/[PAMELA software]/DarthVader/TrackerLevel2/src/TrkLevel2.cpp
ViewVC logotype

Contents of /DarthVader/TrackerLevel2/src/TrkLevel2.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1.57 - (show annotations) (download)
Wed Jun 4 07:57:04 2014 UTC (10 years, 6 months ago) by pam-ts
Branch: MAIN
Changes since 1.56: +49 -40 lines
New tracking algorythm implementation (extended to up to 2 calorimeter planes and with level1 cleaning for nuclei)

1 /**
2 * \file TrkLevel2.cpp
3 * \author Elena Vannuccini
4 */
5 #include <TrkLevel2.h>
6 #include <iostream>
7 #include <math.h>
8 using namespace std;
9 //......................................
10 // F77 routines
11 //......................................
12 extern "C" {
13 void dotrack_(int*, double*, double*, double*, double*, int*);
14 void dotrack2_(int*, double*, double*, double*, double*,double*, double*, double*,int*);
15 void dotrack3_(int*, double*, double*, double*, double*,double*, double*, double*,double*,int*);
16 void mini2_(int*,int*,int*);
17 void guess_();
18 void gufld_(float*, float*);
19 float risxeta2_(float *);
20 float risxeta3_(float *);
21 float risxeta4_(float *);
22 float risyeta2_(float *);
23 }
24
25 //--------------------------------------
26 //
27 //
28 //--------------------------------------
29 TrkTrack::TrkTrack(){
30 // cout << "TrkTrack::TrkTrack()" << endl;
31 seqno = -1;
32 image = -1;
33 chi2 = 0;
34 nstep = 0;
35 for(int it1=0;it1<5;it1++){
36 al[it1] = 0;
37 for(int it2=0;it2<5;it2++)coval[it1][it2] = 0;
38 };
39 for(int ip=0;ip<6;ip++){
40 xgood[ip] = 0;
41 ygood[ip] = 0;
42 xm[ip] = 0;
43 ym[ip] = 0;
44 zm[ip] = 0;
45 resx[ip] = 0;
46 resy[ip] = 0;
47 tailx[ip] = 0;
48 taily[ip] = 0;
49 xv[ip] = 0;
50 yv[ip] = 0;
51 zv[ip] = 0;
52 axv[ip] = 0;
53 ayv[ip] = 0;
54 dedx_x[ip] = 0;
55 dedx_y[ip] = 0;
56 multmaxx[ip] = 0;
57 multmaxy[ip] = 0;
58 seedx[ip] = 0;
59 seedy[ip] = 0;
60 xpu[ip] = 0;
61 ypu[ip] = 0;
62
63 };
64
65 // TrkParams::SetTrackingMode();
66 // TrkParams::SetPrecisionFactor();
67 // TrkParams::SetStepMin();
68 TrkParams::SetMiniDefault();
69 TrkParams::SetPFA();
70
71 int ngf = TrkParams::nGF;
72 for(int i=0; i<ngf; i++){
73 xGF[i] = 0.;
74 yGF[i] = 0.;
75 }
76
77
78 };
79 //--------------------------------------
80 //
81 //
82 //--------------------------------------
83 TrkTrack::TrkTrack(const TrkTrack& t){
84 seqno = t.seqno;
85 image = t.image;
86 chi2 = t.chi2;
87 nstep = t.nstep;
88 for(int it1=0;it1<5;it1++){
89 al[it1] = t.al[it1];
90 for(int it2=0;it2<5;it2++)coval[it1][it2] = t.coval[it1][it2];
91 };
92 for(int ip=0;ip<6;ip++){
93 xgood[ip] = t.xgood[ip];
94 ygood[ip] = t.ygood[ip];
95 xm[ip] = t.xm[ip];
96 ym[ip] = t.ym[ip];
97 zm[ip] = t.zm[ip];
98 resx[ip] = t.resx[ip];
99 resy[ip] = t.resy[ip];
100 tailx[ip] = t.tailx[ip];
101 taily[ip] = t.taily[ip];
102 xv[ip] = t.xv[ip];
103 yv[ip] = t.yv[ip];
104 zv[ip] = t.zv[ip];
105 axv[ip] = t.axv[ip];
106 ayv[ip] = t.ayv[ip];
107 dedx_x[ip] = t.dedx_x[ip];
108 dedx_y[ip] = t.dedx_y[ip];
109 multmaxx[ip] = t.multmaxx[ip];
110 multmaxy[ip] = t.multmaxy[ip];
111 seedx[ip] = t.seedx[ip];
112 seedy[ip] = t.seedy[ip];
113 xpu[ip] = t.xpu[ip];
114 ypu[ip] = t.ypu[ip];
115 };
116
117 // TrkParams::SetTrackingMode();
118 // TrkParams::SetPrecisionFactor();
119 // TrkParams::SetStepMin();
120 TrkParams::SetMiniDefault();
121 TrkParams::SetPFA();
122
123 int ngf = TrkParams::nGF;
124 for(int i=0; i<ngf; i++){
125 xGF[i] = t.xGF[i];
126 yGF[i] = t.yGF[i];
127 }
128 };
129 //--------------------------------------
130 //
131 //
132 //--------------------------------------
133 void TrkTrack::Copy(TrkTrack& t){
134
135 t.seqno = seqno;
136 t.image = image;
137 t.chi2 = chi2;
138 t.nstep = nstep;
139 for(int it1=0;it1<5;it1++){
140 t.al[it1] = al[it1];
141 for(int it2=0;it2<5;it2++)t.coval[it1][it2] = coval[it1][it2];
142 };
143 for(int ip=0;ip<6;ip++){
144 t.xgood[ip] = xgood[ip];
145 t.ygood[ip] = ygood[ip];
146 t.xm[ip] = xm[ip];
147 t.ym[ip] = ym[ip];
148 t.zm[ip] = zm[ip];
149 t.resx[ip] = resx[ip];
150 t.resy[ip] = resy[ip];
151 t.tailx[ip] = tailx[ip];
152 t.taily[ip] = taily[ip];
153 t.xv[ip] = xv[ip];
154 t.yv[ip] = yv[ip];
155 t.zv[ip] = zv[ip];
156 t.axv[ip] = axv[ip];
157 t.ayv[ip] = ayv[ip];
158 t.dedx_x[ip] = dedx_x[ip];
159 t.dedx_y[ip] = dedx_y[ip];
160 t.multmaxx[ip] = multmaxx[ip];
161 t.multmaxy[ip] = multmaxy[ip];
162 t.seedx[ip] = seedx[ip];
163 t.seedy[ip] = seedy[ip];
164 t.xpu[ip] = xpu[ip];
165 t.ypu[ip] = ypu[ip];
166
167 };
168 int ngf = TrkParams::nGF;
169 for(int i=0; i<ngf; i++){
170 t.xGF[i] = xGF[i];
171 t.yGF[i] = yGF[i];
172 }
173
174
175 };
176 //--------------------------------------
177 //
178 //
179 //--------------------------------------
180 /**
181 *
182 * >>> OBSOLETE !!! use TrkTrack::DoTrack(Trajectory* t) instead
183 *
184 */
185 int TrkTrack::DoTrack2(Trajectory* t){
186
187 cout << endl;
188 cout << " int TrkTrack::DoTrack2(Trajectory* t) --->> NB NB !! this method is going to be eliminated !!! "<<endl;
189 cout << " >>>> replace it with TrkTrack::DoTrack(Trajectory* t) <<<<"<<endl;
190 cout << " (Sorry Wolfgang!! Don't be totally confused!! By Elena)"<<endl;
191 cout << endl;
192
193 return DoTrack(t);
194
195 };
196 //--------------------------------------
197 //
198 //
199 //--------------------------------------
200 /**
201 * Evaluates the trajectory in the apparatus associated to the track state-vector.
202 * It integrates the equations of motion in the magnetic field.
203 * @param t pointer to an object of the class Trajectory,
204 * which z coordinates should be previously assigned.
205 * @return error flag.
206 */
207 int TrkTrack::DoTrack(Trajectory* t){
208
209 double *dxout = new double[t->npoint];
210 double *dyout = new double[t->npoint];
211 double *dthxout = new double[t->npoint];
212 double *dthyout = new double[t->npoint];
213 double *dtlout = new double[t->npoint];
214 double *dzin = new double[t->npoint];
215 double dal[5];
216
217 int ifail = 0;
218
219 for (int i=0; i<5; i++) dal[i] = (double)al[i];
220 for (int i=0; i<t->npoint; i++) dzin[i] = (double)t->z[i];
221
222 TrkParams::Load(1);
223 if( !TrkParams::IsLoaded(1) ){
224 cout << "int TrkTrack::DoTrack(Trajectory* t) --- ERROR --- m.field not loaded"<<endl;
225 return 0;
226 }
227 dotrack2_(&(t->npoint),dzin,dxout,dyout,dthxout,dthyout,dtlout,dal,&ifail);
228
229 for (int i=0; i<t->npoint; i++){
230 t->x[i] = (float)*(dxout+i);
231 t->y[i] = (float)*(dyout+i);
232 t->thx[i] = (float)*(dthxout+i);
233 t->thy[i] = (float)*(dthyout+i);
234 t->tl[i] = (float)*(dtlout+i);
235 }
236
237 delete [] dxout;
238 delete [] dyout;
239 delete [] dzin;
240 delete [] dthxout;
241 delete [] dthyout;
242 delete [] dtlout;
243
244 return ifail;
245 };
246 //--------------------------------------
247 //
248 //
249 //--------------------------------------
250 //float TrkTrack::BdL(){
251 //};
252 //--------------------------------------
253 //
254 //
255 //--------------------------------------
256 Float_t TrkTrack::GetRigidity(){
257 Float_t rig=0;
258 if(chi2>0)rig=1./al[4];
259 if(rig<0) rig=-rig;
260 return rig;
261 };
262 //
263 Float_t TrkTrack::GetDeflection(){
264 Float_t def=0;
265 if(chi2>0)def=al[4];
266 return def;
267 };
268 //
269 /**
270 * Method to retrieve the dE/dx measured on a tracker view.
271 * @param ip plane (0-5)
272 * @param iv view (0=x 1=y)
273 */
274 Float_t TrkTrack::GetDEDX(int ip, int iv){
275 if(iv==0 && ip>=0 && ip<6)return fabs(dedx_x[ip]);
276 else if(iv==1 && ip>=0 && ip<6)return fabs(dedx_y[ip]);
277 else {
278 cout << "TrkTrack::GetDEDX(int ip, int iv) -- wrong input parameters "<<ip<<iv<<endl;
279 return 0.;
280 }
281 }
282 /**
283 * Method to evaluate the dE/dx measured on a tracker plane.
284 * The two measurements on x- and y-view are averaged.
285 * @param ip plane (0-5)
286 */
287 Float_t TrkTrack::GetDEDX(int ip){
288 if( (Int_t)XGood(ip)+(Int_t)YGood(ip) == 0 ) return 0;
289 return (GetDEDX(ip,0)+GetDEDX(ip,1))/((Int_t)XGood(ip)+(Int_t)YGood(ip));
290 };
291
292 /**
293 * Method to evaluate the dE/dx averaged over all planes.
294 */
295 Float_t TrkTrack::GetDEDX(){
296 Float_t dedx=0;
297 for(Int_t ip=0; ip<6; ip++)dedx+=GetDEDX(ip,0)*XGood(ip)+GetDEDX(ip,1)*YGood(ip);
298 dedx = dedx/(GetNX()+GetNY());
299 return dedx;
300 };
301 /**
302 * Returns 1 if the cluster on a tracker view includes bad strips
303 * (at least one bad strip among the four strip used by p.f.a.)
304 * @param ip plane (0-5)
305 * @param iv view (0=x 1=y)
306 */
307 Bool_t TrkTrack::IsBad(int ip,int iv){
308 if(iv==0 && ip>=0 && ip<6)return (xgood[ip]<0) ;
309 else if(iv==1 && ip>=0 && ip<6)return (ygood[ip]<0) ;
310 else {
311 cout << "TrkTrack::IsBad(int ip, int iv) -- wrong input parameters "<<ip<<iv<<endl;
312 return 0.;
313 }
314 };
315 /**
316 * Returns 1 if the signal on a tracker view is saturated.
317 * @param ip plane (0-5)
318 * @param iv view (0=x 1=y)
319 */
320 Bool_t TrkTrack::IsSaturated(int ip,int iv){
321 if(iv==0 && ip>=0 && ip<6)return (dedx_x[ip]<0) ;
322 else if(iv==1 && ip>=0 && ip<6)return (dedx_y[ip]<0) ;
323 else {
324 cout << "TrkTrack::IsSaturated(int ip, int iv) -- wrong input parameters "<<ip<<iv<<endl;
325 return 0.;
326 }
327 };
328 /**
329 * Returns 1 if either the x or the y signal on a tracker plane is saturated.
330 * @param ip plane (0-5)
331 */
332 Bool_t TrkTrack::IsSaturated(int ip){
333 return (IsSaturated(ip,0)||IsSaturated(ip,1));
334 };
335 /**
336 * Returns 1 if there is at least a saturated signal along the track.
337 */
338 Bool_t TrkTrack::IsSaturated(){
339 for(int ip=0; ip<6; ip++)for(int iv=0; iv<2; iv++)if(IsSaturated(ip,iv))return true;
340 return false;
341 }
342 /**
343 * Returns the track "lever-arm" on the x view, defined as the distance (in planes) between
344 * the upper and lower x measurements (the maximum value of lever-arm is 6).
345 */
346 Int_t TrkTrack::GetLeverArmX(){
347 int first_plane = -1;
348 int last_plane = -1;
349 for(Int_t ip=0; ip<6; ip++){
350 if( XGood(ip) && first_plane == -1 )first_plane = ip;
351 if( XGood(ip) && first_plane != -1 )last_plane = ip;
352 }
353 if( first_plane == -1 || last_plane == -1){
354 cout<< "Int_t TrkTrack::GetLeverArmX() -- XGood(ip) always false ??? "<<endl;
355 return 0;
356 }
357 return (last_plane-first_plane+1);
358 }
359 /**
360 * Returns the track "lever-arm" on the y view, defined as the distance (in planes) between
361 * the upper and lower y measurements (the maximum value of lever-arm is 6).
362 */
363 Int_t TrkTrack::GetLeverArmY(){
364 int first_plane = -1;
365 int last_plane = -1;
366 for(Int_t ip=0; ip<6; ip++){
367 if( YGood(ip) && first_plane == -1 )first_plane = ip;
368 if( YGood(ip) && first_plane != -1 )last_plane = ip;
369 }
370 if( first_plane == -1 || last_plane == -1){
371 cout<< "Int_t TrkTrack::GetLeverArmY() -- YGood(ip) always false ??? "<<endl;
372 return 0;
373 }
374 return (last_plane-first_plane+1);
375 }
376 /**
377 * Returns the track "lever-arm" on the x+y view, defined as the distance (in planes) between
378 * the upper and lower x,y (couple) measurements (the maximum value of lever-arm is 6).
379 */
380 Int_t TrkTrack::GetLeverArmXY(){
381 int first_plane = -1;
382 int last_plane = -1;
383 for(Int_t ip=0; ip<6; ip++){
384 if( XGood(ip)*YGood(ip) && first_plane == -1 )first_plane = ip;
385 if( XGood(ip)*YGood(ip) && first_plane != -1 )last_plane = ip;
386 }
387 if( first_plane == -1 || last_plane == -1){
388 cout<< "Int_t TrkTrack::GetLeverArmXY() -- XGood(ip)*YGood(ip) always false ??? "<<endl;
389 return 0;
390 }
391 return (last_plane-first_plane+1);
392 }
393 /**
394 * Returns the number of hit planes
395 */
396 Int_t TrkTrack::GetNhit() {
397 int np=0;
398 for(Int_t ip=0; ip<6; ip++) np += (XGood(ip)||YGood(ip)) ;
399 return np;
400 };
401 /**
402 * Returns the reduced chi-square of track x-projection
403 */
404 Float_t TrkTrack::GetChi2X(){
405 float chiq=0;
406 for(int ip=0; ip<6; ip++)if(XGood(ip))chiq+= pow((xv[ip]-xm[ip])/resx[ip],2.);
407 if(GetNX()>3)chiq=chiq/(GetNX()-3);
408 else chiq=0;
409 if(chiq==0)cout << " Float_t TrkTrack::GetChi2X() -- WARNING -- value not defined "<<chiq<<endl;
410 return chiq;
411 }
412 /**
413 * Returns the reduced chi-square of track y-projection
414 */
415 Float_t TrkTrack::GetChi2Y(){
416 float chiq=0;
417 for(int ip=0; ip<6; ip++)if(YGood(ip))chiq+= pow((yv[ip]-ym[ip])/resy[ip],2.);
418 if(GetNY()>2)chiq=chiq/(GetNY()-2);
419 else chiq=0;
420 if(chiq==0)cout << " Float_t TrkTrack::GetChi2Y() -- WARNING -- value not defined "<<chiq<<endl;
421 return chiq;
422 }
423 /**
424 * Returns the logarythm of the likeliwood-function of track x-projection
425 */
426 Float_t TrkTrack::GetLnLX(){
427 float lnl=0;
428 for(int ip=0; ip<6; ip++)
429 if( XGood(ip) && tailx[ip]!=0 )
430 lnl += (tailx[ip]+1.) * log( (tailx[ip]*pow(resx[ip],2.) + pow(xv[ip]-xm[ip],2.)) / (tailx[ip]*pow(resx[ip],2)) );
431 if(GetNX()>3)lnl=lnl/(GetNX()-3);
432 else lnl=0;
433 if(lnl==0){
434 cout << " Float_t TrkTrack::GetLnLX() -- WARNING -- value not defined "<<lnl<<endl;
435 Dump();
436 }
437 return lnl;
438
439 }
440 /**
441 * Returns the logarythm of the likeliwood-function of track y-projection
442 */
443 Float_t TrkTrack::GetLnLY(){
444 float lnl=0;
445 for(int ip=0; ip<6; ip++)
446 if( YGood(ip) && taily[ip]!=0 )
447 lnl += (taily[ip]+1.) * log( (taily[ip]*pow(resy[ip],2.) + pow(yv[ip]-ym[ip],2.)) / (taily[ip]*pow(resy[ip],2)) );
448 if(GetNY()>2)lnl=lnl/(GetNY()-2);
449 else lnl=0;
450 if(lnl==0){
451 cout << " Float_t TrkTrack::GetLnLY() -- WARNING -- value not defined "<<lnl<<endl;
452 Dump();
453 }
454 return lnl;
455
456 }
457 /**
458 * Returns the effective angle, relative to the sensor, on each plane.
459 * @param ip plane (0-5)
460 * @param iv view (0=x 1=y)
461 */
462 Float_t TrkTrack::GetEffectiveAngle(int ip, int iv){
463
464 if(ip<0 || ip>5){
465 cout << "Float_t TrkTrack::GetEffectiveAngle(int "<<ip<<", int "<<iv<<") ==> wrong input"<<endl;
466 return 0.;
467 }
468
469 float v[3]={xv[ip],yv[ip],zv[ip]};
470 //-----------------------------------------
471 // effective angle (relative to the sensor)
472 //-----------------------------------------
473 float axv_geo = axv[ip];
474 float muhall_h = 297.61; //cm**2/Vs
475 float BY = TrkParams::GetBY(v);
476 float axv_eff = 0;
477 if(ip==5) axv_geo = -1*axv_geo;
478 if(ip==5) BY = -1*BY;
479 axv_eff = 180.*atan( tan(axv_geo*acos(-1.)/180.) + muhall_h * BY * 0.0001)/acos(-1.);
480 //-----------------------------------------
481 // effective angle (relative to the sensor)
482 //-----------------------------------------
483 float ayv_geo = ayv[ip];
484 float muhall_e = 1258.18; //cm**2/Vs
485 float BX = TrkParams::GetBX(v);
486 float ayv_eff = 0;
487 ayv_eff = 180.*atan( tan(ayv_geo*acos(-1.)/180.) + muhall_e * BX * 0.0001)/acos(-1.);
488
489 if (iv==0)return axv_eff;
490 else if(iv==1)return ayv_eff;
491 else{
492 cout << "Float_t TrkTrack::GetEffectiveAngle(int "<<ip<<", int "<<iv<<") ==> wrong input"<<endl;
493 return 0.;
494 }
495
496 };
497
498 //--------------------------------------
499 //
500 //
501 //--------------------------------------
502 void TrkTrack::Dump(){
503 cout << endl << "========== Track " ;
504 cout << endl << "seq. n. : "<< seqno;
505 cout << endl << "image n. : "<< image;
506 cout << endl << "al : "; for(int i=0; i<5; i++)cout << al[i] << " ";
507 cout << endl << "chi^2 : "<< chi2;
508 cout << endl << "n.step : "<< nstep;
509 cout << endl << "xgood : "; for(int i=0; i<6; i++)cout << XGood(i) ;
510 cout << endl << "ygood : "; for(int i=0; i<6; i++)cout << YGood(i) ;
511 cout << endl << "xm : "; for(int i=0; i<6; i++)cout << xm[i] << " ";
512 cout << endl << "ym : "; for(int i=0; i<6; i++)cout << ym[i] << " ";
513 cout << endl << "zm : "; for(int i=0; i<6; i++)cout << zm[i] << " ";
514 cout << endl << "xv : "; for(int i=0; i<6; i++)cout << xv[i] << " ";
515 cout << endl << "yv : "; for(int i=0; i<6; i++)cout << yv[i] << " ";
516 cout << endl << "zv : "; for(int i=0; i<6; i++)cout << zv[i] << " ";
517 cout << endl << "resx : "; for(int i=0; i<6; i++)cout << resx[i] << " ";
518 cout << endl << "resy : "; for(int i=0; i<6; i++)cout << resy[i] << " ";
519 cout << endl << "tailx : "; for(int i=0; i<6; i++)cout << tailx[i] << " ";
520 cout << endl << "taily : "; for(int i=0; i<6; i++)cout << taily[i] << " ";
521 cout << endl << "coval : "; for(int i=0; i<5; i++)cout << coval[0][i]<<" ";
522 cout << endl << " "; for(int i=0; i<5; i++)cout << coval[1][i]<<" ";
523 cout << endl << " "; for(int i=0; i<5; i++)cout << coval[2][i]<<" ";
524 cout << endl << " "; for(int i=0; i<5; i++)cout << coval[3][i]<<" ";
525 cout << endl << " "; for(int i=0; i<5; i++)cout << coval[4][i]<<" ";
526 cout << endl << "dedx_x : "; for(int i=0; i<6; i++)cout << dedx_x[i] << " ";
527 cout << endl << "dedx_y : "; for(int i=0; i<6; i++)cout << dedx_y[i] << " ";
528 cout << endl << "maxs x : "; for(int i=0; i<6; i++)cout << GetClusterX_MaxStrip(i) << " ";
529 cout << endl << "maxs y : "; for(int i=0; i<6; i++)cout << GetClusterY_MaxStrip(i) << " ";
530 cout << endl << "mult x : "; for(int i=0; i<6; i++)cout << GetClusterX_Multiplicity(i) << " ";
531 cout << endl << "mult y : "; for(int i=0; i<6; i++)cout << GetClusterY_Multiplicity(i) << " ";
532 cout << endl << "seed x : "; for(int i=0; i<6; i++)cout << GetClusterX_Seed(i) << " ";
533 cout << endl << "seed y : "; for(int i=0; i<6; i++)cout << GetClusterY_Seed(i) << " ";
534 cout << endl << "xpu : "; for(int i=0; i<6; i++)cout << xpu[i] << " ";
535 cout << endl << "ypu : "; for(int i=0; i<6; i++)cout << ypu[i] << " ";
536
537 cout << endl;
538 }
539 /**
540 * Set the TrkTrack position measurements
541 */
542 void TrkTrack::SetMeasure(double *xmeas, double *ymeas, double *zmeas){
543 for(int i=0; i<6; i++) xm[i]=*xmeas++;
544 for(int i=0; i<6; i++) ym[i]=*ymeas++;
545 for(int i=0; i<6; i++) zm[i]=*zmeas++;
546 }
547 /**
548 * Set the TrkTrack position resolution
549 */
550 void TrkTrack::SetResolution(double *rx, double *ry){
551 for(int i=0; i<6; i++) resx[i]=*rx++;
552 for(int i=0; i<6; i++) resy[i]=*ry++;
553 }
554 /**
555 * Set the TrkTrack tails position resolution
556 */
557 void TrkTrack::SetTail(double *tx, double *ty, double factor){
558 for(int i=0; i<6; i++) tailx[i]=factor*(*tx++);
559 for(int i=0; i<6; i++) taily[i]=factor*(*ty++);
560 }
561 /**
562 * Set the TrkTrack Student parameter (resx,resy,tailx,taily)
563 * from previous gausian fit
564 *@param flag =0 standard, =1 with noise correction
565 */
566 void TrkTrack::SetStudentParam(int flag){
567 float sx[11]={0.000128242,
568 0.000136942,
569 0.000162718,
570 0.000202644,
571 0.00025597,
572 0.000317456,
573 0.000349048,
574 0.000384638,
575 0.000457295,
576 0.000512319,
577 0.000538573};
578 float tx[11]={1.79402,
579 2.04876,
580 2.88376,
581 3.3,
582 3.14084,
583 4.07686,
584 4.44736,
585 3.5179,
586 3.38697,
587 3.45739,
588 3.18627};
589 float sy[11]={0.000483075,
590 0.000466925,
591 0.000431658,
592 0.000428317,
593 0.000433854,
594 0.000444044,
595 0.000482098,
596 0.000537579,
597 0.000636279,
598 0.000741998,
599 0.000864261};
600 float ty[11]={0.997032,
601 1.11147,
602 1.18526,
603 1.61404,
604 2.21908,
605 3.08959,
606 4.48833,
607 4.42687,
608 4.65253,
609 4.52043,
610 4.29926};
611 int index;
612 float fact=0.;
613 for(int i=0; i<6; i++) {
614 index = int((fabs(axv[i])+1.)/2.);
615 if(index>10) index=10;
616 tailx[i]=tx[index];
617 if(flag==1) {
618 if(fabs(axv[i])<=10.) fact = resx[i]/risxeta2_(&(axv[i]));
619 if(fabs(axv[i])>10.&&fabs(axv[i])<=15.) fact = resx[i]/risxeta3_(&(axv[i]));
620 if(fabs(axv[i])>15.) fact = resx[i]/risxeta4_(&(axv[i]));
621 } else fact = 1.;
622 resx[i] = sx[index]*fact;
623 }
624 for(int i=0; i<6; i++) {
625 index = int((fabs(ayv[i])+1.)/2.);
626 if(index>10) index=10;
627 taily[i]=ty[index];
628 if(flag==1) fact = resy[i]/risyeta2_(&(ayv[i]));
629 else fact = 1.;
630 resy[i] = sy[index]*fact;
631 }
632 }
633 /**
634 * Set the TrkTrack good measurement
635 */
636 void TrkTrack::SetGood(int *xg, int *yg){
637
638 for(int i=0; i<6; i++) xgood[i]=*xg++;
639 for(int i=0; i<6; i++) ygood[i]=*yg++;
640 }
641
642 /**
643 * Load the magnetic field
644 */
645 void TrkTrack::LoadField(TString path){
646
647 // strcpy(path_.path,path.Data());
648 // path_.pathlen = path.Length();
649 // path_.error = 0;
650 // readb_();
651
652 // TrkParams::SetTrackingMode();
653 // TrkParams::SetPrecisionFactor();
654 // TrkParams::SetStepMin();
655 TrkParams::SetMiniDefault();
656
657 TrkParams::Set(path,1);
658 TrkParams::Load(1);
659 if( !TrkParams::IsLoaded(1) ){
660 cout << "void TrkTrack::LoadField(TString path) --- ERROR --- m.field not loaded"<<endl;
661 }
662
663 };
664
665
666 /**
667 * Method to fill minimization-routine common
668 */
669 void TrkTrack::FillMiniStruct(cMini2track& track){
670
671 for(int i=0; i<6; i++){
672
673 // cout << i<<" - "<<xgood[i]<<" "<<XGood(i)<<endl;
674 // cout << i<<" - "<<ygood[i]<<" "<<YGood(i)<<endl;
675 track.xgood[i] = (double) XGood(i);
676 track.ygood[i] = (double) YGood(i);
677
678 track.xm[i]= (double) xm[i];
679 track.ym[i]= (double) ym[i];
680 track.zm[i]= (double) zm[i];
681
682 // --- temporaneo ----------------------------
683 // float segment = 100.;
684 // track.xm_a[i]=xm[i];
685 // track.xm_b[i]=xm[i];
686 // track.ym_a[i]=ym[i];
687 // track.ym_b[i]=ym[i];
688 // if( XGood(i) && !YGood(i) ){
689 // track.ym_a[i] = track.ym_a[i]+segment;
690 // track.ym_b[i] = track.ym_b[i]-segment;
691 // }else if( !XGood(i) && YGood(i)){
692 // track.xm_a[i] = track.xm_a[i]+segment;
693 // track.xm_b[i] = track.xm_b[i]-segment;
694 // }
695 // --- temporaneo ----------------------------
696
697 if( XGood(i) || YGood(i) ){
698 //NB!! the length of the sensor is not exactely taken into account
699 double segment = 7.;// 2.;//cm //Elena 10th
700 // NB: i parametri di allineamento hanno una notazione particolare!!!
701 // sensor = 0 (hybrid side), 1
702 // ladder = 0-2 (increasing x)
703 // plane = 0-5 (from bottom to top!!!)
704 int is = (int)GetSensor(i); if(i==5)is=1-is;
705 int ip = 5-i;
706 int il = (int)GetLadder(i);
707
708 double omega = 0.;
709 // double beta = 0.;// EM GCC 4.7
710 // double gamma = 0.;
711 if(
712 (is < 0 || is > 1 || ip < 0 || ip > 5 || il < 0 || il > 2) &&
713 true){
714 // se il piano risulta colpito, ladder e sensore devono essere
715 // assegnati correttamente
716 cout << " void TrkTrack::FillMiniStruct(cMini2track&) --- WARNING --- sensor not defined, cannot read alignment parameters "<<endl;
717 cout << " is ip il = "<<is<<" "<<ip<<" "<<il<<endl;
718 }else{
719 omega = alignparameters_.omega[is][il][ip];
720 // beta = alignparameters_.beta[is][il][ip];// EM GCC 4.7 unused
721 // gamma = alignparameters_.gamma[is][il][ip];// EM GCC 4.7 unused
722 }
723
724 if( XGood(i) && !YGood(i) ){
725 track.xm_a[i] = (double) xm[i] - omega * segment;
726 track.ym_a[i] = (double) ym[i] + segment;
727 // track.zm_a[i] = zm[i] + beta * segment;//not used yet
728 track.xm_b[i] = (double) xm[i] + omega * segment;
729 track.ym_b[i] = (double) ym[i] - segment;
730 // track.zm_b[i] = zm[i] - beta * segment;//not used yet
731 }else if( !XGood(i) && YGood(i) ){
732 track.xm_a[i] = (double) xm[i] + segment;
733 track.ym_a[i] = (double) ym[i] + omega * segment;
734 // track.zm_a[i] = zm[i] - gamma * segment;//not used yet
735 track.xm_b[i] = (double) xm[i] - segment;
736 track.ym_b[i] = (double) ym[i] - omega * segment;
737 // track.zm_b[i] = zm[i] + gamma * segment;//not used yet
738 }
739 }
740
741 track.resx[i]= (double) resx[i];
742 track.resy[i]= (double) resy[i];
743 track.tailx[i]= (double) tailx[i];
744 track.taily[i]= (double) taily[i];
745 }
746
747 for(int i=0; i<5; i++) track.al[i]= (double) al[i];
748 track.zini = 23.5;
749 // ZINI = 23.5 !!! it should be the same parameter in all codes
750
751 }
752 /**
753 * Method to set values from minimization-routine common
754 */
755 void TrkTrack::SetFromMiniStruct(cMini2track *track){
756
757 for(int i=0; i<5; i++) {
758 al[i]= (float) (track->al[i]);
759 for(int j=0; j<5; j++) coval[i][j]= (float) (track->cov[i][j]);
760 }
761 chi2 = (float) (track->chi2);
762 nstep = (float) (track->nstep);
763 for(int i=0; i<6; i++){
764 xv[i] = (float) (track->xv[i]);
765 yv[i] = (float) (track->yv[i]);
766 zv[i] = (float) (track->zv[i]);
767 xm[i] = (float) (track->xm[i]);
768 ym[i] = (float) (track->ym[i]);
769 zm[i] = (float) (track->zm[i]);
770 axv[i] = (float) (track->axv[i]);
771 ayv[i] = (float) (track->ayv[i]);
772 resx[i] = (float) (track->resx[i]); //Elena 10th
773 resy[i] = (float) (track->resy[i]);
774 }
775
776 }
777 /**
778 * \brief Method to re-evaluate coordinates of clusters associated with a track.
779 *
780 * The method can be applied only after recovering level1 information
781 * (either by reprocessing single events from level0 or from
782 * the TrkLevel1 branch, if present); it calls F77 subroutines that
783 * read the level1 common and fill the minimization-routine common.
784 * Some clusters can be excluded or added by means of the methods:
785 *
786 * TrkTrack::ResetXGood(int ip)
787 * TrkTrack::ResetYGood(int ip)
788 * TrkTrack::SetXGood(int ip, int cid, int is)
789 * TrkTrack::SetYGood(int ip, int cid, int is)
790 *
791 * NB! The method TrkTrack::SetGood(int *xg, int *yg) set the plane-mask (0-1)
792 * for the minimization-routine common. It deletes the cluster information
793 * (at least for the moment...) thus cannot be applied before
794 * TrkTrack::EvaluateClusterPositions().
795 *
796 * Different p.f.a. can be applied by calling (once) the method:
797 *
798 * TrkParams::SetPFA(0); //Set ETA p.f.a.
799 *
800 * @see TrkParams::SetPFA(int)
801 */
802 Bool_t TrkTrack::EvaluateClusterPositions(){
803
804 // cout << "void TrkTrack::GetClusterositions() "<<endl;
805
806 TrkParams::Load(1);
807 if( !TrkParams::IsLoaded(1) ){
808 cout << "Bool_t TrkTrack::EvaluateClusterPositions() ---ERROR--- m.field not loaded "<<endl;
809 return false;
810 }
811 TrkParams::Load(4);
812 if( !TrkParams::IsLoaded(4) ){
813 cout << "Bool_t TrkTrack::EvaluateClusterPositions() ---ERROR--- p.f.a. par. not loaded "<<endl;
814 return false;
815 }
816 TrkParams::Load(5);
817 if( !TrkParams::IsLoaded(5) ){
818 cout << "Bool_t TrkTrack::EvaluateClusterPositions() ---ERROR--- alignment par. not loaded "<<endl;
819 return false;
820 }
821
822 for(int ip=0; ip<6; ip++){
823 // cout << ip<<" ** "<<xm[ip]<<" / "<<ym[ip]<<endl;;
824 int icx = GetClusterX_ID(ip)+1;//0=no-cluster,1-N
825 int icy = GetClusterY_ID(ip)+1;//0=no-cluster,1-N
826 int sensor = GetSensor(ip)+1;//<< convenzione "Paolo"
827 if(ip==5 && sensor!=0)sensor=3-sensor;//<< convenzione "Elena"
828 int ladder = GetLadder(ip)+1;
829 float ax = axv[ip];
830 float ay = ayv[ip];
831 float v[3];
832 v[0]=xv[ip];
833 v[1]=yv[ip];
834 v[2]=zv[ip];
835 float bfx = 10*TrkParams::GetBX(v);//Tesla
836 float bfy = 10*TrkParams::GetBY(v);//Tesla
837 int ipp=ip+1;
838 xyzpam_(&ipp,&icx,&icy,&ladder,&sensor,&ax,&ay,&bfx,&bfy);
839 // if(icx<0 || icy<0)return false;
840 }
841 return true;
842 }
843 /**
844 * \brief Tracking method. It calls F77 mini routine.
845 *
846 * @param pfixed Particle momentum. If pfixed=0 the momentum
847 * is left as a free parameter, otherwise it is fixed to the input value.
848 * @param fail Output flag (!=0 if the fit failed).
849 * @param iprint Flag to set debug mode ( 0 = no output; 1 = verbose; 2 = debug).
850 * @param froml1 Flag to re-evaluate positions (see TrkTrack::GetClusterPositions()).
851 *
852 * The option to re-evaluate positions can be used only after recovering
853 * level1 information, eg. by reprocessing the single event.
854 *
855 * Example:
856 *
857 * if( !event->GetTrkLevel0() )return false;
858 * event->GetTrkLevel0()->ProcessEvent(); // re-processing level0->level1
859 * int fail=0;
860 * event->GetTrkLevel2()->GetTrack(0)->Fit(0.,fail,0,1);
861 *
862 * @see EvaluateClusterPositions()
863 *
864 * The fitting procedure can be varied by changing the tracking mode,
865 * the fit-precision factor, the minimum number of step, etc.
866 * @see SetTrackingMode(int)
867 * @see SetPrecisionFactor(double)
868 * @see SetStepMin(int)
869 * @see SetDeltaB(int,double)
870 */
871 void TrkTrack::Fit(double pfixed, int& fail, int iprint, int froml1){
872
873 TrkParams::Load(1);
874 if( !TrkParams::IsLoaded(1) ){
875 cout << "void TrkTrack::Fit(double,int&,int,int) ---ERROR--- m.field not loaded "<<endl;
876 return;
877 }
878 TrkParams::Load(5);
879 if( !TrkParams::IsLoaded(5) ){
880 cout << "void TrkTrack::Fit(double,int&,int,int) ---ERROR--- align.param. not loaded "<<endl;
881 return;
882 }
883
884 float al_ini[] = {0.,0.,0.,0.,0.};
885
886 extern cMini2track track_;
887 fail = 0;
888
889 // FillMiniStruct(track_);
890
891 if(froml1!=0){
892 if( !EvaluateClusterPositions() ){
893 cout << "void TrkTrack::Fit("<<pfixed<<","<<fail<<","<<iprint<<","<<froml1<<") --- ERROR evaluating cluster positions "<<endl;
894 FillMiniStruct(track_) ;
895 fail = 1;
896 return;
897 }
898 }else{
899 FillMiniStruct(track_);
900 }
901
902 // if fit variables have been reset, evaluate the initial guess
903 if(al[0]==-9999.&&al[1]==-9999.&&al[2]==-9999.&&al[3]==-9999.&&al[4]==-9999.)guess_();
904
905 // --------------------- free momentum
906 if(pfixed==0.) {
907 track_.pfixed=0.;
908 }
909 // --------------------- fixed momentum
910 if(pfixed!=0.) {
911 al[4]=1./pfixed;
912 track_.pfixed=pfixed;
913 }
914
915 // store temporarily the initial guess
916 for(int i=0; i<5; i++) al_ini[i]=track_.al[i];
917
918 // ------------------------------------------
919 // call mini routine
920 // ------------------------------------------
921 int istep=0;
922 int ifail=0;
923 mini2_(&istep,&ifail, &iprint);
924 if(ifail!=0) {
925 if(iprint)cout << "ERROR: ifail= " << ifail << endl;
926 fail = 1;
927 }
928 if(chi2!=chi2){
929 if(iprint)cout << "ERROR: chi2= " << chi2 << endl;
930 FitReset();
931 fail = 1;
932 }
933 // ------------------------------------------
934
935 SetFromMiniStruct(&track_);
936
937 if(fail){
938 if(iprint)cout << " >>>> fit failed "<<endl;
939 for(int i=0; i<5; i++) al[i]=al_ini[i];
940 }
941
942 };
943 /**
944 * Reset the fit parameters
945 */
946 void TrkTrack::FitReset(){
947 for(int i=0; i<5; i++) al[i]=-9999.;
948 chi2=0.;
949 nstep=0;
950 // for(int i=0; i<6; i++) xv[i]=0.;
951 // for(int i=0; i<6; i++) yv[i]=0.;
952 // for(int i=0; i<6; i++) zv[i]=0.;
953 // for(int i=0; i<6; i++) axv[i]=0.;
954 // for(int i=0; i<6; i++) ayv[i]=0.;
955 for(int i=0; i<5; i++) {
956 for(int j=0; j<5; j++) coval[i][j]=0.;
957 }
958 }
959 /**
960 * Set the tracking mode
961 */
962 void TrkTrack::SetTrackingMode(int trackmode){
963 extern cMini2track track_;
964 track_.trackmode = trackmode;
965 }
966 /**
967 * Set the factor scale for tracking precision
968 */
969 void TrkTrack::SetPrecisionFactor(double fact){
970 extern cMini2track track_;
971 track_.fact = fact;
972 }
973 /**
974 * Set the minimum number of steps for tracking precision
975 */
976 void TrkTrack::SetStepMin(int istepmin){
977 extern cMini2track track_;
978 track_.istepmin = istepmin;
979 }
980 /**
981 * Set deltaB parameters (id=0,1). By default they are set to zero.
982 */
983 void TrkTrack::SetDeltaB(int id, double db){
984 if(id!=0 && id!=1)cout << "void TrkTrack::SetDeltaB(int id,double db) -- wrong input parameters: "<<id<<" "<<db<<endl;
985 TrkParams::SetDeltaB(id,db);
986 }
987
988 /**
989 * Returns true if the track is inside the magnet cavity.
990 * @param toll Tolerance around the nominal volume (toll>0 define an inner fiducial volume)
991 */
992 Bool_t TrkTrack::IsInsideCavity(float toll){
993
994 // float xmagntop, ymagntop, xmagnbottom, ymagnbottom;
995 // xmagntop = xv[0] + (ZMAGNHIGH-zv[0])*tan(acos(-1.0)*axv[0]/180.);
996 // ymagntop = yv[0] + (ZMAGNHIGH-zv[0])*tan(acos(-1.0)*ayv[0]/180.);
997 // xmagnbottom = xv[5] + (ZMAGNLOW-zv[5])*tan(acos(-1.0)*axv[5]/180.);
998 // ymagnbottom = yv[5] + (ZMAGNLOW-zv[5])*tan(acos(-1.0)*ayv[5]/180.);
999 // if( xmagntop>XMAGNLOW && xmagntop<XMAGNHIGH &&
1000 // ymagntop>YMAGNLOW && ymagntop<YMAGNHIGH &&
1001 // xmagnbottom>XMAGNLOW && xmagnbottom<XMAGNHIGH &&
1002 // ymagnbottom>YMAGNLOW && ymagnbottom<YMAGNHIGH ) return(true);
1003 // else return(false);
1004
1005 int ngf = TrkParams::nGF;
1006 for(int i=0; i<ngf; i++){
1007 //
1008 // cout << endl << TrkParams::GF_element[i];
1009 if(
1010 TrkParams::GF_element[i].CompareTo("CUF") &&
1011 TrkParams::GF_element[i].CompareTo("T2") &&
1012 TrkParams::GF_element[i].CompareTo("T3") &&
1013 TrkParams::GF_element[i].CompareTo("T4") &&
1014 TrkParams::GF_element[i].CompareTo("T5") &&
1015 TrkParams::GF_element[i].CompareTo("CLF") &&
1016 true)continue;
1017 // apply condition only within the cavity
1018 // cout << " -- "<<xGF[i]<<" "<<yGF[i];
1019 if(
1020 xGF[i] <= TrkParams::xGF_min[i] + toll ||
1021 xGF[i] >= TrkParams::xGF_max[i] - toll ||
1022 yGF[i] <= TrkParams::yGF_min[i] + toll ||
1023 yGF[i] >= TrkParams::yGF_max[i] - toll ||
1024 false){
1025
1026 return false;
1027 }
1028 }
1029 return true;
1030
1031
1032 }
1033 /**
1034 * Returns true if the track is inside the nominal acceptance, which is defined
1035 * by the intersection among magnet cavity, silicon-plane sensitive area and
1036 * ToF sensitive area (nominal values from the official document used to
1037 * calculate the geometrical factor)
1038 * @param toll Tolerance around the nominal volume (toll>0 define an inner fiducial volume)
1039 */
1040 // Bool_t TrkTrack::IsInsideAcceptance(){
1041
1042 // int ngf = TrkParams::nGF;
1043 // for(int i=0; i<ngf; i++){
1044 // if(
1045 // xGF[i] <= TrkParams::xGF_min[i] ||
1046 // xGF[i] >= TrkParams::xGF_max[i] ||
1047 // yGF[i] <= TrkParams::yGF_min[i] ||
1048 // yGF[i] >= TrkParams::yGF_max[i] ||
1049 // false)return false;
1050 // }
1051 // return true;
1052
1053 // }
1054 Bool_t TrkTrack::IsInsideAcceptance(float toll){
1055
1056
1057 int ngf = TrkParams::nGF;
1058 for(int i=0; i<ngf; i++){
1059 //
1060 // cout << endl << TrkParams::GF_element[i];
1061 if(
1062 TrkParams::GF_element[i].CompareTo("S11") &&
1063 TrkParams::GF_element[i].CompareTo("S12") &&
1064 TrkParams::GF_element[i].CompareTo("S21") &&
1065 TrkParams::GF_element[i].CompareTo("S22") &&
1066 TrkParams::GF_element[i].CompareTo("T1") &&
1067 TrkParams::GF_element[i].CompareTo("CUF") &&
1068 TrkParams::GF_element[i].CompareTo("T2") &&
1069 TrkParams::GF_element[i].CompareTo("T3") &&
1070 TrkParams::GF_element[i].CompareTo("T4") &&
1071 TrkParams::GF_element[i].CompareTo("T5") &&
1072 TrkParams::GF_element[i].CompareTo("CLF") &&
1073 TrkParams::GF_element[i].CompareTo("T6") &&
1074 TrkParams::GF_element[i].CompareTo("S31") &&
1075 TrkParams::GF_element[i].CompareTo("S32") &&
1076 true)continue;
1077 // apply condition only within the cavity
1078 // cout << " -- "<<xGF[i]<<" "<<yGF[i];
1079 if(
1080 xGF[i] <= TrkParams::xGF_min[i] + toll ||
1081 xGF[i] >= TrkParams::xGF_max[i] - toll ||
1082 yGF[i] <= TrkParams::yGF_min[i] + toll ||
1083 yGF[i] >= TrkParams::yGF_max[i] - toll ||
1084 false){
1085
1086 return false;
1087 }
1088 }
1089 return true;
1090 }
1091
1092 /**
1093 * Returns true if the track is inside one of the surfaces which define the
1094 * geometrical acceptance.
1095 * @param surf tag of the surface (possible values are: S11 S12 S21 S22 T1
1096 * CUF T2 T3 T4 T5 CLF T6 S31 S32).
1097 * @param toll Tolerance around the nominal surface (toll>0 define an inner
1098 * fiducial surface)
1099 */
1100 Bool_t TrkTrack::IsInsideGFSurface(const char* surf, float toll){
1101
1102
1103 int ngf = TrkParams::nGF;
1104 bool SURFOK = false;
1105 for(int i=0; i<ngf; i++){
1106 if( !TrkParams::GF_element[i].CompareTo(surf) ){
1107 SURFOK=true;
1108 if(
1109 xGF[i] > TrkParams::xGF_min[i] + toll &&
1110 xGF[i] < TrkParams::xGF_max[i] - toll &&
1111 yGF[i] > TrkParams::yGF_min[i] + toll &&
1112 yGF[i] < TrkParams::yGF_max[i] - toll &&
1113 true)return true;
1114 }
1115 }
1116 if( !SURFOK )cout << " Bool_t TrkTrack::IsInsideGFSurface(char* surf, float toll) --> suface "<<surf<<" not defined "<<endl;
1117 return false;
1118
1119 }
1120
1121 /**
1122 * Method to retrieve ID (0,1,...) of x-cluster (if any) associated to this track.
1123 * If no cluster is associated, ID=-1.
1124 * @param ip Tracker plane (0-5)
1125 */
1126 Int_t TrkTrack::GetClusterX_ID(int ip){
1127 return ((Int_t)fabs(xgood[ip]))%10000000-1;
1128 };
1129 /**
1130 * Method to retrieve ID (0-xxx) of y-cluster (if any) associated to this track.
1131 * If no cluster is associated, ID=-1.
1132 * @param ip Tracker plane (0-5)
1133 */
1134 Int_t TrkTrack::GetClusterY_ID(int ip){
1135 return ((Int_t)fabs(ygood[ip]))%10000000-1;
1136 };
1137
1138 /**
1139 * Method to retrieve the ladder (0-2, increasing x) traversed by the track on this plane.
1140 * If no ladder is traversed (dead area) the metod retuns -1.
1141 * @param ip Tracker plane (0-5)
1142 */
1143 Int_t TrkTrack::GetLadder(int ip){
1144 if(XGood(ip))return (Int_t)fabs(xgood[ip]/100000000)-1;
1145 if(YGood(ip))return (Int_t)fabs(ygood[ip]/100000000)-1;
1146 return -1;
1147 };
1148 /**
1149 * Method to retrieve the sensor (0-1, increasing y) traversed by the track on this plane.
1150 * If no sensor is traversed (dead area) the metod retuns -1.
1151 * @param ip Tracker plane (0-5)
1152 */
1153 Int_t TrkTrack::GetSensor(int ip){
1154 if(XGood(ip))return (Int_t)((Int_t)fabs(xgood[ip]/10000000)%10)-1;
1155 if(YGood(ip))return (Int_t)((Int_t)fabs(ygood[ip]/10000000)%10)-1;
1156 return -1;
1157 };
1158
1159 /**
1160 * \brief Method to include a x-cluster to the track.
1161 * @param ip Tracker plane (0-5)
1162 * @param clid Cluster ID (0 = no-cluster, 1,2,... otherwise )
1163 * @param il Ladder (0-2, increasing x, -1 if no sensitive area is hit)
1164 * @param is Sensor (0-1, increasing y, -1 if no sensitive area is hit)
1165 * @param bad True if the cluster contains bad strips
1166 * @see Fit(double pfixed, int& fail, int iprint, int froml1)
1167 */
1168 void TrkTrack::SetXGood(int ip, int clid, int il, int is, bool bad){
1169 // int il=0; //ladder (temporary)
1170 // bool bad=false; //ladder (temporary)
1171 if(ip<0||ip>5||clid<1||il<-1||il>2||is<-1||is>1)
1172 cout << " void TrkTrack::SetXGood(int,int,int,int,bool) --> MA SEI DI COCCIO?!?!"<<endl;
1173 xgood[ip]=(il+1)*100000000+(is+1)*10000000+clid;
1174 if(bad)xgood[ip]=-xgood[ip];
1175 };
1176 /**
1177 * \brief Method to include a y-cluster to the track.
1178 * @param ip Tracker plane (0-5)
1179 * @param clid Cluster ID (0 = no-cluster, 1,2,... otherwise )
1180 * @param il Ladder (0-2, increasing x, -1 if no sensitive area is hit)
1181 * @param is Sensor (0-1, increasing y, -1 if no sensitive area is hit)
1182 * @param bad True if the cluster contains bad strips
1183 * @see Fit(double pfixed, int& fail, int iprint, int froml1)
1184 */
1185 void TrkTrack::SetYGood(int ip, int clid, int il, int is, bool bad){
1186 // int il=0; //ladder (temporary)
1187 // bool bad=false; //ladder (temporary)
1188 if(ip<0||ip>5||clid<1||il<-1||il>2||is<-1||is>1)
1189 cout << " void TrkTrack::SetYGood(int,int,int,int,bool) --> MA SEI DI COCCIO?!?!"<<endl;
1190 ygood[ip]=(il+1)*100000000+(is+1)*10000000+clid;
1191 if(bad)ygood[ip]=-ygood[ip];
1192 };
1193
1194 /**
1195 * \brief Average X
1196 * Average value of <xv>, evaluated from the first to the last hit x view.
1197 */
1198 Float_t TrkTrack::GetXav(){
1199
1200 int first_plane = -1;
1201 int last_plane = -1;
1202 for(Int_t ip=0; ip<6; ip++){
1203 if( XGood(ip) && first_plane == -1 )first_plane = ip;
1204 if( XGood(ip) && first_plane != -1 )last_plane = ip;
1205 }
1206 if( first_plane == -1 || last_plane == -1){
1207 return -100;
1208 }
1209 if( last_plane-first_plane+1 ==0 )return -100;
1210
1211 Float_t av = 0;
1212 for(int ip=first_plane; ip<=last_plane; ip++)av+=xv[ip];
1213
1214 return (av/(last_plane-first_plane+1));
1215 }
1216 /**
1217 * \brief Average Y
1218 * Average value of <yv>, evaluated from the first to the last hit x view.
1219 */
1220 Float_t TrkTrack::GetYav(){
1221
1222 int first_plane = -1;
1223 int last_plane = -1;
1224 for(Int_t ip=0; ip<6; ip++){
1225 if( XGood(ip) && first_plane == -1 )first_plane = ip;
1226 if( XGood(ip) && first_plane != -1 )last_plane = ip;
1227 }
1228 if( first_plane == -1 || last_plane == -1){
1229 return -100;
1230 }
1231 if( last_plane-first_plane+1 ==0 )return -100;
1232
1233 Float_t av = 0;
1234 for(int ip=first_plane; ip<=last_plane; ip++)av+=yv[ip];
1235
1236 return (av/(last_plane-first_plane+1));
1237 }
1238 /**
1239 * \brief Average Z
1240 * Average value of <zv>, evaluated from the first to the last hit x view.
1241 */
1242 Float_t TrkTrack::GetZav(){
1243
1244 int first_plane = -1;
1245 int last_plane = -1;
1246 for(Int_t ip=0; ip<6; ip++){
1247 if( XGood(ip) && first_plane == -1 )first_plane = ip;
1248 if( XGood(ip) && first_plane != -1 )last_plane = ip;
1249 }
1250 if( first_plane == -1 || last_plane == -1){
1251 return -100;
1252 }
1253 if( last_plane-first_plane+1 ==0 )return -100;
1254
1255 Float_t av = 0;
1256 for(int ip=first_plane; ip<=last_plane; ip++)av+=zv[ip];
1257
1258 return (av/(last_plane-first_plane+1));
1259 }
1260
1261 /**
1262 * \brief Number of column traversed
1263 */
1264 Int_t TrkTrack::GetNColumns(){
1265 int sensors[] = {0,0,0,0,0,0};
1266 for(int ip=0; ip<6; ip++){
1267 int sensorid = GetLadder(ip)+3*GetSensor(ip);
1268 if(XGood(ip)||YGood(ip))
1269 if(sensorid>=0 && sensorid<6)sensors[sensorid]=1;
1270 }
1271 int nsensors=0;
1272 for(int is=0; is<6; is++)nsensors += sensors[is];
1273 return nsensors;
1274 };
1275 /**
1276 * \brief Give the maximum energy release
1277 */
1278 Float_t TrkTrack::GetDEDX_max(int ip, int iv){
1279 Float_t max=0;
1280 int pfrom = 0;
1281 int pto = 6;
1282 int vfrom = 0;
1283 int vto = 2;
1284 if(ip>=0&&ip<6){
1285 pfrom = ip;
1286 pto = ip+1;
1287 }
1288 if(iv>=0&&iv<2){
1289 vfrom = iv;
1290 vto = iv+1;
1291 }
1292 for(int i=pfrom; i<pto; i++)
1293 for(int j=vfrom; j<vto; j++){
1294 if(j==0 && XGood(i) && GetDEDX(i,j)>max)max=GetDEDX(i,j);
1295 if(j==1 && YGood(i) && GetDEDX(i,j)>max)max=GetDEDX(i,j);
1296 }
1297 return max;
1298
1299 };
1300
1301 /**
1302 * \brief Give the minimum energy release
1303 */
1304 Float_t TrkTrack::GetDEDX_min(int ip, int iv){
1305 Float_t min=100000000;
1306 int pfrom = 0;
1307 int pto = 6;
1308 int vfrom = 0;
1309 int vto = 2;
1310 if(ip>=0&&ip<6){
1311 pfrom = ip;
1312 pto = ip+1;
1313 }
1314 if(iv>=0&&iv<2){
1315 vfrom = iv;
1316 vto = iv+1;
1317 }
1318 for(int i=pfrom; i<pto; i++)
1319 for(int j=vfrom; j<vto; j++){
1320 if(j==0 && XGood(i) && GetDEDX(i,j)<min)min=GetDEDX(i,j);
1321 if(j==1 && YGood(i) && GetDEDX(i,j)<min)min=GetDEDX(i,j);
1322 }
1323 return min;
1324
1325 };
1326
1327 /**
1328 * \brief Give the maximum spatial residual
1329 */
1330 Float_t TrkTrack::GetResidual_max(int ip, int iv){
1331 Float_t max=0;
1332 int pfrom = 0;
1333 int pto = 6;
1334 int vfrom = 0;
1335 int vto = 2;
1336 if(ip>=0&&ip<6){
1337 pfrom = ip;
1338 pto = ip+1;
1339 }
1340 if(iv>=0&&iv<2){
1341 vfrom = iv;
1342 vto = iv+1;
1343 }
1344 for(int i=pfrom; i<pto; i++){
1345 for(int j=vfrom; j<vto; j++){
1346 if(j==0 && XGood(i) && fabs(xm[i]-xv[i])>fabs(max))max=xm[i]-xv[i];
1347 if(j==1 && YGood(i) && fabs(ym[i]-yv[i])>fabs(max))max=ym[i]-yv[i];
1348 }
1349 }
1350 return max;
1351
1352 };
1353 /**
1354 * \brief Give the anerage spatial residual
1355 */
1356 Float_t TrkTrack::GetResidual_av(int ip, int iv){
1357 //
1358 //Sum$((xm>-50)*(xm-xv)/resx)/sqrt(TrkTrack.GetNX()*TrkTrack.GetChi2X())<0.3
1359
1360 Float_t av = 0.;
1361 int nav = 0;
1362 //
1363 int pfrom = 0;
1364 int pto = 6;
1365 int vfrom = 0;
1366 int vto = 2;
1367 if(ip>=0&&ip<6){
1368 pfrom = ip;
1369 pto = ip+1;
1370 }
1371 if(iv>=0&&iv<2){
1372 vfrom = iv;
1373 vto = iv+1;
1374 }
1375 for(int i=pfrom; i<pto; i++){
1376 for(int j=vfrom; j<vto; j++){
1377 nav++;
1378 if(j==0 && XGood(i)) av += (xm[i]-xv[i])/resx[i];
1379 if(j==1 && YGood(i)) av += (ym[i]-yv[i])/resy[i];
1380 }
1381 }
1382 if(nav==0)return -100.;
1383 return av/nav;
1384
1385 };
1386
1387
1388 /**
1389 * \brief Give the maximum multiplicity on the x view
1390 */
1391 Int_t TrkTrack::GetClusterX_Multiplicity_max(){
1392 int max=0;
1393 for(int ip=0; ip<6; ip++)
1394 if(GetClusterX_Multiplicity(ip)>max)max=GetClusterX_Multiplicity(ip);
1395 return max;
1396 };
1397 /**
1398 * \brief Give the minimum multiplicity on the x view
1399 */
1400 Int_t TrkTrack::GetClusterX_Multiplicity_min(){
1401 int min=50;
1402 for(int ip=0; ip<6; ip++)
1403 if(GetClusterX_Multiplicity(ip)<min)min=GetClusterX_Multiplicity(ip);
1404 return min;
1405 };
1406 /**
1407 * \brief Give the maximum multiplicity on the x view
1408 */
1409 Int_t TrkTrack::GetClusterY_Multiplicity_max(){
1410 int max=0;
1411 for(int ip=0; ip<6; ip++)
1412 if(GetClusterY_Multiplicity(ip)>max)max=GetClusterY_Multiplicity(ip);
1413 return max;
1414 };
1415 /**
1416 * \brief Give the minimum multiplicity on the x view
1417 */
1418 Int_t TrkTrack::GetClusterY_Multiplicity_min(){
1419 int min=50;
1420 for(int ip=0; ip<6; ip++)
1421 if(GetClusterY_Multiplicity(ip)<min)min=GetClusterY_Multiplicity(ip);
1422 return min;
1423 };
1424
1425 /**
1426 * \brief Give the minimum seed on the x view
1427 */
1428 Float_t TrkTrack::GetClusterX_Seed_min(){
1429 Float_t min=100000;
1430 for(int ip=0; ip<6; ip++)
1431 if(XGood(ip) && GetClusterX_Seed(ip)<min)min=GetClusterX_Seed(ip);
1432 return min;
1433 };
1434 /**
1435 * \brief Give the minimum seed on the x view
1436 */
1437 Float_t TrkTrack::GetClusterY_Seed_min(){
1438 Float_t min=100000;
1439 for(int ip=0; ip<6; ip++)
1440 if(YGood(ip) && GetClusterY_Seed(ip)<min)min=GetClusterY_Seed(ip);
1441 return min;
1442 };
1443
1444
1445 //--------------------------------------
1446 //
1447 //
1448 //--------------------------------------
1449 void TrkTrack::Clear(){
1450 // cout << "TrkTrack::Clear()"<<endl;
1451 seqno = -1;
1452 image = -1;
1453 chi2 = 0;
1454 nstep = 0;
1455 for(int it1=0;it1<5;it1++){
1456 al[it1] = 0;
1457 for(int it2=0;it2<5;it2++)coval[it1][it2] = 0;
1458 };
1459 for(int ip=0;ip<6;ip++){
1460 xgood[ip] = 0;
1461 ygood[ip] = 0;
1462 xm[ip] = 0;
1463 ym[ip] = 0;
1464 zm[ip] = 0;
1465 resx[ip] = 0;
1466 resy[ip] = 0;
1467 tailx[ip] = 0;
1468 taily[ip] = 0;
1469 xv[ip] = 0;
1470 yv[ip] = 0;
1471 zv[ip] = 0;
1472 axv[ip] = 0;
1473 ayv[ip] = 0;
1474 dedx_x[ip] = 0;
1475 dedx_y[ip] = 0;
1476
1477 };
1478 int ngf = TrkParams::nGF;
1479 for(int i=0; i<ngf; i++){
1480 xGF[i] = 0.;
1481 yGF[i] = 0.;
1482 }
1483 // if(clx)clx->Clear();
1484 // if(cly)cly->Clear();
1485 // clx.Clear();
1486 // cly.Clear();
1487 };
1488 //--------------------------------------
1489 //
1490 //
1491 //--------------------------------------
1492 void TrkTrack::Delete(){
1493 // cout << "TrkTrack::Delete()"<<endl;
1494 Clear();
1495 // if(clx)delete clx;
1496 // if(cly)delete cly;
1497 };
1498 //--------------------------------------
1499 //
1500 //
1501 //--------------------------------------
1502
1503 //--------------------------------------
1504 //
1505 //
1506 //--------------------------------------
1507 TrkSinglet::TrkSinglet(){
1508 // cout << "TrkSinglet::TrkSinglet() " << GetUniqueID()<<endl;
1509 // plane = 0;
1510 // coord[0] = 0;
1511 // coord[1] = 0;
1512 // sgnl = 0;
1513 // multmax = 0;
1514 // cls = 0;
1515 Clear();
1516 };
1517 //--------------------------------------
1518 //
1519 //
1520 //--------------------------------------
1521 TrkSinglet::TrkSinglet(const TrkSinglet& s){
1522 // cout << "TrkSinglet::TrkSinglet(const TrkSinglet& s) " << GetUniqueID()<<endl;
1523 plane = s.plane;
1524 coord[0] = s.coord[0];
1525 coord[1] = s.coord[1];
1526 sgnl = s.sgnl;
1527 multmax = s.multmax;
1528 // cls = 0;//<<<<pointer
1529 // cls = TRef(s.cls);
1530 };
1531 //--------------------------------------
1532 //
1533 //
1534 //--------------------------------------
1535 void TrkSinglet::Dump(){
1536 int i=0;
1537 cout << endl << "========== Singlet " ;
1538 cout << endl << "plane : " << plane;
1539 cout << endl << "coord[2] : "; while( i<2 && cout << coord[i] << " ") i++;
1540 cout << endl << "sgnl : " << sgnl;
1541 cout << endl << "max.strip : ";
1542 cout << endl << "multiplicity : ";
1543 }
1544 //--------------------------------------
1545 //
1546 //
1547 //--------------------------------------
1548 void TrkSinglet::Clear(){
1549 // cout << "TrkSinglet::Clear() " << GetUniqueID()<<endl;
1550 // cls=0;
1551 plane=-1;
1552 coord[0]=-999;
1553 coord[1]=-999;
1554 sgnl=0;
1555 multmax = 0;
1556
1557 }
1558 //--------------------------------------
1559 //
1560 //
1561 //--------------------------------------
1562 TrkLevel2::TrkLevel2(){
1563 // cout <<"TrkLevel2::TrkLevel2()"<<endl;
1564 for(Int_t i=0; i<12 ; i++){
1565 good[i] = -1;
1566 VKmask[i] = 0;
1567 VKflag[i] = 0;
1568 };
1569 Track = 0;
1570 SingletX = 0;
1571 SingletY = 0;
1572
1573 }
1574 //--------------------------------------
1575 //
1576 //
1577 //--------------------------------------
1578 void TrkLevel2::Set(){
1579 if(!Track)Track = new TClonesArray("TrkTrack");
1580 if(!SingletX)SingletX = new TClonesArray("TrkSinglet");
1581 if(!SingletY)SingletY = new TClonesArray("TrkSinglet");
1582 }
1583 //--------------------------------------
1584 //
1585 //
1586 //--------------------------------------
1587 void TrkLevel2::Dump(){
1588
1589 //
1590 cout << endl << endl << "=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-";
1591 cout << endl << "good : "; for(int i=0; i<12; i++) cout << hex <<" 0x"<< good[i]<<dec;
1592 cout << endl << "ntrk() : " << ntrk() ;
1593 cout << endl << "nclsx() : " << nclsx();
1594 cout << endl << "nclsy() : " << nclsy();
1595 if(Track){
1596 TClonesArray &t = *Track;
1597 for(int i=0; i<ntrk(); i++) ((TrkTrack *)t[i])->Dump();
1598 }
1599 // if(SingletX){
1600 // TClonesArray &sx = *SingletX;
1601 // for(int i=0; i<nclsx(); i++) ((TrkSinglet *)sx[i])->Dump();
1602 // }
1603 // if(SingletY){
1604 // TClonesArray &sy = *SingletY;
1605 // for(int i=0; i<nclsy(); i++) ((TrkSinglet *)sy[i])->Dump();
1606 // }
1607 cout << endl;
1608 }
1609 /**
1610 * \brief Dump processing status
1611 */
1612 void TrkLevel2::StatusDump(int view){
1613 cout << "DSP n. "<<view+1<<" status: "<<hex<<good[view]<<endl;
1614 };
1615 /**
1616 * \brief Check event status
1617 *
1618 * Check the event status, according to a flag-mask given as input.
1619 * Return true if the view passes the check.
1620 *
1621 * @param view View number (0-11)
1622 * @param flagmask Mask of flags to check (eg. flagmask=0x111 no missing packet,
1623 * no crc error, no software alarm)
1624 *
1625 * @see TrkLevel2 class definition to know how the status flag is defined
1626 *
1627 */
1628 Bool_t TrkLevel2::StatusCheck(int view, int flagmask){
1629
1630 if( view<0 || view >= 12)return false;
1631 return !(good[view]&flagmask);
1632
1633 };
1634
1635
1636 //--------------------------------------
1637 //
1638 //
1639 //--------------------------------------
1640 /**
1641 * The method returns false if the viking-chip was masked
1642 * either apriori ,on the basis of the mask read from the DB,
1643 * or run-by-run, on the basis of the calibration parameters)
1644 * @param iv Tracker view (0-11)
1645 * @param ivk Viking-chip number (0-23)
1646 */
1647 Bool_t TrkLevel2::GetVKMask(int iv, int ivk){
1648 Int_t whichbit = (Int_t)pow(2,ivk);
1649 return (whichbit&VKmask[iv])!=0;
1650 }
1651 /**
1652 * The method returns false if the viking-chip was masked
1653 * for this event due to common-noise computation failure.
1654 * @param iv Tracker view (0-11)
1655 * @param ivk Viking-chip number (0-23)
1656 */
1657 Bool_t TrkLevel2::GetVKFlag(int iv, int ivk){
1658 Int_t whichbit = (Int_t)pow(2,ivk);
1659 return (whichbit&VKflag[iv])!=0;
1660 }
1661 /**
1662 * The method returns true if the viking-chip was masked, either
1663 * forced (see TrkLevel2::GetVKMask(int,int)) or
1664 * for this event only (TrkLevel2::GetVKFlag(int,int)).
1665 * @param iv Tracker view (0-11)
1666 * @param ivk Viking-chip number (0-23)
1667 */
1668 Bool_t TrkLevel2::IsMaskedVK(int iv, int ivk){
1669 return !(GetVKMask(iv,ivk)&&GetVKFlag(iv,ivk) );
1670 };
1671
1672 //--------------------------------------
1673 //
1674 //
1675 //--------------------------------------
1676 /**
1677 * Fills a TrkLevel2 object with values from a struct cTrkLevel2 (to get data from F77 common).
1678 * Ref to Level1 data (clusters) is also set. If l1==NULL no references are set.
1679 * (NB It make sense to set references only if events are stored in a tree that contains also the Level1 branch)
1680 */
1681 void TrkLevel2::SetFromLevel2Struct(cTrkLevel2 *l2, TrkLevel1 *l1){
1682
1683 // cout << "void TrkLevel2::SetFromLevel2Struct(cTrkLevel2 *l2, TrkLevel1 *l1)"<<endl;
1684 Clear();
1685
1686 // temporary objects:
1687 TrkSinglet* t_singlet = new TrkSinglet();
1688 TrkTrack* t_track = new TrkTrack();
1689
1690 // -----------------
1691 // general variables
1692 // -----------------
1693 for(Int_t i=0; i<12 ; i++){
1694 good[i] = l2->good[i];
1695 VKmask[i]=0;
1696 VKflag[i]=0;
1697 for(Int_t ii=0; ii<24 ; ii++){
1698 Int_t setbit = (Int_t)pow(2,ii);
1699 if( l2->vkflag[ii][i]!=-1 )VKmask[i]=VKmask[i]|setbit;
1700 if( l2->vkflag[ii][i]!=0 )VKflag[i]=VKflag[i]|setbit;
1701 };
1702 };
1703 // --------------
1704 // *** TRACKS ***
1705 // --------------
1706 if(!Track) Track = new TClonesArray("TrkTrack");
1707 TClonesArray &t = *Track;
1708
1709 for(int i=0; i<l2->ntrk; i++){
1710 t_track->seqno = i;// NBNBNBNB deve sempre essere = i
1711 t_track->image = l2->image[i]-1;
1712 t_track->chi2 = l2->chi2_nt[i];
1713 t_track->nstep = l2->nstep_nt[i];
1714 for(int it1=0;it1<5;it1++){
1715 t_track->al[it1] = l2->al_nt[i][it1];
1716 for(int it2=0;it2<5;it2++)
1717 t_track->coval[it1][it2] = l2->coval[i][it2][it1];
1718 };
1719 for(int ip=0;ip<6;ip++){
1720 // ---------------------------------
1721 // new implementation of xgood/ygood
1722 // ---------------------------------
1723 t_track->xgood[ip] = l2->cltrx[i][ip]; //cluster ID
1724 t_track->ygood[ip] = l2->cltry[i][ip]; //cluster ID
1725 t_track->xgood[ip] += 10000000*l2->ls[i][ip]; // ladder+sensor
1726 t_track->ygood[ip] += 10000000*l2->ls[i][ip]; // ladder+sensor
1727 if(l2->xbad[i][ip]>0)t_track->xgood[ip]=-t_track->xgood[ip];
1728 if(l2->ybad[i][ip]>0)t_track->ygood[ip]=-t_track->ygood[ip];
1729 // if(l2->xbad[i][ip]>0 || l2->ybad[i][ip]>0){
1730 // if(l2->dedx_x[i][ip]<0 || l2->dedx_y[i][ip]<0){
1731 // cout << ip << " - "<< l2->cltrx[i][ip] << " "<<l2->cltry[i][ip]<<" "<<l2->ls[i][ip]<<endl;
1732 // cout << ip << " - "<<t_track->xgood[ip]<<" "<<t_track->ygood[ip]<<endl;
1733 // cout << ip << " - "<<t_track->GetClusterX_ID(ip)<<" "<<t_track->GetClusterY_ID(ip)<<" "<<t_track->GetLadder(ip)<<" "<<t_track->GetSensor(ip)<<endl;
1734 // cout << ip << " - "<<t_track->BadClusterX(ip)<<" "<<t_track->BadClusterY(ip)<<endl;
1735 // cout << ip << " - "<<t_track->SaturatedClusterX(ip)<<" "<<t_track->SaturatedClusterY(ip)<<endl;
1736 // }
1737 t_track->xm[ip] = l2->xm_nt[i][ip];
1738 t_track->ym[ip] = l2->ym_nt[i][ip];
1739 t_track->zm[ip] = l2->zm_nt[i][ip];
1740 t_track->resx[ip] = l2->resx_nt[i][ip];
1741 t_track->resy[ip] = l2->resy_nt[i][ip];
1742 t_track->tailx[ip] = l2->tailx[i][ip];
1743 t_track->taily[ip] = l2->taily[i][ip];
1744 t_track->xv[ip] = l2->xv_nt[i][ip];
1745 t_track->yv[ip] = l2->yv_nt[i][ip];
1746 t_track->zv[ip] = l2->zv_nt[i][ip];
1747 t_track->axv[ip] = l2->axv_nt[i][ip];
1748 t_track->ayv[ip] = l2->ayv_nt[i][ip];
1749 t_track->dedx_x[ip] = l2->dedx_x[i][ip];
1750 t_track->dedx_y[ip] = l2->dedx_y[i][ip];
1751 t_track->multmaxx[ip] = l2->multmaxx[i][ip];
1752 t_track->multmaxy[ip] = l2->multmaxy[i][ip];
1753 t_track->seedx[ip] = l2->seedx[i][ip];
1754 t_track->seedy[ip] = l2->seedy[i][ip];
1755 t_track->xpu[ip] = l2->xpu[i][ip];
1756 t_track->ypu[ip] = l2->ypu[i][ip];
1757 //-----------------------------------------------------
1758 //-----------------------------------------------------
1759 //-----------------------------------------------------
1760 //-----------------------------------------------------
1761 };
1762 // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1763 // evaluated coordinates (to define GF)
1764 // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1765 int ngf = TrkParams::nGF;
1766 float *zgf = TrkParams::zGF;
1767 Trajectory tgf = Trajectory(ngf,zgf);
1768 tgf.DoTrack(t_track->al);//<<<< integrate the trajectory
1769 for(int ip=0; ip<ngf; ip++){
1770 t_track->xGF[ip] = tgf.x[ip];
1771 t_track->yGF[ip] = tgf.y[ip];
1772 }
1773
1774 // if(t_track->IsSaturated())t_track->Dump();
1775 new(t[i]) TrkTrack(*t_track);
1776 t_track->Clear();
1777 };//end loop over track
1778
1779 // ----------------
1780 // *** SINGLETS ***
1781 // ----------------
1782 if(!SingletX)SingletX = new TClonesArray("TrkSinglet");
1783 TClonesArray &sx = *SingletX;
1784 for(int i=0; i<l2->nclsx; i++){
1785 t_singlet->plane = l2->planex[i];
1786 t_singlet->coord[0] = l2->xs[i][0];
1787 t_singlet->coord[1] = l2->xs[i][1];
1788 t_singlet->sgnl = l2->signlxs[i];
1789 t_singlet->multmax = l2->multmaxsx[i];
1790 if(l2->sxbad[i]>0) t_singlet->multmax = -1*t_singlet->multmax;
1791 //-----------------------------------------------------
1792 // if(l1) t_singlet->cls = l1->GetCluster(l2->clsx[i]-1);
1793 //-----------------------------------------------------
1794 new(sx[i]) TrkSinglet(*t_singlet);
1795 t_singlet->Clear();
1796 }
1797 if(!SingletY)SingletY = new TClonesArray("TrkSinglet");
1798 TClonesArray &sy = *SingletY;
1799 for(int i=0; i<l2->nclsy; i++){
1800 t_singlet->plane = l2->planey[i];
1801 t_singlet->coord[0] = l2->ys[i][0];
1802 t_singlet->coord[1] = l2->ys[i][1];
1803 t_singlet->sgnl = l2->signlys[i];
1804 t_singlet->multmax = l2->multmaxsy[i];
1805 if(l2->sybad[i]>0) t_singlet->multmax = -1*t_singlet->multmax;
1806 //-----------------------------------------------------
1807 // if(l1) t_singlet->cls = l1->GetCluster(l2->clsy[i]-1);
1808 //-----------------------------------------------------
1809 new(sy[i]) TrkSinglet(*t_singlet);
1810 t_singlet->Clear();
1811 };
1812
1813
1814
1815 delete t_track;
1816 delete t_singlet;
1817 }
1818 /**
1819 * Fills a struct cTrkLevel2 with values from a TrkLevel2 object (to put data into a F77 common).
1820 */
1821
1822 void TrkLevel2::GetLevel2Struct(cTrkLevel2 *l2) const {
1823
1824 // general variables
1825 // l2->good2 = good2 ;
1826 for(Int_t i=0; i<12 ; i++){
1827 // l2->crc[i] = crc[i];
1828 l2->good[i] = good[i];
1829 };
1830 // *** TRACKS ***
1831
1832 if(Track){
1833 l2->ntrk = Track->GetEntries();
1834 for(Int_t i=0;i<l2->ntrk;i++){
1835 l2->image[i] = 1 + ((TrkTrack *)Track->At(i))->image;
1836 l2->chi2_nt[i] = ((TrkTrack *)Track->At(i))->chi2;
1837 l2->nstep_nt[i] = ((TrkTrack *)Track->At(i))->nstep;
1838 for(int it1=0;it1<5;it1++){
1839 l2->al_nt[i][it1] = ((TrkTrack *)Track->At(i))->al[it1];
1840 for(int it2=0;it2<5;it2++)
1841 l2->coval[i][it2][it1] = ((TrkTrack *)Track->At(i))->coval[it1][it2];
1842 };
1843 for(int ip=0;ip<6;ip++){
1844 l2->xgood_nt[i][ip] = ((TrkTrack *)Track->At(i))->XGood(ip);
1845 l2->ygood_nt[i][ip] = ((TrkTrack *)Track->At(i))->YGood(ip);
1846 l2->xm_nt[i][ip] = ((TrkTrack *)Track->At(i))->xm[ip];
1847 l2->ym_nt[i][ip] = ((TrkTrack *)Track->At(i))->ym[ip];
1848 l2->zm_nt[i][ip] = ((TrkTrack *)Track->At(i))->zm[ip];
1849 l2->resx_nt[i][ip] = ((TrkTrack *)Track->At(i))->resx[ip];
1850 l2->resy_nt[i][ip] = ((TrkTrack *)Track->At(i))->resy[ip];
1851 l2->tailx[i][ip] = ((TrkTrack *)Track->At(i))->tailx[ip];
1852 l2->taily[i][ip] = ((TrkTrack *)Track->At(i))->taily[ip];
1853 l2->xv_nt[i][ip] = ((TrkTrack *)Track->At(i))->xv[ip];
1854 l2->yv_nt[i][ip] = ((TrkTrack *)Track->At(i))->yv[ip];
1855 l2->zv_nt[i][ip] = ((TrkTrack *)Track->At(i))->zv[ip];
1856 l2->axv_nt[i][ip] = ((TrkTrack *)Track->At(i))->axv[ip];
1857 l2->ayv_nt[i][ip] = ((TrkTrack *)Track->At(i))->ayv[ip];
1858 l2->dedx_x[i][ip] = ((TrkTrack *)Track->At(i))->dedx_x[ip];
1859 l2->dedx_y[i][ip] = ((TrkTrack *)Track->At(i))->dedx_y[ip];
1860 };
1861 }
1862 }
1863 // *** SINGLETS ***
1864 if(SingletX){
1865 l2->nclsx = SingletX->GetEntries();
1866 for(Int_t i=0;i<l2->nclsx;i++){
1867 l2->planex[i] = ((TrkSinglet *)SingletX->At(i))->plane;
1868 l2->xs[i][0] = ((TrkSinglet *)SingletX->At(i))->coord[0];
1869 l2->xs[i][1] = ((TrkSinglet *)SingletX->At(i))->coord[1];
1870 l2->signlxs[i] = ((TrkSinglet *)SingletX->At(i))->sgnl;
1871 }
1872 }
1873
1874 if(SingletY){
1875 l2->nclsy = SingletY->GetEntries();
1876 for(Int_t i=0;i<l2->nclsy;i++){
1877 l2->planey[i] = ((TrkSinglet *)SingletY->At(i))->plane;
1878 l2->ys[i][0] = ((TrkSinglet *)SingletY->At(i))->coord[0];
1879 l2->ys[i][1] = ((TrkSinglet *)SingletY->At(i))->coord[1];
1880 l2->signlys[i] = ((TrkSinglet *)SingletY->At(i))->sgnl;
1881 }
1882 }
1883 }
1884 //--------------------------------------
1885 //
1886 //
1887 //--------------------------------------
1888 void TrkLevel2::Clear(){
1889 for(Int_t i=0; i<12 ; i++){
1890 good[i] = -1;
1891 VKflag[i] = 0;
1892 VKmask[i] = 0;
1893 };
1894 // if(Track)Track->Clear("C");
1895 // if(SingletX)SingletX->Clear("C");
1896 // if(SingletY)SingletY->Clear("C");
1897 if(Track)Track->Delete();
1898 if(SingletX)SingletX->Delete();
1899 if(SingletY)SingletY->Delete();
1900 }
1901 // //--------------------------------------
1902 // //
1903 // //
1904 // //--------------------------------------
1905 void TrkLevel2::Delete(){
1906
1907 // cout << "void TrkLevel2::Delete()"<<endl;
1908 Clear();
1909 if(Track)delete Track;
1910 if(SingletX)delete SingletX;
1911 if(SingletY)delete SingletY;
1912
1913 }
1914 //--------------------------------------
1915 //
1916 //
1917 //--------------------------------------
1918 /**
1919 * Sort physical tracks and stores them in a TObjectArray, ordering by increasing chi**2 value (in case of track image, it selects the one with lower chi**2). The total number of physical tracks is given by GetNTracks() and the it-th physical track can be retrieved by means of the method GetTrack(int it).
1920 * This method is overridden by PamLevel2::GetTracks(), where calorimeter and TOF information is used.
1921 */
1922 TRefArray *TrkLevel2::GetTracks_NFitSorted(){
1923
1924 if(!Track)return 0;
1925
1926 // TRefArray *sorted = new TRefArray();
1927 TRefArray *sorted = NULL;
1928
1929 TClonesArray &t = *Track;
1930 // TClonesArray &ts = *PhysicalTrack;
1931 int N = ntrk();
1932 vector<int> m(N); for(int i=0; i<N; i++)m[i]=1;
1933 // int m[50]; for(int i=0; i<N; i++)m[i]=1;
1934
1935 int indo=0;
1936 int indi=0;
1937 while(N > 0){
1938 // while(N != 0){
1939 int nfit =0;
1940 float chi2ref = numeric_limits<float>::max();
1941
1942 // first loop to search maximum num. of fit points
1943 for(int i=0; i < ntrk(); i++){
1944 if( ((TrkTrack *)t[i])->GetNtot() >= nfit && m[i]==1){
1945 nfit = ((TrkTrack *)t[i])->GetNtot();
1946 }
1947 }
1948 //second loop to search minimum chi2 among selected
1949 for(int i=0; i<ntrk(); i++){
1950 Float_t chi2 = ((TrkTrack *)t[i])->chi2;
1951 if(chi2 < 0) chi2 = -chi2*1000;
1952 if( chi2 < chi2ref
1953 && ((TrkTrack *)t[i])->GetNtot() == nfit
1954 && m[i]==1){
1955 chi2ref = ((TrkTrack *)t[i])->chi2;
1956 indi = i;
1957 };
1958 };
1959 if( ((TrkTrack *)t[indi])->HasImage() ){
1960 m[((TrkTrack *)t[indi])->image] = 0;
1961 N--;
1962
1963 // cout << "i** "<< ((TrkTrack *)t[indi])->image << " " << nfiti <<" "<<chi2i<<endl;
1964 };
1965 if(!sorted)sorted = new TRefArray( TProcessID::GetProcessWithUID(t[indi]));
1966 sorted->Add( (TrkTrack*)t[indi] );
1967
1968 m[indi] = 0;
1969 // cout << "SORTED "<< indo << " "<< indi << " "<< N << " "<<((TrkTrack *)t[indi])->image<<" "<<chi2ref<<endl;
1970 N--;
1971 indo++;
1972 }
1973 m.clear();
1974 // cout << "GetTracks_NFitSorted(it): Done"<< endl;
1975
1976 return sorted;
1977 // return PhysicalTrack;
1978 }
1979 //--------------------------------------
1980 //
1981 //
1982 //--------------------------------------
1983 /**
1984 * Retrieves the is-th stored track.
1985 * @param it Track number, ranging from 0 to ntrk().
1986 * Fitted tracks ( images included ) are stored in a TObjectArray ( TrkLevel2::Track ) in the same order they are returned by the F77 fitting routine.
1987 */
1988 TrkTrack *TrkLevel2::GetStoredTrack(int is){
1989
1990 if(is >= this->ntrk()){
1991 cout << "TrkTrack *TrkLevel2::GetStoredTrack(int) >> Track "<< is << "doen not exits! " << endl;
1992 cout << "Stored tracks ntrk() = "<< this->ntrk() << endl;
1993 return 0;
1994 }
1995 if(!Track){
1996 cout << "TrkTrack *TrkLevel2::GetStoredTrack(int is) >> (TClonesArray*) Track ==0 "<<endl;
1997 };
1998 TClonesArray &t = *(Track);
1999 TrkTrack *track = (TrkTrack*)t[is];
2000 return track;
2001 }
2002 //--------------------------------------
2003 //
2004 //
2005 //--------------------------------------
2006 /**
2007 * Retrieves the is-th stored X singlet.
2008 * @param it Singlet number, ranging from 0 to nclsx().
2009 */
2010 TrkSinglet *TrkLevel2::GetSingletX(int is){
2011
2012 if(is >= this->nclsx()){
2013 cout << "TrkSinglet *TrkLevel2::GetSingletX(int) >> Singlet "<< is << "doen not exits! " << endl;
2014 cout << "Stored x-singlets nclsx() = "<< this->nclsx() << endl;
2015 return 0;
2016 }
2017 if(!SingletX)return 0;
2018 TClonesArray &t = *(SingletX);
2019 TrkSinglet *singlet = (TrkSinglet*)t[is];
2020 return singlet;
2021 }
2022 //--------------------------------------
2023 //
2024 //
2025 //--------------------------------------
2026 /**
2027 * Retrieves the is-th stored Y singlet.
2028 * @param it Singlet number, ranging from 0 to nclsx().
2029 */
2030 TrkSinglet *TrkLevel2::GetSingletY(int is){
2031
2032 if(is >= this->nclsy()){
2033 cout << "TrkSinglet *TrkLevel2::GetSingletY(int) >> Singlet "<< is << "doen not exits! " << endl;
2034 cout << "Stored y-singlets nclsx() = "<< this->nclsx() << endl;
2035 return 0;
2036 }
2037 if(!SingletY)return 0;
2038 TClonesArray &t = *(SingletY);
2039 TrkSinglet *singlet = (TrkSinglet*)t[is];
2040 return singlet;
2041 }
2042 //--------------------------------------
2043 //
2044 //
2045 //--------------------------------------
2046 /**
2047 * Retrieves the it-th "physical" track, sorted by the method GetNTracks().
2048 * @param it Track number, ranging from 0 to GetNTracks().
2049 */
2050
2051 TrkTrack *TrkLevel2::GetTrack(int it){
2052
2053 if(it >= this->GetNTracks()){
2054 cout << "TrkTrack *TrkLevel2::GetTrack(int) >> Track "<< it << "does not exits! " << endl;
2055 cout << "Physical tracks GetNTracks() = "<< this->ntrk() << endl;
2056 return 0;
2057 }
2058
2059 TRefArray *sorted = GetTracks(); //TEMPORANEO
2060 if(!sorted)return 0;
2061 TrkTrack *track = (TrkTrack*)sorted->At(it);
2062 sorted->Clear();
2063 delete sorted;
2064 return track;
2065 }
2066 /**
2067 * Give the number of "physical" tracks, sorted by the method GetTracks().
2068 */
2069 Int_t TrkLevel2::GetNTracks(){
2070
2071 Float_t ntot=0;
2072 if(!Track)return 0;
2073 TClonesArray &t = *Track;
2074 for(int i=0; i<ntrk(); i++) {
2075 if( ((TrkTrack *)t[i])->GetImageSeqNo() == -1 ) ntot+=1.;
2076 else ntot+=0.5;
2077 }
2078 return (Int_t)ntot;
2079
2080 };
2081 //--------------------------------------
2082 //
2083 //
2084 //--------------------------------------
2085 /**
2086 * Retrieves (if present) the image of the it-th "physical" track, sorted by the method GetNTracks().
2087 * @param it Track number, ranging from 0 to GetNTracks().
2088 */
2089 TrkTrack *TrkLevel2::GetTrackImage(int it){
2090
2091 if(it >= this->GetNTracks()){
2092 cout << "TrkTrack *TrkLevel2::GetTrackImage(int) >> Track "<< it << "does not exits! " << endl;
2093 cout << "Physical tracks GetNTracks() = "<< this->ntrk() << endl;
2094 return 0;
2095 }
2096
2097 TRefArray* sorted = GetTracks(); //TEMPORANEO
2098 if(!sorted)return 0;
2099 TrkTrack *track = (TrkTrack*)sorted->At(it);
2100
2101 if(!track->HasImage()){
2102 cout << "TrkTrack *TrkLevel2::GetTrackImage(int) >> Track "<< it << "does not have image! " << endl;
2103 return 0;
2104 }
2105 if(!Track)return 0;
2106 TrkTrack *image = (TrkTrack*)(*Track)[track->image];
2107
2108 sorted->Delete();
2109 delete sorted;
2110
2111 return image;
2112
2113 }
2114 //--------------------------------------
2115 //
2116 //
2117 //--------------------------------------
2118 /**
2119 * Loads the magnetic field.
2120 * @param s Path of the magnetic-field files.
2121 */
2122 void TrkLevel2::LoadField(TString path){
2123 //
2124 // strcpy(path_.path,path.Data());
2125 // path_.pathlen = path.Length();
2126 // path_.error = 0;
2127 // readb_();
2128
2129 // TrkParams::SetTrackingMode();
2130 // TrkParams::SetPrecisionFactor();
2131 // TrkParams::SetStepMin();
2132 TrkParams::SetMiniDefault();
2133
2134 TrkParams::Set(path,1);
2135 TrkParams::Load(1);
2136 if( !TrkParams::IsLoaded(1) ){
2137 cout << "void TrkLevel2::LoadField(TString path) --- ERROR --- m.field not loaded"<<endl;
2138 }
2139
2140 //
2141 };
2142 // /**
2143 // * Get BY (kGauss)
2144 // * @param v (x,y,z) coordinates in cm
2145 // */
2146 // float TrkLevel2::GetBX(float* v){
2147 // float b[3];
2148 // gufld_(v,b);
2149 // return b[0]/10.;
2150 // }
2151 // /**
2152 // * Get BY (kGauss)
2153 // * @param v (x,y,z) coordinates in cm
2154 // */
2155 // float TrkLevel2::GetBY(float* v){
2156 // float b[3];
2157 // gufld_(v,b);
2158 // return b[1]/10.;
2159 // }
2160 // /**
2161 // * Get BY (kGauss)
2162 // * @param v (x,y,z) coordinates in cm
2163 // */
2164 // float TrkLevel2::GetBZ(float* v){
2165 // float b[3];
2166 // gufld_(v,b);
2167 // return b[2]/10.;
2168 // }
2169 //--------------------------------------
2170 //
2171 //
2172 //--------------------------------------
2173 /**
2174 * Get tracker-plane (mechanical) z-coordinate
2175 * @param plane_id plane index (1=TOP,2,3,4,5,6=BOTTOM)
2176 */
2177 Float_t TrkLevel2::GetZTrk(Int_t plane_id){
2178 switch(plane_id){
2179 case 1: return ZTRK1;
2180 case 2: return ZTRK2;
2181 case 3: return ZTRK3;
2182 case 4: return ZTRK4;
2183 case 5: return ZTRK5;
2184 case 6: return ZTRK6;
2185 default: return 0.;
2186 };
2187 };
2188 //--------------------------------------
2189 //
2190 //
2191 //--------------------------------------
2192 /**
2193 * Trajectory default constructor.
2194 * (By default is created with z-coordinates inside the tracking volume)
2195 */
2196 Trajectory::Trajectory(){
2197 npoint = 6;
2198 x = new float[npoint];
2199 y = new float[npoint];
2200 z = new float[npoint];
2201 thx = new float[npoint];
2202 thy = new float[npoint];
2203 tl = new float[npoint];
2204 float dz = ((ZTRK1)-(ZTRK6))/(npoint-1);
2205 for(int i=0; i<npoint; i++){
2206 x[i] = 0;
2207 y[i] = 0;
2208 z[i] = (ZTRK1) - i*dz;
2209 thx[i] = 0;
2210 thy[i] = 0;
2211 tl[i] = 0;
2212 }
2213 }
2214 //--------------------------------------
2215 //
2216 //
2217 //--------------------------------------
2218 /**
2219 * Trajectory constructor.
2220 * (By default is created with z-coordinates inside the tracking volume)
2221 * \param n Number of points
2222 */
2223 Trajectory::Trajectory(int n){
2224 if(n<=0){
2225 cout << "NB! Trajectory must have at least 1 point >>> created with 10 points" << endl;
2226 n=10;
2227 }
2228 npoint = n;
2229 x = new float[npoint];
2230 y = new float[npoint];
2231 z = new float[npoint];
2232 thx = new float[npoint];
2233 thy = new float[npoint];
2234 tl = new float[npoint];
2235 float dz = ((ZTRK1)-(ZTRK6))/(npoint-1);
2236 for(int i=0; i<npoint; i++){
2237 x[i] = 0;
2238 y[i] = 0;
2239 z[i] = (ZTRK1) - i*dz;
2240 thx[i] = 0;
2241 thy[i] = 0;
2242 tl[i] = 0;
2243 }
2244 }
2245 //--------------------------------------
2246 //
2247 //
2248 //--------------------------------------
2249 /**
2250 * Trajectory constructor.
2251 * \param n Number of points
2252 * \param pz Pointer to float array, defining z coordinates
2253 */
2254 Trajectory::Trajectory(int n, float* zin){
2255 npoint = 10;
2256 if(n>0)npoint = n;
2257 x = new float[npoint];
2258 y = new float[npoint];
2259 z = new float[npoint];
2260 thx = new float[npoint];
2261 thy = new float[npoint];
2262 tl = new float[npoint];
2263 int i=0;
2264 do{
2265 x[i] = 0.;
2266 y[i] = 0.;
2267 z[i] = zin[i];
2268 thx[i] = 0.;
2269 thy[i] = 0.;
2270 tl[i] = 0.;
2271 i++;
2272 }while(zin[i-1] > zin[i] && i < npoint);
2273 npoint=i;
2274 if(npoint != n)cout << "NB! Trajectory created with "<<npoint<<" points instean of "<<n<<endl;
2275 // Dump();
2276 }
2277 void Trajectory::Delete(){
2278
2279 if(x) delete [] x;
2280 if(y) delete [] y;
2281 if(z) delete [] z;
2282 if(thx) delete [] thx;
2283 if(thy) delete [] thy;
2284 if(tl) delete [] tl;
2285
2286 }
2287 //--------------------------------------
2288 //
2289 //
2290 //--------------------------------------
2291 /**
2292 * Dump the trajectory coordinates.
2293 */
2294 void Trajectory::Dump(){
2295 cout <<endl<< "Trajectory ========== "<<endl;
2296 for (int i=0; i<npoint; i++){
2297 cout << i <<" >> " << x[i] <<" "<< y[i] <<" "<< z[i] ;
2298 cout <<" -- " << thx[i] <<" "<< thy[i] ;
2299 cout <<" -- " << tl[i] << endl;
2300 };
2301 }
2302 //--------------------------------------
2303 //
2304 //
2305 //--------------------------------------
2306 /**
2307 * Get trajectory length between two points
2308 * @param ifirst first point (default 0)
2309 * @param ilast last point (default npoint)
2310 */
2311 float Trajectory::GetLength(int ifirst, int ilast){
2312 if( ifirst<0 ) ifirst = 0;
2313 if( ilast>=npoint) ilast = npoint-1;
2314 float l=0;
2315 for(int i=ifirst;i<=ilast;i++){
2316 l=l+tl[i];
2317 };
2318 if(z[ilast] > ZINI)l=l-tl[ilast];
2319 if(z[ifirst] < ZINI) l=l-tl[ifirst];
2320
2321 return l;
2322
2323 }
2324
2325 /**
2326 * Evaluates the trajectory in the apparatus associated to the track.
2327 * It integrates the equations of motion in the magnetic field.
2328 * @param al Track state-vector (X0,Y0,sin(theta),phi,deflection).
2329 * @param zini z-coordinate of the reference plane (Z0).
2330 * @return error flag.
2331 *
2332 * This method is needed when you want to integrate the particle trajectory
2333 * starting from a track state-vector relative to an arbitrary reference plane.
2334 * The default reference plane, used by the tracker routines, is at zini=23.5.
2335 * If you give as input the track state-vector from a TrkTrack object,
2336 * you can use Trajectory::DoTrack(float* al) instead.
2337 */
2338 int Trajectory::DoTrack(float* al, float zini){
2339
2340 // double *dxout = new double[npoint];
2341 // double *dyout = new double[npoint];
2342 // double *dthxout = new double[npoint];
2343 // double *dthyout = new double[npoint];
2344 // double *dtlout = new double[npoint];
2345 // double *dzin = new double[npoint];
2346
2347 double *dxout;
2348 double *dyout;
2349 double *dthxout;
2350 double *dthyout;
2351 double *dtlout;
2352 double *dzin;
2353
2354 dxout = (double*) malloc(npoint*sizeof(double));
2355 dyout = (double*) malloc(npoint*sizeof(double));
2356 dthxout = (double*) malloc(npoint*sizeof(double));
2357 dthyout = (double*) malloc(npoint*sizeof(double));
2358 dtlout = (double*) malloc(npoint*sizeof(double));
2359 dzin = (double*) malloc(npoint*sizeof(double));
2360
2361 double dal[5];
2362
2363 double dzini = (double)zini;
2364
2365 int ifail = 0;
2366
2367 for (int i=0; i<5; i++) dal[i] = (double)al[i];
2368 for (int i=0; i<npoint; i++) dzin[i] = (double)z[i];
2369
2370 TrkParams::Load(1);
2371 if( !TrkParams::IsLoaded(1) ){
2372 cout << "int Trajectory::DoTrack(float* al) --- ERROR --- m.field not loaded"<<endl;
2373 return 0;
2374 }
2375 // dotrack2_(&(npoint),dzin,dxout,dyout,dthxout,dthyout,dtlout,dal,&ifail);
2376 dotrack3_(&(npoint),dzin,dxout,dyout,dthxout,dthyout,dtlout,dal,&dzini,&ifail);
2377
2378 for (int i=0; i<npoint; i++){
2379 x[i] = (float)*(dxout+i);
2380 y[i] = (float)*(dyout+i);
2381 thx[i] = (float)*(dthxout+i);
2382 thy[i] = (float)*(dthyout+i);
2383 tl[i] = (float)*(dtlout+i);
2384 }
2385
2386 if(dxout) free( dxout );
2387 if(dyout) free( dyout );
2388 if(dthxout)free( dthxout );
2389 if(dthyout)free( dthyout );
2390 if(dtlout) free( dtlout );
2391 if(dzin) free( dzin );
2392
2393 // delete [] dxout;
2394 // delete [] dyout;
2395 // delete [] dthxout;
2396 // delete [] dthyout;
2397 // delete [] dtlout;
2398 // delete [] dzin;
2399
2400
2401 return ifail;
2402 };
2403
2404 /**
2405 *
2406 * >>> OBSOLETE !!! use Trajectory::DoTrack(float* al, float zini) instead
2407 *
2408 */
2409 int Trajectory::DoTrack2(float* al, float zini){
2410
2411 cout << endl;
2412 cout << " int Trajectory::DoTrack2(float* al, float zini) --->> NB NB !! this method is going to be eliminated !!! "<<endl;
2413 cout << " >>>> replace it with TrkTrack::DoTrack(Trajectory* t) <<<<"<<endl;
2414 cout << " (Sorry Wolfgang!! Don't be totally confused!! By Elena)"<<endl;
2415 cout << endl;
2416
2417 return DoTrack(al,zini);
2418
2419 };
2420
2421
2422
2423 ClassImp(TrkLevel2);
2424 ClassImp(TrkSinglet);
2425 ClassImp(TrkTrack);
2426 ClassImp(Trajectory);

  ViewVC Help
Powered by ViewVC 1.1.23