/[PAMELA software]/DarthVader/TrackerLevel2/src/TrkLevel2.cpp
ViewVC logotype

Contents of /DarthVader/TrackerLevel2/src/TrkLevel2.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1.39 - (show annotations) (download)
Wed Aug 22 07:03:45 2007 UTC (17 years, 3 months ago) by pam-fi
Branch: MAIN
Changes since 1.38: +41 -0 lines
added several methods to get PFA info

1 /**
2 * \file TrkLevel2.cpp
3 * \author Elena Vannuccini
4 */
5 #include <TrkLevel2.h>
6 #include <iostream>
7 #include <math.h>
8 using namespace std;
9 //......................................
10 // F77 routines
11 //......................................
12 extern "C" {
13 void dotrack_(int*, double*, double*, double*, double*, int*);
14 void dotrack2_(int*, double*, double*, double*, double*,double*, double*, double*,int*);
15 void mini2_(int*,int*,int*);
16 void guess_();
17 void gufld_(float*, float*);
18 float risxeta2_(float *);
19 float risxeta3_(float *);
20 float risxeta4_(float *);
21 float risyeta2_(float *);
22 }
23
24 //--------------------------------------
25 //
26 //
27 //--------------------------------------
28 TrkTrack::TrkTrack(){
29 // cout << "TrkTrack::TrkTrack()" << endl;
30 seqno = -1;
31 image = -1;
32 chi2 = 0;
33 nstep = 0;
34 for(int it1=0;it1<5;it1++){
35 al[it1] = 0;
36 for(int it2=0;it2<5;it2++)coval[it1][it2] = 0;
37 };
38 for(int ip=0;ip<6;ip++){
39 xgood[ip] = 0;
40 ygood[ip] = 0;
41 xm[ip] = 0;
42 ym[ip] = 0;
43 zm[ip] = 0;
44 resx[ip] = 0;
45 resy[ip] = 0;
46 tailx[ip] = 0;
47 taily[ip] = 0;
48 xv[ip] = 0;
49 yv[ip] = 0;
50 zv[ip] = 0;
51 axv[ip] = 0;
52 ayv[ip] = 0;
53 dedx_x[ip] = 0;
54 dedx_y[ip] = 0;
55 };
56 // clx = 0;
57 // cly = 0;
58 // clx = new TRefArray(6,0); //forse causa memory leak???
59 // cly = new TRefArray(6,0); //forse causa memory leak???
60 // clx = TRefArray(6,0);
61 // cly = TRefArray(6,0);
62
63 TrkParams::SetTrackingMode();
64 TrkParams::SetPrecisionFactor();
65 TrkParams::SetStepMin();
66 TrkParams::SetPFA();
67
68 };
69 //--------------------------------------
70 //
71 //
72 //--------------------------------------
73 TrkTrack::TrkTrack(const TrkTrack& t){
74 seqno = t.seqno;
75 image = t.image;
76 chi2 = t.chi2;
77 nstep = t.nstep;
78 for(int it1=0;it1<5;it1++){
79 al[it1] = t.al[it1];
80 for(int it2=0;it2<5;it2++)coval[it1][it2] = t.coval[it1][it2];
81 };
82 for(int ip=0;ip<6;ip++){
83 xgood[ip] = t.xgood[ip];
84 ygood[ip] = t.ygood[ip];
85 xm[ip] = t.xm[ip];
86 ym[ip] = t.ym[ip];
87 zm[ip] = t.zm[ip];
88 resx[ip] = t.resx[ip];
89 resy[ip] = t.resy[ip];
90 tailx[ip] = t.tailx[ip];
91 taily[ip] = t.taily[ip];
92 xv[ip] = t.xv[ip];
93 yv[ip] = t.yv[ip];
94 zv[ip] = t.zv[ip];
95 axv[ip] = t.axv[ip];
96 ayv[ip] = t.ayv[ip];
97 dedx_x[ip] = t.dedx_x[ip];
98 dedx_y[ip] = t.dedx_y[ip];
99 };
100 // clx = 0;
101 // cly = 0;
102 // if(t.clx)clx = new TRefArray(*(t.clx));
103 // if(t.cly)cly = new TRefArray(*(t.cly));
104 // clx = TRefArray(t.clx);
105 // cly = TRefArray(t.cly);
106
107 TrkParams::SetTrackingMode();
108 TrkParams::SetPrecisionFactor();
109 TrkParams::SetStepMin();
110 TrkParams::SetPFA();
111
112 };
113 //--------------------------------------
114 //
115 //
116 //--------------------------------------
117 void TrkTrack::Copy(TrkTrack& t){
118
119 t.seqno = seqno;
120 t.image = image;
121 t.chi2 = chi2;
122 t.nstep = nstep;
123 for(int it1=0;it1<5;it1++){
124 t.al[it1] = al[it1];
125 for(int it2=0;it2<5;it2++)t.coval[it1][it2] = coval[it1][it2];
126 };
127 for(int ip=0;ip<6;ip++){
128 t.xgood[ip] = xgood[ip];
129 t.ygood[ip] = ygood[ip];
130 t.xm[ip] = xm[ip];
131 t.ym[ip] = ym[ip];
132 t.zm[ip] = zm[ip];
133 t.resx[ip] = resx[ip];
134 t.resy[ip] = resy[ip];
135 t.tailx[ip] = tailx[ip];
136 t.taily[ip] = taily[ip];
137 t.xv[ip] = xv[ip];
138 t.yv[ip] = yv[ip];
139 t.zv[ip] = zv[ip];
140 t.axv[ip] = axv[ip];
141 t.ayv[ip] = ayv[ip];
142 t.dedx_x[ip] = dedx_x[ip];
143 t.dedx_y[ip] = dedx_y[ip];
144
145 };
146
147 // t.clx = TRefArray(clx);
148 // t.cly = TRefArray(cly);
149
150 };
151 //--------------------------------------
152 //
153 //
154 //--------------------------------------
155 /**
156 * Evaluates the trajectory in the apparatus associated to the track.
157 * It integrates the equations of motion in the magnetic field. The magnetic field should be previously loaded ( by calling TrkLevel2::LoadField() ), otherwise an error message is returned.
158 * @param t pointer to an object of the class Trajectory,
159 * which z coordinates should be previously initialized by calling the proper constructor ( Trajectory::Trajectory(int n, float* zin) ).
160 * @return error flag.
161 */
162 int TrkTrack::DoTrack(Trajectory* t){
163
164 double *dxout = new double[t->npoint];
165 double *dyout = new double[t->npoint];
166 double *dzin = new double[t->npoint];
167 double dal[5];
168
169 int ifail = 0;
170
171 for (int i=0; i<5; i++) dal[i] = (double)al[i];
172 for (int i=0; i<t->npoint; i++) dzin[i] = (double)t->z[i];
173
174 TrkParams::Load(1);
175 if( !TrkParams::IsLoaded(1) ){
176 cout << "int TrkTrack::DoTrack(Trajectory* t) --- ERROR --- m.field not loaded"<<endl;
177 return 0;
178 }
179 dotrack_(&(t->npoint),dzin,dxout,dyout,dal,&ifail);
180
181 for (int i=0; i<t->npoint; i++){
182 t->x[i] = (float)*dxout++;
183 t->y[i] = (float)*dyout++;
184 }
185
186 // delete [] dxout;
187 // delete [] dyout;
188 // delete [] dzin;
189
190 return ifail;
191 };
192 //--------------------------------------
193 //
194 //
195 //--------------------------------------
196 /**
197 * Evaluates the trajectory in the apparatus associated to the track.
198 * It integrates the equations of motion in the magnetic field. The magnetic field should be previously loaded ( by calling TrkLevel2::LoadField() ), otherwise an error message is returned.
199 * @param t pointer to an object of the class Trajectory,
200 * which z coordinates should be previously initialized by calling the proper constructor ( Trajectory::Trajectory(int n, float* zin) ).
201 * @return error flag.
202 */
203 int TrkTrack::DoTrack2(Trajectory* t){
204
205 double *dxout = new double[t->npoint];
206 double *dyout = new double[t->npoint];
207 double *dthxout = new double[t->npoint];
208 double *dthyout = new double[t->npoint];
209 double *dtlout = new double[t->npoint];
210 double *dzin = new double[t->npoint];
211 double dal[5];
212
213 int ifail = 0;
214
215 for (int i=0; i<5; i++) dal[i] = (double)al[i];
216 for (int i=0; i<t->npoint; i++) dzin[i] = (double)t->z[i];
217
218 TrkParams::Load(1);
219 if( !TrkParams::IsLoaded(1) ){
220 cout << "int TrkTrack::DoTrack2(Trajectory* t) --- ERROR --- m.field not loaded"<<endl;
221 return 0;
222 }
223 dotrack2_(&(t->npoint),dzin,dxout,dyout,dthxout,dthyout,dtlout,dal,&ifail);
224
225 for (int i=0; i<t->npoint; i++){
226 t->x[i] = (float)*dxout++;
227 t->y[i] = (float)*dyout++;
228 t->thx[i] = (float)*dthxout++;
229 t->thy[i] = (float)*dthyout++;
230 t->tl[i] = (float)*dtlout++;
231 }
232
233 // delete [] dxout;
234 // delete [] dyout;
235 // delete [] dzin;
236
237 return ifail;
238 };
239 //--------------------------------------
240 //
241 //
242 //--------------------------------------
243 //float TrkTrack::BdL(){
244 //};
245 //--------------------------------------
246 //
247 //
248 //--------------------------------------
249 Float_t TrkTrack::GetRigidity(){
250 Float_t rig=0;
251 if(chi2>0)rig=1./al[4];
252 if(rig<0) rig=-rig;
253 return rig;
254 };
255 //
256 Float_t TrkTrack::GetDeflection(){
257 Float_t def=0;
258 if(chi2>0)def=al[4];
259 return def;
260 };
261 //
262 /**
263 * Method to retrieve the dE/dx measured on a tracker view.
264 * @param ip plane (0-5)
265 * @param iv view (0=x 1=y)
266 */
267 Float_t TrkTrack::GetDEDX(int ip, int iv){
268 if(iv==0 && ip>=0 && ip<6)return fabs(dedx_x[ip]);
269 else if(iv==1 && ip>=0 && ip<6)return fabs(dedx_y[ip]);
270 else {
271 cout << "TrkTrack::GetDEDX(int ip, int iv) -- wrong input parameters "<<ip<<iv<<endl;
272 return 0.;
273 }
274 }
275 /**
276 * Method to evaluate the dE/dx measured on a tracker plane.
277 * The two measurements on x- and y-view are averaged.
278 * @param ip plane (0-5)
279 */
280 Float_t TrkTrack::GetDEDX(int ip){
281 if( (Int_t)XGood(ip)+(Int_t)YGood(ip) == 0 ) return 0;
282 return (GetDEDX(ip,0)+GetDEDX(ip,1))/((Int_t)XGood(ip)+(Int_t)YGood(ip));
283 };
284
285 /**
286 * Method to evaluate the dE/dx averaged over all planes.
287 */
288 Float_t TrkTrack::GetDEDX(){
289 Float_t dedx=0;
290 for(Int_t ip=0; ip<6; ip++)dedx+=GetDEDX(ip,0)*XGood(ip)+GetDEDX(ip,1)*YGood(ip);
291 dedx = dedx/(GetNX()+GetNY());
292 return dedx;
293 };
294 /**
295 * Returns 1 if the cluster on a tracker view includes bad strips.
296 * @param ip plane (0-5)
297 * @param iv view (0=x 1=y)
298 */
299 Bool_t TrkTrack::IsBad(int ip,int iv){
300 if(iv==0 && ip>=0 && ip<6)return (xgood[ip]<0) ;
301 else if(iv==1 && ip>=0 && ip<6)return (ygood[ip]<0) ;
302 else {
303 cout << "TrkTrack::IsBad(int ip, int iv) -- wrong input parameters "<<ip<<iv<<endl;
304 return 0.;
305 }
306 };
307 /**
308 * Returns 1 if the signal on a tracker view is saturated.
309 * @param ip plane (0-5)
310 * @param iv view (0=x 1=y)
311 */
312 Bool_t TrkTrack::IsSaturated(int ip,int iv){
313 if(iv==0 && ip>=0 && ip<6)return (dedx_x[ip]<0) ;
314 else if(iv==1 && ip>=0 && ip<6)return (dedx_y[ip]<0) ;
315 else {
316 cout << "TrkTrack::IsSaturated(int ip, int iv) -- wrong input parameters "<<ip<<iv<<endl;
317 return 0.;
318 }
319 };
320 /**
321 * Returns 1 if either the x or the y signal on a tracker plane is saturated.
322 * @param ip plane (0-5)
323 */
324 Bool_t TrkTrack::IsSaturated(int ip){
325 return (IsSaturated(ip,0)||IsSaturated(ip,1));
326 };
327 /**
328 * Returns 1 if there is at least a saturated signal along the track.
329 */
330 Bool_t TrkTrack::IsSaturated(){
331 for(int ip=0; ip<6; ip++)for(int iv=0; iv<2; iv++)if(IsSaturated(ip,iv))return true;
332 return false;
333 }
334 /**
335 * Returns the track "lever-arm" on the x view, defined as the distance (in planes) between
336 * the upper and lower x measurements (the maximum value of lever-arm is 6).
337 */
338 Int_t TrkTrack::GetLeverArmX(){
339 int first_plane = -1;
340 int last_plane = -1;
341 for(Int_t ip=0; ip<6; ip++){
342 if( XGood(ip) && first_plane == -1 )first_plane = ip;
343 if( XGood(ip) && first_plane != -1 )last_plane = ip;
344 }
345 if( first_plane == -1 || last_plane == -1){
346 cout<< "Int_t TrkTrack::GetLeverArmX() -- XGood(ip) always false ??? "<<endl;
347 return 0;
348 }
349 return (last_plane-first_plane+1);
350 }
351 /**
352 * Returns the track "lever-arm" on the y view, defined as the distance (in planes) between
353 * the upper and lower y measurements (the maximum value of lever-arm is 6).
354 */
355 Int_t TrkTrack::GetLeverArmY(){
356 int first_plane = -1;
357 int last_plane = -1;
358 for(Int_t ip=0; ip<6; ip++){
359 if( YGood(ip) && first_plane == -1 )first_plane = ip;
360 if( YGood(ip) && first_plane != -1 )last_plane = ip;
361 }
362 if( first_plane == -1 || last_plane == -1){
363 cout<< "Int_t TrkTrack::GetLeverArmY() -- YGood(ip) always false ??? "<<endl;
364 return 0;
365 }
366 return (last_plane-first_plane+1);
367 }
368 /**
369 * Returns the reduced chi-square of track x-projection
370 */
371 Float_t TrkTrack::GetChi2X(){
372 float chiq=0;
373 for(int ip=0; ip<6; ip++)if(XGood(ip))chiq+= pow((xv[ip]-xm[ip])/resx[ip],2.);
374 if(GetNX()>3)chiq=chiq/(GetNX()-3);
375 else chiq=0;
376 if(chiq==0)cout << " Float_t TrkTrack::GetChi2X() -- WARNING -- value not defined "<<chiq<<endl;
377 return chiq;
378 }
379 /**
380 * Returns the reduced chi-square of track y-projection
381 */
382 Float_t TrkTrack::GetChi2Y(){
383 float chiq=0;
384 for(int ip=0; ip<6; ip++)if(YGood(ip))chiq+= pow((yv[ip]-ym[ip])/resy[ip],2.);
385 if(GetNY()>2)chiq=chiq/(GetNY()-2);
386 else chiq=0;
387 if(chiq==0)cout << " Float_t TrkTrack::GetChi2Y() -- WARNING -- value not defined "<<chiq<<endl;
388 return chiq;
389 }
390 /**
391 * Returns the logarythm of the likeliwood-function of track x-projection
392 */
393 Float_t TrkTrack::GetLnLX(){
394 float lnl=0;
395 for(int ip=0; ip<6; ip++)
396 if( XGood(ip) && tailx[ip]!=0 )
397 lnl += (tailx[ip]+1.) * log( (tailx[ip]*pow(resx[ip],2.) + pow(xv[ip]-xm[ip],2.)) / (tailx[ip]*pow(resx[ip],2)) );
398 if(GetNX()>3)lnl=lnl/(GetNX()-3);
399 else lnl=0;
400 if(lnl==0){
401 cout << " Float_t TrkTrack::GetLnLX() -- WARNING -- value not defined "<<lnl<<endl;
402 Dump();
403 }
404 return lnl;
405
406 }
407 /**
408 * Returns the logarythm of the likeliwood-function of track y-projection
409 */
410 Float_t TrkTrack::GetLnLY(){
411 float lnl=0;
412 for(int ip=0; ip<6; ip++)
413 if( YGood(ip) && taily[ip]!=0 )
414 lnl += (taily[ip]+1.) * log( (taily[ip]*pow(resy[ip],2.) + pow(yv[ip]-ym[ip],2.)) / (taily[ip]*pow(resy[ip],2)) );
415 if(GetNY()>2)lnl=lnl/(GetNY()-2);
416 else lnl=0;
417 if(lnl==0){
418 cout << " Float_t TrkTrack::GetLnLY() -- WARNING -- value not defined "<<lnl<<endl;
419 Dump();
420 }
421 return lnl;
422
423 }
424 /**
425 * Returns the effective angle, relative to the sensor, on each plane.
426 * @param ip plane (0-5)
427 * @param iv view (0=x 1=y)
428 */
429 Float_t TrkTrack::GetEffectiveAngle(int ip, int iv){
430
431 if(ip<0 || ip>5){
432 cout << "Float_t TrkTrack::GetEffectiveAngle(int "<<ip<<", int "<<iv<<") ==> wrong input"<<endl;
433 return 0.;
434 }
435
436 float v[3]={xv[ip],yv[ip],zv[ip]};
437 //-----------------------------------------
438 // effective angle (relative to the sensor)
439 //-----------------------------------------
440 float axv_geo = axv[ip];
441 float muhall_h = 297.61; //cm**2/Vs
442 float BY = TrkParams::GetBY(v);
443 float axv_eff = 0;
444 if(ip==5) axv_geo = -1*axv_geo;
445 if(ip==5) BY = -1*BY;
446 axv_eff = 180.*atan( tan(axv_geo*acos(-1.)/180.) + muhall_h * BY * 0.0001)/acos(-1.);
447 //-----------------------------------------
448 // effective angle (relative to the sensor)
449 //-----------------------------------------
450 float ayv_geo = ayv[ip];
451 float muhall_e = 1258.18; //cm**2/Vs
452 float BX = TrkParams::GetBX(v);
453 float ayv_eff = 0;
454 ayv_eff = 180.*atan( tan(ayv_geo*acos(-1.)/180.) + muhall_e * BX * 0.0001)/acos(-1.);
455
456 if (iv==0)return axv_eff;
457 else if(iv==1)return ayv_eff;
458 else{
459 cout << "Float_t TrkTrack::GetEffectiveAngle(int "<<ip<<", int "<<iv<<") ==> wrong input"<<endl;
460 return 0.;
461 }
462
463 };
464
465 //--------------------------------------
466 //
467 //
468 //--------------------------------------
469 void TrkTrack::Dump(){
470 cout << endl << "========== Track " ;
471 cout << endl << "seq. n. : "<< seqno;
472 cout << endl << "image n. : "<< image;
473 cout << endl << "al : "; for(int i=0; i<5; i++)cout << al[i] << " ";
474 cout << endl << "chi^2 : "<< chi2;
475 cout << endl << "n.step : "<< nstep;
476 cout << endl << "xgood : "; for(int i=0; i<6; i++)cout << XGood(i) ;
477 cout << endl << "ygood : "; for(int i=0; i<6; i++)cout << YGood(i) ;
478 cout << endl << "xm : "; for(int i=0; i<6; i++)cout << xm[i] << " ";
479 cout << endl << "ym : "; for(int i=0; i<6; i++)cout << ym[i] << " ";
480 cout << endl << "zm : "; for(int i=0; i<6; i++)cout << zm[i] << " ";
481 cout << endl << "xv : "; for(int i=0; i<6; i++)cout << xv[i] << " ";
482 cout << endl << "yv : "; for(int i=0; i<6; i++)cout << yv[i] << " ";
483 cout << endl << "zv : "; for(int i=0; i<6; i++)cout << zv[i] << " ";
484 cout << endl << "resx : "; for(int i=0; i<6; i++)cout << resx[i] << " ";
485 cout << endl << "resy : "; for(int i=0; i<6; i++)cout << resy[i] << " ";
486 cout << endl << "tailx : "; for(int i=0; i<6; i++)cout << tailx[i] << " ";
487 cout << endl << "taily : "; for(int i=0; i<6; i++)cout << taily[i] << " ";
488 cout << endl << "coval : "; for(int i=0; i<5; i++)cout << coval[0][i]<<" ";
489 cout << endl << " "; for(int i=0; i<5; i++)cout << coval[1][i]<<" ";
490 cout << endl << " "; for(int i=0; i<5; i++)cout << coval[2][i]<<" ";
491 cout << endl << " "; for(int i=0; i<5; i++)cout << coval[3][i]<<" ";
492 cout << endl << " "; for(int i=0; i<5; i++)cout << coval[4][i]<<" ";
493 cout << endl << "dedx_x : "; for(int i=0; i<6; i++)cout << dedx_x[i] << " ";
494 cout << endl << "dedx_y : "; for(int i=0; i<6; i++)cout << dedx_y[i] << " ";
495 cout << endl;
496 }
497 /**
498 * Set the TrkTrack position measurements
499 */
500 void TrkTrack::SetMeasure(double *xmeas, double *ymeas, double *zmeas){
501 for(int i=0; i<6; i++) xm[i]=*xmeas++;
502 for(int i=0; i<6; i++) ym[i]=*ymeas++;
503 for(int i=0; i<6; i++) zm[i]=*zmeas++;
504 }
505 /**
506 * Set the TrkTrack position resolution
507 */
508 void TrkTrack::SetResolution(double *rx, double *ry){
509 for(int i=0; i<6; i++) resx[i]=*rx++;
510 for(int i=0; i<6; i++) resy[i]=*ry++;
511 }
512 /**
513 * Set the TrkTrack tails position resolution
514 */
515 void TrkTrack::SetTail(double *tx, double *ty, double factor){
516 for(int i=0; i<6; i++) tailx[i]=factor*(*tx++);
517 for(int i=0; i<6; i++) taily[i]=factor*(*ty++);
518 }
519 /**
520 * Set the TrkTrack Student parameter (resx,resy,tailx,taily)
521 * from previous gausian fit
522 *@param flag =0 standard, =1 with noise correction
523 */
524 void TrkTrack::SetStudentParam(int flag){
525 float sx[11]={0.000128242,
526 0.000136942,
527 0.000162718,
528 0.000202644,
529 0.00025597,
530 0.000317456,
531 0.000349048,
532 0.000384638,
533 0.000457295,
534 0.000512319,
535 0.000538573};
536 float tx[11]={1.79402,
537 2.04876,
538 2.88376,
539 3.3,
540 3.14084,
541 4.07686,
542 4.44736,
543 3.5179,
544 3.38697,
545 3.45739,
546 3.18627};
547 float sy[11]={0.000483075,
548 0.000466925,
549 0.000431658,
550 0.000428317,
551 0.000433854,
552 0.000444044,
553 0.000482098,
554 0.000537579,
555 0.000636279,
556 0.000741998,
557 0.000864261};
558 float ty[11]={0.997032,
559 1.11147,
560 1.18526,
561 1.61404,
562 2.21908,
563 3.08959,
564 4.48833,
565 4.42687,
566 4.65253,
567 4.52043,
568 4.29926};
569 int index;
570 float fact;
571 for(int i=0; i<6; i++) {
572 index = int((fabs(axv[i])+1.)/2.);
573 if(index>10) index=10;
574 tailx[i]=tx[index];
575 if(flag==1) {
576 if(fabs(axv[i])<=10.) fact = resx[i]/risxeta2_(&(axv[i]));
577 if(fabs(axv[i])>10.&&fabs(axv[i])<=15.) fact = resx[i]/risxeta3_(&(axv[i]));
578 if(fabs(axv[i])>15.) fact = resx[i]/risxeta4_(&(axv[i]));
579 } else fact = 1.;
580 resx[i] = sx[index]*fact;
581 }
582 for(int i=0; i<6; i++) {
583 index = int((fabs(ayv[i])+1.)/2.);
584 if(index>10) index=10;
585 taily[i]=ty[index];
586 if(flag==1) fact = resy[i]/risyeta2_(&(ayv[i]));
587 else fact = 1.;
588 resy[i] = sy[index]*fact;
589 }
590 }
591 /**
592 * Set the TrkTrack good measurement
593 */
594 void TrkTrack::SetGood(int *xg, int *yg){
595
596 for(int i=0; i<6; i++) xgood[i]=*xg++;
597 for(int i=0; i<6; i++) ygood[i]=*yg++;
598 }
599
600 /**
601 * Load the magnetic field
602 */
603 void TrkTrack::LoadField(TString path){
604
605 // strcpy(path_.path,path.Data());
606 // path_.pathlen = path.Length();
607 // path_.error = 0;
608 // readb_();
609
610 TrkParams::SetTrackingMode();
611 TrkParams::SetPrecisionFactor();
612 TrkParams::SetStepMin();
613
614 TrkParams::Set(path,1);
615 TrkParams::Load(1);
616
617 };
618
619
620 /**
621 * Method to fill minimization-routine common
622 */
623 void TrkTrack::FillMiniStruct(cMini2track& track){
624
625 for(int i=0; i<6; i++){
626
627 // cout << i<<" - "<<xgood[i]<<" "<<XGood(i)<<endl;
628 // cout << i<<" - "<<ygood[i]<<" "<<YGood(i)<<endl;
629 track.xgood[i]=XGood(i);
630 track.ygood[i]=YGood(i);
631
632 track.xm[i]=xm[i];
633 track.ym[i]=ym[i];
634 track.zm[i]=zm[i];
635
636 // --- temporaneo ----------------------------
637 // andrebbe inserita la dimensione del sensore
638 float segment = 100.;
639 track.xm_a[i]=xm[i];
640 track.xm_b[i]=xm[i];
641 track.ym_a[i]=ym[i];
642 track.ym_b[i]=ym[i];
643 if( XGood(i) && !YGood(i) ){
644 track.ym_a[i] = track.ym_a[i]+segment;
645 track.ym_b[i] = track.ym_b[i]-segment;
646 }else if( !XGood(i) && YGood(i)){
647 track.xm_a[i] = track.xm_a[i]+segment;
648 track.xm_b[i] = track.xm_b[i]-segment;
649 }
650 // --- temporaneo ----------------------------
651
652 track.resx[i]=resx[i];
653 track.resy[i]=resy[i];
654 track.tailx[i]=tailx[i];
655 track.taily[i]=taily[i];
656 }
657
658 for(int i=0; i<5; i++) track.al[i]=al[i];
659 track.zini = 23.5;
660 // ZINI = 23.5 !!! it should be the same parameter in all codes
661
662 }
663 /**
664 * Method to set values from minimization-routine common
665 */
666 void TrkTrack::SetFromMiniStruct(cMini2track *track){
667
668 for(int i=0; i<5; i++) {
669 al[i]=track->al[i];
670 for(int j=0; j<5; j++) coval[i][j]=track->cov[i][j];
671 }
672 chi2 = track->chi2;
673 nstep = track->nstep;
674 for(int i=0; i<6; i++){
675 xv[i] = track->xv[i];
676 yv[i] = track->yv[i];
677 zv[i] = track->zv[i];
678 xm[i] = track->xm[i];
679 ym[i] = track->ym[i];
680 zm[i] = track->zm[i];
681 axv[i] = track->axv[i];
682 ayv[i] = track->ayv[i];
683 }
684
685 }
686 /**
687 * \brief Method to re-evaluate coordinates of clusters associated with a track.
688 *
689 * The method can be applied only after recovering level1 information
690 * (either by reprocessing single events from level0 or from
691 * the TrkLevel1 branch, if present); it calls F77 subroutines that
692 * read the level1 common and fill the minimization-routine common.
693 * Some clusters can be excluded or added by means of the methods:
694 *
695 * TrkTrack::ResetXGood(int ip)
696 * TrkTrack::ResetYGood(int ip)
697 * TrkTrack::SetXGood(int ip, int cid, int is)
698 * TrkTrack::SetYGood(int ip, int cid, int is)
699 *
700 * NB! The method TrkTrack::SetGood(int *xg, int *yg) set the plane-mask (0-1)
701 * for the minimization-routine common. It deletes the cluster information
702 * (at least for the moment...) thus cannot be applied before
703 * TrkTrack::EvaluateClusterPositions().
704 *
705 * Different p.f.a. can be applied by calling (once) the method:
706 *
707 * TrkParams::SetPFA(0); //Set ETA p.f.a.
708 *
709 * @see TrkParams::SetPFA(int)
710 */
711 Bool_t TrkTrack::EvaluateClusterPositions(){
712
713 // cout << "void TrkTrack::GetClusterPositions() "<<endl;
714
715 TrkParams::Load( );
716 if( !TrkParams::IsLoaded() )return false;
717
718 for(int ip=0; ip<6; ip++){
719 // cout << ip<<" ** "<<xm[ip]<<" / "<<ym[ip]<<endl;;
720 int icx = GetClusterX_ID(ip)+1;
721 int icy = GetClusterY_ID(ip)+1;
722 int sensor = GetSensor(ip)+1;//<< convenzione "Paolo"
723 if(ip==5 && sensor!=0)sensor=3-sensor;//<< convenzione "Elena"
724 int ladder = GetLadder(ip)+1;
725 float ax = axv[ip];
726 float ay = ayv[ip];
727 float v[3];
728 v[0]=xv[ip];
729 v[1]=yv[ip];
730 v[2]=zv[ip];
731 float bfx = 10*TrkParams::GetBX(v);//Tesla
732 float bfy = 10*TrkParams::GetBY(v);//Tesla
733 int ipp=ip+1;
734 xyzpam_(&ipp,&icx,&icy,&ladder,&sensor,&ax,&ay,&bfx,&bfy);
735 if(icx<0 || icy<0)return false;
736 }
737 return true;
738 }
739 /**
740 * \brief Tracking method. It calls F77 mini routine.
741 *
742 * @param pfixed Particle momentum. If pfixed=0 the momentum
743 * is left as a free parameter, otherwise it is fixed to the input value.
744 * @param fail Output flag (!=0 if the fit failed).
745 * @param iprint Flag to set debug mode ( 0 = no output; 1 = verbose; 2 = debug).
746 * @param froml1 Flag to re-evaluate positions (see TrkTrack::GetClusterPositions()).
747 *
748 * The option to re-evaluate positions can be used only after recovering
749 * level1 information, eg. by reprocessing the single event.
750 *
751 * Example:
752 *
753 * if( !event->GetTrkLevel0() )return false;
754 * event->GetTrkLevel0()->ProcessEvent(); // re-processing level0->level1
755 * int fail=0;
756 * event->GetTrkLevel2()->GetTrack(0)->Fit(0.,fail,0,1);
757 *
758 * @see EvaluateClusterPositions()
759 *
760 * The fitting procedure can be varied by changing the tracking mode,
761 * the fit-precision factor and the minimum number of step.
762 * @see SetTrackingMode(int)
763 * @see SetPrecisionFactor(double)
764 * @see SetStepMin(int)
765 */
766 void TrkTrack::Fit(double pfixed, int& fail, int iprint, int froml1){
767
768 float al_ini[] = {0.,0.,0.,0.,0.};
769
770 TrkParams::Load( );
771 if( !TrkParams::IsLoaded() )return;
772
773 extern cMini2track track_;
774 fail = 0;
775
776 FillMiniStruct(track_);
777
778 if(froml1!=0){
779 if( !EvaluateClusterPositions() ){
780 cout << "void TrkTrack::Fit("<<pfixed<<","<<fail<<","<<iprint<<","<<froml1<<") --- ERROR evaluating cluster positions "<<endl;
781 FillMiniStruct(track_) ;
782 fail = 1;
783 return;
784 }
785 }else{
786 FillMiniStruct(track_);
787 }
788
789 // if fit variables have been reset, evaluate the initial guess
790 if(al[0]==-9999.&&al[1]==-9999.&&al[2]==-9999.&&al[3]==-9999.&&al[4]==-9999.)guess_();
791
792 // --------------------- free momentum
793 if(pfixed==0.) {
794 track_.pfixed=0.;
795 }
796 // --------------------- fixed momentum
797 if(pfixed!=0.) {
798 al[4]=1./pfixed;
799 track_.pfixed=pfixed;
800 }
801
802 // store temporarily the initial guess
803 for(int i=0; i<5; i++) al_ini[i]=track_.al[i];
804
805 // ------------------------------------------
806 // call mini routine
807 // TrkParams::Load(1);
808 // if( !TrkParams::IsLoaded(1) ){
809 // cout << "void TrkTrack::Fit(double pfixed, int& fail, int iprint) --- ERROR --- m.field not loaded"<<endl;
810 // return;
811 // }
812 int istep=0;
813 int ifail=0;
814 mini2_(&istep,&ifail, &iprint);
815 if(ifail!=0) {
816 if(iprint)cout << "ERROR: ifail= " << ifail << endl;
817 fail = 1;
818 }
819 // ------------------------------------------
820
821 SetFromMiniStruct(&track_);
822
823 if(fail){
824 if(iprint)cout << " >>>> fit failed "<<endl;
825 for(int i=0; i<5; i++) al[i]=al_ini[i];
826 }
827
828 };
829 /**
830 * Reset the fit parameters
831 */
832 void TrkTrack::FitReset(){
833 for(int i=0; i<5; i++) al[i]=-9999.;
834 chi2=0.;
835 nstep=0;
836 // for(int i=0; i<6; i++) xv[i]=0.;
837 // for(int i=0; i<6; i++) yv[i]=0.;
838 // for(int i=0; i<6; i++) zv[i]=0.;
839 // for(int i=0; i<6; i++) axv[i]=0.;
840 // for(int i=0; i<6; i++) ayv[i]=0.;
841 for(int i=0; i<5; i++) {
842 for(int j=0; j<5; j++) coval[i][j]=0.;
843 }
844 }
845 /**
846 * Set the tracking mode
847 */
848 void TrkTrack::SetTrackingMode(int trackmode){
849 extern cMini2track track_;
850 track_.trackmode = trackmode;
851 }
852 /**
853 * Set the factor scale for tracking precision
854 */
855 void TrkTrack::SetPrecisionFactor(double fact){
856 extern cMini2track track_;
857 track_.fact = fact;
858 }
859 /**
860 * Set the minimum number of steps for tracking precision
861 */
862 void TrkTrack::SetStepMin(int istepmin){
863 extern cMini2track track_;
864 track_.istepmin = istepmin;
865 }
866 /**
867 * Returns 1 if the track is inside the magnet cavity
868 * Set the minimum number of steps for tracking precision
869 */
870 Bool_t TrkTrack::IsInsideCavity(){
871 float xmagntop, ymagntop, xmagnbottom, ymagnbottom;
872 xmagntop = xv[0] + (ZMAGNHIGH-zv[0])*tan(cos(-1.0)*axv[0]/180.);
873 ymagntop = yv[0] + (ZMAGNHIGH-zv[0])*tan(cos(-1.0)*ayv[0]/180.);
874 xmagnbottom = xv[5] + (ZMAGNLOW-zv[5])*tan(cos(-1.0)*axv[5]/180.);
875 ymagnbottom = yv[5] + (ZMAGNLOW-zv[5])*tan(cos(-1.0)*ayv[5]/180.);
876 if( xmagntop>XMAGNLOW && xmagntop<XMAGNHIGH &&
877 ymagntop>YMAGNLOW && ymagntop<YMAGNHIGH &&
878 xmagnbottom>XMAGNLOW && xmagnbottom<XMAGNHIGH &&
879 ymagnbottom>YMAGNLOW && ymagnbottom<YMAGNHIGH ) return(true);
880 else return(false);
881 }
882 /**
883 * Method to retrieve ID (0,1,...) of x-cluster (if any) associated to this track.
884 * If no cluster is associated, ID=-1.
885 * @param ip Tracker plane (0-5)
886 */
887 Int_t TrkTrack::GetClusterX_ID(int ip){
888 return ((Int_t)fabs(xgood[ip]))%10000000-1;
889 };
890 /**
891 * Method to retrieve ID (0-xxx) of y-cluster (if any) associated to this track.
892 * If no cluster is associated, ID=-1.
893 * @param ip Tracker plane (0-5)
894 */
895 Int_t TrkTrack::GetClusterY_ID(int ip){
896 return ((Int_t)fabs(ygood[ip]))%10000000-1;
897 };
898 /**
899 * Method to retrieve the ladder (0-4, increasing x) traversed by the track on this plane.
900 * If no ladder is traversed (dead area) the metod retuns -1.
901 * @param ip Tracker plane (0-5)
902 */
903 Int_t TrkTrack::GetLadder(int ip){
904 if(XGood(ip))return (Int_t)fabs(xgood[ip]/100000000)-1;
905 if(YGood(ip))return (Int_t)fabs(ygood[ip]/100000000)-1;
906 return -1;
907 };
908 /**
909 * Method to retrieve the sensor (0-1, increasing y) traversed by the track on this plane.
910 * If no sensor is traversed (dead area) the metod retuns -1.
911 * @param ip Tracker plane (0-5)
912 */
913 Int_t TrkTrack::GetSensor(int ip){
914 if(XGood(ip))return (Int_t)((Int_t)fabs(xgood[ip]/10000000)%10)-1;
915 if(YGood(ip))return (Int_t)((Int_t)fabs(ygood[ip]/10000000)%10)-1;
916 return -1;
917 };
918
919 /**
920 * \brief Method to include a x-cluster to the track.
921 * @param ip Tracker plane (0-5)
922 * @param clid Cluster ID (0,1,...)
923 * @param is Sensor (0-1, increasing y)
924 * @see Fit(double pfixed, int& fail, int iprint, int froml1)
925 */
926 void TrkTrack::SetXGood(int ip, int clid, int is){
927 int il=0; //ladder (temporary)
928 bool bad=false; //ladder (temporary)
929 xgood[ip]=il*100000000+is*10000000+clid;
930 if(bad)xgood[ip]=-xgood[ip];
931 };
932 /**
933 * \brief Method to include a y-cluster to the track.
934 * @param ip Tracker plane (0-5)
935 * @param clid Cluster ID (0,1,...)
936 * @param is Sensor (0-1)
937 * @see Fit(double pfixed, int& fail, int iprint, int froml1)
938 */
939 void TrkTrack::SetYGood(int ip, int clid, int is){
940 int il=0; //ladder (temporary)
941 bool bad=false; //ladder (temporary)
942 ygood[ip]=il*100000000+is*10000000+clid;
943 if(bad)ygood[ip]=-ygood[ip];
944 };
945
946 //--------------------------------------
947 //
948 //
949 //--------------------------------------
950 void TrkTrack::Clear(){
951 // cout << "TrkTrack::Clear()"<<endl;
952 seqno = -1;
953 image = -1;
954 chi2 = 0;
955 nstep = 0;
956 for(int it1=0;it1<5;it1++){
957 al[it1] = 0;
958 for(int it2=0;it2<5;it2++)coval[it1][it2] = 0;
959 };
960 for(int ip=0;ip<6;ip++){
961 xgood[ip] = 0;
962 ygood[ip] = 0;
963 xm[ip] = 0;
964 ym[ip] = 0;
965 zm[ip] = 0;
966 resx[ip] = 0;
967 resy[ip] = 0;
968 tailx[ip] = 0;
969 taily[ip] = 0;
970 xv[ip] = 0;
971 yv[ip] = 0;
972 zv[ip] = 0;
973 axv[ip] = 0;
974 ayv[ip] = 0;
975 dedx_x[ip] = 0;
976 dedx_y[ip] = 0;
977
978 };
979 // if(clx)clx->Clear();
980 // if(cly)cly->Clear();
981 // clx.Clear();
982 // cly.Clear();
983 };
984 //--------------------------------------
985 //
986 //
987 //--------------------------------------
988 void TrkTrack::Delete(){
989 // cout << "TrkTrack::Delete()"<<endl;
990 Clear();
991 // if(clx)delete clx;
992 // if(cly)delete cly;
993 };
994 //--------------------------------------
995 //
996 //
997 //--------------------------------------
998
999 //--------------------------------------
1000 //
1001 //
1002 //--------------------------------------
1003 TrkSinglet::TrkSinglet(){
1004 // cout << "TrkSinglet::TrkSinglet() " << GetUniqueID()<<endl;
1005 plane = 0;
1006 coord[0] = 0;
1007 coord[1] = 0;
1008 sgnl = 0;
1009 // cls = 0;
1010 };
1011 //--------------------------------------
1012 //
1013 //
1014 //--------------------------------------
1015 TrkSinglet::TrkSinglet(const TrkSinglet& s){
1016 // cout << "TrkSinglet::TrkSinglet(const TrkSinglet& s) " << GetUniqueID()<<endl;
1017 plane = s.plane;
1018 coord[0] = s.coord[0];
1019 coord[1] = s.coord[1];
1020 sgnl = s.sgnl;
1021 // cls = 0;//<<<<pointer
1022 // cls = TRef(s.cls);
1023 };
1024 //--------------------------------------
1025 //
1026 //
1027 //--------------------------------------
1028 void TrkSinglet::Dump(){
1029 int i=0;
1030 cout << endl << "========== Singlet " ;
1031 cout << endl << "plane : " << plane;
1032 cout << endl << "coord[2] : "; while( i<2 && cout << coord[i] << " ") i++;
1033 cout << endl << "sgnl : " << sgnl;
1034 }
1035 //--------------------------------------
1036 //
1037 //
1038 //--------------------------------------
1039 void TrkSinglet::Clear(){
1040 // cout << "TrkSinglet::Clear() " << GetUniqueID()<<endl;
1041 // cls=0;
1042 plane=-1;
1043 coord[0]=-999;
1044 coord[1]=-999;
1045 sgnl=0;
1046
1047 }
1048 //--------------------------------------
1049 //
1050 //
1051 //--------------------------------------
1052 TrkLevel2::TrkLevel2(){
1053 // cout <<"TrkLevel2::TrkLevel2()"<<endl;
1054 for(Int_t i=0; i<12 ; i++){
1055 good[i] = -1;
1056 VKmask[i] = 0;
1057 VKflag[i] = 0;
1058 };
1059 Track = 0;
1060 SingletX = 0;
1061 SingletY = 0;
1062
1063 }
1064 //--------------------------------------
1065 //
1066 //
1067 //--------------------------------------
1068 void TrkLevel2::Set(){
1069 if(!Track)Track = new TClonesArray("TrkTrack");
1070 if(!SingletX)SingletX = new TClonesArray("TrkSinglet");
1071 if(!SingletY)SingletY = new TClonesArray("TrkSinglet");
1072 }
1073 //--------------------------------------
1074 //
1075 //
1076 //--------------------------------------
1077 void TrkLevel2::Dump(){
1078
1079 //
1080 cout << endl << endl << "=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-";
1081 cout << endl << "good : "; for(int i=0; i<12; i++) cout << good[i]<<" ";
1082 cout << endl << "ntrk() : " << this->ntrk() ;
1083 cout << endl << "nclsx() : " << this->nclsx();
1084 cout << endl << "nclsy() : " << this->nclsy();
1085 if(Track){
1086 TClonesArray &t = *Track;
1087 for(int i=0; i<ntrk(); i++) ((TrkTrack *)t[i])->Dump();
1088 }
1089 if(SingletX){
1090 TClonesArray &sx = *SingletX;
1091 for(int i=0; i<nclsx(); i++) ((TrkSinglet *)sx[i])->Dump();
1092 }
1093 if(SingletY){
1094 TClonesArray &sy = *SingletY;
1095 for(int i=0; i<nclsy(); i++) ((TrkSinglet *)sy[i])->Dump();
1096 }
1097 }
1098 /**
1099 * \brief Dump processing status
1100 */
1101 void TrkLevel2::StatusDump(int view){
1102 cout << "DSP n. "<<view+1<<" status: "<<hex<<good[view]<<endl;
1103 };
1104 /**
1105 * \brief Check event status
1106 *
1107 * Check the event status, according to a flag-mask given as input.
1108 * Return true if the view passes the check.
1109 *
1110 * @param view View number (0-11)
1111 * @param flagmask Mask of flags to check (eg. flagmask=0x111 no missing packet,
1112 * no crc error, no software alarm)
1113 *
1114 * @see TrkLevel2 class definition to know how the status flag is defined
1115 *
1116 */
1117 Bool_t TrkLevel2::StatusCheck(int view, int flagmask){
1118
1119 if( view<0 || view >= 12)return false;
1120 return !(good[view]&flagmask);
1121
1122 };
1123
1124
1125 //--------------------------------------
1126 //
1127 //
1128 //--------------------------------------
1129 /**
1130 * The method returns false if the viking-chip was masked
1131 * either apriori ,on the basis of the mask read from the DB,
1132 * or run-by-run, on the basis of the calibration parameters)
1133 * @param iv Tracker view (0-11)
1134 * @param ivk Viking-chip number (0-23)
1135 */
1136 Bool_t TrkLevel2::GetVKMask(int iv, int ivk){
1137 Int_t whichbit = (Int_t)pow(2,ivk);
1138 return (whichbit&VKmask[iv])!=0;
1139 }
1140 /**
1141 * The method returns false if the viking-chip was masked
1142 * for this event due to common-noise computation failure.
1143 * @param iv Tracker view (0-11)
1144 * @param ivk Viking-chip number (0-23)
1145 */
1146 Bool_t TrkLevel2::GetVKFlag(int iv, int ivk){
1147 Int_t whichbit = (Int_t)pow(2,ivk);
1148 return (whichbit&VKflag[iv])!=0;
1149 }
1150 /**
1151 * The method returns true if the viking-chip was masked, either
1152 * forced (see TrkLevel2::GetVKMask(int,int)) or
1153 * for this event only (TrkLevel2::GetVKFlag(int,int)).
1154 * @param iv Tracker view (0-11)
1155 * @param ivk Viking-chip number (0-23)
1156 */
1157 Bool_t TrkLevel2::IsMaskedVK(int iv, int ivk){
1158 return !(GetVKMask(iv,ivk)&&GetVKFlag(iv,ivk) );
1159 };
1160
1161 //--------------------------------------
1162 //
1163 //
1164 //--------------------------------------
1165 /**
1166 * Fills a TrkLevel2 object with values from a struct cTrkLevel2 (to get data from F77 common).
1167 * Ref to Level1 data (clusters) is also set. If l1==NULL no references are set.
1168 * (NB It make sense to set references only if events are stored in a tree that contains also the Level1 branch)
1169 */
1170 void TrkLevel2::SetFromLevel2Struct(cTrkLevel2 *l2, TrkLevel1 *l1){
1171
1172 // cout << "void TrkLevel2::SetFromLevel2Struct(cTrkLevel2 *l2, TrkLevel1 *l1)"<<endl;
1173 Clear();
1174
1175 // temporary objects:
1176 TrkSinglet* t_singlet = new TrkSinglet();
1177 TrkTrack* t_track = new TrkTrack();
1178
1179 // -----------------
1180 // general variables
1181 // -----------------
1182 for(Int_t i=0; i<12 ; i++){
1183 good[i] = l2->good[i];
1184 VKmask[i]=0;
1185 VKflag[i]=0;
1186 for(Int_t ii=0; ii<24 ; ii++){
1187 Int_t setbit = (Int_t)pow(2,ii);
1188 if( l2->vkflag[ii][i]!=-1 )VKmask[i]=VKmask[i]|setbit;
1189 if( l2->vkflag[ii][i]!=0 )VKflag[i]=VKflag[i]|setbit;
1190 };
1191 };
1192 // --------------
1193 // *** TRACKS ***
1194 // --------------
1195 if(!Track) Track = new TClonesArray("TrkTrack");
1196 TClonesArray &t = *Track;
1197
1198 for(int i=0; i<l2->ntrk; i++){
1199 t_track->seqno = i;// NBNBNBNB deve sempre essere = i
1200 t_track->image = l2->image[i]-1;
1201 t_track->chi2 = l2->chi2_nt[i];
1202 t_track->nstep = l2->nstep_nt[i];
1203 for(int it1=0;it1<5;it1++){
1204 t_track->al[it1] = l2->al_nt[i][it1];
1205 for(int it2=0;it2<5;it2++)
1206 t_track->coval[it1][it2] = l2->coval[i][it2][it1];
1207 };
1208 for(int ip=0;ip<6;ip++){
1209 // ---------------------------------
1210 // new implementation of xgood/ygood
1211 // ---------------------------------
1212 t_track->xgood[ip] = l2->cltrx[i][ip]; //cluster ID
1213 t_track->ygood[ip] = l2->cltry[i][ip]; //cluster ID
1214 t_track->xgood[ip] += 10000000*l2->ls[i][ip]; // ladder+sensor
1215 t_track->ygood[ip] += 10000000*l2->ls[i][ip]; // ladder+sensor
1216 if(l2->xbad[i][ip]>0)t_track->xgood[ip]=-t_track->xgood[ip];
1217 if(l2->ybad[i][ip]>0)t_track->ygood[ip]=-t_track->ygood[ip];
1218 // if(l2->xbad[i][ip]>0 || l2->ybad[i][ip]>0){
1219 // if(l2->dedx_x[i][ip]<0 || l2->dedx_y[i][ip]<0){
1220 // cout << ip << " - "<< l2->cltrx[i][ip] << " "<<l2->cltry[i][ip]<<" "<<l2->ls[i][ip]<<endl;
1221 // cout << ip << " - "<<t_track->xgood[ip]<<" "<<t_track->ygood[ip]<<endl;
1222 // cout << ip << " - "<<t_track->GetClusterX_ID(ip)<<" "<<t_track->GetClusterY_ID(ip)<<" "<<t_track->GetLadder(ip)<<" "<<t_track->GetSensor(ip)<<endl;
1223 // cout << ip << " - "<<t_track->BadClusterX(ip)<<" "<<t_track->BadClusterY(ip)<<endl;
1224 // cout << ip << " - "<<t_track->SaturatedClusterX(ip)<<" "<<t_track->SaturatedClusterY(ip)<<endl;
1225 // }
1226 t_track->xm[ip] = l2->xm_nt[i][ip];
1227 t_track->ym[ip] = l2->ym_nt[i][ip];
1228 t_track->zm[ip] = l2->zm_nt[i][ip];
1229 t_track->resx[ip] = l2->resx_nt[i][ip];
1230 t_track->resy[ip] = l2->resy_nt[i][ip];
1231 t_track->tailx[ip] = l2->tailx[i][ip];
1232 t_track->taily[ip] = l2->taily[i][ip];
1233 t_track->xv[ip] = l2->xv_nt[i][ip];
1234 t_track->yv[ip] = l2->yv_nt[i][ip];
1235 t_track->zv[ip] = l2->zv_nt[i][ip];
1236 t_track->axv[ip] = l2->axv_nt[i][ip];
1237 t_track->ayv[ip] = l2->ayv_nt[i][ip];
1238 t_track->dedx_x[ip] = l2->dedx_x[i][ip];
1239 t_track->dedx_y[ip] = l2->dedx_y[i][ip];
1240 //-----------------------------------------------------
1241 //-----------------------------------------------------
1242 //-----------------------------------------------------
1243 //-----------------------------------------------------
1244 };
1245 // if(t_track->IsSaturated())t_track->Dump();
1246 new(t[i]) TrkTrack(*t_track);
1247 t_track->Clear();
1248 };
1249
1250 // ----------------
1251 // *** SINGLETS ***
1252 // ----------------
1253 if(!SingletX)SingletX = new TClonesArray("TrkSinglet");
1254 TClonesArray &sx = *SingletX;
1255 for(int i=0; i<l2->nclsx; i++){
1256 t_singlet->plane = l2->planex[i];
1257 t_singlet->coord[0] = l2->xs[i][0];
1258 t_singlet->coord[1] = l2->xs[i][1];
1259 t_singlet->sgnl = l2->signlxs[i];
1260 //-----------------------------------------------------
1261 // if(l1) t_singlet->cls = l1->GetCluster(l2->clsx[i]-1);
1262 //-----------------------------------------------------
1263 new(sx[i]) TrkSinglet(*t_singlet);
1264 t_singlet->Clear();
1265 }
1266 if(!SingletY)SingletY = new TClonesArray("TrkSinglet");
1267 TClonesArray &sy = *SingletY;
1268 for(int i=0; i<l2->nclsy; i++){
1269 t_singlet->plane = l2->planey[i];
1270 t_singlet->coord[0] = l2->ys[i][0];
1271 t_singlet->coord[1] = l2->ys[i][1];
1272 t_singlet->sgnl = l2->signlys[i];
1273 //-----------------------------------------------------
1274 // if(l1) t_singlet->cls = l1->GetCluster(l2->clsy[i]-1);
1275 //-----------------------------------------------------
1276 new(sy[i]) TrkSinglet(*t_singlet);
1277 t_singlet->Clear();
1278 };
1279
1280 delete t_track;
1281 delete t_singlet;
1282 }
1283 /**
1284 * Fills a struct cTrkLevel2 with values from a TrkLevel2 object (to put data into a F77 common).
1285 */
1286
1287 void TrkLevel2::GetLevel2Struct(cTrkLevel2 *l2) const {
1288
1289 // general variables
1290 // l2->good2 = good2 ;
1291 for(Int_t i=0; i<12 ; i++){
1292 // l2->crc[i] = crc[i];
1293 l2->good[i] = good[i];
1294 };
1295 // *** TRACKS ***
1296
1297 if(Track){
1298 l2->ntrk = Track->GetEntries();
1299 for(Int_t i=0;i<l2->ntrk;i++){
1300 l2->image[i] = 1 + ((TrkTrack *)Track->At(i))->image;
1301 l2->chi2_nt[i] = ((TrkTrack *)Track->At(i))->chi2;
1302 l2->nstep_nt[i] = ((TrkTrack *)Track->At(i))->nstep;
1303 for(int it1=0;it1<5;it1++){
1304 l2->al_nt[i][it1] = ((TrkTrack *)Track->At(i))->al[it1];
1305 for(int it2=0;it2<5;it2++)
1306 l2->coval[i][it2][it1] = ((TrkTrack *)Track->At(i))->coval[it1][it2];
1307 };
1308 for(int ip=0;ip<6;ip++){
1309 l2->xgood_nt[i][ip] = ((TrkTrack *)Track->At(i))->XGood(ip);
1310 l2->ygood_nt[i][ip] = ((TrkTrack *)Track->At(i))->YGood(ip);
1311 l2->xm_nt[i][ip] = ((TrkTrack *)Track->At(i))->xm[ip];
1312 l2->ym_nt[i][ip] = ((TrkTrack *)Track->At(i))->ym[ip];
1313 l2->zm_nt[i][ip] = ((TrkTrack *)Track->At(i))->zm[ip];
1314 l2->resx_nt[i][ip] = ((TrkTrack *)Track->At(i))->resx[ip];
1315 l2->resy_nt[i][ip] = ((TrkTrack *)Track->At(i))->resy[ip];
1316 l2->tailx[i][ip] = ((TrkTrack *)Track->At(i))->tailx[ip];
1317 l2->taily[i][ip] = ((TrkTrack *)Track->At(i))->taily[ip];
1318 l2->xv_nt[i][ip] = ((TrkTrack *)Track->At(i))->xv[ip];
1319 l2->yv_nt[i][ip] = ((TrkTrack *)Track->At(i))->yv[ip];
1320 l2->zv_nt[i][ip] = ((TrkTrack *)Track->At(i))->zv[ip];
1321 l2->axv_nt[i][ip] = ((TrkTrack *)Track->At(i))->axv[ip];
1322 l2->ayv_nt[i][ip] = ((TrkTrack *)Track->At(i))->ayv[ip];
1323 l2->dedx_x[i][ip] = ((TrkTrack *)Track->At(i))->dedx_x[ip];
1324 l2->dedx_y[i][ip] = ((TrkTrack *)Track->At(i))->dedx_y[ip];
1325 };
1326 }
1327 }
1328 // *** SINGLETS ***
1329 if(SingletX){
1330 l2->nclsx = SingletX->GetEntries();
1331 for(Int_t i=0;i<l2->nclsx;i++){
1332 l2->planex[i] = ((TrkSinglet *)SingletX->At(i))->plane;
1333 l2->xs[i][0] = ((TrkSinglet *)SingletX->At(i))->coord[0];
1334 l2->xs[i][1] = ((TrkSinglet *)SingletX->At(i))->coord[1];
1335 l2->signlxs[i] = ((TrkSinglet *)SingletX->At(i))->sgnl;
1336 }
1337 }
1338
1339 if(SingletY){
1340 l2->nclsy = SingletY->GetEntries();
1341 for(Int_t i=0;i<l2->nclsy;i++){
1342 l2->planey[i] = ((TrkSinglet *)SingletY->At(i))->plane;
1343 l2->ys[i][0] = ((TrkSinglet *)SingletY->At(i))->coord[0];
1344 l2->ys[i][1] = ((TrkSinglet *)SingletY->At(i))->coord[1];
1345 l2->signlys[i] = ((TrkSinglet *)SingletY->At(i))->sgnl;
1346 }
1347 }
1348 }
1349 //--------------------------------------
1350 //
1351 //
1352 //--------------------------------------
1353 void TrkLevel2::Clear(){
1354 for(Int_t i=0; i<12 ; i++){
1355 good[i] = -1;
1356 VKflag[i] = 0;
1357 VKmask[i] = 0;
1358 };
1359 // if(Track)Track->Clear("C");
1360 // if(SingletX)SingletX->Clear("C");
1361 // if(SingletY)SingletY->Clear("C");
1362 if(Track)Track->Delete();
1363 if(SingletX)SingletX->Delete();
1364 if(SingletY)SingletY->Delete();
1365 }
1366 // //--------------------------------------
1367 // //
1368 // //
1369 // //--------------------------------------
1370 void TrkLevel2::Delete(){
1371
1372 // cout << "void TrkLevel2::Delete()"<<endl;
1373 Clear();
1374 if(Track)delete Track;
1375 if(SingletX)delete SingletX;
1376 if(SingletY)delete SingletY;
1377
1378 }
1379 //--------------------------------------
1380 //
1381 //
1382 //--------------------------------------
1383 /**
1384 * Sort physical tracks and stores them in a TObjectArray, ordering by increasing chi**2 value (in case of track image, it selects the one with lower chi**2). The total number of physical tracks is given by GetNTracks() and the it-th physical track can be retrieved by means of the method GetTrack(int it).
1385 * This method is overridden by PamLevel2::GetTracks(), where calorimeter and TOF information is used.
1386 */
1387 TRefArray *TrkLevel2::GetTracks_NFitSorted(){
1388
1389 if(!Track)return 0;
1390
1391 TRefArray *sorted = new TRefArray();
1392
1393 TClonesArray &t = *Track;
1394 // TClonesArray &ts = *PhysicalTrack;
1395 int N = ntrk();
1396 vector<int> m(N); for(int i=0; i<N; i++)m[i]=1;
1397 // int m[50]; for(int i=0; i<N; i++)m[i]=1;
1398
1399 int indo=0;
1400 int indi=0;
1401 while(N > 0){
1402 // while(N != 0){
1403 int nfit =0;
1404 float chi2ref = numeric_limits<float>::max();
1405
1406 // first loop to search maximum num. of fit points
1407 for(int i=0; i < ntrk(); i++){
1408 if( ((TrkTrack *)t[i])->GetNtot() >= nfit && m[i]==1){
1409 nfit = ((TrkTrack *)t[i])->GetNtot();
1410 }
1411 }
1412 //second loop to search minimum chi2 among selected
1413 for(int i=0; i<ntrk(); i++){
1414 Float_t chi2 = ((TrkTrack *)t[i])->chi2;
1415 if(chi2 < 0) chi2 = -chi2*1000;
1416 if( chi2 < chi2ref
1417 && ((TrkTrack *)t[i])->GetNtot() == nfit
1418 && m[i]==1){
1419 chi2ref = ((TrkTrack *)t[i])->chi2;
1420 indi = i;
1421 };
1422 };
1423 if( ((TrkTrack *)t[indi])->HasImage() ){
1424 m[((TrkTrack *)t[indi])->image] = 0;
1425 N--;
1426
1427 // cout << "i** "<< ((TrkTrack *)t[indi])->image << " " << nfiti <<" "<<chi2i<<endl;
1428 };
1429 sorted->Add( (TrkTrack*)t[indi] );
1430
1431 m[indi] = 0;
1432 // cout << "SORTED "<< indo << " "<< indi << " "<< N << " "<<((TrkTrack *)t[indi])->image<<" "<<chi2ref<<endl;
1433 N--;
1434 indo++;
1435 }
1436 m.clear();
1437 // cout << "GetTracks_NFitSorted(it): Done"<< endl;
1438
1439 return sorted;
1440 // return PhysicalTrack;
1441 }
1442 //--------------------------------------
1443 //
1444 //
1445 //--------------------------------------
1446 /**
1447 * Retrieves the is-th stored track.
1448 * @param it Track number, ranging from 0 to ntrk().
1449 * Fitted tracks ( images included ) are stored in a TObjectArray ( TrkLevel2::Track ) in the same order they are returned by the F77 fitting routine.
1450 */
1451 TrkTrack *TrkLevel2::GetStoredTrack(int is){
1452
1453 if(is >= this->ntrk()){
1454 cout << "** TrkLevel2 ** Track "<< is << "doen not exits! " << endl;
1455 cout << " Stored tracks ntrk() = "<< this->ntrk() << endl;
1456 return 0;
1457 }
1458 if(!Track){
1459 cout << "TrkTrack *TrkLevel2::GetStoredTrack(int is) >> (TClonesArray*) Track ==0 "<<endl;
1460 };
1461 TClonesArray &t = *(Track);
1462 TrkTrack *track = (TrkTrack*)t[is];
1463 return track;
1464 }
1465 //--------------------------------------
1466 //
1467 //
1468 //--------------------------------------
1469 /**
1470 * Retrieves the is-th stored X singlet.
1471 * @param it Singlet number, ranging from 0 to nclsx().
1472 */
1473 TrkSinglet *TrkLevel2::GetSingletX(int is){
1474
1475 if(is >= this->nclsx()){
1476 cout << "** TrkLevel2 ** Singlet "<< is << "doen not exits! " << endl;
1477 cout << " Stored x-singlets nclsx() = "<< this->nclsx() << endl;
1478 return 0;
1479 }
1480 if(!SingletX)return 0;
1481 TClonesArray &t = *(SingletX);
1482 TrkSinglet *singlet = (TrkSinglet*)t[is];
1483 return singlet;
1484 }
1485 //--------------------------------------
1486 //
1487 //
1488 //--------------------------------------
1489 /**
1490 * Retrieves the is-th stored Y singlet.
1491 * @param it Singlet number, ranging from 0 to nclsx().
1492 */
1493 TrkSinglet *TrkLevel2::GetSingletY(int is){
1494
1495 if(is >= this->nclsy()){
1496 cout << "** TrkLevel2 ** Singlet "<< is << "doen not exits! " << endl;
1497 cout << " Stored y-singlets nclsy() = "<< this->nclsx() << endl;
1498 return 0;
1499 }
1500 if(!SingletY)return 0;
1501 TClonesArray &t = *(SingletY);
1502 TrkSinglet *singlet = (TrkSinglet*)t[is];
1503 return singlet;
1504 }
1505 //--------------------------------------
1506 //
1507 //
1508 //--------------------------------------
1509 /**
1510 * Retrieves the it-th "physical" track, sorted by the method GetNTracks().
1511 * @param it Track number, ranging from 0 to GetNTracks().
1512 */
1513
1514 TrkTrack *TrkLevel2::GetTrack(int it){
1515
1516 if(it >= this->GetNTracks()){
1517 cout << "** TrkLevel2 ** Track "<< it << "does not exits! " << endl;
1518 cout << " Physical tracks GetNTracks() = "<< this->ntrk() << endl;
1519 return 0;
1520 }
1521
1522 TRefArray *sorted = GetTracks(); //TEMPORANEO
1523 if(!sorted)return 0;
1524 TrkTrack *track = (TrkTrack*)sorted->At(it);
1525 sorted->Clear();
1526 delete sorted;
1527 return track;
1528 }
1529 /**
1530 * Give the number of "physical" tracks, sorted by the method GetTracks().
1531 */
1532 Int_t TrkLevel2::GetNTracks(){
1533
1534 Float_t ntot=0;
1535 if(!Track)return 0;
1536 TClonesArray &t = *Track;
1537 for(int i=0; i<ntrk(); i++) {
1538 if( ((TrkTrack *)t[i])->GetImageSeqNo() == -1 ) ntot+=1.;
1539 else ntot+=0.5;
1540 }
1541 return (Int_t)ntot;
1542
1543 };
1544 //--------------------------------------
1545 //
1546 //
1547 //--------------------------------------
1548 /**
1549 * Retrieves (if present) the image of the it-th "physical" track, sorted by the method GetNTracks().
1550 * @param it Track number, ranging from 0 to GetNTracks().
1551 */
1552 TrkTrack *TrkLevel2::GetTrackImage(int it){
1553
1554 if(it >= this->GetNTracks()){
1555 cout << "** TrkLevel2 ** Track "<< it << "does not exits! " << endl;
1556 cout << " Physical tracks GetNTracks() = "<< this->ntrk() << endl;
1557 return 0;
1558 }
1559
1560 TRefArray* sorted = GetTracks(); //TEMPORANEO
1561 if(!sorted)return 0;
1562 TrkTrack *track = (TrkTrack*)sorted->At(it);
1563
1564 if(!track->HasImage()){
1565 cout << "** TrkLevel2 ** Track "<< it << "does not have image! " << endl;
1566 return 0;
1567 }
1568 if(!Track)return 0;
1569 TrkTrack *image = (TrkTrack*)(*Track)[track->image];
1570
1571 sorted->Delete();
1572 delete sorted;
1573
1574 return image;
1575
1576 }
1577 //--------------------------------------
1578 //
1579 //
1580 //--------------------------------------
1581 /**
1582 * Loads the magnetic field.
1583 * @param s Path of the magnetic-field files.
1584 */
1585 void TrkLevel2::LoadField(TString path){
1586 //
1587 // strcpy(path_.path,path.Data());
1588 // path_.pathlen = path.Length();
1589 // path_.error = 0;
1590 // readb_();
1591
1592 TrkParams::SetTrackingMode();
1593 TrkParams::SetPrecisionFactor();
1594 TrkParams::SetStepMin();
1595
1596 TrkParams::Set(path,1);
1597 TrkParams::Load(1);
1598
1599 //
1600 };
1601 // /**
1602 // * Get BY (kGauss)
1603 // * @param v (x,y,z) coordinates in cm
1604 // */
1605 // float TrkLevel2::GetBX(float* v){
1606 // float b[3];
1607 // gufld_(v,b);
1608 // return b[0]/10.;
1609 // }
1610 // /**
1611 // * Get BY (kGauss)
1612 // * @param v (x,y,z) coordinates in cm
1613 // */
1614 // float TrkLevel2::GetBY(float* v){
1615 // float b[3];
1616 // gufld_(v,b);
1617 // return b[1]/10.;
1618 // }
1619 // /**
1620 // * Get BY (kGauss)
1621 // * @param v (x,y,z) coordinates in cm
1622 // */
1623 // float TrkLevel2::GetBZ(float* v){
1624 // float b[3];
1625 // gufld_(v,b);
1626 // return b[2]/10.;
1627 // }
1628 //--------------------------------------
1629 //
1630 //
1631 //--------------------------------------
1632 /**
1633 * Get tracker-plane (mechanical) z-coordinate
1634 * @param plane_id plane index (1=TOP,2,3,4,5,6=BOTTOM)
1635 */
1636 Float_t TrkLevel2::GetZTrk(Int_t plane_id){
1637 switch(plane_id){
1638 case 1: return ZTRK1;
1639 case 2: return ZTRK2;
1640 case 3: return ZTRK3;
1641 case 4: return ZTRK4;
1642 case 5: return ZTRK5;
1643 case 6: return ZTRK6;
1644 default: return 0.;
1645 };
1646 };
1647 //--------------------------------------
1648 //
1649 //
1650 //--------------------------------------
1651 /**
1652 * Trajectory default constructor.
1653 * (By default is created with z-coordinates inside the tracking volume)
1654 */
1655 Trajectory::Trajectory(){
1656 npoint = 10;
1657 x = new float[npoint];
1658 y = new float[npoint];
1659 z = new float[npoint];
1660 thx = new float[npoint];
1661 thy = new float[npoint];
1662 tl = new float[npoint];
1663 float dz = ((ZTRK1)-(ZTRK6))/(npoint-1);
1664 for(int i=0; i<npoint; i++){
1665 x[i] = 0;
1666 y[i] = 0;
1667 z[i] = (ZTRK1) - i*dz;
1668 thx[i] = 0;
1669 thy[i] = 0;
1670 tl[i] = 0;
1671 }
1672 }
1673 //--------------------------------------
1674 //
1675 //
1676 //--------------------------------------
1677 /**
1678 * Trajectory constructor.
1679 * (By default is created with z-coordinates inside the tracking volume)
1680 * \param n Number of points
1681 */
1682 Trajectory::Trajectory(int n){
1683 if(n<=0){
1684 cout << "NB! Trajectory must have at least 1 point >>> created with 10 points" << endl;
1685 n=10;
1686 }
1687 npoint = n;
1688 x = new float[npoint];
1689 y = new float[npoint];
1690 z = new float[npoint];
1691 thx = new float[npoint];
1692 thy = new float[npoint];
1693 tl = new float[npoint];
1694 float dz = ((ZTRK1)-(ZTRK6))/(npoint-1);
1695 for(int i=0; i<npoint; i++){
1696 x[i] = 0;
1697 y[i] = 0;
1698 z[i] = (ZTRK1) - i*dz;
1699 thx[i] = 0;
1700 thy[i] = 0;
1701 tl[i] = 0;
1702 }
1703 }
1704 //--------------------------------------
1705 //
1706 //
1707 //--------------------------------------
1708 /**
1709 * Trajectory constructor.
1710 * \param n Number of points
1711 * \param pz Pointer to float array, defining z coordinates
1712 */
1713 Trajectory::Trajectory(int n, float* zin){
1714 npoint = 10;
1715 if(n>0)npoint = n;
1716 x = new float[npoint];
1717 y = new float[npoint];
1718 z = new float[npoint];
1719 thx = new float[npoint];
1720 thy = new float[npoint];
1721 tl = new float[npoint];
1722 int i=0;
1723 do{
1724 x[i] = 0;
1725 y[i] = 0;
1726 z[i] = zin[i];
1727 thx[i] = 0;
1728 thy[i] = 0;
1729 tl[i] = 0;
1730 i++;
1731 }while(zin[i-1] > zin[i] && i < npoint);
1732 npoint=i;
1733 if(npoint != n)cout << "NB! Trajectory created with "<<npoint<<" points"<<endl;
1734 }
1735 void Trajectory::Delete(){
1736
1737 if(x) delete [] x;
1738 if(y) delete [] y;
1739 if(z) delete [] z;
1740 if(thx) delete [] thx;
1741 if(thy) delete [] thy;
1742 if(tl) delete [] tl;
1743
1744 }
1745 //--------------------------------------
1746 //
1747 //
1748 //--------------------------------------
1749 /**
1750 * Dump the trajectory coordinates.
1751 */
1752 void Trajectory::Dump(){
1753 cout <<endl<< "Trajectory ========== "<<endl;
1754 for (int i=0; i<npoint; i++){
1755 cout << i <<" >> " << x[i] <<" "<< y[i] <<" "<< z[i] ;
1756 cout <<" -- " << thx[i] <<" "<< thy[i] ;
1757 cout <<" -- " << tl[i] << endl;
1758 };
1759 }
1760 //--------------------------------------
1761 //
1762 //
1763 //--------------------------------------
1764 /**
1765 * Get trajectory length between two points
1766 * @param ifirst first point (default 0)
1767 * @param ilast last point (default npoint)
1768 */
1769 float Trajectory::GetLength(int ifirst, int ilast){
1770 if( ifirst<0 ) ifirst = 0;
1771 if( ilast>=npoint) ilast = npoint-1;
1772 float l=0;
1773 for(int i=ifirst;i<=ilast;i++){
1774 l=l+tl[i];
1775 };
1776 if(z[ilast] > ZINI)l=l-tl[ilast];
1777 if(z[ifirst] < ZINI) l=l-tl[ifirst];
1778
1779 return l;
1780
1781 }
1782
1783 /**
1784 * Evaluates the trajectory in the apparatus associated to the track.
1785 * It integrates the equations of motion in the magnetic field. The magnetic field should be previously loaded ( by calling TrkLevel2::LoadField() ), otherwise an error message is returned.
1786 * @param t pointer to an object of the class Trajectory,
1787 * which z coordinates should be previously initialized by calling the proper constructor ( Trajectory::Trajectory(int n, float* zin) ).
1788 * @return error flag.
1789 */
1790 int Trajectory::DoTrack2(float* al){
1791
1792 double *dxout = new double[npoint];
1793 double *dyout = new double[npoint];
1794 double *dthxout = new double[npoint];
1795 double *dthyout = new double[npoint];
1796 double *dtlout = new double[npoint];
1797 double *dzin = new double[npoint];
1798 double dal[5];
1799
1800 int ifail = 0;
1801
1802 for (int i=0; i<5; i++) dal[i] = (double)al[i];
1803 for (int i=0; i<npoint; i++) dzin[i] = (double)z[i];
1804
1805 TrkParams::Load(1);
1806 if( !TrkParams::IsLoaded(1) ){
1807 cout << "int Trajectory::DoTrack2(float* al) --- ERROR --- m.field not loaded"<<endl;
1808 return 0;
1809 }
1810 dotrack2_(&(npoint),dzin,dxout,dyout,dthxout,dthyout,dtlout,dal,&ifail);
1811
1812 for (int i=0; i<npoint; i++){
1813 x[i] = (float)*dxout++;
1814 y[i] = (float)*dyout++;
1815 thx[i] = (float)*dthxout++;
1816 thy[i] = (float)*dthyout++;
1817 tl[i] = (float)*dtlout++;
1818 }
1819
1820 return ifail;
1821 };
1822
1823 ClassImp(TrkLevel2);
1824 ClassImp(TrkSinglet);
1825 ClassImp(TrkTrack);
1826 ClassImp(Trajectory);

  ViewVC Help
Powered by ViewVC 1.1.23