementation of xgood/ygood
1455 // ---------------------------------
1456 t_track->xgood[ip] = l2->cltrx[i][ip]; //cluster ID
1457 t_track->ygood[ip] = l2->cltry[i][ip]; //cluster ID
1458 t_track->xgood[ip] += 10000000*l2->ls[i][ip]; // ladder+sensor
1459 t_track->ygood[ip] += 10000000*l2->ls[i][ip]; // ladder+sensor
1460 if(l2->xbad[i][ip]>0)t_track->xgood[ip]=-t_track->xgood[ip];
1461 if(l2->ybad[i][ip]>0)t_track->ygood[ip]=-t_track->ygood[ip];
1462 // if(l2->xbad[i][ip]>0 || l2->ybad[i][ip]>0){
1463 // if(l2->dedx_x[i][ip]<0 || l2->dedx_y[i][ip]<0){
1464 // cout << ip << " - "<< l2->cltrx[i][ip] << " "<<l2->cltry[i][ip]<<" "<<l2->ls[i][ip]<<endl;
1465 // cout << ip << " - "<<t_track->xgood[ip]<<" "<<t_track->ygood[ip]<<endl;
1466 // cout << ip << " - "<<t_track->GetClusterX_ID(ip)<<" "<<t_track->GetClusterY_ID(ip)<<" "<<t_track->GetLadder(ip)<<" "<<t_track->GetSensor(ip)<<endl;
1467 // cout << ip << " - "<<t_track->BadClusterX(ip)<<" "<<t_track->BadClusterY(ip)<<endl;
1468 // cout << ip << " - "<<t_track->SaturatedClusterX(ip)<<" "<<t_track->SaturatedClusterY(ip)<<endl;
1469 // }
1470 t_track->xm[ip] = l2->xm_nt[i][ip];
1471 t_track->ym[ip] = l2->ym_nt[i][ip];
1472 t_track->zm[ip] = l2->zm_nt[i][ip];
1473 t_track->resx[ip] = l2->resx_nt[i][ip];
1474 t_track->resy[ip] = l2->resy_nt[i][ip];
1475 t_track->tailx[ip] = l2->tailx[i][ip];
1476 t_track->taily[ip] = l2->taily[i][ip];
1477 t_track->xv[ip] = l2->xv_nt[i][ip];
1478 t_track->yv[ip] = l2->yv_nt[i][ip];
1479 t_track->zv[ip] = l2->zv_nt[i][ip];
1480 t_track->axv[ip] = l2->axv_nt[i][ip];
1481 t_track->ayv[ip] = l2->ayv_nt[i][ip];
1482 t_track->dedx_x[ip] = l2->dedx_x[i][ip];
1483 t_track->dedx_y[ip] = l2->dedx_y[i][ip];
1484 t_track->multmaxx[ip] = l2->multmaxx[i][ip];
1485 t_track->multmaxy[ip] = l2->multmaxy[i][ip];
1486 t_track->seedx[ip] = l2->seedx[i][ip];
1487 t_track->seedy[ip] = l2->seedy[i][ip];
1488 t_track->xpu[ip] = l2->xpu[i][ip];
1489 t_track->ypu[ip] = l2->ypu[i][ip];
1490 //-----------------------------------------------------
1491 //-----------------------------------------------------
1492 //-----------------------------------------------------
1493 //-----------------------------------------------------
1494 };
1495 // if(t_track->IsSaturated())t_track->Dump();
1496 new(t[i]) TrkTrack(*t_track);
1497 t_track->Clear();
1498 };
1499
1500 // ----------------
1501 // *** SINGLETS ***
1502 // ----------------
1503 if(!SingletX)SingletX = new TClonesArray("TrkSinglet");
1504 TClonesArray &sx = *SingletX;
1505 for(int i=0; i<l2->nclsx; i++){
1506 t_singlet->plane = l2->planex[i];
1507 t_singlet->coord[0] = l2->xs[i][0];
1508 t_singlet->coord[1] = l2->xs[i][1];
1509 t_singlet->sgnl = l2->signlxs[i];
1510 //-----------------------------------------------------
1511 // if(l1) t_singlet->cls = l1->GetCluster(l2->clsx[i]-1);
1512 //-----------------------------------------------------
1513 new(sx[i]) TrkSinglet(*t_singlet);
1514 t_singlet->Clear();
1515 }
1516 if(!SingletY)SingletY = new TClonesArray("TrkSinglet");
1517 TClonesArray &sy = *SingletY;
1518 for(int i=0; i<l2->nclsy; i++){
1519 t_singlet->plane = l2->planey[i];
1520 t_singlet->coord[0] = l2->ys[i][0];
1521 t_singlet->coord[1] = l2->ys[i][1];
1522 t_singlet->sgnl = l2->signlys[i];
1523 //-----------------------------------------------------
1524 // if(l1) t_singlet->cls = l1->GetCluster(l2->clsy[i]-1);
1525 //-----------------------------------------------------
1526 new(sy[i]) TrkSinglet(*t_singlet);
1527 t_singlet->Clear();
1528 };
1529
1530 delete t_track;
1531 delete t_singlet;
1532 }
1533 /**
1534 * Fills a struct cTrkLevel2 with values from a TrkLevel2 object (to put data into a F77 common).
1535 */
1536
1537 void TrkLevel2::GetLevel2Struct(cTrkLevel2 *l2) const {
1538
1539 // general variables
1540 // l2->good2 = good2 ;
1541 for(Int_t i=0; i<12 ; i++){
1542 // l2->crc[i] = crc[i];
1543 l2->good[i] = good[i];
1544 };
1545 // *** TRACKS ***
1546
1547 if(Track){
1548 l2->ntrk = Track->GetEntries();
1549 for(Int_t i=0;i<l2->ntrk;i++){
1550 l2->image[i] = 1 + ((TrkTrack *)Track->At(i))->image;
1551 l2->chi2_nt[i] = ((TrkTrack *)Track->At(i))->chi2;
1552 l2->nstep_nt[i] = ((TrkTrack *)Track->At(i))->nstep;
1553 for(int it1=0;it1<5;it1++){
1554 l2->al_nt[i][it1] = ((TrkTrack *)Track->At(i))->al[it1];
1555 for(int it2=0;it2<5;it2++)
1556 l2->coval[i][it2][it1] = ((TrkTrack *)Track->At(i))->coval[it1][it2];
1557 };
1558 for(int ip=0;ip<6;ip++){
1559 l2->xgood_nt[i][ip] = ((TrkTrack *)Track->At(i))->XGood(ip);
1560 l2->ygood_nt[i][ip] = ((TrkTrack *)Track->At(i))->YGood(ip);
1561 l2->xm_nt[i][ip] = ((TrkTrack *)Track->At(i))->xm[ip];
1562 l2->ym_nt[i][ip] = ((TrkTrack *)Track->At(i))->ym[ip];
1563 l2->zm_nt[i][ip] = ((TrkTrack *)Track->At(i))->zm[ip];
1564 l2->resx_nt[i][ip] = ((TrkTrack *)Track->At(i))->resx[ip];
1565 l2->resy_nt[i][ip] = ((TrkTrack *)Track->At(i))->resy[ip];
1566 l2->tailx[i][ip] = ((TrkTrack *)Track->At(i))->tailx[ip];
1567 l2->taily[i][ip] = ((TrkTrack *)Track->At(i))->taily[ip];
1568 l2->xv_nt[i][ip] = ((TrkTrack *)Track->At(i))->xv[ip];
1569 l2->yv_nt[i][ip] = ((TrkTrack *)Track->At(i))->yv[ip];
1570 l2->zv_nt[i][ip] = ((TrkTrack *)Track->At(i))->zv[ip];
1571 l2->axv_nt[i][ip] = ((TrkTrack *)Track->At(i))->axv[ip];
1572 l2->ayv_nt[i][ip] = ((TrkTrack *)Track->At(i))->ayv[ip];
1573 l2->dedx_x[i][ip] = ((TrkTrack *)Track->At(i))->dedx_x[ip];
1574 l2->dedx_y[i][ip] = ((TrkTrack *)Track->At(i))->dedx_y[ip];
1575 };
1576 }
1577 }
1578 // *** SINGLETS ***
1579 if(SingletX){
1580 l2->nclsx = SingletX->GetEntries();
1581 for(Int_t i=0;i<l2->nclsx;i++){
1582 l2->planex[i] = ((TrkSinglet *)SingletX->At(i))->plane;
1583 l2->xs[i][0] = ((TrkSinglet *)SingletX->At(i))->coord[0];
1584 l2->xs[i][1] = ((TrkSinglet *)SingletX->At(i))->coord[1];
1585 l2->signlxs[i] = ((TrkSinglet *)SingletX->At(i))->sgnl;
1586 }
1587 }
1588
1589 if(SingletY){
1590 l2->nclsy = SingletY->GetEntries();
1591 for(Int_t i=0;i<l2->nclsy;i++){
1592 l2->planey[i] = ((TrkSinglet *)SingletY->At(i))->plane;
1593 l2->ys[i][0] = ((TrkSinglet *)SingletY->At(i))->coord[0];
1594 l2->ys[i][1] = ((TrkSinglet *)SingletY->At(i))->coord[1];
1595 l2->signlys[i] = ((TrkSinglet *)SingletY->At(i))->sgnl;
1596 }
1597 }
1598 }
1599 //--------------------------------------
1600 //
1601 //
1602 //--------------------------------------
1603 void TrkLevel2::Clear(){
1604 for(Int_t i=0; i<12 ; i++){
1605 good[i] = -1;
1606 VKflag[i] = 0;
1607 VKmask[i] = 0;
1608 };
1609 // if(Track)Track->Clear("C");
1610 // if(SingletX)SingletX->Clear("C");
1611 // if(SingletY)SingletY->Clear("C");
1612 if(Track)Track->Delete();
1613 if(SingletX)SingletX->Delete();
1614 if(SingletY)SingletY->Delete();
1615 }
1616 // //--------------------------------------
1617 // //
1618 // //
1619 // //--------------------------------------
1620 void TrkLevel2::Delete(){
1621
1622 // cout << "void TrkLevel2::Delete()"<<endl;
1623 Clear();
1624 if(Track)delete Track;
1625 if(SingletX)delete SingletX;
1626 if(SingletY)delete SingletY;
1627
1628 }
1629 //--------------------------------------
1630 //
1631 //
1632 //--------------------------------------
1633 /**
1634 * Sort physical tracks and stores them in a TObjectArray, ordering by increasing chi**2 value (in case of track image, it selects the one with lower chi**2). The total number of physical tracks is given by GetNTracks() and the it-th physical track can be retrieved by means of the method GetTrack(int it).
1635 * This method is overridden by PamLevel2::GetTracks(), where calorimeter and TOF information is used.
1636 */
1637 TRefArray *TrkLevel2::GetTracks_NFitSorted(){
1638
1639 if(!Track)return 0;
1640
1641 TRefArray *sorted = new TRefArray();
1642
1643 TClonesArray &t = *Track;
1644 // TClonesArray &ts = *PhysicalTrack;
1645 int N = ntrk();
1646 vector<int> m(N); for(int i=0; i<N; i++)m[i]=1;
1647 // int m[50]; for(int i=0; i<N; i++)m[i]=1;
1648
1649 int indo=0;
1650 int indi=0;
1651 while(N > 0){
1652 // while(N != 0){
1653 int nfit =0;
1654 float chi2ref = numeric_limits<float>::max();
1655
1656 // first loop to search maximum num. of fit points
1657 for(int i=0; i < ntrk(); i++){
1658 if( ((TrkTrack *)t[i])->GetNtot() >= nfit && m[i]==1){
1659 nfit = ((TrkTrack *)t[i])->GetNtot();
1660 }
1661 }
1662 //second loop to search minimum chi2 among selected
1663 for(int i=0; i<ntrk(); i++){
1664 Float_t chi2 = ((TrkTrack *)t[i])->chi2;
1665 if(chi2 < 0) chi2 = -chi2*1000;
1666 if( chi2 < chi2ref
1667 && ((TrkTrack *)t[i])->GetNtot() == nfit
1668 && m[i]==1){
1669 chi2ref = ((TrkTrack *)t[i])->chi2;
1670 indi = i;
1671 };
1672 };
1673 if( ((TrkTrack *)t[indi])->HasImage() ){
1674 m[((TrkTrack *)t[indi])->image] = 0;
1675 N--;
1676
1677 // cout << "i** "<< ((TrkTrack *)t[indi])->image << " " << nfiti <<" "<<chi2i<<endl;
1678 };
1679 sorted->Add( (TrkTrack*)t[indi] );
1680
1681 m[indi] = 0;
1682 // cout << "SORTED "<< indo << " "<< indi << " "<< N << " "<<((TrkTrack *)t[indi])->image<<" "<<chi2ref<<endl;
1683 N--;
1684 indo++;
1685 }
1686 m.clear();
1687 // cout << "GetTracks_NFitSorted(it): Done"<< endl;
1688
1689 return sorted;
1690 // return PhysicalTrack;
1691 }
1692 //--------------------------------------
1693 //
1694 //
1695 //--------------------------------------
1696 /**
1697 * Retrieves the is-th stored track.
1698 * @param it Track number, ranging from 0 to ntrk().
1699 * Fitted tracks ( images included ) are stored in a TObjectArray ( TrkLevel2::Track ) in the same order they are returned by the F77 fitting routine.
1700 */
1701 TrkTrack *TrkLevel2::GetStoredTrack(int is){
1702
1703 if(is >= this->ntrk()){
1704 cout << "TrkTrack *TrkLevel2::GetStoredTrack(int) >> Track "<< is << "doen not exits! " << endl;
1705 cout << "Stored tracks ntrk() = "<< this->ntrk() << endl;
1706 return 0;
1707 }
1708 if(!Track){
1709 cout << "TrkTrack *TrkLevel2::GetStoredTrack(int is) >> (TClonesArray*) Track ==0 "<<endl;
1710 };
1711 TClonesArray &t = *(Track);
1712 TrkTrack *track = (TrkTrack*)t[is];
1713 return track;
1714 }
1715 //--------------------------------------
1716 //
1717 //
1718 //--------------------------------------
1719 /**
1720 * Retrieves the is-th stored X singlet.
1721 * @param it Singlet number, ranging from 0 to nclsx().
1722 */
1723 TrkSinglet *TrkLevel2::GetSingletX(int is){
1724
1725 if(is >= this->nclsx()){
1726 cout << "TrkSinglet *TrkLevel2::GetSingletX(int) >> Singlet "<< is << "doen not exits! " << endl;
1727 cout << "Stored x-singlets nclsx() = "<< this->nclsx() << endl;
1728 return 0;
1729 }
1730 if(!SingletX)return 0;
1731 TClonesArray &t = *(SingletX);
1732 TrkSinglet *singlet = (TrkSinglet*)t[is];
1733 return singlet;
1734 }
1735 //--------------------------------------
1736 //
1737 //
1738 //--------------------------------------
1739 /**
1740 * Retrieves the is-th stored Y singlet.
1741 * @param it Singlet number, ranging from 0 to nclsx().
1742 */
1743 TrkSinglet *TrkLevel2::GetSingletY(int is){
1744
1745 if(is >= this->nclsy()){
1746 cout << "TrkSinglet *TrkLevel2::GetSingletY(int) >> Singlet "<< is << "doen not exits! " << endl;
1747 cout << "Stored y-singlets nclsx() = "<< this->nclsx() << endl;
1748 return 0;
1749 }
1750 if(!SingletY)return 0;
1751 TClonesArray &t = *(SingletY);
1752 TrkSinglet *singlet = (TrkSinglet*)t[is];
1753 return singlet;
1754 }
1755 //--------------------------------------
1756 //
1757 //
1758 //--------------------------------------
1759 /**
1760 * Retrieves the it-th "physical" track, sorted by the method GetNTracks().
1761 * @param it Track number, ranging from 0 to GetNTracks().
1762 */
1763
1764 TrkTrack *TrkLevel2::GetTrack(int it){
1765
1766 if(it >= this->GetNTracks()){
1767 cout << "TrkTrack *TrkLevel2::GetTrack(int) >> Track "<< it << "does not exits! " << endl;
1768 cout << "Physical tracks GetNTracks() = "<< this->ntrk() << endl;
1769 return 0;
1770 }
1771
1772 TRefArray *sorted = GetTracks(); //TEMPORANEO
1773 if(!sorted)return 0;
1774 TrkTrack *track = (TrkTrack*)sorted->At(it);
1775 sorted->Clear();
1776 delete sorted;
1777 return track;
1778 }
1779 /**
1780 * Give the number of "physical" tracks, sorted by the method GetTracks().
1781 */
1782 Int_t TrkLevel2::GetNTracks(){
1783
1784 Float_t ntot=0;
1785 if(!Track)return 0;
1786 TClonesArray &t = *Track;
1787 for(int i=0; i<ntrk(); i++) {
1788 if( ((TrkTrack *)t[i])->GetImageSeqNo() == -1 ) ntot+=1.;
1789 else ntot+=0.5;
1790 }
1791 return (Int_t)ntot;
1792
1793 };
1794 //--------------------------------------
1795 //
1796 //
1797 //--------------------------------------
1798 /**
1799 * Retrieves (if present) the image of the it-th "physical" track, sorted by the method GetNTracks().
1800 * @param it Track number, ranging from 0 to GetNTracks().
1801 */
1802 TrkTrack *TrkLevel2::GetTrackImage(int it){
1803
1804 if(it >= this->GetNTracks()){
1805 cout << "TrkTrack *TrkLevel2::GetTrackImage(int) >> Track "<< it << "does not exits! " << endl;
1806 cout << "Physical tracks GetNTracks() = "<< this->ntrk() << endl;
1807 return 0;
1808 }
1809
1810 TRefArray* sorted = GetTracks(); //TEMPORANEO
1811 if(!sorted)return 0;
1812 TrkTrack *track = (TrkTrack*)sorted->At(it);
1813
1814 if(!track->HasImage()){
1815 cout << "TrkTrack *TrkLevel2::GetTrackImage(int) >> Track "<< it << "does not have image! " << endl;
1816 return 0;
1817 }
1818 if(!Track)return 0;
1819 TrkTrack *image = (TrkTrack*)(*Track)[track->image];
1820
1821 sorted->Delete();
1822 delete sorted;
1823
1824 return image;
1825
1826 }
1827 //--------------------------------------
1828 //
1829 //
1830 //--------------------------------------
1831 /**
1832 * Loads the magnetic field.
1833 * @param s Path of the magnetic-field files.
1834 */
1835 void TrkLevel2::LoadField(TString path){
1836 //
1837 // strcpy(path_.path,path.Data());
1838 // path_.pathlen = path.Length();
1839 // path_.error = 0;
1840 // readb_();
1841
1842 // TrkParams::SetTrackingMode();
1843 // TrkParams::SetPrecisionFactor();
1844 // TrkParams::SetStepMin();
1845 TrkParams::SetMiniDefault();
1846
1847 TrkParams::Set(path,1);
1848 TrkParams::Load(1);
1849
1850 //
1851 };
1852 // /**
1853 // * Get BY (kGauss)
1854 // * @param v (x,y,z) coordinates in cm
1855 // */
1856 // float TrkLevel2::GetBX(float* v){
1857 // float b[3];
1858 // gufld_(v,b);
1859 // return b[0]/10.;
1860 // }
1861 // /**
1862 // * Get BY (kGauss)
1863 // * @param v (x,y,z) coordinates in cm
1864 // */
1865 // float TrkLevel2::GetBY(float* v){
1866 // float b[3];
1867 // gufld_(v,b);
1868 // return b[1]/10.;
1869 // }
1870 // /**
1871 // * Get BY (kGauss)
1872 // * @param v (x,y,z) coordinates in cm
1873 // */
1874 // float TrkLevel2::GetBZ(float* v){
1875 // float b[3];
1876 // gufld_(v,b);
1877 // return b[2]/10.;
1878 // }
1879 //--------------------------------------
1880 //
1881 //
1882 //--------------------------------------
1883 /**
1884 * Get tracker-plane (mechanical) z-coordinate
1885 * @param plane_id plane index (1=TOP,2,3,4,5,6=BOTTOM)
1886 */
1887 Float_t TrkLevel2::GetZTrk(Int_t plane_id){
1888 switch(plane_id){
1889 case 1: return ZTRK1;
1890 case 2: return ZTRK2;
1891 case 3: return ZTRK3;
1892 case 4: return ZTRK4;
1893 case 5: return ZTRK5;
1894 case 6: return ZTRK6;
1895 default: return 0.;
1896 };
1897 };
1898 //--------------------------------------
1899 //
1900 //
1901 //--------------------------------------
1902 /**
1903 * Trajectory default constructor.
1904 * (By default is created with z-coordinates inside the tracking volume)
1905 */
1906 Trajectory::Trajectory(){
1907 npoint = 10;
1908 x = new float[npoint];
1909 y = new float[npoint];
1910 z = new float[npoint];
1911 thx = new float[npoint];
1912 thy = new float[npoint];
1913 tl = new float[npoint];
1914 float dz = ((ZTRK1)-(ZTRK6))/(npoint-1);
1915 for(int i=0; i<npoint; i++){
1916 x[i] = 0;
1917 y[i] = 0;
1918 z[i] = (ZTRK1) - i*dz;
1919 thx[i] = 0;
1920 thy[i] = 0;
1921 tl[i] = 0;
1922 }
1923 }
1924 //--------------------------------------
1925 //
1926 //
1927 //--------------------------------------
1928 /**
1929 * Trajectory constructor.
1930 * (By default is created with z-coordinates inside the tracking volume)
1931 * \param n Number of points
1932 */
1933 Trajectory::Trajectory(int n){
1934 if(n<=0){
1935 cout << "NB! Trajectory must have at least 1 point >>> created with 10 points" << endl;
1936 n=10;
1937 }
1938 npoint = n;
1939 x = new float[npoint];
1940 y = new float[npoint];
1941 z = new float[npoint];
1942 thx = new float[npoint];
1943 thy = new float[npoint];
1944 tl = new float[npoint];
1945 float dz = ((ZTRK1)-(ZTRK6))/(npoint-1);
1946 for(int i=0; i<npoint; i++){
1947 x[i] = 0;
1948 y[i] = 0;
1949 z[i] = (ZTRK1) - i*dz;
1950 thx[i] = 0;
1951 thy[i] = 0;
1952 tl[i] = 0;
1953 }
1954 }
1955 //--------------------------------------
1956 //
1957 //
1958 //--------------------------------------
1959 /**
1960 * Trajectory constructor.
1961 * \param n Number of points
1962 * \param pz Pointer to float array, defining z coordinates
1963 */
1964 Trajectory::Trajectory(int n, float* zin){
1965 npoint = 10;
1966 if(n>0)npoint = n;
1967 x = new float[npoint];
1968 y = new float[npoint];
1969 z = new float[npoint];
1970 thx = new float[npoint];
1971 thy = new float[npoint];
1972 tl = new float[npoint];
1973 int i=0;
1974 do{
1975 x[i] = 0;
1976 y[i] = 0;
1977 z[i] = zin[i];
1978 thx[i] = 0;
1979 thy[i] = 0;
1980 tl[i] = 0;
1981 i++;
1982 }while(zin[i-1] > zin[i] && i < npoint);
1983 npoint=i;
1984 if(npoint != n)cout << "NB! Trajectory created with "<<npoint<<" points"<<endl;
1985 }
1986 void Trajectory::Delete(){
1987
1988 if(x) delete [] x;
1989 if(y) delete [] y;
1990 if(z) delete [] z;
1991 if(thx) delete [] thx;
1992 if(thy) delete [] thy;
1993 if(tl) delete [] tl;
1994
1995 }
1996 //--------------------------------------
1997 //
1998 //
1999 //--------------------------------------
2000 /**
2001 * Dump the trajectory coordinates.
2002 */
2003 void Trajectory::Dump(){
2004 cout <<endl<< "Trajectory ========== "<<endl;
2005 for (int i=0; i<npoint; i++){
2006 cout << i <<" >> " << x[i] <<" "<< y[i] <<" "<< z[i] ;
2007 cout <<" -- " << thx[i] <<" "<< thy[i] ;
2008 cout <<" -- " << tl[i] << endl;
2009 };
2010 }
2011 //--------------------------------------
2012 //
2013 //
2014 //--------------------------------------
2015 /**
2016 * Get trajectory length between two points
2017 * @param ifirst first point (default 0)
2018 * @param ilast last point (default npoint)
2019 */
2020 float Trajectory::GetLength(int ifirst, int ilast){
2021 if( ifirst<0 ) ifirst = 0;
2022 if( ilast>=npoint) ilast = npoint-1;
2023 float l=0;
2024 for(int i=ifirst;i<=ilast;i++){
2025 l=l+tl[i];
2026 };
2027 if(z[ilast] > ZINI)l=l-tl[ilast];
2028 if(z[ifirst] < ZINI) l=l-tl[ifirst];
2029
2030 return l;
2031
2032 }
2033
2034 /**
2035 * Evaluates the trajectory in the apparatus associated to the track.
2036 * It integrates the equations of motion in the magnetic field. The magnetic field should be previously loaded ( by calling TrkLevel2::LoadField() ), otherwise an error message is returned.
2037 * @param t pointer to an object of the class Trajectory,
2038 * which z coordinates should be previously initialized by calling the proper constructor ( Trajectory::Trajectory(int n, float* zin) ).
2039 * @return error flag.
2040 */
2041 int Trajectory::DoTrack2(float* al){
2042
2043 double *dxout = new double[npoint];
2044 double *dyout = new double[npoint];
2045 double *dthxout = new double[npoint];
2046 double *dthyout = new double[npoint];
2047 double *dtlout = new double[npoint];
2048 double *dzin = new double[npoint];
2049 double dal[5];
2050
2051 int ifail = 0;
2052
2053 for (int i=0; i<5; i++) dal[i] = (double)al[i];
2054 for (int i=0; i<npoint; i++) dzin[i] = (double)z[i];
2055
2056 TrkParams::Load(1);
2057 if( !TrkParams::IsLoaded(1) ){
2058 cout << "int Trajectory::DoTrack2(float* al) --- ERROR --- m.field not loaded"<<endl;
2059 return 0;
2060 }
2061 dotrack2_(&(npoint),dzin,dxout,dyout,dthxout,dthyout,dtlout,dal,&ifail);
2062
2063 for (int i=0; i<npoint; i++){
2064 x[i] = (float)*dxout++;
2065 y[i] = (float)*dyout++;
2066 thx[i] = (float)*dthxout++;
2067 thy[i] = (float)*dthyout++;
2068 tl[i] = (float)*dtlout++;
2069 }
2070
2071 return ifail;
2072 };
2073
2074 ClassImp(TrkLevel2);
2075 ClassImp(TrkSinglet);
2076 ClassImp(TrkTrack);
2077 ClassImp(Trajectory);

  ViewVC Help
Powered by ViewVC 1.1.23