/[PAMELA software]/DarthVader/TrackerLevel2/src/TrkLevel2.cpp
ViewVC logotype

Contents of /DarthVader/TrackerLevel2/src/TrkLevel2.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1.52 - (show annotations) (download)
Tue Feb 3 10:14:27 2009 UTC (15 years, 10 months ago) by pam-fi
Branch: MAIN
CVS Tags: v6r01
Changes since 1.51: +3 -1 lines
fixed bug/incompatibility between TRefArray and ROOT 5.20

1 /**
2 * \file TrkLevel2.cpp
3 * \author Elena Vannuccini
4 */
5 #include <TrkLevel2.h>
6 #include <iostream>
7 #include <math.h>
8 using namespace std;
9 //......................................
10 // F77 routines
11 //......................................
12 extern "C" {
13 void dotrack_(int*, double*, double*, double*, double*, int*);
14 void dotrack2_(int*, double*, double*, double*, double*,double*, double*, double*,int*);
15 void mini2_(int*,int*,int*);
16 void guess_();
17 void gufld_(float*, float*);
18 float risxeta2_(float *);
19 float risxeta3_(float *);
20 float risxeta4_(float *);
21 float risyeta2_(float *);
22 }
23
24 //--------------------------------------
25 //
26 //
27 //--------------------------------------
28 TrkTrack::TrkTrack(){
29 // cout << "TrkTrack::TrkTrack()" << endl;
30 seqno = -1;
31 image = -1;
32 chi2 = 0;
33 nstep = 0;
34 for(int it1=0;it1<5;it1++){
35 al[it1] = 0;
36 for(int it2=0;it2<5;it2++)coval[it1][it2] = 0;
37 };
38 for(int ip=0;ip<6;ip++){
39 xgood[ip] = 0;
40 ygood[ip] = 0;
41 xm[ip] = 0;
42 ym[ip] = 0;
43 zm[ip] = 0;
44 resx[ip] = 0;
45 resy[ip] = 0;
46 tailx[ip] = 0;
47 taily[ip] = 0;
48 xv[ip] = 0;
49 yv[ip] = 0;
50 zv[ip] = 0;
51 axv[ip] = 0;
52 ayv[ip] = 0;
53 dedx_x[ip] = 0;
54 dedx_y[ip] = 0;
55 multmaxx[ip] = 0;
56 multmaxy[ip] = 0;
57 seedx[ip] = 0;
58 seedy[ip] = 0;
59 xpu[ip] = 0;
60 ypu[ip] = 0;
61
62 };
63
64 // TrkParams::SetTrackingMode();
65 // TrkParams::SetPrecisionFactor();
66 // TrkParams::SetStepMin();
67 TrkParams::SetMiniDefault();
68 TrkParams::SetPFA();
69
70 int ngf = TrkParams::nGF;
71 for(int i=0; i<ngf; i++){
72 xGF[i] = 0.;
73 yGF[i] = 0.;
74 }
75
76
77 };
78 //--------------------------------------
79 //
80 //
81 //--------------------------------------
82 TrkTrack::TrkTrack(const TrkTrack& t){
83 seqno = t.seqno;
84 image = t.image;
85 chi2 = t.chi2;
86 nstep = t.nstep;
87 for(int it1=0;it1<5;it1++){
88 al[it1] = t.al[it1];
89 for(int it2=0;it2<5;it2++)coval[it1][it2] = t.coval[it1][it2];
90 };
91 for(int ip=0;ip<6;ip++){
92 xgood[ip] = t.xgood[ip];
93 ygood[ip] = t.ygood[ip];
94 xm[ip] = t.xm[ip];
95 ym[ip] = t.ym[ip];
96 zm[ip] = t.zm[ip];
97 resx[ip] = t.resx[ip];
98 resy[ip] = t.resy[ip];
99 tailx[ip] = t.tailx[ip];
100 taily[ip] = t.taily[ip];
101 xv[ip] = t.xv[ip];
102 yv[ip] = t.yv[ip];
103 zv[ip] = t.zv[ip];
104 axv[ip] = t.axv[ip];
105 ayv[ip] = t.ayv[ip];
106 dedx_x[ip] = t.dedx_x[ip];
107 dedx_y[ip] = t.dedx_y[ip];
108 multmaxx[ip] = t.multmaxx[ip];
109 multmaxy[ip] = t.multmaxy[ip];
110 seedx[ip] = t.seedx[ip];
111 seedy[ip] = t.seedy[ip];
112 xpu[ip] = t.xpu[ip];
113 ypu[ip] = t.ypu[ip];
114 };
115
116 // TrkParams::SetTrackingMode();
117 // TrkParams::SetPrecisionFactor();
118 // TrkParams::SetStepMin();
119 TrkParams::SetMiniDefault();
120 TrkParams::SetPFA();
121
122 int ngf = TrkParams::nGF;
123 for(int i=0; i<ngf; i++){
124 xGF[i] = t.xGF[i];
125 yGF[i] = t.yGF[i];
126 }
127 };
128 //--------------------------------------
129 //
130 //
131 //--------------------------------------
132 void TrkTrack::Copy(TrkTrack& t){
133
134 t.seqno = seqno;
135 t.image = image;
136 t.chi2 = chi2;
137 t.nstep = nstep;
138 for(int it1=0;it1<5;it1++){
139 t.al[it1] = al[it1];
140 for(int it2=0;it2<5;it2++)t.coval[it1][it2] = coval[it1][it2];
141 };
142 for(int ip=0;ip<6;ip++){
143 t.xgood[ip] = xgood[ip];
144 t.ygood[ip] = ygood[ip];
145 t.xm[ip] = xm[ip];
146 t.ym[ip] = ym[ip];
147 t.zm[ip] = zm[ip];
148 t.resx[ip] = resx[ip];
149 t.resy[ip] = resy[ip];
150 t.tailx[ip] = tailx[ip];
151 t.taily[ip] = taily[ip];
152 t.xv[ip] = xv[ip];
153 t.yv[ip] = yv[ip];
154 t.zv[ip] = zv[ip];
155 t.axv[ip] = axv[ip];
156 t.ayv[ip] = ayv[ip];
157 t.dedx_x[ip] = dedx_x[ip];
158 t.dedx_y[ip] = dedx_y[ip];
159 t.multmaxx[ip] = multmaxx[ip];
160 t.multmaxy[ip] = multmaxy[ip];
161 t.seedx[ip] = seedx[ip];
162 t.seedy[ip] = seedy[ip];
163 t.xpu[ip] = xpu[ip];
164 t.ypu[ip] = ypu[ip];
165
166 };
167 int ngf = TrkParams::nGF;
168 for(int i=0; i<ngf; i++){
169 t.xGF[i] = xGF[i];
170 t.yGF[i] = yGF[i];
171 }
172
173
174 };
175 //--------------------------------------
176 //
177 //
178 //--------------------------------------
179 /**
180 * Evaluates the trajectory in the apparatus associated to the track.
181 * It integrates the equations of motion in the magnetic field. The magnetic field should be previously loaded ( by calling TrkLevel2::LoadField() ), otherwise an error message is returned.
182 * @param t pointer to an object of the class Trajectory,
183 * which z coordinates should be previously initialized by calling the proper constructor ( Trajectory::Trajectory(int n, float* zin) ).
184 * @return error flag.
185 *
186 * >>> OBSOLETE !!! use TrkTrack::DoTrack2(Trajectory* t) instead
187 *
188 */
189 int TrkTrack::DoTrack(Trajectory* t){
190
191 cout << " int TrkTrack::DoTrack(Trajectory* t) --->> OBSOLETE !!! "<<endl;
192 cout << " use int TrkTrack::DoTrack2(Trajectory* t)"<<endl;
193
194 double *dxout = new double[t->npoint];
195 double *dyout = new double[t->npoint];
196 double *dzin = new double[t->npoint];
197 double dal[5];
198
199 int ifail = 0;
200
201 for (int i=0; i<5; i++) dal[i] = (double)al[i];
202 for (int i=0; i<t->npoint; i++) dzin[i] = (double)t->z[i];
203
204 TrkParams::Load(1);
205 if( !TrkParams::IsLoaded(1) ){
206 cout << "int TrkTrack::DoTrack(Trajectory* t) --- ERROR --- m.field not loaded"<<endl;
207 return 0;
208 }
209 dotrack_(&(t->npoint),dzin,dxout,dyout,dal,&ifail);
210
211 for (int i=0; i<t->npoint; i++){
212 t->x[i] = (float)*(dxout+i);
213 t->y[i] = (float)*(dyout+i);
214 }
215
216 delete [] dxout;
217 delete [] dyout;
218 delete [] dzin;
219
220 return ifail;
221 };
222 //--------------------------------------
223 //
224 //
225 //--------------------------------------
226 /**
227 * Evaluates the trajectory in the apparatus associated to the track.
228 * It integrates the equations of motion in the magnetic field. The magnetic field should be previously loaded ( by calling TrkLevel2::LoadField() ), otherwise an error message is returned.
229 * @param t pointer to an object of the class Trajectory,
230 * which z coordinates should be previously initialized by calling the proper constructor ( Trajectory::Trajectory(int n, float* zin) ).
231 * @return error flag.
232 */
233 int TrkTrack::DoTrack2(Trajectory* t){
234
235 double *dxout = new double[t->npoint];
236 double *dyout = new double[t->npoint];
237 double *dthxout = new double[t->npoint];
238 double *dthyout = new double[t->npoint];
239 double *dtlout = new double[t->npoint];
240 double *dzin = new double[t->npoint];
241 double dal[5];
242
243 int ifail = 0;
244
245 for (int i=0; i<5; i++) dal[i] = (double)al[i];
246 for (int i=0; i<t->npoint; i++) dzin[i] = (double)t->z[i];
247
248 TrkParams::Load(1);
249 if( !TrkParams::IsLoaded(1) ){
250 cout << "int TrkTrack::DoTrack2(Trajectory* t) --- ERROR --- m.field not loaded"<<endl;
251 return 0;
252 }
253 dotrack2_(&(t->npoint),dzin,dxout,dyout,dthxout,dthyout,dtlout,dal,&ifail);
254
255 for (int i=0; i<t->npoint; i++){
256 t->x[i] = (float)*(dxout+i);
257 t->y[i] = (float)*(dyout+i);
258 t->thx[i] = (float)*(dthxout+i);
259 t->thy[i] = (float)*(dthyout+i);
260 t->tl[i] = (float)*(dtlout+i);
261 }
262
263 delete [] dxout;
264 delete [] dyout;
265 delete [] dzin;
266 delete [] dthxout;
267 delete [] dthyout;
268 delete [] dtlout;
269
270 return ifail;
271 };
272 //--------------------------------------
273 //
274 //
275 //--------------------------------------
276 //float TrkTrack::BdL(){
277 //};
278 //--------------------------------------
279 //
280 //
281 //--------------------------------------
282 Float_t TrkTrack::GetRigidity(){
283 Float_t rig=0;
284 if(chi2>0)rig=1./al[4];
285 if(rig<0) rig=-rig;
286 return rig;
287 };
288 //
289 Float_t TrkTrack::GetDeflection(){
290 Float_t def=0;
291 if(chi2>0)def=al[4];
292 return def;
293 };
294 //
295 /**
296 * Method to retrieve the dE/dx measured on a tracker view.
297 * @param ip plane (0-5)
298 * @param iv view (0=x 1=y)
299 */
300 Float_t TrkTrack::GetDEDX(int ip, int iv){
301 if(iv==0 && ip>=0 && ip<6)return fabs(dedx_x[ip]);
302 else if(iv==1 && ip>=0 && ip<6)return fabs(dedx_y[ip]);
303 else {
304 cout << "TrkTrack::GetDEDX(int ip, int iv) -- wrong input parameters "<<ip<<iv<<endl;
305 return 0.;
306 }
307 }
308 /**
309 * Method to evaluate the dE/dx measured on a tracker plane.
310 * The two measurements on x- and y-view are averaged.
311 * @param ip plane (0-5)
312 */
313 Float_t TrkTrack::GetDEDX(int ip){
314 if( (Int_t)XGood(ip)+(Int_t)YGood(ip) == 0 ) return 0;
315 return (GetDEDX(ip,0)+GetDEDX(ip,1))/((Int_t)XGood(ip)+(Int_t)YGood(ip));
316 };
317
318 /**
319 * Method to evaluate the dE/dx averaged over all planes.
320 */
321 Float_t TrkTrack::GetDEDX(){
322 Float_t dedx=0;
323 for(Int_t ip=0; ip<6; ip++)dedx+=GetDEDX(ip,0)*XGood(ip)+GetDEDX(ip,1)*YGood(ip);
324 dedx = dedx/(GetNX()+GetNY());
325 return dedx;
326 };
327 /**
328 * Returns 1 if the cluster on a tracker view includes bad strips
329 * (at least one bad strip among the four strip used by p.f.a.)
330 * @param ip plane (0-5)
331 * @param iv view (0=x 1=y)
332 */
333 Bool_t TrkTrack::IsBad(int ip,int iv){
334 if(iv==0 && ip>=0 && ip<6)return (xgood[ip]<0) ;
335 else if(iv==1 && ip>=0 && ip<6)return (ygood[ip]<0) ;
336 else {
337 cout << "TrkTrack::IsBad(int ip, int iv) -- wrong input parameters "<<ip<<iv<<endl;
338 return 0.;
339 }
340 };
341 /**
342 * Returns 1 if the signal on a tracker view is saturated.
343 * @param ip plane (0-5)
344 * @param iv view (0=x 1=y)
345 */
346 Bool_t TrkTrack::IsSaturated(int ip,int iv){
347 if(iv==0 && ip>=0 && ip<6)return (dedx_x[ip]<0) ;
348 else if(iv==1 && ip>=0 && ip<6)return (dedx_y[ip]<0) ;
349 else {
350 cout << "TrkTrack::IsSaturated(int ip, int iv) -- wrong input parameters "<<ip<<iv<<endl;
351 return 0.;
352 }
353 };
354 /**
355 * Returns 1 if either the x or the y signal on a tracker plane is saturated.
356 * @param ip plane (0-5)
357 */
358 Bool_t TrkTrack::IsSaturated(int ip){
359 return (IsSaturated(ip,0)||IsSaturated(ip,1));
360 };
361 /**
362 * Returns 1 if there is at least a saturated signal along the track.
363 */
364 Bool_t TrkTrack::IsSaturated(){
365 for(int ip=0; ip<6; ip++)for(int iv=0; iv<2; iv++)if(IsSaturated(ip,iv))return true;
366 return false;
367 }
368 /**
369 * Returns the track "lever-arm" on the x view, defined as the distance (in planes) between
370 * the upper and lower x measurements (the maximum value of lever-arm is 6).
371 */
372 Int_t TrkTrack::GetLeverArmX(){
373 int first_plane = -1;
374 int last_plane = -1;
375 for(Int_t ip=0; ip<6; ip++){
376 if( XGood(ip) && first_plane == -1 )first_plane = ip;
377 if( XGood(ip) && first_plane != -1 )last_plane = ip;
378 }
379 if( first_plane == -1 || last_plane == -1){
380 cout<< "Int_t TrkTrack::GetLeverArmX() -- XGood(ip) always false ??? "<<endl;
381 return 0;
382 }
383 return (last_plane-first_plane+1);
384 }
385 /**
386 * Returns the track "lever-arm" on the y view, defined as the distance (in planes) between
387 * the upper and lower y measurements (the maximum value of lever-arm is 6).
388 */
389 Int_t TrkTrack::GetLeverArmY(){
390 int first_plane = -1;
391 int last_plane = -1;
392 for(Int_t ip=0; ip<6; ip++){
393 if( YGood(ip) && first_plane == -1 )first_plane = ip;
394 if( YGood(ip) && first_plane != -1 )last_plane = ip;
395 }
396 if( first_plane == -1 || last_plane == -1){
397 cout<< "Int_t TrkTrack::GetLeverArmY() -- YGood(ip) always false ??? "<<endl;
398 return 0;
399 }
400 return (last_plane-first_plane+1);
401 }
402 /**
403 * Returns the track "lever-arm" on the x+y view, defined as the distance (in planes) between
404 * the upper and lower x,y (couple) measurements (the maximum value of lever-arm is 6).
405 */
406 Int_t TrkTrack::GetLeverArmXY(){
407 int first_plane = -1;
408 int last_plane = -1;
409 for(Int_t ip=0; ip<6; ip++){
410 if( XGood(ip)*YGood(ip) && first_plane == -1 )first_plane = ip;
411 if( XGood(ip)*YGood(ip) && first_plane != -1 )last_plane = ip;
412 }
413 if( first_plane == -1 || last_plane == -1){
414 cout<< "Int_t TrkTrack::GetLeverArmXY() -- XGood(ip)*YGood(ip) always false ??? "<<endl;
415 return 0;
416 }
417 return (last_plane-first_plane+1);
418 }
419 /**
420 * Returns the reduced chi-square of track x-projection
421 */
422 Float_t TrkTrack::GetChi2X(){
423 float chiq=0;
424 for(int ip=0; ip<6; ip++)if(XGood(ip))chiq+= pow((xv[ip]-xm[ip])/resx[ip],2.);
425 if(GetNX()>3)chiq=chiq/(GetNX()-3);
426 else chiq=0;
427 if(chiq==0)cout << " Float_t TrkTrack::GetChi2X() -- WARNING -- value not defined "<<chiq<<endl;
428 return chiq;
429 }
430 /**
431 * Returns the reduced chi-square of track y-projection
432 */
433 Float_t TrkTrack::GetChi2Y(){
434 float chiq=0;
435 for(int ip=0; ip<6; ip++)if(YGood(ip))chiq+= pow((yv[ip]-ym[ip])/resy[ip],2.);
436 if(GetNY()>2)chiq=chiq/(GetNY()-2);
437 else chiq=0;
438 if(chiq==0)cout << " Float_t TrkTrack::GetChi2Y() -- WARNING -- value not defined "<<chiq<<endl;
439 return chiq;
440 }
441 /**
442 * Returns the logarythm of the likeliwood-function of track x-projection
443 */
444 Float_t TrkTrack::GetLnLX(){
445 float lnl=0;
446 for(int ip=0; ip<6; ip++)
447 if( XGood(ip) && tailx[ip]!=0 )
448 lnl += (tailx[ip]+1.) * log( (tailx[ip]*pow(resx[ip],2.) + pow(xv[ip]-xm[ip],2.)) / (tailx[ip]*pow(resx[ip],2)) );
449 if(GetNX()>3)lnl=lnl/(GetNX()-3);
450 else lnl=0;
451 if(lnl==0){
452 cout << " Float_t TrkTrack::GetLnLX() -- WARNING -- value not defined "<<lnl<<endl;
453 Dump();
454 }
455 return lnl;
456
457 }
458 /**
459 * Returns the logarythm of the likeliwood-function of track y-projection
460 */
461 Float_t TrkTrack::GetLnLY(){
462 float lnl=0;
463 for(int ip=0; ip<6; ip++)
464 if( YGood(ip) && taily[ip]!=0 )
465 lnl += (taily[ip]+1.) * log( (taily[ip]*pow(resy[ip],2.) + pow(yv[ip]-ym[ip],2.)) / (taily[ip]*pow(resy[ip],2)) );
466 if(GetNY()>2)lnl=lnl/(GetNY()-2);
467 else lnl=0;
468 if(lnl==0){
469 cout << " Float_t TrkTrack::GetLnLY() -- WARNING -- value not defined "<<lnl<<endl;
470 Dump();
471 }
472 return lnl;
473
474 }
475 /**
476 * Returns the effective angle, relative to the sensor, on each plane.
477 * @param ip plane (0-5)
478 * @param iv view (0=x 1=y)
479 */
480 Float_t TrkTrack::GetEffectiveAngle(int ip, int iv){
481
482 if(ip<0 || ip>5){
483 cout << "Float_t TrkTrack::GetEffectiveAngle(int "<<ip<<", int "<<iv<<") ==> wrong input"<<endl;
484 return 0.;
485 }
486
487 float v[3]={xv[ip],yv[ip],zv[ip]};
488 //-----------------------------------------
489 // effective angle (relative to the sensor)
490 //-----------------------------------------
491 float axv_geo = axv[ip];
492 float muhall_h = 297.61; //cm**2/Vs
493 float BY = TrkParams::GetBY(v);
494 float axv_eff = 0;
495 if(ip==5) axv_geo = -1*axv_geo;
496 if(ip==5) BY = -1*BY;
497 axv_eff = 180.*atan( tan(axv_geo*acos(-1.)/180.) + muhall_h * BY * 0.0001)/acos(-1.);
498 //-----------------------------------------
499 // effective angle (relative to the sensor)
500 //-----------------------------------------
501 float ayv_geo = ayv[ip];
502 float muhall_e = 1258.18; //cm**2/Vs
503 float BX = TrkParams::GetBX(v);
504 float ayv_eff = 0;
505 ayv_eff = 180.*atan( tan(ayv_geo*acos(-1.)/180.) + muhall_e * BX * 0.0001)/acos(-1.);
506
507 if (iv==0)return axv_eff;
508 else if(iv==1)return ayv_eff;
509 else{
510 cout << "Float_t TrkTrack::GetEffectiveAngle(int "<<ip<<", int "<<iv<<") ==> wrong input"<<endl;
511 return 0.;
512 }
513
514 };
515
516 //--------------------------------------
517 //
518 //
519 //--------------------------------------
520 void TrkTrack::Dump(){
521 cout << endl << "========== Track " ;
522 cout << endl << "seq. n. : "<< seqno;
523 cout << endl << "image n. : "<< image;
524 cout << endl << "al : "; for(int i=0; i<5; i++)cout << al[i] << " ";
525 cout << endl << "chi^2 : "<< chi2;
526 cout << endl << "n.step : "<< nstep;
527 cout << endl << "xgood : "; for(int i=0; i<6; i++)cout << XGood(i) ;
528 cout << endl << "ygood : "; for(int i=0; i<6; i++)cout << YGood(i) ;
529 cout << endl << "xm : "; for(int i=0; i<6; i++)cout << xm[i] << " ";
530 cout << endl << "ym : "; for(int i=0; i<6; i++)cout << ym[i] << " ";
531 cout << endl << "zm : "; for(int i=0; i<6; i++)cout << zm[i] << " ";
532 cout << endl << "xv : "; for(int i=0; i<6; i++)cout << xv[i] << " ";
533 cout << endl << "yv : "; for(int i=0; i<6; i++)cout << yv[i] << " ";
534 cout << endl << "zv : "; for(int i=0; i<6; i++)cout << zv[i] << " ";
535 cout << endl << "resx : "; for(int i=0; i<6; i++)cout << resx[i] << " ";
536 cout << endl << "resy : "; for(int i=0; i<6; i++)cout << resy[i] << " ";
537 cout << endl << "tailx : "; for(int i=0; i<6; i++)cout << tailx[i] << " ";
538 cout << endl << "taily : "; for(int i=0; i<6; i++)cout << taily[i] << " ";
539 cout << endl << "coval : "; for(int i=0; i<5; i++)cout << coval[0][i]<<" ";
540 cout << endl << " "; for(int i=0; i<5; i++)cout << coval[1][i]<<" ";
541 cout << endl << " "; for(int i=0; i<5; i++)cout << coval[2][i]<<" ";
542 cout << endl << " "; for(int i=0; i<5; i++)cout << coval[3][i]<<" ";
543 cout << endl << " "; for(int i=0; i<5; i++)cout << coval[4][i]<<" ";
544 cout << endl << "dedx_x : "; for(int i=0; i<6; i++)cout << dedx_x[i] << " ";
545 cout << endl << "dedx_y : "; for(int i=0; i<6; i++)cout << dedx_y[i] << " ";
546 cout << endl << "maxs x : "; for(int i=0; i<6; i++)cout << GetClusterX_MaxStrip(i) << " ";
547 cout << endl << "maxs y : "; for(int i=0; i<6; i++)cout << GetClusterY_MaxStrip(i) << " ";
548 cout << endl << "mult x : "; for(int i=0; i<6; i++)cout << GetClusterX_Multiplicity(i) << " ";
549 cout << endl << "mult y : "; for(int i=0; i<6; i++)cout << GetClusterY_Multiplicity(i) << " ";
550 cout << endl << "seed x : "; for(int i=0; i<6; i++)cout << GetClusterX_Seed(i) << " ";
551 cout << endl << "seed y : "; for(int i=0; i<6; i++)cout << GetClusterY_Seed(i) << " ";
552 cout << endl << "xpu : "; for(int i=0; i<6; i++)cout << xpu[i] << " ";
553 cout << endl << "ypu : "; for(int i=0; i<6; i++)cout << ypu[i] << " ";
554
555 cout << endl;
556 }
557 /**
558 * Set the TrkTrack position measurements
559 */
560 void TrkTrack::SetMeasure(double *xmeas, double *ymeas, double *zmeas){
561 for(int i=0; i<6; i++) xm[i]=*xmeas++;
562 for(int i=0; i<6; i++) ym[i]=*ymeas++;
563 for(int i=0; i<6; i++) zm[i]=*zmeas++;
564 }
565 /**
566 * Set the TrkTrack position resolution
567 */
568 void TrkTrack::SetResolution(double *rx, double *ry){
569 for(int i=0; i<6; i++) resx[i]=*rx++;
570 for(int i=0; i<6; i++) resy[i]=*ry++;
571 }
572 /**
573 * Set the TrkTrack tails position resolution
574 */
575 void TrkTrack::SetTail(double *tx, double *ty, double factor){
576 for(int i=0; i<6; i++) tailx[i]=factor*(*tx++);
577 for(int i=0; i<6; i++) taily[i]=factor*(*ty++);
578 }
579 /**
580 * Set the TrkTrack Student parameter (resx,resy,tailx,taily)
581 * from previous gausian fit
582 *@param flag =0 standard, =1 with noise correction
583 */
584 void TrkTrack::SetStudentParam(int flag){
585 float sx[11]={0.000128242,
586 0.000136942,
587 0.000162718,
588 0.000202644,
589 0.00025597,
590 0.000317456,
591 0.000349048,
592 0.000384638,
593 0.000457295,
594 0.000512319,
595 0.000538573};
596 float tx[11]={1.79402,
597 2.04876,
598 2.88376,
599 3.3,
600 3.14084,
601 4.07686,
602 4.44736,
603 3.5179,
604 3.38697,
605 3.45739,
606 3.18627};
607 float sy[11]={0.000483075,
608 0.000466925,
609 0.000431658,
610 0.000428317,
611 0.000433854,
612 0.000444044,
613 0.000482098,
614 0.000537579,
615 0.000636279,
616 0.000741998,
617 0.000864261};
618 float ty[11]={0.997032,
619 1.11147,
620 1.18526,
621 1.61404,
622 2.21908,
623 3.08959,
624 4.48833,
625 4.42687,
626 4.65253,
627 4.52043,
628 4.29926};
629 int index;
630 float fact=0.;
631 for(int i=0; i<6; i++) {
632 index = int((fabs(axv[i])+1.)/2.);
633 if(index>10) index=10;
634 tailx[i]=tx[index];
635 if(flag==1) {
636 if(fabs(axv[i])<=10.) fact = resx[i]/risxeta2_(&(axv[i]));
637 if(fabs(axv[i])>10.&&fabs(axv[i])<=15.) fact = resx[i]/risxeta3_(&(axv[i]));
638 if(fabs(axv[i])>15.) fact = resx[i]/risxeta4_(&(axv[i]));
639 } else fact = 1.;
640 resx[i] = sx[index]*fact;
641 }
642 for(int i=0; i<6; i++) {
643 index = int((fabs(ayv[i])+1.)/2.);
644 if(index>10) index=10;
645 taily[i]=ty[index];
646 if(flag==1) fact = resy[i]/risyeta2_(&(ayv[i]));
647 else fact = 1.;
648 resy[i] = sy[index]*fact;
649 }
650 }
651 /**
652 * Set the TrkTrack good measurement
653 */
654 void TrkTrack::SetGood(int *xg, int *yg){
655
656 for(int i=0; i<6; i++) xgood[i]=*xg++;
657 for(int i=0; i<6; i++) ygood[i]=*yg++;
658 }
659
660 /**
661 * Load the magnetic field
662 */
663 void TrkTrack::LoadField(TString path){
664
665 // strcpy(path_.path,path.Data());
666 // path_.pathlen = path.Length();
667 // path_.error = 0;
668 // readb_();
669
670 // TrkParams::SetTrackingMode();
671 // TrkParams::SetPrecisionFactor();
672 // TrkParams::SetStepMin();
673 TrkParams::SetMiniDefault();
674
675 TrkParams::Set(path,1);
676 TrkParams::Load(1);
677 if( !TrkParams::IsLoaded(1) ){
678 cout << "void TrkTrack::LoadField(TString path) --- ERROR --- m.field not loaded"<<endl;
679 }
680
681 };
682
683
684 /**
685 * Method to fill minimization-routine common
686 */
687 void TrkTrack::FillMiniStruct(cMini2track& track){
688
689 for(int i=0; i<6; i++){
690
691 // cout << i<<" - "<<xgood[i]<<" "<<XGood(i)<<endl;
692 // cout << i<<" - "<<ygood[i]<<" "<<YGood(i)<<endl;
693 track.xgood[i]=XGood(i);
694 track.ygood[i]=YGood(i);
695
696 track.xm[i]=xm[i];
697 track.ym[i]=ym[i];
698 track.zm[i]=zm[i];
699
700 // --- temporaneo ----------------------------
701 // float segment = 100.;
702 // track.xm_a[i]=xm[i];
703 // track.xm_b[i]=xm[i];
704 // track.ym_a[i]=ym[i];
705 // track.ym_b[i]=ym[i];
706 // if( XGood(i) && !YGood(i) ){
707 // track.ym_a[i] = track.ym_a[i]+segment;
708 // track.ym_b[i] = track.ym_b[i]-segment;
709 // }else if( !XGood(i) && YGood(i)){
710 // track.xm_a[i] = track.xm_a[i]+segment;
711 // track.xm_b[i] = track.xm_b[i]-segment;
712 // }
713 // --- temporaneo ----------------------------
714
715 if( XGood(i) || YGood(i) ){
716 double segment = 2.;//cm
717 // NB: i parametri di allineamento hanno una notazione particolare!!!
718 // sensor = 0 (hybrid side), 1
719 // ladder = 0-2 (increasing x)
720 // plane = 0-5 (from bottom to top!!!)
721 int is = (int)GetSensor(i); if(i==5)is=1-is;
722 int ip = 5-i;
723 int il = (int)GetLadder(i);
724
725 double omega = 0.;
726 double beta = 0.;
727 double gamma = 0.;
728 if(
729 (is < 0 || is > 1 || ip < 0 || ip > 5 || il < 0 || il > 2) &&
730 true){
731 // se il piano risulta colpito, ladder e sensore devono essere
732 // assegnati correttamente
733 cout << " void TrkTrack::FillMiniStruct(cMini2track&) --- WARNING --- sensor not defined, cannot read alignment parameters "<<endl;
734 cout << " is ip il = "<<is<<" "<<ip<<" "<<il<<endl;
735 }else{
736 omega = alignparameters_.omega[is][il][ip];
737 beta = alignparameters_.beta[is][il][ip];
738 gamma = alignparameters_.gamma[is][il][ip];
739 }
740
741 if( XGood(i) && !YGood(i) ){
742 track.xm_a[i] = xm[i] - omega * segment;
743 track.ym_a[i] = ym[i] + segment;
744 // track.zm_a[i] = zm[i] + beta * segment;//not used yet
745 track.xm_b[i] = xm[i] + omega * segment;
746 track.ym_b[i] = ym[i] - segment;
747 // track.zm_b[i] = zm[i] - beta * segment;//not used yet
748 }else if( !XGood(i) && YGood(i) ){
749 track.xm_a[i] = xm[i] + segment;
750 track.ym_a[i] = ym[i] + omega * segment;
751 // track.zm_a[i] = zm[i] - gamma * segment;//not used yet
752 track.xm_b[i] = xm[i] - segment;
753 track.ym_b[i] = ym[i] - omega * segment;
754 // track.zm_b[i] = zm[i] + gamma * segment;//not used yet
755 }
756 }
757
758 track.resx[i]=resx[i];
759 track.resy[i]=resy[i];
760 track.tailx[i]=tailx[i];
761 track.taily[i]=taily[i];
762 }
763
764 for(int i=0; i<5; i++) track.al[i]=al[i];
765 track.zini = 23.5;
766 // ZINI = 23.5 !!! it should be the same parameter in all codes
767
768 }
769 /**
770 * Method to set values from minimization-routine common
771 */
772 void TrkTrack::SetFromMiniStruct(cMini2track *track){
773
774 for(int i=0; i<5; i++) {
775 al[i]=track->al[i];
776 for(int j=0; j<5; j++) coval[i][j]=track->cov[i][j];
777 }
778 chi2 = track->chi2;
779 nstep = track->nstep;
780 for(int i=0; i<6; i++){
781 xv[i] = track->xv[i];
782 yv[i] = track->yv[i];
783 zv[i] = track->zv[i];
784 xm[i] = track->xm[i];
785 ym[i] = track->ym[i];
786 zm[i] = track->zm[i];
787 axv[i] = track->axv[i];
788 ayv[i] = track->ayv[i];
789 }
790
791 }
792 /**
793 * \brief Method to re-evaluate coordinates of clusters associated with a track.
794 *
795 * The method can be applied only after recovering level1 information
796 * (either by reprocessing single events from level0 or from
797 * the TrkLevel1 branch, if present); it calls F77 subroutines that
798 * read the level1 common and fill the minimization-routine common.
799 * Some clusters can be excluded or added by means of the methods:
800 *
801 * TrkTrack::ResetXGood(int ip)
802 * TrkTrack::ResetYGood(int ip)
803 * TrkTrack::SetXGood(int ip, int cid, int is)
804 * TrkTrack::SetYGood(int ip, int cid, int is)
805 *
806 * NB! The method TrkTrack::SetGood(int *xg, int *yg) set the plane-mask (0-1)
807 * for the minimization-routine common. It deletes the cluster information
808 * (at least for the moment...) thus cannot be applied before
809 * TrkTrack::EvaluateClusterPositions().
810 *
811 * Different p.f.a. can be applied by calling (once) the method:
812 *
813 * TrkParams::SetPFA(0); //Set ETA p.f.a.
814 *
815 * @see TrkParams::SetPFA(int)
816 */
817 Bool_t TrkTrack::EvaluateClusterPositions(){
818
819 // cout << "void TrkTrack::GetClusterositions() "<<endl;
820
821 bool OK=true;
822 TrkParams::Load(1); if( !TrkParams::IsLoaded(1) )cout << "Bool_t TrkTrack::EvaluateClusterPositions() ---ERROR--- m.field not loaded "<<endl;
823 TrkParams::Load(4); if( !TrkParams::IsLoaded(4) )cout << "Bool_t TrkTrack::EvaluateClusterPositions() ---ERROR--- p.f.a. par. not loaded "<<endl;
824 TrkParams::Load(5); if( !TrkParams::IsLoaded(5) )cout << "Bool_t TrkTrack::EvaluateClusterPositions() ---ERROR--- alignment par. not loaded "<<endl;
825 if(!OK)return false;
826
827 for(int ip=0; ip<6; ip++){
828 // cout << ip<<" ** "<<xm[ip]<<" / "<<ym[ip]<<endl;;
829 int icx = GetClusterX_ID(ip)+1;
830 int icy = GetClusterY_ID(ip)+1;
831 int sensor = GetSensor(ip)+1;//<< convenzione "Paolo"
832 if(ip==5 && sensor!=0)sensor=3-sensor;//<< convenzione "Elena"
833 int ladder = GetLadder(ip)+1;
834 float ax = axv[ip];
835 float ay = ayv[ip];
836 float v[3];
837 v[0]=xv[ip];
838 v[1]=yv[ip];
839 v[2]=zv[ip];
840 float bfx = 10*TrkParams::GetBX(v);//Tesla
841 float bfy = 10*TrkParams::GetBY(v);//Tesla
842 int ipp=ip+1;
843 xyzpam_(&ipp,&icx,&icy,&ladder,&sensor,&ax,&ay,&bfx,&bfy);
844 if(icx<0 || icy<0)return false;
845 }
846 return true;
847 }
848 /**
849 * \brief Tracking method. It calls F77 mini routine.
850 *
851 * @param pfixed Particle momentum. If pfixed=0 the momentum
852 * is left as a free parameter, otherwise it is fixed to the input value.
853 * @param fail Output flag (!=0 if the fit failed).
854 * @param iprint Flag to set debug mode ( 0 = no output; 1 = verbose; 2 = debug).
855 * @param froml1 Flag to re-evaluate positions (see TrkTrack::GetClusterPositions()).
856 *
857 * The option to re-evaluate positions can be used only after recovering
858 * level1 information, eg. by reprocessing the single event.
859 *
860 * Example:
861 *
862 * if( !event->GetTrkLevel0() )return false;
863 * event->GetTrkLevel0()->ProcessEvent(); // re-processing level0->level1
864 * int fail=0;
865 * event->GetTrkLevel2()->GetTrack(0)->Fit(0.,fail,0,1);
866 *
867 * @see EvaluateClusterPositions()
868 *
869 * The fitting procedure can be varied by changing the tracking mode,
870 * the fit-precision factor, the minimum number of step, etc.
871 * @see SetTrackingMode(int)
872 * @see SetPrecisionFactor(double)
873 * @see SetStepMin(int)
874 * @see SetDeltaB(int,double)
875 */
876 void TrkTrack::Fit(double pfixed, int& fail, int iprint, int froml1){
877
878 bool OK=true;
879 TrkParams::Load(1); if( !TrkParams::IsLoaded(1) )cout << "void TrkTrack::Fit(double,int&,int,int) ---ERROR--- m.field not loaded "<<endl;
880 if(!OK)return;
881
882 float al_ini[] = {0.,0.,0.,0.,0.};
883
884 extern cMini2track track_;
885 fail = 0;
886
887 FillMiniStruct(track_);
888
889 if(froml1!=0){
890 if( !EvaluateClusterPositions() ){
891 cout << "void TrkTrack::Fit("<<pfixed<<","<<fail<<","<<iprint<<","<<froml1<<") --- ERROR evaluating cluster positions "<<endl;
892 FillMiniStruct(track_) ;
893 fail = 1;
894 return;
895 }
896 }else{
897 FillMiniStruct(track_);
898 }
899
900 // if fit variables have been reset, evaluate the initial guess
901 if(al[0]==-9999.&&al[1]==-9999.&&al[2]==-9999.&&al[3]==-9999.&&al[4]==-9999.)guess_();
902
903 // --------------------- free momentum
904 if(pfixed==0.) {
905 track_.pfixed=0.;
906 }
907 // --------------------- fixed momentum
908 if(pfixed!=0.) {
909 al[4]=1./pfixed;
910 track_.pfixed=pfixed;
911 }
912
913 // store temporarily the initial guess
914 for(int i=0; i<5; i++) al_ini[i]=track_.al[i];
915
916 // ------------------------------------------
917 // call mini routine
918 // ------------------------------------------
919 int istep=0;
920 int ifail=0;
921 mini2_(&istep,&ifail, &iprint);
922 if(ifail!=0) {
923 if(iprint)cout << "ERROR: ifail= " << ifail << endl;
924 fail = 1;
925 }
926 // ------------------------------------------
927
928 SetFromMiniStruct(&track_);
929
930 if(fail){
931 if(iprint)cout << " >>>> fit failed "<<endl;
932 for(int i=0; i<5; i++) al[i]=al_ini[i];
933 }
934
935 };
936 /**
937 * Reset the fit parameters
938 */
939 void TrkTrack::FitReset(){
940 for(int i=0; i<5; i++) al[i]=-9999.;
941 chi2=0.;
942 nstep=0;
943 // for(int i=0; i<6; i++) xv[i]=0.;
944 // for(int i=0; i<6; i++) yv[i]=0.;
945 // for(int i=0; i<6; i++) zv[i]=0.;
946 // for(int i=0; i<6; i++) axv[i]=0.;
947 // for(int i=0; i<6; i++) ayv[i]=0.;
948 for(int i=0; i<5; i++) {
949 for(int j=0; j<5; j++) coval[i][j]=0.;
950 }
951 }
952 /**
953 * Set the tracking mode
954 */
955 void TrkTrack::SetTrackingMode(int trackmode){
956 extern cMini2track track_;
957 track_.trackmode = trackmode;
958 }
959 /**
960 * Set the factor scale for tracking precision
961 */
962 void TrkTrack::SetPrecisionFactor(double fact){
963 extern cMini2track track_;
964 track_.fact = fact;
965 }
966 /**
967 * Set the minimum number of steps for tracking precision
968 */
969 void TrkTrack::SetStepMin(int istepmin){
970 extern cMini2track track_;
971 track_.istepmin = istepmin;
972 }
973 /**
974 * Set deltaB parameters (id=0,1). By default they are set to zero.
975 */
976 void TrkTrack::SetDeltaB(int id, double db){
977 if(id!=0 && id!=1)cout << "void TrkTrack::SetDeltaB(int id,double db) -- wrong input parameters: "<<id<<" "<<db<<endl;
978 TrkParams::SetDeltaB(id,db);
979 }
980
981 /**
982 * Returns true if the track is inside the magnet cavity.
983 * @param toll Tolerance around the nominal volume (toll>0 define an inner fiducial volume)
984 */
985 Bool_t TrkTrack::IsInsideCavity(float toll){
986
987 // float xmagntop, ymagntop, xmagnbottom, ymagnbottom;
988 // xmagntop = xv[0] + (ZMAGNHIGH-zv[0])*tan(acos(-1.0)*axv[0]/180.);
989 // ymagntop = yv[0] + (ZMAGNHIGH-zv[0])*tan(acos(-1.0)*ayv[0]/180.);
990 // xmagnbottom = xv[5] + (ZMAGNLOW-zv[5])*tan(acos(-1.0)*axv[5]/180.);
991 // ymagnbottom = yv[5] + (ZMAGNLOW-zv[5])*tan(acos(-1.0)*ayv[5]/180.);
992 // if( xmagntop>XMAGNLOW && xmagntop<XMAGNHIGH &&
993 // ymagntop>YMAGNLOW && ymagntop<YMAGNHIGH &&
994 // xmagnbottom>XMAGNLOW && xmagnbottom<XMAGNHIGH &&
995 // ymagnbottom>YMAGNLOW && ymagnbottom<YMAGNHIGH ) return(true);
996 // else return(false);
997
998 int ngf = TrkParams::nGF;
999 for(int i=0; i<ngf; i++){
1000 //
1001 // cout << endl << TrkParams::GF_element[i];
1002 if(
1003 TrkParams::GF_element[i].CompareTo("CUF") &&
1004 TrkParams::GF_element[i].CompareTo("T2") &&
1005 TrkParams::GF_element[i].CompareTo("T3") &&
1006 TrkParams::GF_element[i].CompareTo("T4") &&
1007 TrkParams::GF_element[i].CompareTo("T5") &&
1008 TrkParams::GF_element[i].CompareTo("CLF") &&
1009 true)continue;
1010 // apply condition only within the cavity
1011 // cout << " -- "<<xGF[i]<<" "<<yGF[i];
1012 if(
1013 xGF[i] <= TrkParams::xGF_min[i] + toll ||
1014 xGF[i] >= TrkParams::xGF_max[i] - toll ||
1015 yGF[i] <= TrkParams::yGF_min[i] + toll ||
1016 yGF[i] >= TrkParams::yGF_max[i] - toll ||
1017 false){
1018
1019 return false;
1020 }
1021 }
1022 return true;
1023
1024
1025 }
1026 /**
1027 * Returns true if the track is inside the nominal acceptance, which is defined
1028 * by the intersection among magnet cavity, silicon-plane sensitive area and
1029 * ToF sensitive area (nominal values from the official document used to
1030 * calculate the geometrical factor)
1031 */
1032 Bool_t TrkTrack::IsInsideAcceptance(){
1033
1034 int ngf = TrkParams::nGF;
1035 for(int i=0; i<ngf; i++){
1036 if(
1037 xGF[i] <= TrkParams::xGF_min[i] ||
1038 xGF[i] >= TrkParams::xGF_max[i] ||
1039 yGF[i] <= TrkParams::yGF_min[i] ||
1040 yGF[i] >= TrkParams::yGF_max[i] ||
1041 false)return false;
1042 }
1043 return true;
1044
1045 }
1046 /**
1047 * Method to retrieve ID (0,1,...) of x-cluster (if any) associated to this track.
1048 * If no cluster is associated, ID=-1.
1049 * @param ip Tracker plane (0-5)
1050 */
1051 Int_t TrkTrack::GetClusterX_ID(int ip){
1052 return ((Int_t)fabs(xgood[ip]))%10000000-1;
1053 };
1054 /**
1055 * Method to retrieve ID (0-xxx) of y-cluster (if any) associated to this track.
1056 * If no cluster is associated, ID=-1.
1057 * @param ip Tracker plane (0-5)
1058 */
1059 Int_t TrkTrack::GetClusterY_ID(int ip){
1060 return ((Int_t)fabs(ygood[ip]))%10000000-1;
1061 };
1062
1063 /**
1064 * Method to retrieve the ladder (0-2, increasing x) traversed by the track on this plane.
1065 * If no ladder is traversed (dead area) the metod retuns -1.
1066 * @param ip Tracker plane (0-5)
1067 */
1068 Int_t TrkTrack::GetLadder(int ip){
1069 if(XGood(ip))return (Int_t)fabs(xgood[ip]/100000000)-1;
1070 if(YGood(ip))return (Int_t)fabs(ygood[ip]/100000000)-1;
1071 return -1;
1072 };
1073 /**
1074 * Method to retrieve the sensor (0-1, increasing y) traversed by the track on this plane.
1075 * If no sensor is traversed (dead area) the metod retuns -1.
1076 * @param ip Tracker plane (0-5)
1077 */
1078 Int_t TrkTrack::GetSensor(int ip){
1079 if(XGood(ip))return (Int_t)((Int_t)fabs(xgood[ip]/10000000)%10)-1;
1080 if(YGood(ip))return (Int_t)((Int_t)fabs(ygood[ip]/10000000)%10)-1;
1081 return -1;
1082 };
1083
1084 /**
1085 * \brief Method to include a x-cluster to the track.
1086 * @param ip Tracker plane (0-5)
1087 * @param clid Cluster ID (0 = no-cluster, 1,2,... otherwise )
1088 * @param il Ladder (0-2, increasing x, -1 if no sensitive area is hit)
1089 * @param is Sensor (0-1, increasing y, -1 if no sensitive area is hit)
1090 * @param bad True if the cluster contains bad strips
1091 * @see Fit(double pfixed, int& fail, int iprint, int froml1)
1092 */
1093 void TrkTrack::SetXGood(int ip, int clid, int il, int is, bool bad){
1094 // int il=0; //ladder (temporary)
1095 // bool bad=false; //ladder (temporary)
1096 if(ip<0||ip>5||clid<0||il<-1||il>2||is<-1||is>1)
1097 cout << " void TrkTrack::SetXGood(int,int,int,int,bool) --> MA SEI DI COCCIO?!?!"<<endl;
1098 xgood[ip]=(il+1)*100000000+(is+1)*10000000+clid;
1099 if(bad)xgood[ip]=-xgood[ip];
1100 };
1101 /**
1102 * \brief Method to include a y-cluster to the track.
1103 * @param ip Tracker plane (0-5)
1104 * @param clid Cluster ID (0 = no-cluster, 1,2,... otherwise )
1105 * @param il Ladder (0-2, increasing x, -1 if no sensitive area is hit)
1106 * @param is Sensor (0-1, increasing y, -1 if no sensitive area is hit)
1107 * @param bad True if the cluster contains bad strips
1108 * @see Fit(double pfixed, int& fail, int iprint, int froml1)
1109 */
1110 void TrkTrack::SetYGood(int ip, int clid, int il, int is, bool bad){
1111 // int il=0; //ladder (temporary)
1112 // bool bad=false; //ladder (temporary)
1113 if(ip<0||ip>5||clid<0||il<-1||il>2||is<-1||is>1)
1114 cout << " void TrkTrack::SetYGood(int,int,int,int,bool) --> MA SEI DI COCCIO?!?!"<<endl;
1115 ygood[ip]=(il+1)*100000000+(is+1)*10000000+clid;
1116 if(bad)ygood[ip]=-ygood[ip];
1117 };
1118
1119 /**
1120 * \brief Average X
1121 * Average value of <xv>, evaluated from the first to the last hit x view.
1122 */
1123 Float_t TrkTrack::GetXav(){
1124
1125 int first_plane = -1;
1126 int last_plane = -1;
1127 for(Int_t ip=0; ip<6; ip++){
1128 if( XGood(ip) && first_plane == -1 )first_plane = ip;
1129 if( XGood(ip) && first_plane != -1 )last_plane = ip;
1130 }
1131 if( first_plane == -1 || last_plane == -1){
1132 return -100;
1133 }
1134 if( last_plane-first_plane+1 ==0 )return -100;
1135
1136 Float_t av = 0;
1137 for(int ip=first_plane; ip<=last_plane; ip++)av+=xv[ip];
1138
1139 return (av/(last_plane-first_plane+1));
1140 }
1141 /**
1142 * \brief Average Y
1143 * Average value of <yv>, evaluated from the first to the last hit x view.
1144 */
1145 Float_t TrkTrack::GetYav(){
1146
1147 int first_plane = -1;
1148 int last_plane = -1;
1149 for(Int_t ip=0; ip<6; ip++){
1150 if( XGood(ip) && first_plane == -1 )first_plane = ip;
1151 if( XGood(ip) && first_plane != -1 )last_plane = ip;
1152 }
1153 if( first_plane == -1 || last_plane == -1){
1154 return -100;
1155 }
1156 if( last_plane-first_plane+1 ==0 )return -100;
1157
1158 Float_t av = 0;
1159 for(int ip=first_plane; ip<=last_plane; ip++)av+=yv[ip];
1160
1161 return (av/(last_plane-first_plane+1));
1162 }
1163 /**
1164 * \brief Average Z
1165 * Average value of <zv>, evaluated from the first to the last hit x view.
1166 */
1167 Float_t TrkTrack::GetZav(){
1168
1169 int first_plane = -1;
1170 int last_plane = -1;
1171 for(Int_t ip=0; ip<6; ip++){
1172 if( XGood(ip) && first_plane == -1 )first_plane = ip;
1173 if( XGood(ip) && first_plane != -1 )last_plane = ip;
1174 }
1175 if( first_plane == -1 || last_plane == -1){
1176 return -100;
1177 }
1178 if( last_plane-first_plane+1 ==0 )return -100;
1179
1180 Float_t av = 0;
1181 for(int ip=first_plane; ip<=last_plane; ip++)av+=zv[ip];
1182
1183 return (av/(last_plane-first_plane+1));
1184 }
1185
1186 /**
1187 * \brief Number of column traversed
1188 */
1189 Int_t TrkTrack::GetNColumns(){
1190 int sensors[] = {0,0,0,0,0,0};
1191 for(int ip=0; ip<6; ip++){
1192 int sensorid = GetLadder(ip)+3*GetSensor(ip);
1193 if(XGood(ip)||YGood(ip))
1194 if(sensorid>=0 && sensorid<6)sensors[sensorid]=1;
1195 }
1196 int nsensors=0;
1197 for(int is=0; is<6; is++)nsensors += sensors[is];
1198 return nsensors;
1199 };
1200 /**
1201 * \brief Give the maximum energy release
1202 */
1203 Float_t TrkTrack::GetDEDX_max(int ip, int iv){
1204 Float_t max=0;
1205 int pfrom = 0;
1206 int pto = 6;
1207 int vfrom = 0;
1208 int vto = 2;
1209 if(ip>=0&&ip<6){
1210 pfrom = ip;
1211 pto = ip+1;
1212 }
1213 if(iv>=0&&iv<2){
1214 vfrom = iv;
1215 vto = iv+1;
1216 }
1217 for(int i=pfrom; i<pto; i++)
1218 for(int j=vfrom; j<vto; j++){
1219 if(j==0 && XGood(i) && GetDEDX(i,j)>max)max=GetDEDX(i,j);
1220 if(j==1 && YGood(i) && GetDEDX(i,j)>max)max=GetDEDX(i,j);
1221 }
1222 return max;
1223
1224 };
1225
1226 /**
1227 * \brief Give the minimum energy release
1228 */
1229 Float_t TrkTrack::GetDEDX_min(int ip, int iv){
1230 Float_t min=100000000;
1231 int pfrom = 0;
1232 int pto = 6;
1233 int vfrom = 0;
1234 int vto = 2;
1235 if(ip>=0&&ip<6){
1236 pfrom = ip;
1237 pto = ip+1;
1238 }
1239 if(iv>=0&&iv<2){
1240 vfrom = iv;
1241 vto = iv+1;
1242 }
1243 for(int i=pfrom; i<pto; i++)
1244 for(int j=vfrom; j<vto; j++){
1245 if(j==0 && XGood(i) && GetDEDX(i,j)<min)min=GetDEDX(i,j);
1246 if(j==1 && YGood(i) && GetDEDX(i,j)<min)min=GetDEDX(i,j);
1247 }
1248 return min;
1249
1250 };
1251
1252 /**
1253 * \brief Give the maximum spatial residual
1254 */
1255 Float_t TrkTrack::GetResidual_max(int ip, int iv){
1256 Float_t max=0;
1257 int pfrom = 0;
1258 int pto = 6;
1259 int vfrom = 0;
1260 int vto = 2;
1261 if(ip>=0&&ip<6){
1262 pfrom = ip;
1263 pto = ip+1;
1264 }
1265 if(iv>=0&&iv<2){
1266 vfrom = iv;
1267 vto = iv+1;
1268 }
1269 for(int i=pfrom; i<pto; i++){
1270 for(int j=vfrom; j<vto; j++){
1271 if(j==0 && XGood(i) && fabs(xm[i]-xv[i])>fabs(max))max=xm[i]-xv[i];
1272 if(j==1 && YGood(i) && fabs(ym[i]-yv[i])>fabs(max))max=ym[i]-yv[i];
1273 }
1274 }
1275 return max;
1276
1277 };
1278 /**
1279 * \brief Give the anerage spatial residual
1280 */
1281 Float_t TrkTrack::GetResidual_av(int ip, int iv){
1282 //
1283 //Sum$((xm>-50)*(xm-xv)/resx)/sqrt(TrkTrack.GetNX()*TrkTrack.GetChi2X())<0.3
1284
1285 Float_t av = 0.;
1286 int nav = 0;
1287 //
1288 int pfrom = 0;
1289 int pto = 6;
1290 int vfrom = 0;
1291 int vto = 2;
1292 if(ip>=0&&ip<6){
1293 pfrom = ip;
1294 pto = ip+1;
1295 }
1296 if(iv>=0&&iv<2){
1297 vfrom = iv;
1298 vto = iv+1;
1299 }
1300 for(int i=pfrom; i<pto; i++){
1301 for(int j=vfrom; j<vto; j++){
1302 nav++;
1303 if(j==0 && XGood(i)) av += (xm[i]-xv[i])/resx[i];
1304 if(j==1 && YGood(i)) av += (ym[i]-yv[i])/resy[i];
1305 }
1306 }
1307 if(nav==0)return -100.;
1308 return av/nav;
1309
1310 };
1311
1312
1313 /**
1314 * \brief Give the maximum multiplicity on the x view
1315 */
1316 Int_t TrkTrack::GetClusterX_Multiplicity_max(){
1317 int max=0;
1318 for(int ip=0; ip<6; ip++)
1319 if(GetClusterX_Multiplicity(ip)>max)max=GetClusterX_Multiplicity(ip);
1320 return max;
1321 };
1322 /**
1323 * \brief Give the minimum multiplicity on the x view
1324 */
1325 Int_t TrkTrack::GetClusterX_Multiplicity_min(){
1326 int min=50;
1327 for(int ip=0; ip<6; ip++)
1328 if(GetClusterX_Multiplicity(ip)<min)min=GetClusterX_Multiplicity(ip);
1329 return min;
1330 };
1331 /**
1332 * \brief Give the maximum multiplicity on the x view
1333 */
1334 Int_t TrkTrack::GetClusterY_Multiplicity_max(){
1335 int max=0;
1336 for(int ip=0; ip<6; ip++)
1337 if(GetClusterY_Multiplicity(ip)>max)max=GetClusterY_Multiplicity(ip);
1338 return max;
1339 };
1340 /**
1341 * \brief Give the minimum multiplicity on the x view
1342 */
1343 Int_t TrkTrack::GetClusterY_Multiplicity_min(){
1344 int min=50;
1345 for(int ip=0; ip<6; ip++)
1346 if(GetClusterY_Multiplicity(ip)<min)min=GetClusterY_Multiplicity(ip);
1347 return min;
1348 };
1349
1350 /**
1351 * \brief Give the minimum seed on the x view
1352 */
1353 Float_t TrkTrack::GetClusterX_Seed_min(){
1354 Float_t min=100000;
1355 for(int ip=0; ip<6; ip++)
1356 if(XGood(ip) && GetClusterX_Seed(ip)<min)min=GetClusterX_Seed(ip);
1357 return min;
1358 };
1359 /**
1360 * \brief Give the minimum seed on the x view
1361 */
1362 Float_t TrkTrack::GetClusterY_Seed_min(){
1363 Float_t min=100000;
1364 for(int ip=0; ip<6; ip++)
1365 if(YGood(ip) && GetClusterY_Seed(ip)<min)min=GetClusterY_Seed(ip);
1366 return min;
1367 };
1368
1369
1370 //--------------------------------------
1371 //
1372 //
1373 //--------------------------------------
1374 void TrkTrack::Clear(){
1375 // cout << "TrkTrack::Clear()"<<endl;
1376 seqno = -1;
1377 image = -1;
1378 chi2 = 0;
1379 nstep = 0;
1380 for(int it1=0;it1<5;it1++){
1381 al[it1] = 0;
1382 for(int it2=0;it2<5;it2++)coval[it1][it2] = 0;
1383 };
1384 for(int ip=0;ip<6;ip++){
1385 xgood[ip] = 0;
1386 ygood[ip] = 0;
1387 xm[ip] = 0;
1388 ym[ip] = 0;
1389 zm[ip] = 0;
1390 resx[ip] = 0;
1391 resy[ip] = 0;
1392 tailx[ip] = 0;
1393 taily[ip] = 0;
1394 xv[ip] = 0;
1395 yv[ip] = 0;
1396 zv[ip] = 0;
1397 axv[ip] = 0;
1398 ayv[ip] = 0;
1399 dedx_x[ip] = 0;
1400 dedx_y[ip] = 0;
1401
1402 };
1403 int ngf = TrkParams::nGF;
1404 for(int i=0; i<ngf; i++){
1405 xGF[i] = 0.;
1406 yGF[i] = 0.;
1407 }
1408 // if(clx)clx->Clear();
1409 // if(cly)cly->Clear();
1410 // clx.Clear();
1411 // cly.Clear();
1412 };
1413 //--------------------------------------
1414 //
1415 //
1416 //--------------------------------------
1417 void TrkTrack::Delete(){
1418 // cout << "TrkTrack::Delete()"<<endl;
1419 Clear();
1420 // if(clx)delete clx;
1421 // if(cly)delete cly;
1422 };
1423 //--------------------------------------
1424 //
1425 //
1426 //--------------------------------------
1427
1428 //--------------------------------------
1429 //
1430 //
1431 //--------------------------------------
1432 TrkSinglet::TrkSinglet(){
1433 // cout << "TrkSinglet::TrkSinglet() " << GetUniqueID()<<endl;
1434 // plane = 0;
1435 // coord[0] = 0;
1436 // coord[1] = 0;
1437 // sgnl = 0;
1438 // multmax = 0;
1439 // cls = 0;
1440 Clear();
1441 };
1442 //--------------------------------------
1443 //
1444 //
1445 //--------------------------------------
1446 TrkSinglet::TrkSinglet(const TrkSinglet& s){
1447 // cout << "TrkSinglet::TrkSinglet(const TrkSinglet& s) " << GetUniqueID()<<endl;
1448 plane = s.plane;
1449 coord[0] = s.coord[0];
1450 coord[1] = s.coord[1];
1451 sgnl = s.sgnl;
1452 multmax = s.multmax;
1453 // cls = 0;//<<<<pointer
1454 // cls = TRef(s.cls);
1455 };
1456 //--------------------------------------
1457 //
1458 //
1459 //--------------------------------------
1460 void TrkSinglet::Dump(){
1461 int i=0;
1462 cout << endl << "========== Singlet " ;
1463 cout << endl << "plane : " << plane;
1464 cout << endl << "coord[2] : "; while( i<2 && cout << coord[i] << " ") i++;
1465 cout << endl << "sgnl : " << sgnl;
1466 cout << endl << "max.strip : ";
1467 cout << endl << "multiplicity : ";
1468 }
1469 //--------------------------------------
1470 //
1471 //
1472 //--------------------------------------
1473 void TrkSinglet::Clear(){
1474 // cout << "TrkSinglet::Clear() " << GetUniqueID()<<endl;
1475 // cls=0;
1476 plane=-1;
1477 coord[0]=-999;
1478 coord[1]=-999;
1479 sgnl=0;
1480 multmax = 0;
1481
1482 }
1483 //--------------------------------------
1484 //
1485 //
1486 //--------------------------------------
1487 TrkLevel2::TrkLevel2(){
1488 // cout <<"TrkLevel2::TrkLevel2()"<<endl;
1489 for(Int_t i=0; i<12 ; i++){
1490 good[i] = -1;
1491 VKmask[i] = 0;
1492 VKflag[i] = 0;
1493 };
1494 Track = 0;
1495 SingletX = 0;
1496 SingletY = 0;
1497
1498 }
1499 //--------------------------------------
1500 //
1501 //
1502 //--------------------------------------
1503 void TrkLevel2::Set(){
1504 if(!Track)Track = new TClonesArray("TrkTrack");
1505 if(!SingletX)SingletX = new TClonesArray("TrkSinglet");
1506 if(!SingletY)SingletY = new TClonesArray("TrkSinglet");
1507 }
1508 //--------------------------------------
1509 //
1510 //
1511 //--------------------------------------
1512 void TrkLevel2::Dump(){
1513
1514 //
1515 cout << endl << endl << "=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-";
1516 cout << endl << "good : "; for(int i=0; i<12; i++) cout << hex <<" 0x"<< good[i]<<dec;
1517 cout << endl << "ntrk() : " << ntrk() ;
1518 cout << endl << "nclsx() : " << nclsx();
1519 cout << endl << "nclsy() : " << nclsy();
1520 if(Track){
1521 TClonesArray &t = *Track;
1522 for(int i=0; i<ntrk(); i++) ((TrkTrack *)t[i])->Dump();
1523 }
1524 // if(SingletX){
1525 // TClonesArray &sx = *SingletX;
1526 // for(int i=0; i<nclsx(); i++) ((TrkSinglet *)sx[i])->Dump();
1527 // }
1528 // if(SingletY){
1529 // TClonesArray &sy = *SingletY;
1530 // for(int i=0; i<nclsy(); i++) ((TrkSinglet *)sy[i])->Dump();
1531 // }
1532 cout << endl;
1533 }
1534 /**
1535 * \brief Dump processing status
1536 */
1537 void TrkLevel2::StatusDump(int view){
1538 cout << "DSP n. "<<view+1<<" status: "<<hex<<good[view]<<endl;
1539 };
1540 /**
1541 * \brief Check event status
1542 *
1543 * Check the event status, according to a flag-mask given as input.
1544 * Return true if the view passes the check.
1545 *
1546 * @param view View number (0-11)
1547 * @param flagmask Mask of flags to check (eg. flagmask=0x111 no missing packet,
1548 * no crc error, no software alarm)
1549 *
1550 * @see TrkLevel2 class definition to know how the status flag is defined
1551 *
1552 */
1553 Bool_t TrkLevel2::StatusCheck(int view, int flagmask){
1554
1555 if( view<0 || view >= 12)return false;
1556 return !(good[view]&flagmask);
1557
1558 };
1559
1560
1561 //--------------------------------------
1562 //
1563 //
1564 //--------------------------------------
1565 /**
1566 * The method returns false if the viking-chip was masked
1567 * either apriori ,on the basis of the mask read from the DB,
1568 * or run-by-run, on the basis of the calibration parameters)
1569 * @param iv Tracker view (0-11)
1570 * @param ivk Viking-chip number (0-23)
1571 */
1572 Bool_t TrkLevel2::GetVKMask(int iv, int ivk){
1573 Int_t whichbit = (Int_t)pow(2,ivk);
1574 return (whichbit&VKmask[iv])!=0;
1575 }
1576 /**
1577 * The method returns false if the viking-chip was masked
1578 * for this event due to common-noise computation failure.
1579 * @param iv Tracker view (0-11)
1580 * @param ivk Viking-chip number (0-23)
1581 */
1582 Bool_t TrkLevel2::GetVKFlag(int iv, int ivk){
1583 Int_t whichbit = (Int_t)pow(2,ivk);
1584 return (whichbit&VKflag[iv])!=0;
1585 }
1586 /**
1587 * The method returns true if the viking-chip was masked, either
1588 * forced (see TrkLevel2::GetVKMask(int,int)) or
1589 * for this event only (TrkLevel2::GetVKFlag(int,int)).
1590 * @param iv Tracker view (0-11)
1591 * @param ivk Viking-chip number (0-23)
1592 */
1593 Bool_t TrkLevel2::IsMaskedVK(int iv, int ivk){
1594 return !(GetVKMask(iv,ivk)&&GetVKFlag(iv,ivk) );
1595 };
1596
1597 //--------------------------------------
1598 //
1599 //
1600 //--------------------------------------
1601 /**
1602 * Fills a TrkLevel2 object with values from a struct cTrkLevel2 (to get data from F77 common).
1603 * Ref to Level1 data (clusters) is also set. If l1==NULL no references are set.
1604 * (NB It make sense to set references only if events are stored in a tree that contains also the Level1 branch)
1605 */
1606 void TrkLevel2::SetFromLevel2Struct(cTrkLevel2 *l2, TrkLevel1 *l1){
1607
1608 // cout << "void TrkLevel2::SetFromLevel2Struct(cTrkLevel2 *l2, TrkLevel1 *l1)"<<endl;
1609 Clear();
1610
1611 // temporary objects:
1612 TrkSinglet* t_singlet = new TrkSinglet();
1613 TrkTrack* t_track = new TrkTrack();
1614
1615 // -----------------
1616 // general variables
1617 // -----------------
1618 for(Int_t i=0; i<12 ; i++){
1619 good[i] = l2->good[i];
1620 VKmask[i]=0;
1621 VKflag[i]=0;
1622 for(Int_t ii=0; ii<24 ; ii++){
1623 Int_t setbit = (Int_t)pow(2,ii);
1624 if( l2->vkflag[ii][i]!=-1 )VKmask[i]=VKmask[i]|setbit;
1625 if( l2->vkflag[ii][i]!=0 )VKflag[i]=VKflag[i]|setbit;
1626 };
1627 };
1628 // --------------
1629 // *** TRACKS ***
1630 // --------------
1631 if(!Track) Track = new TClonesArray("TrkTrack");
1632 TClonesArray &t = *Track;
1633
1634 for(int i=0; i<l2->ntrk; i++){
1635 t_track->seqno = i;// NBNBNBNB deve sempre essere = i
1636 t_track->image = l2->image[i]-1;
1637 t_track->chi2 = l2->chi2_nt[i];
1638 t_track->nstep = l2->nstep_nt[i];
1639 for(int it1=0;it1<5;it1++){
1640 t_track->al[it1] = l2->al_nt[i][it1];
1641 for(int it2=0;it2<5;it2++)
1642 t_track->coval[it1][it2] = l2->coval[i][it2][it1];
1643 };
1644 for(int ip=0;ip<6;ip++){
1645 // ---------------------------------
1646 // new implementation of xgood/ygood
1647 // ---------------------------------
1648 t_track->xgood[ip] = l2->cltrx[i][ip]; //cluster ID
1649 t_track->ygood[ip] = l2->cltry[i][ip]; //cluster ID
1650 t_track->xgood[ip] += 10000000*l2->ls[i][ip]; // ladder+sensor
1651 t_track->ygood[ip] += 10000000*l2->ls[i][ip]; // ladder+sensor
1652 if(l2->xbad[i][ip]>0)t_track->xgood[ip]=-t_track->xgood[ip];
1653 if(l2->ybad[i][ip]>0)t_track->ygood[ip]=-t_track->ygood[ip];
1654 // if(l2->xbad[i][ip]>0 || l2->ybad[i][ip]>0){
1655 // if(l2->dedx_x[i][ip]<0 || l2->dedx_y[i][ip]<0){
1656 // cout << ip << " - "<< l2->cltrx[i][ip] << " "<<l2->cltry[i][ip]<<" "<<l2->ls[i][ip]<<endl;
1657 // cout << ip << " - "<<t_track->xgood[ip]<<" "<<t_track->ygood[ip]<<endl;
1658 // cout << ip << " - "<<t_track->GetClusterX_ID(ip)<<" "<<t_track->GetClusterY_ID(ip)<<" "<<t_track->GetLadder(ip)<<" "<<t_track->GetSensor(ip)<<endl;
1659 // cout << ip << " - "<<t_track->BadClusterX(ip)<<" "<<t_track->BadClusterY(ip)<<endl;
1660 // cout << ip << " - "<<t_track->SaturatedClusterX(ip)<<" "<<t_track->SaturatedClusterY(ip)<<endl;
1661 // }
1662 t_track->xm[ip] = l2->xm_nt[i][ip];
1663 t_track->ym[ip] = l2->ym_nt[i][ip];
1664 t_track->zm[ip] = l2->zm_nt[i][ip];
1665 t_track->resx[ip] = l2->resx_nt[i][ip];
1666 t_track->resy[ip] = l2->resy_nt[i][ip];
1667 t_track->tailx[ip] = l2->tailx[i][ip];
1668 t_track->taily[ip] = l2->taily[i][ip];
1669 t_track->xv[ip] = l2->xv_nt[i][ip];
1670 t_track->yv[ip] = l2->yv_nt[i][ip];
1671 t_track->zv[ip] = l2->zv_nt[i][ip];
1672 t_track->axv[ip] = l2->axv_nt[i][ip];
1673 t_track->ayv[ip] = l2->ayv_nt[i][ip];
1674 t_track->dedx_x[ip] = l2->dedx_x[i][ip];
1675 t_track->dedx_y[ip] = l2->dedx_y[i][ip];
1676 t_track->multmaxx[ip] = l2->multmaxx[i][ip];
1677 t_track->multmaxy[ip] = l2->multmaxy[i][ip];
1678 t_track->seedx[ip] = l2->seedx[i][ip];
1679 t_track->seedy[ip] = l2->seedy[i][ip];
1680 t_track->xpu[ip] = l2->xpu[i][ip];
1681 t_track->ypu[ip] = l2->ypu[i][ip];
1682 //-----------------------------------------------------
1683 //-----------------------------------------------------
1684 //-----------------------------------------------------
1685 //-----------------------------------------------------
1686 };
1687 // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1688 // evaluated coordinates (to define GF)
1689 // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1690 int ngf = TrkParams::nGF;
1691 float *zgf = TrkParams::zGF;
1692 Trajectory tgf = Trajectory(ngf,zgf);
1693 tgf.DoTrack2(t_track->al);//<<<< integrate the trajectory
1694 for(int ip=0; ip<ngf; ip++){
1695 t_track->xGF[ip] = tgf.x[ip];
1696 t_track->yGF[ip] = tgf.y[ip];
1697 }
1698
1699 // if(t_track->IsSaturated())t_track->Dump();
1700 new(t[i]) TrkTrack(*t_track);
1701 t_track->Clear();
1702 };//end loop over track
1703
1704 // ----------------
1705 // *** SINGLETS ***
1706 // ----------------
1707 if(!SingletX)SingletX = new TClonesArray("TrkSinglet");
1708 TClonesArray &sx = *SingletX;
1709 for(int i=0; i<l2->nclsx; i++){
1710 t_singlet->plane = l2->planex[i];
1711 t_singlet->coord[0] = l2->xs[i][0];
1712 t_singlet->coord[1] = l2->xs[i][1];
1713 t_singlet->sgnl = l2->signlxs[i];
1714 t_singlet->multmax = l2->multmaxsx[i];
1715 if(l2->sxbad[i]>0) t_singlet->multmax = -1*t_singlet->multmax;
1716 //-----------------------------------------------------
1717 // if(l1) t_singlet->cls = l1->GetCluster(l2->clsx[i]-1);
1718 //-----------------------------------------------------
1719 new(sx[i]) TrkSinglet(*t_singlet);
1720 t_singlet->Clear();
1721 }
1722 if(!SingletY)SingletY = new TClonesArray("TrkSinglet");
1723 TClonesArray &sy = *SingletY;
1724 for(int i=0; i<l2->nclsy; i++){
1725 t_singlet->plane = l2->planey[i];
1726 t_singlet->coord[0] = l2->ys[i][0];
1727 t_singlet->coord[1] = l2->ys[i][1];
1728 t_singlet->sgnl = l2->signlys[i];
1729 t_singlet->multmax = l2->multmaxsy[i];
1730 if(l2->sybad[i]>0) t_singlet->multmax = -1*t_singlet->multmax;
1731 //-----------------------------------------------------
1732 // if(l1) t_singlet->cls = l1->GetCluster(l2->clsy[i]-1);
1733 //-----------------------------------------------------
1734 new(sy[i]) TrkSinglet(*t_singlet);
1735 t_singlet->Clear();
1736 };
1737
1738
1739
1740 delete t_track;
1741 delete t_singlet;
1742 }
1743 /**
1744 * Fills a struct cTrkLevel2 with values from a TrkLevel2 object (to put data into a F77 common).
1745 */
1746
1747 void TrkLevel2::GetLevel2Struct(cTrkLevel2 *l2) const {
1748
1749 // general variables
1750 // l2->good2 = good2 ;
1751 for(Int_t i=0; i<12 ; i++){
1752 // l2->crc[i] = crc[i];
1753 l2->good[i] = good[i];
1754 };
1755 // *** TRACKS ***
1756
1757 if(Track){
1758 l2->ntrk = Track->GetEntries();
1759 for(Int_t i=0;i<l2->ntrk;i++){
1760 l2->image[i] = 1 + ((TrkTrack *)Track->At(i))->image;
1761 l2->chi2_nt[i] = ((TrkTrack *)Track->At(i))->chi2;
1762 l2->nstep_nt[i] = ((TrkTrack *)Track->At(i))->nstep;
1763 for(int it1=0;it1<5;it1++){
1764 l2->al_nt[i][it1] = ((TrkTrack *)Track->At(i))->al[it1];
1765 for(int it2=0;it2<5;it2++)
1766 l2->coval[i][it2][it1] = ((TrkTrack *)Track->At(i))->coval[it1][it2];
1767 };
1768 for(int ip=0;ip<6;ip++){
1769 l2->xgood_nt[i][ip] = ((TrkTrack *)Track->At(i))->XGood(ip);
1770 l2->ygood_nt[i][ip] = ((TrkTrack *)Track->At(i))->YGood(ip);
1771 l2->xm_nt[i][ip] = ((TrkTrack *)Track->At(i))->xm[ip];
1772 l2->ym_nt[i][ip] = ((TrkTrack *)Track->At(i))->ym[ip];
1773 l2->zm_nt[i][ip] = ((TrkTrack *)Track->At(i))->zm[ip];
1774 l2->resx_nt[i][ip] = ((TrkTrack *)Track->At(i))->resx[ip];
1775 l2->resy_nt[i][ip] = ((TrkTrack *)Track->At(i))->resy[ip];
1776 l2->tailx[i][ip] = ((TrkTrack *)Track->At(i))->tailx[ip];
1777 l2->taily[i][ip] = ((TrkTrack *)Track->At(i))->taily[ip];
1778 l2->xv_nt[i][ip] = ((TrkTrack *)Track->At(i))->xv[ip];
1779 l2->yv_nt[i][ip] = ((TrkTrack *)Track->At(i))->yv[ip];
1780 l2->zv_nt[i][ip] = ((TrkTrack *)Track->At(i))->zv[ip];
1781 l2->axv_nt[i][ip] = ((TrkTrack *)Track->At(i))->axv[ip];
1782 l2->ayv_nt[i][ip] = ((TrkTrack *)Track->At(i))->ayv[ip];
1783 l2->dedx_x[i][ip] = ((TrkTrack *)Track->At(i))->dedx_x[ip];
1784 l2->dedx_y[i][ip] = ((TrkTrack *)Track->At(i))->dedx_y[ip];
1785 };
1786 }
1787 }
1788 // *** SINGLETS ***
1789 if(SingletX){
1790 l2->nclsx = SingletX->GetEntries();
1791 for(Int_t i=0;i<l2->nclsx;i++){
1792 l2->planex[i] = ((TrkSinglet *)SingletX->At(i))->plane;
1793 l2->xs[i][0] = ((TrkSinglet *)SingletX->At(i))->coord[0];
1794 l2->xs[i][1] = ((TrkSinglet *)SingletX->At(i))->coord[1];
1795 l2->signlxs[i] = ((TrkSinglet *)SingletX->At(i))->sgnl;
1796 }
1797 }
1798
1799 if(SingletY){
1800 l2->nclsy = SingletY->GetEntries();
1801 for(Int_t i=0;i<l2->nclsy;i++){
1802 l2->planey[i] = ((TrkSinglet *)SingletY->At(i))->plane;
1803 l2->ys[i][0] = ((TrkSinglet *)SingletY->At(i))->coord[0];
1804 l2->ys[i][1] = ((TrkSinglet *)SingletY->At(i))->coord[1];
1805 l2->signlys[i] = ((TrkSinglet *)SingletY->At(i))->sgnl;
1806 }
1807 }
1808 }
1809 //--------------------------------------
1810 //
1811 //
1812 //--------------------------------------
1813 void TrkLevel2::Clear(){
1814 for(Int_t i=0; i<12 ; i++){
1815 good[i] = -1;
1816 VKflag[i] = 0;
1817 VKmask[i] = 0;
1818 };
1819 // if(Track)Track->Clear("C");
1820 // if(SingletX)SingletX->Clear("C");
1821 // if(SingletY)SingletY->Clear("C");
1822 if(Track)Track->Delete();
1823 if(SingletX)SingletX->Delete();
1824 if(SingletY)SingletY->Delete();
1825 }
1826 // //--------------------------------------
1827 // //
1828 // //
1829 // //--------------------------------------
1830 void TrkLevel2::Delete(){
1831
1832 // cout << "void TrkLevel2::Delete()"<<endl;
1833 Clear();
1834 if(Track)delete Track;
1835 if(SingletX)delete SingletX;
1836 if(SingletY)delete SingletY;
1837
1838 }
1839 //--------------------------------------
1840 //
1841 //
1842 //--------------------------------------
1843 /**
1844 * Sort physical tracks and stores them in a TObjectArray, ordering by increasing chi**2 value (in case of track image, it selects the one with lower chi**2). The total number of physical tracks is given by GetNTracks() and the it-th physical track can be retrieved by means of the method GetTrack(int it).
1845 * This method is overridden by PamLevel2::GetTracks(), where calorimeter and TOF information is used.
1846 */
1847 TRefArray *TrkLevel2::GetTracks_NFitSorted(){
1848
1849 if(!Track)return 0;
1850
1851 // TRefArray *sorted = new TRefArray();
1852 TRefArray *sorted = NULL;
1853
1854 TClonesArray &t = *Track;
1855 // TClonesArray &ts = *PhysicalTrack;
1856 int N = ntrk();
1857 vector<int> m(N); for(int i=0; i<N; i++)m[i]=1;
1858 // int m[50]; for(int i=0; i<N; i++)m[i]=1;
1859
1860 int indo=0;
1861 int indi=0;
1862 while(N > 0){
1863 // while(N != 0){
1864 int nfit =0;
1865 float chi2ref = numeric_limits<float>::max();
1866
1867 // first loop to search maximum num. of fit points
1868 for(int i=0; i < ntrk(); i++){
1869 if( ((TrkTrack *)t[i])->GetNtot() >= nfit && m[i]==1){
1870 nfit = ((TrkTrack *)t[i])->GetNtot();
1871 }
1872 }
1873 //second loop to search minimum chi2 among selected
1874 for(int i=0; i<ntrk(); i++){
1875 Float_t chi2 = ((TrkTrack *)t[i])->chi2;
1876 if(chi2 < 0) chi2 = -chi2*1000;
1877 if( chi2 < chi2ref
1878 && ((TrkTrack *)t[i])->GetNtot() == nfit
1879 && m[i]==1){
1880 chi2ref = ((TrkTrack *)t[i])->chi2;
1881 indi = i;
1882 };
1883 };
1884 if( ((TrkTrack *)t[indi])->HasImage() ){
1885 m[((TrkTrack *)t[indi])->image] = 0;
1886 N--;
1887
1888 // cout << "i** "<< ((TrkTrack *)t[indi])->image << " " << nfiti <<" "<<chi2i<<endl;
1889 };
1890 if(!sorted)sorted = new TRefArray( TProcessID::GetProcessWithUID(t[indi]));
1891 sorted->Add( (TrkTrack*)t[indi] );
1892
1893 m[indi] = 0;
1894 // cout << "SORTED "<< indo << " "<< indi << " "<< N << " "<<((TrkTrack *)t[indi])->image<<" "<<chi2ref<<endl;
1895 N--;
1896 indo++;
1897 }
1898 m.clear();
1899 // cout << "GetTracks_NFitSorted(it): Done"<< endl;
1900
1901 return sorted;
1902 // return PhysicalTrack;
1903 }
1904 //--------------------------------------
1905 //
1906 //
1907 //--------------------------------------
1908 /**
1909 * Retrieves the is-th stored track.
1910 * @param it Track number, ranging from 0 to ntrk().
1911 * Fitted tracks ( images included ) are stored in a TObjectArray ( TrkLevel2::Track ) in the same order they are returned by the F77 fitting routine.
1912 */
1913 TrkTrack *TrkLevel2::GetStoredTrack(int is){
1914
1915 if(is >= this->ntrk()){
1916 cout << "TrkTrack *TrkLevel2::GetStoredTrack(int) >> Track "<< is << "doen not exits! " << endl;
1917 cout << "Stored tracks ntrk() = "<< this->ntrk() << endl;
1918 return 0;
1919 }
1920 if(!Track){
1921 cout << "TrkTrack *TrkLevel2::GetStoredTrack(int is) >> (TClonesArray*) Track ==0 "<<endl;
1922 };
1923 TClonesArray &t = *(Track);
1924 TrkTrack *track = (TrkTrack*)t[is];
1925 return track;
1926 }
1927 //--------------------------------------
1928 //
1929 //
1930 //--------------------------------------
1931 /**
1932 * Retrieves the is-th stored X singlet.
1933 * @param it Singlet number, ranging from 0 to nclsx().
1934 */
1935 TrkSinglet *TrkLevel2::GetSingletX(int is){
1936
1937 if(is >= this->nclsx()){
1938 cout << "TrkSinglet *TrkLevel2::GetSingletX(int) >> Singlet "<< is << "doen not exits! " << endl;
1939 cout << "Stored x-singlets nclsx() = "<< this->nclsx() << endl;
1940 return 0;
1941 }
1942 if(!SingletX)return 0;
1943 TClonesArray &t = *(SingletX);
1944 TrkSinglet *singlet = (TrkSinglet*)t[is];
1945 return singlet;
1946 }
1947 //--------------------------------------
1948 //
1949 //
1950 //--------------------------------------
1951 /**
1952 * Retrieves the is-th stored Y singlet.
1953 * @param it Singlet number, ranging from 0 to nclsx().
1954 */
1955 TrkSinglet *TrkLevel2::GetSingletY(int is){
1956
1957 if(is >= this->nclsy()){
1958 cout << "TrkSinglet *TrkLevel2::GetSingletY(int) >> Singlet "<< is << "doen not exits! " << endl;
1959 cout << "Stored y-singlets nclsx() = "<< this->nclsx() << endl;
1960 return 0;
1961 }
1962 if(!SingletY)return 0;
1963 TClonesArray &t = *(SingletY);
1964 TrkSinglet *singlet = (TrkSinglet*)t[is];
1965 return singlet;
1966 }
1967 //--------------------------------------
1968 //
1969 //
1970 //--------------------------------------
1971 /**
1972 * Retrieves the it-th "physical" track, sorted by the method GetNTracks().
1973 * @param it Track number, ranging from 0 to GetNTracks().
1974 */
1975
1976 TrkTrack *TrkLevel2::GetTrack(int it){
1977
1978 if(it >= this->GetNTracks()){
1979 cout << "TrkTrack *TrkLevel2::GetTrack(int) >> Track "<< it << "does not exits! " << endl;
1980 cout << "Physical tracks GetNTracks() = "<< this->ntrk() << endl;
1981 return 0;
1982 }
1983
1984 TRefArray *sorted = GetTracks(); //TEMPORANEO
1985 if(!sorted)return 0;
1986 TrkTrack *track = (TrkTrack*)sorted->At(it);
1987 sorted->Clear();
1988 delete sorted;
1989 return track;
1990 }
1991 /**
1992 * Give the number of "physical" tracks, sorted by the method GetTracks().
1993 */
1994 Int_t TrkLevel2::GetNTracks(){
1995
1996 Float_t ntot=0;
1997 if(!Track)return 0;
1998 TClonesArray &t = *Track;
1999 for(int i=0; i<ntrk(); i++) {
2000 if( ((TrkTrack *)t[i])->GetImageSeqNo() == -1 ) ntot+=1.;
2001 else ntot+=0.5;
2002 }
2003 return (Int_t)ntot;
2004
2005 };
2006 //--------------------------------------
2007 //
2008 //
2009 //--------------------------------------
2010 /**
2011 * Retrieves (if present) the image of the it-th "physical" track, sorted by the method GetNTracks().
2012 * @param it Track number, ranging from 0 to GetNTracks().
2013 */
2014 TrkTrack *TrkLevel2::GetTrackImage(int it){
2015
2016 if(it >= this->GetNTracks()){
2017 cout << "TrkTrack *TrkLevel2::GetTrackImage(int) >> Track "<< it << "does not exits! " << endl;
2018 cout << "Physical tracks GetNTracks() = "<< this->ntrk() << endl;
2019 return 0;
2020 }
2021
2022 TRefArray* sorted = GetTracks(); //TEMPORANEO
2023 if(!sorted)return 0;
2024 TrkTrack *track = (TrkTrack*)sorted->At(it);
2025
2026 if(!track->HasImage()){
2027 cout << "TrkTrack *TrkLevel2::GetTrackImage(int) >> Track "<< it << "does not have image! " << endl;
2028 return 0;
2029 }
2030 if(!Track)return 0;
2031 TrkTrack *image = (TrkTrack*)(*Track)[track->image];
2032
2033 sorted->Delete();
2034 delete sorted;
2035
2036 return image;
2037
2038 }
2039 //--------------------------------------
2040 //
2041 //
2042 //--------------------------------------
2043 /**
2044 * Loads the magnetic field.
2045 * @param s Path of the magnetic-field files.
2046 */
2047 void TrkLevel2::LoadField(TString path){
2048 //
2049 // strcpy(path_.path,path.Data());
2050 // path_.pathlen = path.Length();
2051 // path_.error = 0;
2052 // readb_();
2053
2054 // TrkParams::SetTrackingMode();
2055 // TrkParams::SetPrecisionFactor();
2056 // TrkParams::SetStepMin();
2057 TrkParams::SetMiniDefault();
2058
2059 TrkParams::Set(path,1);
2060 TrkParams::Load(1);
2061 if( !TrkParams::IsLoaded(1) ){
2062 cout << "void TrkLevel2::LoadField(TString path) --- ERROR --- m.field not loaded"<<endl;
2063 }
2064
2065 //
2066 };
2067 // /**
2068 // * Get BY (kGauss)
2069 // * @param v (x,y,z) coordinates in cm
2070 // */
2071 // float TrkLevel2::GetBX(float* v){
2072 // float b[3];
2073 // gufld_(v,b);
2074 // return b[0]/10.;
2075 // }
2076 // /**
2077 // * Get BY (kGauss)
2078 // * @param v (x,y,z) coordinates in cm
2079 // */
2080 // float TrkLevel2::GetBY(float* v){
2081 // float b[3];
2082 // gufld_(v,b);
2083 // return b[1]/10.;
2084 // }
2085 // /**
2086 // * Get BY (kGauss)
2087 // * @param v (x,y,z) coordinates in cm
2088 // */
2089 // float TrkLevel2::GetBZ(float* v){
2090 // float b[3];
2091 // gufld_(v,b);
2092 // return b[2]/10.;
2093 // }
2094 //--------------------------------------
2095 //
2096 //
2097 //--------------------------------------
2098 /**
2099 * Get tracker-plane (mechanical) z-coordinate
2100 * @param plane_id plane index (1=TOP,2,3,4,5,6=BOTTOM)
2101 */
2102 Float_t TrkLevel2::GetZTrk(Int_t plane_id){
2103 switch(plane_id){
2104 case 1: return ZTRK1;
2105 case 2: return ZTRK2;
2106 case 3: return ZTRK3;
2107 case 4: return ZTRK4;
2108 case 5: return ZTRK5;
2109 case 6: return ZTRK6;
2110 default: return 0.;
2111 };
2112 };
2113 //--------------------------------------
2114 //
2115 //
2116 //--------------------------------------
2117 /**
2118 * Trajectory default constructor.
2119 * (By default is created with z-coordinates inside the tracking volume)
2120 */
2121 Trajectory::Trajectory(){
2122 npoint = 10;
2123 x = new float[npoint];
2124 y = new float[npoint];
2125 z = new float[npoint];
2126 thx = new float[npoint];
2127 thy = new float[npoint];
2128 tl = new float[npoint];
2129 float dz = ((ZTRK1)-(ZTRK6))/(npoint-1);
2130 for(int i=0; i<npoint; i++){
2131 x[i] = 0;
2132 y[i] = 0;
2133 z[i] = (ZTRK1) - i*dz;
2134 thx[i] = 0;
2135 thy[i] = 0;
2136 tl[i] = 0;
2137 }
2138 }
2139 //--------------------------------------
2140 //
2141 //
2142 //--------------------------------------
2143 /**
2144 * Trajectory constructor.
2145 * (By default is created with z-coordinates inside the tracking volume)
2146 * \param n Number of points
2147 */
2148 Trajectory::Trajectory(int n){
2149 if(n<=0){
2150 cout << "NB! Trajectory must have at least 1 point >>> created with 10 points" << endl;
2151 n=10;
2152 }
2153 npoint = n;
2154 x = new float[npoint];
2155 y = new float[npoint];
2156 z = new float[npoint];
2157 thx = new float[npoint];
2158 thy = new float[npoint];
2159 tl = new float[npoint];
2160 float dz = ((ZTRK1)-(ZTRK6))/(npoint-1);
2161 for(int i=0; i<npoint; i++){
2162 x[i] = 0;
2163 y[i] = 0;
2164 z[i] = (ZTRK1) - i*dz;
2165 thx[i] = 0;
2166 thy[i] = 0;
2167 tl[i] = 0;
2168 }
2169 }
2170 //--------------------------------------
2171 //
2172 //
2173 //--------------------------------------
2174 /**
2175 * Trajectory constructor.
2176 * \param n Number of points
2177 * \param pz Pointer to float array, defining z coordinates
2178 */
2179 Trajectory::Trajectory(int n, float* zin){
2180 npoint = 10;
2181 if(n>0)npoint = n;
2182 x = new float[npoint];
2183 y = new float[npoint];
2184 z = new float[npoint];
2185 thx = new float[npoint];
2186 thy = new float[npoint];
2187 tl = new float[npoint];
2188 int i=0;
2189 do{
2190 x[i] = 0;
2191 y[i] = 0;
2192 z[i] = zin[i];
2193 thx[i] = 0;
2194 thy[i] = 0;
2195 tl[i] = 0;
2196 i++;
2197 }while(zin[i-1] > zin[i] && i < npoint);
2198 npoint=i;
2199 if(npoint != n)cout << "NB! Trajectory created with "<<npoint<<" points"<<endl;
2200 }
2201 void Trajectory::Delete(){
2202
2203 if(x) delete [] x;
2204 if(y) delete [] y;
2205 if(z) delete [] z;
2206 if(thx) delete [] thx;
2207 if(thy) delete [] thy;
2208 if(tl) delete [] tl;
2209
2210 }
2211 //--------------------------------------
2212 //
2213 //
2214 //--------------------------------------
2215 /**
2216 * Dump the trajectory coordinates.
2217 */
2218 void Trajectory::Dump(){
2219 cout <<endl<< "Trajectory ========== "<<endl;
2220 for (int i=0; i<npoint; i++){
2221 cout << i <<" >> " << x[i] <<" "<< y[i] <<" "<< z[i] ;
2222 cout <<" -- " << thx[i] <<" "<< thy[i] ;
2223 cout <<" -- " << tl[i] << endl;
2224 };
2225 }
2226 //--------------------------------------
2227 //
2228 //
2229 //--------------------------------------
2230 /**
2231 * Get trajectory length between two points
2232 * @param ifirst first point (default 0)
2233 * @param ilast last point (default npoint)
2234 */
2235 float Trajectory::GetLength(int ifirst, int ilast){
2236 if( ifirst<0 ) ifirst = 0;
2237 if( ilast>=npoint) ilast = npoint-1;
2238 float l=0;
2239 for(int i=ifirst;i<=ilast;i++){
2240 l=l+tl[i];
2241 };
2242 if(z[ilast] > ZINI)l=l-tl[ilast];
2243 if(z[ifirst] < ZINI) l=l-tl[ifirst];
2244
2245 return l;
2246
2247 }
2248
2249 /**
2250 * Evaluates the trajectory in the apparatus associated to the track.
2251 * It integrates the equations of motion in the magnetic field. The magnetic field should be previously loaded ( by calling TrkLevel2::LoadField() ), otherwise an error message is returned.
2252 * @param t pointer to an object of the class Trajectory,
2253 * which z coordinates should be previously initialized by calling the proper constructor ( Trajectory::Trajectory(int n, float* zin) ).
2254 * @return error flag.
2255 */
2256 int Trajectory::DoTrack2(float* al){
2257
2258 // double *dxout = new double[npoint];
2259 // double *dyout = new double[npoint];
2260 // double *dthxout = new double[npoint];
2261 // double *dthyout = new double[npoint];
2262 // double *dtlout = new double[npoint];
2263 // double *dzin = new double[npoint];
2264
2265 double *dxout;
2266 double *dyout;
2267 double *dthxout;
2268 double *dthyout;
2269 double *dtlout;
2270 double *dzin;
2271
2272 dxout = (double*) malloc(npoint*sizeof(double));
2273 dyout = (double*) malloc(npoint*sizeof(double));
2274 dthxout = (double*) malloc(npoint*sizeof(double));
2275 dthyout = (double*) malloc(npoint*sizeof(double));
2276 dtlout = (double*) malloc(npoint*sizeof(double));
2277 dzin = (double*) malloc(npoint*sizeof(double));
2278
2279 double dal[5];
2280
2281 int ifail = 0;
2282
2283 for (int i=0; i<5; i++) dal[i] = (double)al[i];
2284 for (int i=0; i<npoint; i++) dzin[i] = (double)z[i];
2285
2286 TrkParams::Load(1);
2287 if( !TrkParams::IsLoaded(1) ){
2288 cout << "int Trajectory::DoTrack2(float* al) --- ERROR --- m.field not loaded"<<endl;
2289 return 0;
2290 }
2291 dotrack2_(&(npoint),dzin,dxout,dyout,dthxout,dthyout,dtlout,dal,&ifail);
2292
2293 for (int i=0; i<npoint; i++){
2294 x[i] = (float)*(dxout+i);
2295 y[i] = (float)*(dyout+i);
2296 thx[i] = (float)*(dthxout+i);
2297 thy[i] = (float)*(dthyout+i);
2298 tl[i] = (float)*(dtlout+i);
2299 }
2300
2301 if(dxout) free( dxout );
2302 if(dyout) free( dyout );
2303 if(dthxout)free( dthxout );
2304 if(dthyout)free( dthyout );
2305 if(dtlout) free( dtlout );
2306 if(dzin) free( dzin );
2307
2308 // delete [] dxout;
2309 // delete [] dyout;
2310 // delete [] dthxout;
2311 // delete [] dthyout;
2312 // delete [] dtlout;
2313 // delete [] dzin;
2314
2315
2316 return ifail;
2317 };
2318
2319 ClassImp(TrkLevel2);
2320 ClassImp(TrkSinglet);
2321 ClassImp(TrkTrack);
2322 ClassImp(Trajectory);

  ViewVC Help
Powered by ViewVC 1.1.23