/[PAMELA software]/DarthVader/TrackerLevel2/src/TrkLevel2.cpp
ViewVC logotype

Diff of /DarthVader/TrackerLevel2/src/TrkLevel2.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 1.5 by pam-fi, Fri Jun 30 09:48:15 2006 UTC revision 1.55 by mocchiut, Thu Jan 16 15:29:47 2014 UTC
# Line 4  Line 4 
4   */   */
5  #include <TrkLevel2.h>  #include <TrkLevel2.h>
6  #include <iostream>  #include <iostream>
7    #include <math.h>
8  using namespace std;  using namespace std;
9  //......................................  //......................................
10  // F77 routines  // F77 routines
# Line 11  using namespace std; Line 12  using namespace std;
12  extern "C" {      extern "C" {    
13      void dotrack_(int*, double*, double*, double*, double*, int*);      void dotrack_(int*, double*, double*, double*, double*, int*);
14      void dotrack2_(int*, double*, double*, double*, double*,double*, double*, double*,int*);      void dotrack2_(int*, double*, double*, double*, double*,double*, double*, double*,int*);
15      int  readb_(const char*);      void dotrack3_(int*, double*, double*, double*, double*,double*, double*, double*,double*,int*);
16        void mini2_(int*,int*,int*);
17        void guess_();
18        void gufld_(float*, float*);
19        float risxeta2_(float *);
20        float risxeta3_(float *);
21        float risxeta4_(float *);
22        float risyeta2_(float *);
23  }  }
24    
25  //--------------------------------------  //--------------------------------------
26  //  //
27  //  //
28  //--------------------------------------  //--------------------------------------
29  TrkTrack::TrkTrack(){  TrkTrack::TrkTrack(){
30    //    cout << "TrkTrack::TrkTrack()" << endl;
31      seqno = -1;      seqno = -1;
32      image = -1;      image = -1;
33      chi2  = 0;      chi2  = 0;
34        nstep = 0;
35      for(int it1=0;it1<5;it1++){      for(int it1=0;it1<5;it1++){
36          al[it1] = 0;          al[it1] = 0;
37          for(int it2=0;it2<5;it2++)          for(int it2=0;it2<5;it2++)coval[it1][it2] = 0;
             coval[it1][it2] = 0;  
38      };      };
39      for(int ip=0;ip<6;ip++){      for(int ip=0;ip<6;ip++){
40          xgood[ip]  = 0;          xgood[ip]  = 0;
# Line 34  TrkTrack::TrkTrack(){ Line 44  TrkTrack::TrkTrack(){
44          zm[ip]     = 0;          zm[ip]     = 0;
45          resx[ip]   = 0;          resx[ip]   = 0;
46          resy[ip]   = 0;          resy[ip]   = 0;
47            tailx[ip]   = 0;
48            taily[ip]   = 0;
49          xv[ip]     = 0;          xv[ip]     = 0;
50          yv[ip]     = 0;          yv[ip]     = 0;
51          zv[ip]     = 0;          zv[ip]     = 0;
# Line 41  TrkTrack::TrkTrack(){ Line 53  TrkTrack::TrkTrack(){
53          ayv[ip]    = 0;          ayv[ip]    = 0;
54          dedx_x[ip] = 0;          dedx_x[ip] = 0;
55          dedx_y[ip] = 0;          dedx_y[ip] = 0;
56      };              multmaxx[ip] = 0;
57            multmaxy[ip] = 0;
58            seedx[ip]  = 0;  
59            seedy[ip]  = 0;
60            xpu[ip]    = 0;  
61            ypu[ip]    = 0;  
62    
63        };
64        
65    //     TrkParams::SetTrackingMode();
66    //     TrkParams::SetPrecisionFactor();
67    //     TrkParams::SetStepMin();
68        TrkParams::SetMiniDefault();
69        TrkParams::SetPFA();
70    
71        int ngf = TrkParams::nGF;
72        for(int i=0; i<ngf; i++){
73            xGF[i] = 0.;
74            yGF[i] = 0.;
75        }
76    
77    
78  };  };
79  //--------------------------------------  //--------------------------------------
80  //  //
# Line 51  TrkTrack::TrkTrack(const TrkTrack& t){ Line 84  TrkTrack::TrkTrack(const TrkTrack& t){
84      seqno = t.seqno;      seqno = t.seqno;
85      image = t.image;      image = t.image;
86      chi2  = t.chi2;      chi2  = t.chi2;
87        nstep = t.nstep;
88      for(int it1=0;it1<5;it1++){      for(int it1=0;it1<5;it1++){
89          al[it1] = t.al[it1];          al[it1] = t.al[it1];
90          for(int it2=0;it2<5;it2++)          for(int it2=0;it2<5;it2++)coval[it1][it2] = t.coval[it1][it2];
             coval[it1][it2] = t.coval[it1][it2];  
91      };      };
92      for(int ip=0;ip<6;ip++){      for(int ip=0;ip<6;ip++){
93          xgood[ip]  = t.xgood[ip];          xgood[ip]  = t.xgood[ip];
# Line 64  TrkTrack::TrkTrack(const TrkTrack& t){ Line 97  TrkTrack::TrkTrack(const TrkTrack& t){
97          zm[ip]     = t.zm[ip];          zm[ip]     = t.zm[ip];
98          resx[ip]   = t.resx[ip];          resx[ip]   = t.resx[ip];
99          resy[ip]   = t.resy[ip];          resy[ip]   = t.resy[ip];
100            tailx[ip]  = t.tailx[ip];
101            taily[ip]  = t.taily[ip];
102          xv[ip]     = t.xv[ip];          xv[ip]     = t.xv[ip];
103          yv[ip]     = t.yv[ip];          yv[ip]     = t.yv[ip];
104          zv[ip]     = t.zv[ip];          zv[ip]     = t.zv[ip];
# Line 71  TrkTrack::TrkTrack(const TrkTrack& t){ Line 106  TrkTrack::TrkTrack(const TrkTrack& t){
106          ayv[ip]    = t.ayv[ip];          ayv[ip]    = t.ayv[ip];
107          dedx_x[ip] = t.dedx_x[ip];          dedx_x[ip] = t.dedx_x[ip];
108          dedx_y[ip] = t.dedx_y[ip];          dedx_y[ip] = t.dedx_y[ip];
109      };              multmaxx[ip] = t.multmaxx[ip];
110            multmaxy[ip] = t.multmaxy[ip];
111            seedx[ip]    = t.seedx[ip];  
112            seedy[ip]    = t.seedy[ip];
113            xpu[ip]      = t.xpu[ip];  
114            ypu[ip]      = t.ypu[ip];  
115        };
116    
117    //     TrkParams::SetTrackingMode();
118    //     TrkParams::SetPrecisionFactor();
119    //     TrkParams::SetStepMin();  
120        TrkParams::SetMiniDefault();
121        TrkParams::SetPFA();
122    
123        int ngf = TrkParams::nGF;
124        for(int i=0; i<ngf; i++){
125            xGF[i] = t.xGF[i];
126            yGF[i] = t.yGF[i];
127        }
128  };  };
129  //--------------------------------------  //--------------------------------------
130  //  //
131  //  //
132  //--------------------------------------  //--------------------------------------
133  /**  void TrkTrack::Copy(TrkTrack& t){
  * Evaluates the trajectory in the apparatus associated to the track.  
  * It integrates the equations of motion in the magnetic field. The magnetic field should be previously loaded ( by calling  TrkLevel2::LoadField() ), otherwise an error message is returned.    
  * @param t pointer to an object of the class Trajectory,  
  * which z coordinates should be previously initialized by calling the proper constructor ( Trajectory::Trajectory(int n, float* zin) ).  
  * @return error flag.  
  */  
 int TrkTrack::DoTrack(Trajectory* t){  
   
     double *dxout = new double[t->npoint];  
     double *dyout = new double[t->npoint];  
     double *dzin = new double[t->npoint];  
     double dal[5];  
134    
135      int ifail = 0;      t.seqno = seqno;
136        t.image = image;
137      for (int i=0; i<5; i++)         dal[i]  = (double)al[i];      t.chi2  = chi2;
138      for (int i=0; i<t->npoint; i++) dzin[i] = (double)t->z[i];      t.nstep = nstep;
139        for(int it1=0;it1<5;it1++){
140            t.al[it1] = al[it1];
141            for(int it2=0;it2<5;it2++)t.coval[it1][it2] = coval[it1][it2];
142        };
143        for(int ip=0;ip<6;ip++){
144            t.xgood[ip]  = xgood[ip];
145            t.ygood[ip]  = ygood[ip];
146            t.xm[ip]     = xm[ip];
147            t.ym[ip]     = ym[ip];
148            t.zm[ip]     = zm[ip];
149            t.resx[ip]   = resx[ip];
150            t.resy[ip]   = resy[ip];
151            t.tailx[ip]  = tailx[ip];
152            t.taily[ip]  = taily[ip];
153            t.xv[ip]     = xv[ip];
154            t.yv[ip]     = yv[ip];
155            t.zv[ip]     = zv[ip];
156            t.axv[ip]    = axv[ip];
157            t.ayv[ip]    = ayv[ip];
158            t.dedx_x[ip] = dedx_x[ip];
159            t.dedx_y[ip] = dedx_y[ip];
160            t.multmaxx[ip] = multmaxx[ip];
161            t.multmaxy[ip] = multmaxy[ip];
162            t.seedx[ip]    = seedx[ip];  
163            t.seedy[ip]    = seedy[ip];
164            t.xpu[ip]      = xpu[ip];  
165            t.ypu[ip]      = ypu[ip];  
166                
167        };
168        int ngf = TrkParams::nGF;
169        for(int i=0; i<ngf; i++){
170            t.xGF[i] = xGF[i];
171            t.yGF[i] = yGF[i];
172        }
173    
     dotrack_(&(t->npoint),dzin,dxout,dyout,dal,&ifail);  
174            
175      for (int i=0; i<t->npoint; i++){  };
176          t->x[i] = (float)*dxout++;  //--------------------------------------
177          t->y[i] = (float)*dyout++;  //
178      }  //
179    //--------------------------------------
180    /**
181     *
182     * >>> OBSOLETE !!! use TrkTrack::DoTrack(Trajectory* t) instead
183     *
184     */
185    int TrkTrack::DoTrack2(Trajectory* t){
186    
187  //    delete [] dxout;      cout << endl;
188  //    delete [] dyout;      cout << " int TrkTrack::DoTrack2(Trajectory* t) --->> NB NB !! this method is going to be eliminated !!! "<<endl;
189  //    delete [] dzin;      cout << " >>>> replace it with TrkTrack::DoTrack(Trajectory* t) <<<<"<<endl;
190        cout << " (Sorry Wolfgang!! Don't be totally confused!! By Elena)"<<endl;
191        cout << endl;
192    
193        return DoTrack(t);
194    
     return ifail;  
195  };  };
196  //--------------------------------------  //--------------------------------------
197  //  //
198  //  //
199  //--------------------------------------  //--------------------------------------
200  /**  /**
201   * Evaluates the trajectory in the apparatus associated to the track.   * Evaluates the trajectory in the apparatus associated to the track state-vector.
202   * It integrates the equations of motion in the magnetic field. The magnetic field should be previously loaded ( by calling  TrkLevel2::LoadField() ), otherwise an error message is returned.     * It integrates the equations of motion in the magnetic field.
203   * @param t pointer to an object of the class Trajectory,   * @param t pointer to an object of the class Trajectory,
204   * which z coordinates should be previously initialized by calling the proper constructor ( Trajectory::Trajectory(int n, float* zin) ).   * which z coordinates should be previously assigned.
205   * @return error flag.   * @return error flag.
206   */   */
207  int TrkTrack::DoTrack2(Trajectory* t){  int TrkTrack::DoTrack(Trajectory* t){
208    
209      double *dxout   = new double[t->npoint];      double *dxout   = new double[t->npoint];
210      double *dyout   = new double[t->npoint];      double *dyout   = new double[t->npoint];
# Line 135  int TrkTrack::DoTrack2(Trajectory* t){ Line 219  int TrkTrack::DoTrack2(Trajectory* t){
219      for (int i=0; i<5; i++)         dal[i]  = (double)al[i];      for (int i=0; i<5; i++)         dal[i]  = (double)al[i];
220      for (int i=0; i<t->npoint; i++) dzin[i] = (double)t->z[i];      for (int i=0; i<t->npoint; i++) dzin[i] = (double)t->z[i];
221    
222        TrkParams::Load(1);
223        if( !TrkParams::IsLoaded(1) ){
224            cout << "int TrkTrack::DoTrack(Trajectory* t) --- ERROR --- m.field not loaded"<<endl;
225            return 0;
226        }
227      dotrack2_(&(t->npoint),dzin,dxout,dyout,dthxout,dthyout,dtlout,dal,&ifail);      dotrack2_(&(t->npoint),dzin,dxout,dyout,dthxout,dthyout,dtlout,dal,&ifail);
228            
229      for (int i=0; i<t->npoint; i++){      for (int i=0; i<t->npoint; i++){
230          t->x[i]   = (float)*dxout++;          t->x[i]   = (float)*(dxout+i);
231          t->y[i]   = (float)*dyout++;          t->y[i]   = (float)*(dyout+i);
232          t->thx[i] = (float)*dthxout++;          t->thx[i] = (float)*(dthxout+i);
233          t->thy[i] = (float)*dthyout++;          t->thy[i] = (float)*(dthyout+i);
234          t->tl[i]  = (float)*dtlout++;          t->tl[i]  = (float)*(dtlout+i);
235        }
236    
237        delete [] dxout;
238        delete [] dyout;
239        delete [] dzin;
240        delete [] dthxout;
241        delete [] dthyout;
242        delete [] dtlout;
243    
244        return ifail;
245    };
246    //--------------------------------------
247    //
248    //
249    //--------------------------------------
250    //float TrkTrack::BdL(){
251    //};
252    //--------------------------------------
253    //
254    //
255    //--------------------------------------
256    Float_t TrkTrack::GetRigidity(){
257            Float_t rig=0;
258            if(chi2>0)rig=1./al[4];
259            if(rig<0) rig=-rig;
260            return rig;
261    };
262    //
263    Float_t TrkTrack::GetDeflection(){
264            Float_t def=0;
265            if(chi2>0)def=al[4];
266            return def;
267    };
268    //
269    /**
270     * Method to retrieve the dE/dx measured on a tracker view.
271     * @param ip plane (0-5)
272     * @param iv view (0=x 1=y)
273     */
274    Float_t TrkTrack::GetDEDX(int ip, int iv){
275        if(iv==0 && ip>=0 && ip<6)return fabs(dedx_x[ip]);
276        else if(iv==1 && ip>=0 && ip<6)return fabs(dedx_y[ip]);
277        else {
278            cout << "TrkTrack::GetDEDX(int ip, int iv) -- wrong input parameters "<<ip<<iv<<endl;
279            return 0.;
280        }
281    }
282    /**
283     * Method to evaluate the dE/dx measured on a tracker plane.
284     * The two measurements on x- and y-view are averaged.
285     * @param ip plane (0-5)
286     */
287    Float_t TrkTrack::GetDEDX(int ip){
288        if( (Int_t)XGood(ip)+(Int_t)YGood(ip) == 0 ) return 0;
289        return (GetDEDX(ip,0)+GetDEDX(ip,1))/((Int_t)XGood(ip)+(Int_t)YGood(ip));
290    };
291    
292    /**
293     * Method to evaluate the dE/dx averaged over all planes.
294     */
295    Float_t TrkTrack::GetDEDX(){
296        Float_t dedx=0;
297        for(Int_t ip=0; ip<6; ip++)dedx+=GetDEDX(ip,0)*XGood(ip)+GetDEDX(ip,1)*YGood(ip);
298        dedx = dedx/(GetNX()+GetNY());
299        return dedx;
300    };
301    /**
302     * Returns 1 if the cluster on a tracker view includes bad strips
303     * (at least one bad strip among the four strip used by p.f.a.)
304     * @param ip plane (0-5)
305     * @param iv view (0=x 1=y)
306     */
307    Bool_t TrkTrack::IsBad(int ip,int iv){
308        if(iv==0 && ip>=0 && ip<6)return (xgood[ip]<0) ;
309        else if(iv==1 && ip>=0 && ip<6)return (ygood[ip]<0) ;
310        else {
311            cout << "TrkTrack::IsBad(int ip, int iv) -- wrong input parameters "<<ip<<iv<<endl;
312            return 0.;
313        }
314    };
315    /**
316     * Returns 1 if the signal on a tracker view is saturated.
317     * @param ip plane (0-5)
318     * @param iv view (0=x 1=y)
319     */
320    Bool_t TrkTrack::IsSaturated(int ip,int iv){
321        if(iv==0 && ip>=0 && ip<6)return (dedx_x[ip]<0) ;
322        else if(iv==1 && ip>=0 && ip<6)return (dedx_y[ip]<0) ;
323        else {
324            cout << "TrkTrack::IsSaturated(int ip, int iv) -- wrong input parameters "<<ip<<iv<<endl;
325            return 0.;
326        }
327    };
328    /**
329     * Returns 1 if either the x or the y signal on a tracker plane is saturated.
330     * @param ip plane (0-5)
331     */
332    Bool_t TrkTrack::IsSaturated(int ip){
333        return (IsSaturated(ip,0)||IsSaturated(ip,1));
334    };
335    /**
336     * Returns 1 if there is at least a saturated signal along the track.
337     */
338    Bool_t TrkTrack::IsSaturated(){
339        for(int ip=0; ip<6; ip++)for(int iv=0; iv<2; iv++)if(IsSaturated(ip,iv))return true;
340        return false;
341    }
342    /**
343     * Returns the track "lever-arm" on the x view, defined as the distance (in planes) between
344     * the upper and lower x measurements (the maximum value of lever-arm is 6).
345     */
346    Int_t TrkTrack::GetLeverArmX(){
347        int first_plane = -1;
348        int last_plane  = -1;
349        for(Int_t ip=0; ip<6; ip++){
350            if( XGood(ip) && first_plane == -1 )first_plane = ip;
351            if( XGood(ip) && first_plane != -1 )last_plane = ip;
352        }
353        if( first_plane == -1 || last_plane == -1){
354            cout<< "Int_t TrkTrack::GetLeverArmX() -- XGood(ip) always false ??? "<<endl;
355            return 0;
356        }
357        return (last_plane-first_plane+1);
358    }
359    /**
360     * Returns the track "lever-arm" on the y view, defined as the distance (in planes) between
361     * the upper and lower y measurements (the maximum value of lever-arm is 6).
362     */
363    Int_t TrkTrack::GetLeverArmY(){
364        int first_plane = -1;
365        int last_plane  = -1;
366        for(Int_t ip=0; ip<6; ip++){
367            if( YGood(ip) && first_plane == -1 )first_plane = ip;
368            if( YGood(ip) && first_plane != -1 )last_plane = ip;
369        }
370        if( first_plane == -1 || last_plane == -1){
371            cout<< "Int_t TrkTrack::GetLeverArmY() -- YGood(ip) always false ??? "<<endl;
372            return 0;
373        }
374        return (last_plane-first_plane+1);
375    }
376    /**
377     * Returns the track "lever-arm" on the x+y view, defined as the distance (in planes) between
378     * the upper and lower x,y (couple) measurements (the maximum value of lever-arm is 6).
379     */
380    Int_t TrkTrack::GetLeverArmXY(){
381        int first_plane = -1;
382        int last_plane  = -1;
383        for(Int_t ip=0; ip<6; ip++){
384            if( XGood(ip)*YGood(ip) && first_plane == -1 )first_plane = ip;
385            if( XGood(ip)*YGood(ip) && first_plane != -1 )last_plane = ip;
386        }
387        if( first_plane == -1 || last_plane == -1){
388            cout<< "Int_t TrkTrack::GetLeverArmXY() -- XGood(ip)*YGood(ip) always false ??? "<<endl;
389            return 0;
390        }
391        return (last_plane-first_plane+1);
392    }
393    /**
394     * Returns the reduced chi-square of track x-projection
395     */
396    Float_t  TrkTrack::GetChi2X(){
397        float chiq=0;
398        for(int ip=0; ip<6; ip++)if(XGood(ip))chiq+= pow((xv[ip]-xm[ip])/resx[ip],2.);
399        if(GetNX()>3)chiq=chiq/(GetNX()-3);
400        else chiq=0;
401        if(chiq==0)cout << " Float_t  TrkTrack::GetChi2X() -- WARNING -- value not defined "<<chiq<<endl;
402        return chiq;
403    }
404    /**
405     * Returns the reduced chi-square of track y-projection
406     */
407    Float_t  TrkTrack::GetChi2Y(){
408        float chiq=0;
409        for(int ip=0; ip<6; ip++)if(YGood(ip))chiq+= pow((yv[ip]-ym[ip])/resy[ip],2.);
410        if(GetNY()>2)chiq=chiq/(GetNY()-2);
411        else chiq=0;
412        if(chiq==0)cout << " Float_t  TrkTrack::GetChi2Y() -- WARNING -- value not defined "<<chiq<<endl;
413        return chiq;
414    }
415    /**
416     * Returns the logarythm of the likeliwood-function of  track x-projection
417     */
418    Float_t TrkTrack::GetLnLX(){
419        float lnl=0;
420        for(int ip=0; ip<6; ip++)
421            if( XGood(ip) && tailx[ip]!=0 )
422                lnl += (tailx[ip]+1.) * log( (tailx[ip]*pow(resx[ip],2.) + pow(xv[ip]-xm[ip],2.)) / (tailx[ip]*pow(resx[ip],2)) );
423        if(GetNX()>3)lnl=lnl/(GetNX()-3);
424        else lnl=0;
425        if(lnl==0){
426            cout << " Float_t  TrkTrack::GetLnLX() -- WARNING -- value not defined "<<lnl<<endl;
427            Dump();
428        }
429        return lnl;
430        
431    }
432    /**
433     * Returns the logarythm of the likeliwood-function of  track y-projection
434     */
435    Float_t TrkTrack::GetLnLY(){
436        float lnl=0;
437        for(int ip=0; ip<6; ip++)
438            if( YGood(ip) && taily[ip]!=0 )
439                lnl += (taily[ip]+1.) * log( (taily[ip]*pow(resy[ip],2.) + pow(yv[ip]-ym[ip],2.)) / (taily[ip]*pow(resy[ip],2)) );
440        if(GetNY()>2)lnl=lnl/(GetNY()-2);
441        else lnl=0;
442        if(lnl==0){
443            cout << " Float_t  TrkTrack::GetLnLY() -- WARNING -- value not defined "<<lnl<<endl;
444            Dump();
445        }
446        return lnl;
447        
448    }
449    /**
450     * Returns the effective angle, relative to the sensor, on each plane.
451     * @param ip plane (0-5)
452     * @param iv view (0=x 1=y)
453     */
454    Float_t TrkTrack::GetEffectiveAngle(int ip, int iv){
455    
456        if(ip<0 || ip>5){
457            cout << "Float_t TrkTrack::GetEffectiveAngle(int "<<ip<<", int "<<iv<<") ==> wrong input"<<endl;
458            return 0.;
459        }
460    
461        float v[3]={xv[ip],yv[ip],zv[ip]};
462        //-----------------------------------------
463        // effective angle (relative to the sensor)
464        //-----------------------------------------
465        float axv_geo  = axv[ip];
466        float muhall_h = 297.61; //cm**2/Vs
467        float BY = TrkParams::GetBY(v);
468        float axv_eff = 0;
469        if(ip==5) axv_geo = -1*axv_geo;
470        if(ip==5) BY      = -1*BY;
471        axv_eff = 180.*atan( tan(axv_geo*acos(-1.)/180.) + muhall_h * BY * 0.0001)/acos(-1.);
472        //-----------------------------------------
473        // effective angle (relative to the sensor)
474        //-----------------------------------------
475        float ayv_geo = ayv[ip];
476        float muhall_e = 1258.18; //cm**2/Vs
477        float BX = TrkParams::GetBX(v);
478        float ayv_eff = 0;
479        ayv_eff = 180.*atan( tan(ayv_geo*acos(-1.)/180.) + muhall_e * BX * 0.0001)/acos(-1.);
480      
481        if     (iv==0)return axv_eff;
482        else if(iv==1)return ayv_eff;
483        else{
484            cout << "Float_t TrkTrack::GetEffectiveAngle(int "<<ip<<", int "<<iv<<") ==> wrong input"<<endl;
485            return 0.;
486        }
487      
488    };
489    
490    //--------------------------------------
491    //
492    //
493    //--------------------------------------
494    void TrkTrack::Dump(){
495        cout << endl << "========== Track " ;
496        cout << endl << "seq.  n. : "<< seqno;
497        cout << endl << "image n. : "<< image;
498        cout << endl << "al       : "; for(int i=0; i<5; i++)cout << al[i] << " ";
499        cout << endl << "chi^2    : "<< chi2;
500        cout << endl << "n.step   : "<< nstep;
501        cout << endl << "xgood    : "; for(int i=0; i<6; i++)cout << XGood(i) ;
502        cout << endl << "ygood    : "; for(int i=0; i<6; i++)cout << YGood(i) ;
503        cout << endl << "xm       : "; for(int i=0; i<6; i++)cout << xm[i] << " ";
504        cout << endl << "ym       : "; for(int i=0; i<6; i++)cout << ym[i] << " ";
505        cout << endl << "zm       : "; for(int i=0; i<6; i++)cout << zm[i] << " ";
506        cout << endl << "xv       : "; for(int i=0; i<6; i++)cout << xv[i] << " ";
507        cout << endl << "yv       : "; for(int i=0; i<6; i++)cout << yv[i] << " ";
508        cout << endl << "zv       : "; for(int i=0; i<6; i++)cout << zv[i] << " ";
509        cout << endl << "resx     : "; for(int i=0; i<6; i++)cout << resx[i] << " ";
510        cout << endl << "resy     : "; for(int i=0; i<6; i++)cout << resy[i] << " ";
511        cout << endl << "tailx    : "; for(int i=0; i<6; i++)cout << tailx[i] << " ";
512        cout << endl << "taily    : "; for(int i=0; i<6; i++)cout << taily[i] << " ";
513        cout << endl << "coval    : "; for(int i=0; i<5; i++)cout << coval[0][i]<<" ";
514        cout << endl << "           "; for(int i=0; i<5; i++)cout << coval[1][i]<<" ";
515        cout << endl << "           "; for(int i=0; i<5; i++)cout << coval[2][i]<<" ";
516        cout << endl << "           "; for(int i=0; i<5; i++)cout << coval[3][i]<<" ";
517        cout << endl << "           "; for(int i=0; i<5; i++)cout << coval[4][i]<<" ";
518        cout << endl << "dedx_x   : "; for(int i=0; i<6; i++)cout << dedx_x[i] << " ";
519        cout << endl << "dedx_y   : "; for(int i=0; i<6; i++)cout << dedx_y[i] << " ";
520        cout << endl << "maxs x   : "; for(int i=0; i<6; i++)cout << GetClusterX_MaxStrip(i) << " ";
521        cout << endl << "maxs y   : "; for(int i=0; i<6; i++)cout << GetClusterY_MaxStrip(i) << " ";
522        cout << endl << "mult x   : "; for(int i=0; i<6; i++)cout << GetClusterX_Multiplicity(i) << " ";
523        cout << endl << "mult y   : "; for(int i=0; i<6; i++)cout << GetClusterY_Multiplicity(i) << " ";
524        cout << endl << "seed x   : "; for(int i=0; i<6; i++)cout << GetClusterX_Seed(i) << " ";
525        cout << endl << "seed y   : "; for(int i=0; i<6; i++)cout << GetClusterY_Seed(i) << " ";
526        cout << endl << "xpu      : "; for(int i=0; i<6; i++)cout << xpu[i] << " ";
527        cout << endl << "ypu      : "; for(int i=0; i<6; i++)cout << ypu[i] << " ";
528    
529        cout << endl;
530    }
531    /**
532     * Set the TrkTrack position measurements
533     */
534    void TrkTrack::SetMeasure(double *xmeas, double *ymeas, double *zmeas){
535        for(int i=0; i<6; i++) xm[i]=*xmeas++;
536        for(int i=0; i<6; i++) ym[i]=*ymeas++;
537        for(int i=0; i<6; i++) zm[i]=*zmeas++;
538    }
539    /**
540     * Set the TrkTrack position resolution
541     */
542    void TrkTrack::SetResolution(double *rx, double *ry){
543        for(int i=0; i<6; i++) resx[i]=*rx++;
544        for(int i=0; i<6; i++) resy[i]=*ry++;
545    }
546    /**
547     * Set the TrkTrack tails position resolution
548     */
549    void TrkTrack::SetTail(double *tx, double *ty, double factor){
550        for(int i=0; i<6; i++) tailx[i]=factor*(*tx++);
551        for(int i=0; i<6; i++) taily[i]=factor*(*ty++);
552    }
553    /**
554     * Set the TrkTrack Student parameter (resx,resy,tailx,taily)
555     * from previous gausian fit
556     *@param flag =0 standard, =1 with noise correction
557     */
558    void TrkTrack::SetStudentParam(int flag){
559        float sx[11]={0.000128242,
560                       0.000136942,
561                       0.000162718,
562                       0.000202644,
563                       0.00025597,
564                       0.000317456,
565                       0.000349048,
566                       0.000384638,
567                       0.000457295,
568                       0.000512319,
569                       0.000538573};
570        float tx[11]={1.79402,
571                       2.04876,
572                       2.88376,
573                       3.3,
574                       3.14084,
575                       4.07686,
576                       4.44736,
577                       3.5179,
578                       3.38697,
579                       3.45739,
580                       3.18627};
581        float sy[11]={0.000483075,
582                       0.000466925,
583                       0.000431658,
584                       0.000428317,
585                       0.000433854,
586                       0.000444044,
587                       0.000482098,
588                       0.000537579,
589                       0.000636279,
590                       0.000741998,
591                       0.000864261};
592        float ty[11]={0.997032,
593                       1.11147,
594                       1.18526,
595                       1.61404,
596                       2.21908,
597                       3.08959,
598                       4.48833,
599                       4.42687,
600                       4.65253,
601                       4.52043,
602                       4.29926};
603        int index;
604        float fact=0.;
605        for(int i=0; i<6; i++) {
606            index = int((fabs(axv[i])+1.)/2.);
607            if(index>10) index=10;
608            tailx[i]=tx[index];
609            if(flag==1) {
610                if(fabs(axv[i])<=10.) fact = resx[i]/risxeta2_(&(axv[i]));
611                if(fabs(axv[i])>10.&&fabs(axv[i])<=15.) fact = resx[i]/risxeta3_(&(axv[i]));
612                if(fabs(axv[i])>15.) fact = resx[i]/risxeta4_(&(axv[i]));
613            } else fact = 1.;
614            resx[i] = sx[index]*fact;
615        }
616        for(int i=0; i<6; i++) {
617            index = int((fabs(ayv[i])+1.)/2.);
618            if(index>10) index=10;
619            taily[i]=ty[index];
620            if(flag==1) fact = resy[i]/risyeta2_(&(ayv[i]));
621            else fact = 1.;
622            resy[i] = sy[index]*fact;
623        }
624    }
625    /**
626     * Set the TrkTrack good measurement
627     */
628    void TrkTrack::SetGood(int *xg, int *yg){
629    
630        for(int i=0; i<6; i++) xgood[i]=*xg++;
631        for(int i=0; i<6; i++) ygood[i]=*yg++;
632    }
633    
634    /**
635     * Load the magnetic field
636     */
637    void TrkTrack::LoadField(TString path){
638        
639    //     strcpy(path_.path,path.Data());
640    //     path_.pathlen = path.Length();
641    //     path_.error   = 0;
642    //     readb_();
643    
644    //     TrkParams::SetTrackingMode();
645    //     TrkParams::SetPrecisionFactor();
646    //     TrkParams::SetStepMin();
647        TrkParams::SetMiniDefault();
648    
649        TrkParams::Set(path,1);
650        TrkParams::Load(1);
651        if( !TrkParams::IsLoaded(1) ){
652            cout << "void TrkTrack::LoadField(TString path) --- ERROR --- m.field not loaded"<<endl;
653        }
654    
655    };
656    
657    
658    /**
659     * Method to fill minimization-routine common
660     */
661    void TrkTrack::FillMiniStruct(cMini2track& track){
662    
663        for(int i=0; i<6; i++){
664    
665    //      cout << i<<" - "<<xgood[i]<<" "<<XGood(i)<<endl;
666    //      cout << i<<" - "<<ygood[i]<<" "<<YGood(i)<<endl;
667            track.xgood[i]=XGood(i);
668            track.ygood[i]=YGood(i);
669            
670            track.xm[i]=xm[i];
671            track.ym[i]=ym[i];
672            track.zm[i]=zm[i];
673            
674    //      --- temporaneo ----------------------------
675    //      float segment = 100.;
676    //      track.xm_a[i]=xm[i];
677    //      track.xm_b[i]=xm[i];
678    //      track.ym_a[i]=ym[i];
679    //      track.ym_b[i]=ym[i];
680    //      if(       XGood(i) && !YGood(i) ){
681    //          track.ym_a[i] = track.ym_a[i]+segment;
682    //          track.ym_b[i] = track.ym_b[i]-segment;
683    //      }else if( !XGood(i) && YGood(i)){
684    //          track.xm_a[i] = track.xm_a[i]+segment;
685    //          track.xm_b[i] = track.xm_b[i]-segment;
686    //      }
687    //      --- temporaneo ----------------------------
688    
689            if( XGood(i) || YGood(i) ){
690                double segment = 2.;//cm
691                // NB: i parametri di allineamento hanno una notazione particolare!!!
692                // sensor = 0 (hybrid side), 1
693                // ladder = 0-2 (increasing x)
694                // plane  = 0-5 (from bottom to top!!!)
695                int is = (int)GetSensor(i); if(i==5)is=1-is;
696                int ip = 5-i;
697                int il = (int)GetLadder(i);
698                
699                double omega   = 0.;
700                //      double beta    = 0.;// EM GCC 4.7
701                //      double gamma   = 0.;
702                if(
703                    (is < 0 || is > 1 || ip < 0 || ip > 5 || il < 0 || il > 2) &&
704                    true){
705                    // se il piano risulta colpito, ladder e sensore devono essere
706                    // assegnati correttamente
707                    cout << " void TrkTrack::FillMiniStruct(cMini2track&) --- WARNING --- sensor not defined, cannot read alignment parameters "<<endl;
708                    cout << " is ip il = "<<is<<" "<<ip<<" "<<il<<endl;
709                }else{
710                    omega   = alignparameters_.omega[is][il][ip];
711                    //              beta    = alignparameters_.beta[is][il][ip];// EM GCC 4.7 unused
712                    //              gamma   = alignparameters_.gamma[is][il][ip];// EM GCC 4.7 unused
713                }
714                
715                if(       XGood(i) && !YGood(i) ){
716                    track.xm_a[i] = xm[i] - omega * segment;
717                    track.ym_a[i] = ym[i] + segment;
718    //          track.zm_a[i] = zm[i] + beta * segment;//not used yet
719                    track.xm_b[i] = xm[i] + omega * segment;
720                    track.ym_b[i] = ym[i] - segment;
721    //          track.zm_b[i] = zm[i] - beta * segment;//not used yet
722                }else if( !XGood(i) && YGood(i) ){
723                    track.xm_a[i] = xm[i] + segment;
724                    track.ym_a[i] = ym[i] + omega * segment;
725    //          track.zm_a[i] = zm[i] - gamma * segment;//not used yet
726                    track.xm_b[i] = xm[i] - segment;
727                    track.ym_b[i] = ym[i] - omega * segment;
728    //          track.zm_b[i] = zm[i] + gamma * segment;//not used yet
729                }
730            }
731            
732            track.resx[i]=resx[i];
733            track.resy[i]=resy[i];
734            track.tailx[i]=tailx[i];
735            track.taily[i]=taily[i];
736        }
737    
738        for(int i=0; i<5; i++) track.al[i]=al[i];
739        track.zini = 23.5;
740    // ZINI = 23.5 !!! it should be the same parameter in all codes
741        
742    }
743    /**
744     * Method to set values from  minimization-routine common
745     */
746    void TrkTrack::SetFromMiniStruct(cMini2track *track){
747    
748        for(int i=0; i<5; i++) {
749            al[i]=track->al[i];
750            for(int j=0; j<5; j++) coval[i][j]=track->cov[i][j];
751        }
752        chi2  = track->chi2;
753        nstep = track->nstep;
754        for(int i=0; i<6; i++){
755            xv[i]  = track->xv[i];
756            yv[i]  = track->yv[i];
757            zv[i]  = track->zv[i];
758            xm[i]  = track->xm[i];
759            ym[i]  = track->ym[i];
760            zm[i]  = track->zm[i];
761            axv[i] = track->axv[i];
762            ayv[i] = track->ayv[i];
763        }
764        
765    }
766    /**
767     * \brief Method to re-evaluate coordinates of clusters associated with a track.
768     *
769     * The method can be applied only after recovering level1 information
770     * (either by reprocessing single events from level0 or from  
771     * the TrkLevel1 branch, if present); it calls F77 subroutines that
772     * read the level1 common and fill the minimization-routine common.
773     * Some clusters can be excluded or added by means of the methods:
774     *
775     * TrkTrack::ResetXGood(int ip)
776     * TrkTrack::ResetYGood(int ip)
777     * TrkTrack::SetXGood(int ip, int cid, int is)
778     * TrkTrack::SetYGood(int ip, int cid, int is)
779     *
780     * NB! The method TrkTrack::SetGood(int *xg, int *yg) set the plane-mask (0-1)
781     * for the minimization-routine common. It deletes the cluster information
782     * (at least for the moment...) thus cannot be applied before
783     * TrkTrack::EvaluateClusterPositions().  
784     *
785     * Different p.f.a. can be applied by calling (once) the method:
786     *
787     * TrkParams::SetPFA(0); //Set ETA p.f.a.
788     *
789     * @see TrkParams::SetPFA(int)
790     */
791    Bool_t TrkTrack::EvaluateClusterPositions(){
792        
793    //     cout << "void TrkTrack::GetClusterositions() "<<endl;
794    
795        TrkParams::Load(1);
796        if( !TrkParams::IsLoaded(1) ){
797            cout << "Bool_t TrkTrack::EvaluateClusterPositions() ---ERROR--- m.field not loaded "<<endl;
798            return false;
799        }    
800        TrkParams::Load(4);
801        if( !TrkParams::IsLoaded(4) ){
802            cout << "Bool_t TrkTrack::EvaluateClusterPositions() ---ERROR--- p.f.a. par. not loaded "<<endl;
803            return false;
804        }
805        TrkParams::Load(5);
806        if( !TrkParams::IsLoaded(5) ){
807            cout << "Bool_t TrkTrack::EvaluateClusterPositions() ---ERROR--- alignment par. not loaded "<<endl;
808            return false;
809        }
810    
811        for(int ip=0; ip<6; ip++){
812    //      cout << ip<<" ** "<<xm[ip]<<" / "<<ym[ip]<<endl;;
813            int icx = GetClusterX_ID(ip)+1;
814            int icy = GetClusterY_ID(ip)+1;
815            int sensor = GetSensor(ip)+1;//<< convenzione "Paolo"
816            if(ip==5 && sensor!=0)sensor=3-sensor;//<< convenzione "Elena"
817            int ladder = GetLadder(ip)+1;
818            float ax = axv[ip];
819            float ay = ayv[ip];
820            float v[3];
821            v[0]=xv[ip];
822            v[1]=yv[ip];
823            v[2]=zv[ip];
824            float bfx = 10*TrkParams::GetBX(v);//Tesla
825            float bfy = 10*TrkParams::GetBY(v);//Tesla
826            int ipp=ip+1;
827            xyzpam_(&ipp,&icx,&icy,&ladder,&sensor,&ax,&ay,&bfx,&bfy);
828            if(icx<0 || icy<0)return false;
829        }
830        return true;
831    }
832    /**
833     * \brief Tracking method. It calls F77 mini routine.
834     *
835     * @param pfixed Particle momentum. If pfixed=0 the momentum
836     * is left as a free parameter, otherwise it is fixed to the input value.
837     * @param fail Output flag (!=0 if the fit failed).
838     * @param iprint Flag to set debug mode ( 0 = no output; 1 = verbose; 2 = debug).
839     * @param froml1 Flag to re-evaluate positions (see TrkTrack::GetClusterPositions()).
840     *
841     * The option to re-evaluate positions can be used only after recovering
842     * level1 information, eg. by reprocessing the single event.
843     *
844     * Example:
845     *
846     * if( !event->GetTrkLevel0() )return false;
847     * event->GetTrkLevel0()->ProcessEvent(); // re-processing level0->level1
848     * int fail=0;
849     * event->GetTrkLevel2()->GetTrack(0)->Fit(0.,fail,0,1);
850     *
851     * @see EvaluateClusterPositions()
852     *
853     * The fitting procedure can be varied by changing the tracking mode,
854     * the fit-precision factor, the minimum number of step, etc.
855     * @see SetTrackingMode(int)
856     * @see SetPrecisionFactor(double)
857     * @see SetStepMin(int)
858     * @see SetDeltaB(int,double)
859     */
860    void TrkTrack::Fit(double pfixed, int& fail, int iprint, int froml1){
861    
862        TrkParams::Load(1);
863        if( !TrkParams::IsLoaded(1) ){
864            cout << "void TrkTrack::Fit(double,int&,int,int) ---ERROR--- m.field not loaded "<<endl;
865            return;
866        }
867        TrkParams::Load(5);
868        if( !TrkParams::IsLoaded(5) ){
869            cout << "void TrkTrack::Fit(double,int&,int,int) ---ERROR--- align.param. not loaded "<<endl;
870            return;
871        }
872    
873        float al_ini[] = {0.,0.,0.,0.,0.};
874    
875        extern cMini2track track_;
876        fail = 0;
877    
878        FillMiniStruct(track_);
879            
880        if(froml1!=0){
881            if( !EvaluateClusterPositions() ){
882                cout << "void TrkTrack::Fit("<<pfixed<<","<<fail<<","<<iprint<<","<<froml1<<") --- ERROR evaluating cluster positions "<<endl;
883                FillMiniStruct(track_) ;
884                fail = 1;
885                return;
886            }
887        }else{
888            FillMiniStruct(track_);
889        }
890        
891        // if fit variables have been reset, evaluate the initial guess
892        if(al[0]==-9999.&&al[1]==-9999.&&al[2]==-9999.&&al[3]==-9999.&&al[4]==-9999.)guess_();
893    
894        // --------------------- free momentum
895        if(pfixed==0.) {
896            track_.pfixed=0.;
897        }
898        // --------------------- fixed momentum
899        if(pfixed!=0.) {
900            al[4]=1./pfixed;    
901            track_.pfixed=pfixed;
902        }
903    
904        //  store temporarily the initial guess
905        for(int i=0; i<5; i++) al_ini[i]=track_.al[i];
906    
907        //  ------------------------------------------
908        //  call mini routine
909        //  ------------------------------------------
910        int istep=0;
911        int ifail=0;
912        mini2_(&istep,&ifail, &iprint);
913        if(ifail!=0) {
914            if(iprint)cout << "ERROR: ifail= " << ifail << endl;
915            fail = 1;
916        }
917        //  ------------------------------------------
918        
919        SetFromMiniStruct(&track_);
920    
921        if(fail){
922            if(iprint)cout << " >>>> fit failed "<<endl;
923            for(int i=0; i<5; i++) al[i]=al_ini[i];
924        }
925    
926    };
927    /**
928     * Reset the fit parameters
929     */
930    void TrkTrack::FitReset(){
931        for(int i=0; i<5; i++) al[i]=-9999.;
932        chi2=0.;
933        nstep=0;
934    //     for(int i=0; i<6; i++) xv[i]=0.;
935    //     for(int i=0; i<6; i++) yv[i]=0.;
936    //     for(int i=0; i<6; i++) zv[i]=0.;
937    //     for(int i=0; i<6; i++) axv[i]=0.;
938    //     for(int i=0; i<6; i++) ayv[i]=0.;
939        for(int i=0; i<5; i++) {
940            for(int j=0; j<5; j++) coval[i][j]=0.;
941        }
942    }
943    /**
944     * Set the tracking mode
945     */
946    void TrkTrack::SetTrackingMode(int trackmode){
947        extern cMini2track track_;
948        track_.trackmode = trackmode;
949    }
950    /**
951     * Set the factor scale for tracking precision
952     */
953    void TrkTrack::SetPrecisionFactor(double fact){
954        extern cMini2track track_;
955        track_.fact = fact;
956    }
957    /**
958     * Set the minimum number of steps for tracking precision
959     */
960    void TrkTrack::SetStepMin(int istepmin){
961        extern cMini2track track_;
962        track_.istepmin = istepmin;
963    }
964    /**
965     * Set deltaB parameters (id=0,1). By default they are set to zero.
966     */
967    void TrkTrack::SetDeltaB(int id, double db){
968        if(id!=0 && id!=1)cout << "void TrkTrack::SetDeltaB(int id,double db) -- wrong input parameters: "<<id<<" "<<db<<endl;
969        TrkParams::SetDeltaB(id,db);
970    }
971    
972    /**
973     * Returns true if the track is inside the magnet cavity.
974     * @param toll Tolerance around the nominal volume (toll>0 define an inner fiducial volume)
975     */
976    Bool_t TrkTrack::IsInsideCavity(float toll){
977    
978    //     float xmagntop, ymagntop, xmagnbottom, ymagnbottom;
979    //     xmagntop = xv[0] + (ZMAGNHIGH-zv[0])*tan(acos(-1.0)*axv[0]/180.);
980    //     ymagntop = yv[0] + (ZMAGNHIGH-zv[0])*tan(acos(-1.0)*ayv[0]/180.);
981    //     xmagnbottom = xv[5] + (ZMAGNLOW-zv[5])*tan(acos(-1.0)*axv[5]/180.);
982    //     ymagnbottom = yv[5] + (ZMAGNLOW-zv[5])*tan(acos(-1.0)*ayv[5]/180.);
983    //     if( xmagntop>XMAGNLOW && xmagntop<XMAGNHIGH &&
984    //      ymagntop>YMAGNLOW && ymagntop<YMAGNHIGH &&
985    //      xmagnbottom>XMAGNLOW && xmagnbottom<XMAGNHIGH &&
986    //      ymagnbottom>YMAGNLOW && ymagnbottom<YMAGNHIGH ) return(true);
987    //     else return(false);
988    
989        int ngf = TrkParams::nGF;
990        for(int i=0; i<ngf; i++){
991            //
992    //      cout << endl << TrkParams::GF_element[i];
993            if(
994                TrkParams::GF_element[i].CompareTo("CUF") &&
995                TrkParams::GF_element[i].CompareTo("T2")  &&
996                TrkParams::GF_element[i].CompareTo("T3")  &&
997                TrkParams::GF_element[i].CompareTo("T4")  &&
998                TrkParams::GF_element[i].CompareTo("T5")  &&
999                TrkParams::GF_element[i].CompareTo("CLF") &&
1000                true)continue;
1001            // apply condition only within the cavity
1002    //      cout << " -- "<<xGF[i]<<" "<<yGF[i];
1003            if(
1004                xGF[i] <= TrkParams::xGF_min[i] + toll ||
1005                xGF[i] >= TrkParams::xGF_max[i] - toll ||
1006                yGF[i] <= TrkParams::yGF_min[i] + toll ||
1007                yGF[i] >= TrkParams::yGF_max[i] - toll ||
1008                false){
1009                
1010                return false;
1011            }
1012        }
1013        return true;
1014    
1015    
1016    }
1017    /**
1018     * Returns true if the track is inside the nominal acceptance, which is defined
1019     * by the intersection among magnet cavity, silicon-plane sensitive area and
1020     * ToF sensitive area (nominal values from the official document used to
1021     * calculate the geometrical factor)
1022     * @param toll Tolerance around the nominal volume (toll>0 define an inner fiducial volume)
1023     */
1024    // Bool_t TrkTrack::IsInsideAcceptance(){
1025    
1026    //     int ngf = TrkParams::nGF;
1027    //     for(int i=0; i<ngf; i++){
1028    //      if(
1029    //          xGF[i] <= TrkParams::xGF_min[i] ||
1030    //          xGF[i] >= TrkParams::xGF_max[i] ||
1031    //          yGF[i] <= TrkParams::yGF_min[i] ||
1032    //          yGF[i] >= TrkParams::yGF_max[i] ||
1033    //          false)return false;
1034    //     }
1035    //     return true;
1036    
1037    // }
1038    Bool_t TrkTrack::IsInsideAcceptance(float toll){
1039    
1040    
1041        int ngf = TrkParams::nGF;
1042        for(int i=0; i<ngf; i++){
1043            //
1044    //      cout << endl << TrkParams::GF_element[i];
1045            if(
1046                TrkParams::GF_element[i].CompareTo("S11") &&
1047                TrkParams::GF_element[i].CompareTo("S12") &&
1048                TrkParams::GF_element[i].CompareTo("S21") &&
1049                TrkParams::GF_element[i].CompareTo("S22") &&
1050                TrkParams::GF_element[i].CompareTo("T1")  &&
1051                TrkParams::GF_element[i].CompareTo("CUF") &&
1052                TrkParams::GF_element[i].CompareTo("T2")  &&
1053                TrkParams::GF_element[i].CompareTo("T3")  &&
1054                TrkParams::GF_element[i].CompareTo("T4")  &&
1055                TrkParams::GF_element[i].CompareTo("T5")  &&
1056                TrkParams::GF_element[i].CompareTo("CLF") &&
1057                TrkParams::GF_element[i].CompareTo("T6")  &&
1058                TrkParams::GF_element[i].CompareTo("S31") &&
1059                TrkParams::GF_element[i].CompareTo("S32") &&
1060                true)continue;
1061            // apply condition only within the cavity
1062    //      cout << " -- "<<xGF[i]<<" "<<yGF[i];
1063            if(
1064                xGF[i] <= TrkParams::xGF_min[i] + toll ||
1065                xGF[i] >= TrkParams::xGF_max[i] - toll ||
1066                yGF[i] <= TrkParams::yGF_min[i] + toll ||
1067                yGF[i] >= TrkParams::yGF_max[i] - toll ||
1068                false){
1069                
1070                return false;
1071            }
1072        }
1073        return true;
1074    }
1075    
1076    /**
1077     * Returns true if the track is inside one of the surfaces which define the
1078     * geometrical acceptance.
1079     * @param surf tag of the surface (possible values are: S11 S12 S21 S22 T1
1080     * CUF T2 T3 T4 T5 CLF T6 S31 S32).
1081     * @param toll  Tolerance around the nominal surface (toll>0 define an inner
1082     * fiducial surface)
1083    */
1084    Bool_t TrkTrack::IsInsideGFSurface(const char* surf, float toll){
1085    
1086    
1087        int ngf = TrkParams::nGF;
1088        bool SURFOK = false;
1089        for(int i=0; i<ngf; i++){
1090            if(  !TrkParams::GF_element[i].CompareTo(surf)  ){
1091                SURFOK=true;
1092                if(
1093                    xGF[i] > TrkParams::xGF_min[i] + toll &&
1094                    xGF[i] < TrkParams::xGF_max[i] - toll &&
1095                    yGF[i] > TrkParams::yGF_min[i] + toll &&
1096                    yGF[i] < TrkParams::yGF_max[i] - toll &&
1097                    true)return true;
1098            }
1099        }
1100        if( !SURFOK )cout << " Bool_t TrkTrack::IsInsideGFSurface(char* surf, float toll) --> suface "<<surf<<" not defined "<<endl;
1101        return false;
1102    
1103    }
1104    
1105    /**
1106     * Method to retrieve ID (0,1,...) of x-cluster (if any) associated to this track.
1107     * If no cluster is associated, ID=-1.
1108     * @param ip Tracker plane (0-5)
1109     */
1110    Int_t TrkTrack::GetClusterX_ID(int ip){
1111        return ((Int_t)fabs(xgood[ip]))%10000000-1;
1112    };
1113    /**
1114     * Method to retrieve ID (0-xxx) of y-cluster (if any) associated to this track.
1115     * If no cluster is associated, ID=-1.
1116     * @param ip Tracker plane (0-5)
1117     */
1118    Int_t TrkTrack::GetClusterY_ID(int ip){
1119        return ((Int_t)fabs(ygood[ip]))%10000000-1;
1120    };
1121    
1122    /**
1123     * Method to retrieve the ladder (0-2, increasing x) traversed by the track on this plane.
1124     * If no ladder is traversed (dead area) the metod retuns -1.
1125     * @param ip Tracker plane (0-5)
1126     */
1127    Int_t TrkTrack::GetLadder(int ip){
1128        if(XGood(ip))return (Int_t)fabs(xgood[ip]/100000000)-1;
1129        if(YGood(ip))return (Int_t)fabs(ygood[ip]/100000000)-1;
1130        return -1;
1131    };
1132    /**
1133     * Method to retrieve the sensor (0-1, increasing y) traversed by the track on this plane.
1134     * If no sensor is traversed (dead area) the metod retuns -1.
1135     * @param ip Tracker plane (0-5)
1136     */
1137    Int_t TrkTrack::GetSensor(int ip){
1138        if(XGood(ip))return (Int_t)((Int_t)fabs(xgood[ip]/10000000)%10)-1;
1139        if(YGood(ip))return (Int_t)((Int_t)fabs(ygood[ip]/10000000)%10)-1;
1140        return -1;
1141    };
1142    
1143    /**
1144     * \brief Method to include a x-cluster to the track.
1145     * @param ip Tracker plane (0-5)
1146     * @param clid Cluster ID (0 = no-cluster, 1,2,... otherwise )
1147     * @param il Ladder (0-2, increasing x, -1 if no sensitive area is hit)
1148     * @param is Sensor (0-1, increasing y, -1 if no sensitive area is hit)
1149     * @param bad True if the cluster contains bad strips  
1150     * @see Fit(double pfixed, int& fail, int iprint, int froml1)
1151     */
1152    void TrkTrack::SetXGood(int ip, int clid, int il, int is, bool bad){
1153    //    int il=0;       //ladder (temporary)
1154    //    bool bad=false; //ladder (temporary)
1155        if(ip<0||ip>5||clid<0||il<-1||il>2||is<-1||is>1)
1156            cout << " void TrkTrack::SetXGood(int,int,int,int,bool) --> MA SEI DI COCCIO?!?!"<<endl;
1157        xgood[ip]=(il+1)*100000000+(is+1)*10000000+clid;
1158        if(bad)xgood[ip]=-xgood[ip];
1159    };
1160    /**
1161     * \brief Method to include a y-cluster to the track.
1162     * @param ip Tracker plane (0-5)
1163     * @param clid Cluster ID (0 = no-cluster, 1,2,... otherwise )
1164     * @param il Ladder (0-2, increasing x, -1 if no sensitive area is hit)
1165     * @param is Sensor (0-1, increasing y, -1 if no sensitive area is hit)
1166     * @param bad True if the cluster contains bad strips  
1167     * @see Fit(double pfixed, int& fail, int iprint, int froml1)
1168     */
1169    void TrkTrack::SetYGood(int ip, int clid, int il, int is, bool bad){
1170    //    int il=0;       //ladder (temporary)
1171    //    bool bad=false; //ladder (temporary)
1172        if(ip<0||ip>5||clid<0||il<-1||il>2||is<-1||is>1)
1173            cout << " void TrkTrack::SetYGood(int,int,int,int,bool) --> MA SEI DI COCCIO?!?!"<<endl;
1174        ygood[ip]=(il+1)*100000000+(is+1)*10000000+clid;
1175        if(bad)ygood[ip]=-ygood[ip];
1176    };
1177    
1178    /**
1179     * \brief Average X
1180     * Average value of <xv>, evaluated from the first to the last hit x view.
1181     */
1182    Float_t TrkTrack::GetXav(){
1183    
1184        int first_plane = -1;
1185        int last_plane  = -1;
1186        for(Int_t ip=0; ip<6; ip++){
1187            if( XGood(ip) && first_plane == -1 )first_plane = ip;
1188            if( XGood(ip) && first_plane != -1 )last_plane = ip;
1189        }
1190        if( first_plane == -1 || last_plane == -1){
1191            return -100;
1192      }      }
1193        if( last_plane-first_plane+1 ==0 )return -100;
1194    
1195  //    delete [] dxout;      Float_t av = 0;    
1196  //    delete [] dyout;      for(int ip=first_plane; ip<=last_plane; ip++)av+=xv[ip];
1197  //    delete [] dzin;      
1198        return (av/(last_plane-first_plane+1));    
1199    }
1200    /**
1201     * \brief Average Y
1202     * Average value of <yv>, evaluated from the first to the last hit x view.
1203     */
1204    Float_t TrkTrack::GetYav(){
1205    
1206        int first_plane = -1;
1207        int last_plane  = -1;
1208        for(Int_t ip=0; ip<6; ip++){
1209            if( XGood(ip) && first_plane == -1 )first_plane = ip;
1210            if( XGood(ip) && first_plane != -1 )last_plane = ip;
1211        }
1212        if( first_plane == -1 || last_plane == -1){
1213            return -100;
1214        }
1215        if( last_plane-first_plane+1 ==0 )return -100;
1216    
1217        Float_t av = 0;    
1218        for(int ip=first_plane; ip<=last_plane; ip++)av+=yv[ip];
1219    
1220        return (av/(last_plane-first_plane+1));    
1221    }
1222    /**
1223     * \brief Average Z
1224     * Average value of <zv>, evaluated from the first to the last hit x view.
1225     */
1226    Float_t TrkTrack::GetZav(){
1227    
1228        int first_plane = -1;
1229        int last_plane  = -1;
1230        for(Int_t ip=0; ip<6; ip++){
1231            if( XGood(ip) && first_plane == -1 )first_plane = ip;
1232            if( XGood(ip) && first_plane != -1 )last_plane = ip;
1233        }
1234        if( first_plane == -1 || last_plane == -1){
1235            return -100;
1236        }
1237        if( last_plane-first_plane+1 ==0 )return -100;
1238    
1239        Float_t av = 0;    
1240        for(int ip=first_plane; ip<=last_plane; ip++)av+=zv[ip];
1241        
1242        return (av/(last_plane-first_plane+1));    
1243    }
1244    
1245    /**
1246     * \brief Number of column traversed
1247     */
1248    Int_t TrkTrack::GetNColumns(){
1249        int sensors[] = {0,0,0,0,0,0};
1250        for(int ip=0; ip<6; ip++){
1251            int sensorid = GetLadder(ip)+3*GetSensor(ip);    
1252            if(XGood(ip)||YGood(ip))
1253                if(sensorid>=0 && sensorid<6)sensors[sensorid]=1;
1254        }
1255        int nsensors=0;
1256        for(int is=0; is<6; is++)nsensors += sensors[is];
1257        return nsensors;
1258    };
1259    /**
1260     * \brief Give the maximum energy release
1261     */
1262    Float_t TrkTrack::GetDEDX_max(int ip, int iv){
1263        Float_t max=0;
1264        int pfrom = 0;
1265        int pto   = 6;
1266        int vfrom = 0;
1267        int vto   = 2;
1268        if(ip>=0&&ip<6){
1269            pfrom = ip;
1270            pto   = ip+1;
1271        }
1272        if(iv>=0&&iv<2){
1273            vfrom = iv;
1274            vto   = iv+1;
1275        }
1276        for(int i=pfrom; i<pto; i++)
1277            for(int j=vfrom; j<vto; j++){
1278                if(j==0 && XGood(i) && GetDEDX(i,j)>max)max=GetDEDX(i,j);
1279                if(j==1 && YGood(i) && GetDEDX(i,j)>max)max=GetDEDX(i,j);
1280            }
1281        return max;
1282    
1283    };
1284    
1285    /**
1286     * \brief Give the minimum energy release
1287     */
1288    Float_t TrkTrack::GetDEDX_min(int ip, int iv){
1289        Float_t min=100000000;
1290        int pfrom = 0;
1291        int pto   = 6;
1292        int vfrom = 0;
1293        int vto   = 2;
1294        if(ip>=0&&ip<6){
1295            pfrom = ip;
1296            pto   = ip+1;
1297        }
1298        if(iv>=0&&iv<2){
1299            vfrom = iv;
1300            vto   = iv+1;
1301        }
1302        for(int i=pfrom; i<pto; i++)
1303            for(int j=vfrom; j<vto; j++){
1304                if(j==0 && XGood(i) && GetDEDX(i,j)<min)min=GetDEDX(i,j);
1305                if(j==1 && YGood(i) && GetDEDX(i,j)<min)min=GetDEDX(i,j);
1306            }
1307        return min;
1308    
1309    };
1310    
1311    /**
1312     * \brief Give the maximum spatial residual  
1313     */
1314    Float_t TrkTrack::GetResidual_max(int ip, int iv){
1315        Float_t max=0;
1316        int pfrom = 0;
1317        int pto   = 6;
1318        int vfrom = 0;
1319        int vto   = 2;
1320        if(ip>=0&&ip<6){
1321            pfrom = ip;
1322            pto   = ip+1;
1323        }
1324        if(iv>=0&&iv<2){
1325            vfrom = iv;
1326            vto   = iv+1;
1327        }
1328        for(int i=pfrom; i<pto; i++){
1329            for(int j=vfrom; j<vto; j++){
1330                if(j==0 && XGood(i) && fabs(xm[i]-xv[i])>fabs(max))max=xm[i]-xv[i];
1331                if(j==1 && YGood(i) && fabs(ym[i]-yv[i])>fabs(max))max=ym[i]-yv[i];
1332            }
1333        }
1334        return max;
1335    
1336    };
1337    /**
1338     * \brief Give the anerage spatial residual
1339     */
1340    Float_t TrkTrack::GetResidual_av(int ip, int iv){
1341        //
1342    //Sum$((xm>-50)*(xm-xv)/resx)/sqrt(TrkTrack.GetNX()*TrkTrack.GetChi2X())<0.3
1343    
1344        Float_t av  = 0.;
1345        int     nav = 0;
1346        //
1347        int pfrom = 0;
1348        int pto   = 6;
1349        int vfrom = 0;
1350        int vto   = 2;
1351        if(ip>=0&&ip<6){
1352            pfrom = ip;
1353            pto   = ip+1;
1354        }
1355        if(iv>=0&&iv<2){
1356            vfrom = iv;
1357            vto   = iv+1;
1358        }
1359        for(int i=pfrom; i<pto; i++){
1360            for(int j=vfrom; j<vto; j++){
1361                nav++;
1362                if(j==0 && XGood(i)) av += (xm[i]-xv[i])/resx[i];
1363                if(j==1 && YGood(i)) av += (ym[i]-yv[i])/resy[i];
1364            }
1365        }
1366        if(nav==0)return -100.;
1367        return av/nav;
1368    
1369    };
1370    
1371    
1372    /**
1373     * \brief Give the maximum multiplicity on the x view
1374     */
1375    Int_t TrkTrack::GetClusterX_Multiplicity_max(){
1376        int max=0;
1377        for(int ip=0; ip<6; ip++)
1378            if(GetClusterX_Multiplicity(ip)>max)max=GetClusterX_Multiplicity(ip);
1379        return max;
1380    };
1381    /**
1382     * \brief Give the minimum multiplicity on the x view
1383     */
1384    Int_t TrkTrack::GetClusterX_Multiplicity_min(){
1385        int min=50;
1386        for(int ip=0; ip<6; ip++)
1387            if(GetClusterX_Multiplicity(ip)<min)min=GetClusterX_Multiplicity(ip);
1388        return min;
1389    };
1390    /**
1391     * \brief Give the maximum multiplicity on the x view
1392     */
1393    Int_t TrkTrack::GetClusterY_Multiplicity_max(){
1394        int max=0;
1395        for(int ip=0; ip<6; ip++)
1396            if(GetClusterY_Multiplicity(ip)>max)max=GetClusterY_Multiplicity(ip);
1397        return max;
1398    };
1399    /**
1400     * \brief Give the minimum multiplicity on the x view
1401     */
1402    Int_t TrkTrack::GetClusterY_Multiplicity_min(){
1403        int min=50;
1404        for(int ip=0; ip<6; ip++)
1405            if(GetClusterY_Multiplicity(ip)<min)min=GetClusterY_Multiplicity(ip);
1406        return min;
1407    };
1408    
1409      return ifail;  /**
1410     * \brief Give the minimum seed on the x view
1411     */
1412    Float_t TrkTrack::GetClusterX_Seed_min(){
1413        Float_t min=100000;
1414        for(int ip=0; ip<6; ip++)
1415            if(XGood(ip) && GetClusterX_Seed(ip)<min)min=GetClusterX_Seed(ip);
1416        return min;
1417    };
1418    /**
1419     * \brief Give the minimum seed on the x view
1420     */
1421    Float_t TrkTrack::GetClusterY_Seed_min(){
1422        Float_t min=100000;
1423        for(int ip=0; ip<6; ip++)
1424            if(YGood(ip) && GetClusterY_Seed(ip)<min)min=GetClusterY_Seed(ip);
1425        return min;
1426  };  };
1427    
1428    
1429  //--------------------------------------  //--------------------------------------
1430  //  //
1431  //  //
1432  //--------------------------------------  //--------------------------------------
1433  //float TrkTrack::BdL(){  void TrkTrack::Clear(){
1434  //};  //    cout << "TrkTrack::Clear()"<<endl;
1435        seqno = -1;
1436        image = -1;
1437        chi2  = 0;
1438        nstep = 0;
1439        for(int it1=0;it1<5;it1++){
1440            al[it1] = 0;
1441            for(int it2=0;it2<5;it2++)coval[it1][it2] = 0;
1442        };
1443        for(int ip=0;ip<6;ip++){
1444            xgood[ip]  = 0;
1445            ygood[ip]  = 0;
1446            xm[ip]     = 0;
1447            ym[ip]     = 0;
1448            zm[ip]     = 0;
1449            resx[ip]   = 0;
1450            resy[ip]   = 0;
1451            tailx[ip]  = 0;
1452            taily[ip]  = 0;
1453            xv[ip]     = 0;
1454            yv[ip]     = 0;
1455            zv[ip]     = 0;
1456            axv[ip]    = 0;
1457            ayv[ip]    = 0;
1458            dedx_x[ip] = 0;
1459            dedx_y[ip] = 0;
1460    
1461        };
1462        int ngf = TrkParams::nGF;
1463        for(int i=0; i<ngf; i++){
1464            xGF[i] = 0.;
1465            yGF[i] = 0.;
1466        }
1467    //     if(clx)clx->Clear();
1468    //     if(cly)cly->Clear();
1469    //    clx.Clear();
1470    //    cly.Clear();
1471    };
1472  //--------------------------------------  //--------------------------------------
1473  //  //
1474  //  //
1475  //--------------------------------------  //--------------------------------------
1476  Float_t TrkTrack::GetRigidity(){  void TrkTrack::Delete(){
1477          Float_t rig=0;  //    cout << "TrkTrack::Delete()"<<endl;
1478          if(chi2>0)rig=1./al[4];      Clear();
1479          if(rig<0) rig=-rig;  //    if(clx)delete clx;
1480          return rig;  //    if(cly)delete cly;
 };  
 //  
 Float_t TrkTrack::GetDeflection(){  
         Float_t def=0;  
         if(chi2>0)def=al[4];  
         return def;  
 };  
 //  
 Float_t TrkTrack::GetDEDX(){  
         Float_t dedx=0;  
         for(Int_t i=0; i<6; i++)dedx+=dedx_x[i]*xgood[i]+dedx_y[i]*ygood[i];  
         dedx = dedx/(this->GetNX()+this->GetNY());  
         return dedx;  
1481  };  };
   
1482  //--------------------------------------  //--------------------------------------
1483  //  //
1484  //  //
1485  //--------------------------------------  //--------------------------------------
1486  void TrkTrack::Dump(){  
     cout << endl << "========== Track " ;  
     cout << endl << "al       : "; for(int i=0; i<5; i++)cout << al[i] << " ";  
     cout << endl << "chi^2    : "<< chi2;  
     cout << endl << "xgood    : "; for(int i=0; i<6; i++)cout << xgood[i] ;  
     cout << endl << "ygood    : "; for(int i=0; i<6; i++)cout << ygood[i] ;  
     cout << endl << "xm       : "; for(int i=0; i<6; i++)cout << xm[i] << " ";  
     cout << endl << "ym       : "; for(int i=0; i<6; i++)cout << ym[i] << " ";  
     cout << endl << "zm       : "; for(int i=0; i<6; i++)cout << zm[i] << " ";  
     cout << endl << "dedx_x   : "; for(int i=0; i<6; i++)cout << dedx_x[i] << " ";  
     cout << endl << "dedx_y   : "; for(int i=0; i<6; i++)cout << dedx_y[i] << " ";  
 }  
1487  //--------------------------------------  //--------------------------------------
1488  //  //
1489  //  //
1490  //--------------------------------------  //--------------------------------------
1491  TrkSinglet::TrkSinglet(){  TrkSinglet::TrkSinglet(){
1492      plane    = 0;  //    cout << "TrkSinglet::TrkSinglet() " << GetUniqueID()<<endl;
1493      coord[0] = 0;  //     plane    = 0;
1494      coord[1] = 0;  //     coord[0] = 0;
1495      sgnl     = 0;  //     coord[1] = 0;
1496    //     sgnl     = 0;
1497    //     multmax  = 0;
1498    //    cls      = 0;
1499        Clear();
1500  };  };
1501  //--------------------------------------  //--------------------------------------
1502  //  //
1503  //  //
1504  //--------------------------------------  //--------------------------------------
1505  TrkSinglet::TrkSinglet(const TrkSinglet& s){  TrkSinglet::TrkSinglet(const TrkSinglet& s){
1506    //    cout << "TrkSinglet::TrkSinglet(const TrkSinglet& s) " << GetUniqueID()<<endl;
1507      plane    = s.plane;      plane    = s.plane;
1508      coord[0] = s.coord[0];      coord[0] = s.coord[0];
1509      coord[1] = s.coord[1];      coord[1] = s.coord[1];
1510      sgnl     = s.sgnl;      sgnl     = s.sgnl;
1511        multmax  = s.multmax;
1512    //      cls      = 0;//<<<<pointer
1513    //    cls      = TRef(s.cls);
1514  };  };
1515  //--------------------------------------  //--------------------------------------
1516  //  //
# Line 224  TrkSinglet::TrkSinglet(const TrkSinglet& Line 1519  TrkSinglet::TrkSinglet(const TrkSinglet&
1519  void TrkSinglet::Dump(){  void TrkSinglet::Dump(){
1520      int i=0;      int i=0;
1521      cout << endl << "========== Singlet " ;      cout << endl << "========== Singlet " ;
1522      cout << endl << "plane    : " << plane;      cout << endl << "plane        : " << plane;
1523      cout << endl << "coord[2] : "; while( i<2 && cout << coord[i] << " ") i++;      cout << endl << "coord[2]     : "; while( i<2 && cout << coord[i] << " ") i++;
1524      cout << endl << "sgnl     : " << sgnl;      cout << endl << "sgnl         : " << sgnl;
1525        cout << endl << "max.strip    : ";
1526        cout << endl << "multiplicity : ";
1527    }
1528    //--------------------------------------
1529    //
1530    //
1531    //--------------------------------------
1532    void TrkSinglet::Clear(){
1533    //    cout << "TrkSinglet::Clear() " << GetUniqueID()<<endl;
1534    //    cls=0;
1535        plane=-1;
1536        coord[0]=-999;
1537        coord[1]=-999;
1538        sgnl=0;
1539        multmax  = 0;
1540        
1541  }  }
1542  //--------------------------------------  //--------------------------------------
1543  //  //
1544  //  //
1545  //--------------------------------------  //--------------------------------------
1546  TrkLevel2::TrkLevel2(){  TrkLevel2::TrkLevel2(){
1547      good2    = -1;    //    cout <<"TrkLevel2::TrkLevel2()"<<endl;
1548      for(Int_t i=0; i<12 ; i++){      for(Int_t i=0; i<12 ; i++){
1549          crc[i] = -1;          good[i] = -1;
1550            VKmask[i] = 0;
1551            VKflag[i] = 0;  
1552      };      };
1553      Track    = new TClonesArray("TrkTrack");      Track    = 0;
1554      SingletX = new TClonesArray("TrkSinglet");      SingletX = 0;
1555      SingletY = new TClonesArray("TrkSinglet");      SingletY = 0;
1556  //    Track    = 0;  
1557  //    Singlet = 0;  }
1558  //    SingletY = 0;  //--------------------------------------
1559    //
1560    //
1561    //--------------------------------------
1562    void TrkLevel2::Set(){
1563        if(!Track)Track    = new TClonesArray("TrkTrack");
1564        if(!SingletX)SingletX = new TClonesArray("TrkSinglet");
1565        if(!SingletY)SingletY = new TClonesArray("TrkSinglet");
1566  }  }
1567  //--------------------------------------  //--------------------------------------
1568  //  //
1569  //  //
1570  //--------------------------------------  //--------------------------------------
1571  void TrkLevel2::Dump(){  void TrkLevel2::Dump(){
1572      TClonesArray &t  = *Track;          
1573      TClonesArray &sx = *SingletX;          //
     TClonesArray &sy = *SingletY;  
   
1574      cout << endl << endl << "=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-";      cout << endl << endl << "=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-";
1575      cout << endl << "good2    : " << good2;      cout << endl << "good     : "; for(int i=0; i<12; i++) cout << hex <<" 0x"<< good[i]<<dec;
1576      cout << endl << "crc      : "; for(int i=0; i<12; i++) cout << crc[i];      cout << endl << "ntrk()   : " << ntrk() ;
1577      cout << endl << "ntrk()   : " << this->ntrk() ;      cout << endl << "nclsx()  : " << nclsx();
1578      cout << endl << "nclsx()  : " << this->nclsx();      cout << endl << "nclsy()  : " << nclsy();
1579      cout << endl << "nclsy()  : " << this->nclsy();      if(Track){
1580      for(int i=0; i<this->ntrk(); i++)     ((TrkTrack *)t[i])->Dump();          TClonesArray &t  = *Track;
1581      for(int i=0; i<this->nclsx(); i++) ((TrkSinglet *)sx[i])->Dump();          for(int i=0; i<ntrk(); i++)     ((TrkTrack *)t[i])->Dump();
1582      for(int i=0; i<this->nclsy(); i++) ((TrkSinglet *)sy[i])->Dump();      }      
1583    //     if(SingletX){
1584    //      TClonesArray &sx = *SingletX;
1585    //      for(int i=0; i<nclsx(); i++) ((TrkSinglet *)sx[i])->Dump();
1586    //     }
1587    //     if(SingletY){
1588    //      TClonesArray &sy = *SingletY;
1589    //      for(int i=0; i<nclsy(); i++) ((TrkSinglet *)sy[i])->Dump();
1590    //     }
1591        cout << endl;
1592  }  }
1593    /**
1594     * \brief Dump processing status
1595     */
1596    void TrkLevel2::StatusDump(int view){
1597        cout << "DSP n. "<<view+1<<" status: "<<hex<<good[view]<<endl;    
1598    };
1599    /**
1600     * \brief Check event status
1601     *
1602     * Check the event status, according to a flag-mask given as input.
1603     * Return true if the view passes the check.
1604     *
1605     * @param view View number (0-11)
1606     * @param flagmask Mask of flags to check (eg. flagmask=0x111 no missing packet,
1607     *  no crc error, no software alarm)
1608     *
1609     * @see TrkLevel2 class definition to know how the status flag is defined
1610     *
1611     */
1612    Bool_t TrkLevel2::StatusCheck(int view, int flagmask){
1613    
1614        if( view<0 || view >= 12)return false;
1615        return !(good[view]&flagmask);
1616    
1617    };
1618    
1619    
1620  //--------------------------------------  //--------------------------------------
1621  //  //
1622  //  //
1623  //--------------------------------------  //--------------------------------------
1624  /**  /**
1625   * Fills a TrkLevel2 object with values from a struct cTrkLevel2 (to get data from F77 common).   * The method returns false if the viking-chip was masked  
1626     * either apriori ,on the basis of the mask read from the DB,
1627     * or run-by-run, on the basis of the calibration parameters)
1628     * @param iv Tracker view (0-11)
1629     * @param ivk Viking-chip number (0-23)
1630   */   */
1631  void TrkLevel2::FillCommonVar(cTrkLevel2 *l2){  Bool_t TrkLevel2::GetVKMask(int iv, int ivk){
1632      //      Int_t whichbit = (Int_t)pow(2,ivk);
1633  //    Track    = new TClonesArray("TrkTrack");      return (whichbit&VKmask[iv])!=0;    
1634  //    SingletX = new TClonesArray("TrkSinglet");  }
1635  //    SingletY = new TClonesArray("TrkSinglet");  /**
1636     * The method returns false if the viking-chip was masked  
1637     * for this event due to common-noise computation failure.
1638     * @param iv Tracker view (0-11)
1639     * @param ivk Viking-chip number (0-23)
1640     */
1641    Bool_t TrkLevel2::GetVKFlag(int iv, int ivk){
1642        Int_t whichbit = (Int_t)pow(2,ivk);
1643        return (whichbit&VKflag[iv])!=0;    
1644    }
1645    /**
1646     * The method returns true if the viking-chip was masked, either
1647     * forced (see TrkLevel2::GetVKMask(int,int)) or
1648     * for this event only (TrkLevel2::GetVKFlag(int,int)).
1649     * @param iv Tracker view (0-11)
1650     * @param ivk Viking-chip number (0-23)
1651     */
1652    Bool_t TrkLevel2::IsMaskedVK(int iv, int ivk){
1653        return !(GetVKMask(iv,ivk)&&GetVKFlag(iv,ivk) );
1654    };
1655    
1656    //--------------------------------------
1657    //
1658    //
1659    //--------------------------------------
1660    /**
1661     * Fills a TrkLevel2 object with values from a struct cTrkLevel2 (to get data from F77 common).
1662     * Ref to Level1 data (clusters) is also set. If l1==NULL no references are set.
1663     * (NB It make sense to set references only if events are stored in a tree that contains also the Level1 branch)
1664     */
1665    void TrkLevel2::SetFromLevel2Struct(cTrkLevel2 *l2, TrkLevel1 *l1){
1666    
1667    //    cout << "void TrkLevel2::SetFromLevel2Struct(cTrkLevel2 *l2, TrkLevel1 *l1)"<<endl;
1668        Clear();
1669    
1670  //  temporary objects:  //  temporary objects:
1671      TrkSinglet* t_singlet = new TrkSinglet();      TrkSinglet* t_singlet = new TrkSinglet();
1672      TrkTrack*   t_track   = new TrkTrack();      TrkTrack*   t_track   = new TrkTrack();
1673    
1674    //  -----------------
1675  //  general variables  //  general variables
1676      good2 = l2->good2;  //  -----------------
1677      for(Int_t i=0; i<12 ; i++){      for(Int_t i=0; i<12 ; i++){
1678          crc[i] = l2->crc[i];          good[i] = l2->good[i];
1679            VKmask[i]=0;
1680            VKflag[i]=0;
1681            for(Int_t ii=0; ii<24 ; ii++){
1682                Int_t setbit = (Int_t)pow(2,ii);
1683                if( l2->vkflag[ii][i]!=-1 )VKmask[i]=VKmask[i]|setbit;
1684                if( l2->vkflag[ii][i]!=0  )VKflag[i]=VKflag[i]|setbit;
1685            };
1686      };      };
1687    //  --------------
1688  //  *** TRACKS ***  //  *** TRACKS ***
1689    //  --------------
1690        if(!Track) Track = new TClonesArray("TrkTrack");
1691      TClonesArray &t = *Track;      TClonesArray &t = *Track;
1692    
1693      for(int i=0; i<l2->ntrk; i++){      for(int i=0; i<l2->ntrk; i++){
1694          t_track->seqno = i;          t_track->seqno = i;// NBNBNBNB deve sempre essere = i
1695          t_track->image = l2->image[i]-1;          t_track->image = l2->image[i]-1;
 //      cout << "track "<<i<<t_track->seqno << t_track->image<<endl;  
1696          t_track->chi2  = l2->chi2_nt[i];          t_track->chi2  = l2->chi2_nt[i];
1697            t_track->nstep = l2->nstep_nt[i];
1698          for(int it1=0;it1<5;it1++){          for(int it1=0;it1<5;it1++){
1699              t_track->al[it1] = l2->al_nt[i][it1];              t_track->al[it1] = l2->al_nt[i][it1];
1700              for(int it2=0;it2<5;it2++)              for(int it2=0;it2<5;it2++)
1701                  t_track->coval[it1][it2] = l2->coval[i][it2][it1];                  t_track->coval[it1][it2] = l2->coval[i][it2][it1];
1702          };          };
1703          for(int ip=0;ip<6;ip++){          for(int ip=0;ip<6;ip++){
1704              t_track->xgood[ip]  = l2->xgood_nt[i][ip];              // ---------------------------------
1705              t_track->ygood[ip]  = l2->ygood_nt[i][ip];              // new implementation of xgood/ygood
1706                // ---------------------------------
1707                t_track->xgood[ip]  = l2->cltrx[i][ip]; //cluster ID
1708                t_track->ygood[ip]  = l2->cltry[i][ip]; //cluster ID
1709                t_track->xgood[ip] += 10000000*l2->ls[i][ip]; // ladder+sensor
1710                t_track->ygood[ip] += 10000000*l2->ls[i][ip]; // ladder+sensor
1711                if(l2->xbad[i][ip]>0)t_track->xgood[ip]=-t_track->xgood[ip];
1712                if(l2->ybad[i][ip]>0)t_track->ygood[ip]=-t_track->ygood[ip];
1713    //          if(l2->xbad[i][ip]>0 || l2->ybad[i][ip]>0){
1714    //          if(l2->dedx_x[i][ip]<0 || l2->dedx_y[i][ip]<0){
1715    //              cout << ip << " - "<< l2->cltrx[i][ip] << " "<<l2->cltry[i][ip]<<" "<<l2->ls[i][ip]<<endl;
1716    //              cout << ip << " - "<<t_track->xgood[ip]<<" "<<t_track->ygood[ip]<<endl;
1717    //              cout << ip << " - "<<t_track->GetClusterX_ID(ip)<<" "<<t_track->GetClusterY_ID(ip)<<" "<<t_track->GetLadder(ip)<<" "<<t_track->GetSensor(ip)<<endl;
1718    //              cout << ip << " - "<<t_track->BadClusterX(ip)<<" "<<t_track->BadClusterY(ip)<<endl;
1719    //              cout << ip << " - "<<t_track->SaturatedClusterX(ip)<<" "<<t_track->SaturatedClusterY(ip)<<endl;
1720    //          }
1721              t_track->xm[ip]     = l2->xm_nt[i][ip];              t_track->xm[ip]     = l2->xm_nt[i][ip];
1722              t_track->ym[ip]     = l2->ym_nt[i][ip];              t_track->ym[ip]     = l2->ym_nt[i][ip];
1723              t_track->zm[ip]     = l2->zm_nt[i][ip];              t_track->zm[ip]     = l2->zm_nt[i][ip];
1724              t_track->resx[ip]   = l2->resx_nt[i][ip];              t_track->resx[ip]   = l2->resx_nt[i][ip];
1725              t_track->resy[ip]   = l2->resy_nt[i][ip];              t_track->resy[ip]   = l2->resy_nt[i][ip];
1726                t_track->tailx[ip]  = l2->tailx[i][ip];
1727                t_track->taily[ip]  = l2->taily[i][ip];
1728              t_track->xv[ip]     = l2->xv_nt[i][ip];              t_track->xv[ip]     = l2->xv_nt[i][ip];
1729              t_track->yv[ip]     = l2->yv_nt[i][ip];              t_track->yv[ip]     = l2->yv_nt[i][ip];
1730              t_track->zv[ip]     = l2->zv_nt[i][ip];              t_track->zv[ip]     = l2->zv_nt[i][ip];
# Line 310  void TrkLevel2::FillCommonVar(cTrkLevel2 Line 1732  void TrkLevel2::FillCommonVar(cTrkLevel2
1732              t_track->ayv[ip]    = l2->ayv_nt[i][ip];              t_track->ayv[ip]    = l2->ayv_nt[i][ip];
1733              t_track->dedx_x[ip] = l2->dedx_x[i][ip];              t_track->dedx_x[ip] = l2->dedx_x[i][ip];
1734              t_track->dedx_y[ip] = l2->dedx_y[i][ip];              t_track->dedx_y[ip] = l2->dedx_y[i][ip];
1735                t_track->multmaxx[ip] = l2->multmaxx[i][ip];
1736                t_track->multmaxy[ip] = l2->multmaxy[i][ip];
1737                t_track->seedx[ip]  = l2->seedx[i][ip];  
1738                t_track->seedy[ip]  = l2->seedy[i][ip];
1739                t_track->xpu[ip]    = l2->xpu[i][ip];  
1740                t_track->ypu[ip]    = l2->ypu[i][ip];  
1741                //-----------------------------------------------------
1742                //-----------------------------------------------------
1743                //-----------------------------------------------------
1744                //-----------------------------------------------------
1745          };          };
1746            // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1747            // evaluated coordinates (to define GF)
1748            // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1749            int    ngf = TrkParams::nGF;
1750            float *zgf = TrkParams::zGF;
1751            Trajectory tgf = Trajectory(ngf,zgf);
1752            tgf.DoTrack(t_track->al);//<<<< integrate the trajectory
1753            for(int ip=0; ip<ngf; ip++){
1754                t_track->xGF[ip] = tgf.x[ip];
1755                t_track->yGF[ip] = tgf.y[ip];
1756            }
1757            
1758    //      if(t_track->IsSaturated())t_track->Dump();
1759          new(t[i]) TrkTrack(*t_track);          new(t[i]) TrkTrack(*t_track);
1760          t_track->Clear();          t_track->Clear();
1761      };      };//end loop over track
1762    
1763    //  ----------------
1764  //  *** SINGLETS ***  //  *** SINGLETS ***
1765    //  ----------------
1766        if(!SingletX)SingletX = new TClonesArray("TrkSinglet");
1767      TClonesArray &sx = *SingletX;      TClonesArray &sx = *SingletX;
1768      for(int i=0; i<l2->nclsx; i++){      for(int i=0; i<l2->nclsx; i++){
1769          t_singlet->plane    = l2->planex[i];          t_singlet->plane    = l2->planex[i];
1770          t_singlet->coord[0] = l2->xs[i][0];          t_singlet->coord[0] = l2->xs[i][0];
1771          t_singlet->coord[1] = l2->xs[i][1];          t_singlet->coord[1] = l2->xs[i][1];
1772          t_singlet->sgnl     = l2->signlxs[i];          t_singlet->sgnl     = l2->signlxs[i];
1773            t_singlet->multmax = l2->multmaxsx[i];
1774            if(l2->sxbad[i]>0) t_singlet->multmax = -1*t_singlet->multmax;
1775            //-----------------------------------------------------
1776    //      if(l1) t_singlet->cls      = l1->GetCluster(l2->clsx[i]-1);
1777            //-----------------------------------------------------
1778          new(sx[i]) TrkSinglet(*t_singlet);          new(sx[i]) TrkSinglet(*t_singlet);
1779          t_singlet->Clear();          t_singlet->Clear();
1780      }      }
1781        if(!SingletY)SingletY = new TClonesArray("TrkSinglet");
1782      TClonesArray &sy = *SingletY;      TClonesArray &sy = *SingletY;
1783      for(int i=0; i<l2->nclsy; i++){      for(int i=0; i<l2->nclsy; i++){
1784          t_singlet->plane    = l2->planey[i];          t_singlet->plane    = l2->planey[i];
1785          t_singlet->coord[0] = l2->ys[i][0];          t_singlet->coord[0] = l2->ys[i][0];
1786          t_singlet->coord[1] = l2->ys[i][1];          t_singlet->coord[1] = l2->ys[i][1];
1787          t_singlet->sgnl     = l2->signlys[i];          t_singlet->sgnl     = l2->signlys[i];
1788            t_singlet->multmax  = l2->multmaxsy[i];
1789            if(l2->sybad[i]>0) t_singlet->multmax = -1*t_singlet->multmax;
1790            //-----------------------------------------------------
1791    //      if(l1) t_singlet->cls      = l1->GetCluster(l2->clsy[i]-1);
1792            //-----------------------------------------------------
1793          new(sy[i]) TrkSinglet(*t_singlet);          new(sy[i]) TrkSinglet(*t_singlet);
1794          t_singlet->Clear();          t_singlet->Clear();
1795          };      };
1796    
1797    
1798                    
1799          delete t_track;      delete t_track;
1800          delete t_singlet;      delete t_singlet;
1801    }
1802    /**
1803     * Fills a struct cTrkLevel2 with values from a TrkLevel2 object (to put data into a F77 common).
1804     */
1805    
1806    void TrkLevel2::GetLevel2Struct(cTrkLevel2 *l2) const {
1807      
1808    //  general variables
1809    //    l2->good2 = good2 ;
1810        for(Int_t i=0; i<12 ; i++){
1811    //      l2->crc[i] = crc[i];
1812                    l2->good[i] = good[i];
1813        };
1814    //  *** TRACKS ***
1815    
1816        if(Track){
1817            l2->ntrk              =  Track->GetEntries();    
1818            for(Int_t i=0;i<l2->ntrk;i++){
1819                l2->image[i] = 1 + ((TrkTrack *)Track->At(i))->image;
1820                l2->chi2_nt[i] =  ((TrkTrack *)Track->At(i))->chi2;
1821                l2->nstep_nt[i] =  ((TrkTrack *)Track->At(i))->nstep;
1822                for(int it1=0;it1<5;it1++){
1823                    l2->al_nt[i][it1] = ((TrkTrack *)Track->At(i))->al[it1];
1824                    for(int it2=0;it2<5;it2++)
1825                        l2->coval[i][it2][it1] = ((TrkTrack *)Track->At(i))->coval[it1][it2];
1826                };
1827                for(int ip=0;ip<6;ip++){
1828                    l2->xgood_nt[i][ip] = ((TrkTrack *)Track->At(i))->XGood(ip);
1829                    l2->ygood_nt[i][ip] = ((TrkTrack *)Track->At(i))->YGood(ip);
1830                    l2->xm_nt[i][ip]    = ((TrkTrack *)Track->At(i))->xm[ip];
1831                    l2->ym_nt[i][ip]    = ((TrkTrack *)Track->At(i))->ym[ip];
1832                    l2->zm_nt[i][ip]    = ((TrkTrack *)Track->At(i))->zm[ip];
1833                    l2->resx_nt[i][ip]  = ((TrkTrack *)Track->At(i))->resx[ip];
1834                    l2->resy_nt[i][ip]  = ((TrkTrack *)Track->At(i))->resy[ip];
1835                    l2->tailx[i][ip]  = ((TrkTrack *)Track->At(i))->tailx[ip];
1836                    l2->taily[i][ip]  = ((TrkTrack *)Track->At(i))->taily[ip];
1837                    l2->xv_nt[i][ip]    = ((TrkTrack *)Track->At(i))->xv[ip];
1838                    l2->yv_nt[i][ip]    = ((TrkTrack *)Track->At(i))->yv[ip];
1839                    l2->zv_nt[i][ip]    = ((TrkTrack *)Track->At(i))->zv[ip];
1840                    l2->axv_nt[i][ip]   = ((TrkTrack *)Track->At(i))->axv[ip];
1841                    l2->ayv_nt[i][ip]   = ((TrkTrack *)Track->At(i))->ayv[ip];
1842                    l2->dedx_x[i][ip]   = ((TrkTrack *)Track->At(i))->dedx_x[ip];
1843                    l2->dedx_y[i][ip]   = ((TrkTrack *)Track->At(i))->dedx_y[ip];
1844                };
1845            }
1846        }
1847    //  *** SINGLETS ***    
1848        if(SingletX){
1849            l2->nclsx              = SingletX->GetEntries();
1850            for(Int_t i=0;i<l2->nclsx;i++){
1851                l2->planex[i]  = ((TrkSinglet *)SingletX->At(i))->plane;
1852                l2->xs[i][0]   = ((TrkSinglet *)SingletX->At(i))->coord[0];
1853                l2->xs[i][1]   = ((TrkSinglet *)SingletX->At(i))->coord[1];
1854                l2->signlxs[i] = ((TrkSinglet *)SingletX->At(i))->sgnl;
1855            }
1856        }
1857    
1858        if(SingletY){
1859            l2->nclsy              = SingletY->GetEntries();
1860            for(Int_t i=0;i<l2->nclsy;i++){
1861                l2->planey[i]  = ((TrkSinglet *)SingletY->At(i))->plane;
1862                l2->ys[i][0]   = ((TrkSinglet *)SingletY->At(i))->coord[0];
1863                l2->ys[i][1]   = ((TrkSinglet *)SingletY->At(i))->coord[1];
1864                l2->signlys[i] = ((TrkSinglet *)SingletY->At(i))->sgnl;
1865            }
1866        }
1867  }  }
1868  //--------------------------------------  //--------------------------------------
1869  //  //
1870  //  //
1871  //--------------------------------------  //--------------------------------------
1872  void TrkLevel2::Clear(){  void TrkLevel2::Clear(){
     good2    = -1;  
1873      for(Int_t i=0; i<12 ; i++){      for(Int_t i=0; i<12 ; i++){
1874          crc[i] = -1;          good[i] = -1;
1875            VKflag[i] = 0;
1876            VKmask[i] = 0;
1877      };      };
1878  /*    Track->RemoveAll();  //    if(Track)Track->Clear("C");
1879      SingletX->RemoveAll();  //    if(SingletX)SingletX->Clear("C");
1880      SingletY->RemoveAll();*/  //    if(SingletY)SingletY->Clear("C");
1881          // modify to avoid memory leakage      if(Track)Track->Delete();
1882          Track->Clear();      if(SingletX)SingletX->Delete();
1883          SingletX->Clear();      if(SingletY)SingletY->Delete();
1884          SingletY->Clear();  }
1885    // //--------------------------------------
1886    // //
1887    // //
1888    // //--------------------------------------
1889    void TrkLevel2::Delete(){
1890            
1891    //    cout << "void TrkLevel2::Delete()"<<endl;
1892        Clear();
1893        if(Track)delete Track;
1894        if(SingletX)delete SingletX;
1895        if(SingletY)delete SingletY;
1896    
1897  }  }
1898  //--------------------------------------  //--------------------------------------
1899  //  //
# Line 362  void TrkLevel2::Clear(){ Line 1903  void TrkLevel2::Clear(){
1903   * Sort physical tracks and stores them in a TObjectArray, ordering by increasing chi**2 value (in case of track image, it selects the one with lower chi**2). The total number of physical tracks is given by GetNTracks() and the it-th physical track can be retrieved by means of the method GetTrack(int it).   * Sort physical tracks and stores them in a TObjectArray, ordering by increasing chi**2 value (in case of track image, it selects the one with lower chi**2). The total number of physical tracks is given by GetNTracks() and the it-th physical track can be retrieved by means of the method GetTrack(int it).
1904   * This method is overridden by PamLevel2::GetTracks(), where calorimeter and TOF information is used.   * This method is overridden by PamLevel2::GetTracks(), where calorimeter and TOF information is used.
1905   */   */
1906  TClonesArray *TrkLevel2::GetTracks(){  TRefArray *TrkLevel2::GetTracks_NFitSorted(){
     TClonesArray *sorted = GetTracks_NFitSorted();  
     return sorted;  
 };  
   
 TClonesArray *TrkLevel2::GetTracks_Chi2Sorted(){  
   
     TClonesArray *sorted = new TClonesArray("TrkTrack");  
     TClonesArray &t = *Track;  
     TClonesArray &ts = *sorted;  
     int N=this->ntrk();  
     vector<int> m(N); for(int i=0; i<N; i++)m[i]=1;  
1907    
1908      int indo=0;      if(!Track)return 0;
     int indi=0;  
     while(N != 0){  
         float chi2ref=1000000;  
         for(int i=0; i<this->ntrk(); i++){  
             if(((TrkTrack *)t[i])->chi2 < chi2ref && m[i]==1){  
                 chi2ref = ((TrkTrack *)t[i])->chi2;  
                 indi = i;  
             }  
         }  
         if( ((TrkTrack *)t[indi])->image != -1 ){  
             m[((TrkTrack *)t[indi])->image] = 0;  
             N--;  
         }  
         new(ts[indo]) TrkTrack(*(TrkTrack*)t[indi]);  
         m[indi] = 0;  
         N--;      
         indo++;  
     }  
     return sorted;  
 }  
 TClonesArray *TrkLevel2::GetTracks_NFitSorted(){  
1909    
1910      TClonesArray *sorted = new TClonesArray("TrkTrack");      //    TRefArray *sorted = new TRefArray();
1911      TClonesArray &t = *Track;      TRefArray *sorted = NULL;
1912      TClonesArray &ts = *sorted;          
1913      int N=this->ntrk();      TClonesArray &t  = *Track;
1914    //    TClonesArray &ts = *PhysicalTrack;
1915        int N = ntrk();
1916      vector<int> m(N); for(int i=0; i<N; i++)m[i]=1;      vector<int> m(N); for(int i=0; i<N; i++)m[i]=1;
1917    //      int m[50]; for(int i=0; i<N; i++)m[i]=1;
1918            
1919      int indo=0;      int indo=0;
1920      int indi=0;      int indi=0;
1921      while(N != 0){      while(N > 0){
1922    //    while(N != 0){
1923          int nfit =0;          int nfit =0;
1924          float chi2ref=1000000;          float chi2ref = numeric_limits<float>::max();
1925                    
1926          // first loop to search maximum num. of fit points          // first loop to search maximum num. of fit points
1927          for(int i=0; i<this->ntrk(); i++){          for(int i=0; i < ntrk(); i++){
1928              if( ((TrkTrack *)t[i])->GetNtot() >= nfit && m[i]==1){              if( ((TrkTrack *)t[i])->GetNtot() >= nfit && m[i]==1){
1929                  nfit =    ((TrkTrack *)t[i])->GetNtot();                  nfit =    ((TrkTrack *)t[i])->GetNtot();
 //              cout << "1** "<<i<< " " << nfit<<endl;  
1930              }              }
1931          }          }
1932          //second loop to search minimum chi2 among selected          //second loop to search minimum chi2 among selected
1933          for(int i=0; i<this->ntrk(); i++){          for(int i=0; i<ntrk(); i++){
1934              if(    ((TrkTrack *)t[i])->chi2 < chi2ref              Float_t chi2 = ((TrkTrack *)t[i])->chi2;
1935                  && ((TrkTrack *)t[i])->GetNtot()== nfit              if(chi2 < 0) chi2 = -chi2*1000;
1936                  && m[i]==1){              if(    chi2 < chi2ref
1937                       && ((TrkTrack *)t[i])->GetNtot() == nfit
1938                       && m[i]==1){
1939                  chi2ref = ((TrkTrack *)t[i])->chi2;                  chi2ref = ((TrkTrack *)t[i])->chi2;
1940                  indi = i;                  indi = i;
1941  //              cout << "2** "<<i<< " " << nfit <<" "<<chi2ref<<endl;              };
1942              }          };
         }  
1943          if( ((TrkTrack *)t[indi])->HasImage() ){          if( ((TrkTrack *)t[indi])->HasImage() ){
1944              m[((TrkTrack *)t[indi])->image] = 0;              m[((TrkTrack *)t[indi])->image] = 0;
1945              N--;              N--;
1946            
 //          Int_t nfiti=((TrkTrack *)t[((TrkTrack *)t[indi])->image  ])->GetNtot();  
 //          Float_t chi2i=((TrkTrack *)t[((TrkTrack *)t[indi])->image  ])->chi2;  
                   
1947  //          cout << "i** "<< ((TrkTrack *)t[indi])->image << " " << nfiti <<" "<<chi2i<<endl;  //          cout << "i** "<< ((TrkTrack *)t[indi])->image << " " << nfiti <<" "<<chi2i<<endl;
1948          }          };
1949          new(ts[indo]) TrkTrack(*(TrkTrack*)t[indi]);          if(!sorted)sorted = new TRefArray( TProcessID::GetProcessWithUID(t[indi]));
1950            sorted->Add( (TrkTrack*)t[indi] );      
1951                    
1952          m[indi] = 0;          m[indi] = 0;
1953    //      cout << "SORTED "<< indo << " "<< indi << " "<< N << " "<<((TrkTrack *)t[indi])->image<<" "<<chi2ref<<endl;
1954          N--;              N--;    
1955          indo++;          indo++;
1956      }      }
1957        m.clear();
1958    //    cout << "GetTracks_NFitSorted(it): Done"<< endl;
1959    
1960      return sorted;      return sorted;
1961    //    return PhysicalTrack;
1962  }  }
1963  //--------------------------------------  //--------------------------------------
1964  //  //
# Line 454  TClonesArray *TrkLevel2::GetTracks_NFitS Line 1972  TClonesArray *TrkLevel2::GetTracks_NFitS
1972  TrkTrack *TrkLevel2::GetStoredTrack(int is){  TrkTrack *TrkLevel2::GetStoredTrack(int is){
1973    
1974      if(is >= this->ntrk()){      if(is >= this->ntrk()){
1975          cout << "** TrkLevel2 ** Track "<< is << "doen not exits! " << endl;          cout << "TrkTrack *TrkLevel2::GetStoredTrack(int) >> Track "<< is << "doen not exits! " << endl;
1976          cout << "                Stored tracks ntrk() = "<< this->ntrk() << endl;          cout << "Stored tracks ntrk() = "<< this->ntrk() << endl;
1977          return 0;          return 0;
1978      }      }
1979        if(!Track){
1980            cout << "TrkTrack *TrkLevel2::GetStoredTrack(int is) >> (TClonesArray*) Track ==0 "<<endl;
1981        };
1982      TClonesArray &t = *(Track);      TClonesArray &t = *(Track);
1983      TrkTrack *track = (TrkTrack*)t[is];      TrkTrack *track = (TrkTrack*)t[is];
1984      return track;      return track;
# Line 467  TrkTrack *TrkLevel2::GetStoredTrack(int Line 1988  TrkTrack *TrkLevel2::GetStoredTrack(int
1988  //  //
1989  //--------------------------------------  //--------------------------------------
1990  /**  /**
1991     * Retrieves the is-th stored X singlet.
1992     * @param it Singlet number, ranging from 0 to nclsx().
1993     */
1994    TrkSinglet *TrkLevel2::GetSingletX(int is){
1995    
1996            if(is >= this->nclsx()){
1997                    cout << "TrkSinglet *TrkLevel2::GetSingletX(int) >> Singlet "<< is << "doen not exits! " << endl;
1998                    cout << "Stored x-singlets nclsx() = "<< this->nclsx() << endl;
1999                    return 0;
2000            }
2001            if(!SingletX)return 0;
2002            TClonesArray &t = *(SingletX);
2003            TrkSinglet *singlet = (TrkSinglet*)t[is];
2004            return singlet;
2005    }
2006    //--------------------------------------
2007    //
2008    //
2009    //--------------------------------------
2010    /**
2011     * Retrieves the is-th stored Y singlet.
2012     * @param it Singlet number, ranging from 0 to nclsx().
2013     */
2014    TrkSinglet *TrkLevel2::GetSingletY(int is){
2015    
2016            if(is >= this->nclsy()){
2017                    cout << "TrkSinglet *TrkLevel2::GetSingletY(int) >> Singlet "<< is << "doen not exits! " << endl;
2018                    cout << "Stored y-singlets nclsx() = "<< this->nclsx() << endl;
2019                    return 0;
2020            }
2021            if(!SingletY)return 0;
2022            TClonesArray &t = *(SingletY);
2023            TrkSinglet *singlet = (TrkSinglet*)t[is];
2024            return singlet;
2025    }
2026    //--------------------------------------
2027    //
2028    //
2029    //--------------------------------------
2030    /**
2031   * Retrieves the it-th "physical" track, sorted by the method GetNTracks().   * Retrieves the it-th "physical" track, sorted by the method GetNTracks().
2032   * @param it Track number, ranging from 0 to GetNTracks().   * @param it Track number, ranging from 0 to GetNTracks().
2033   */   */
2034    
2035  TrkTrack *TrkLevel2::GetTrack(int it){  TrkTrack *TrkLevel2::GetTrack(int it){
2036            
2037      if(it >= this->GetNTracks()){          if(it >= this->GetNTracks()){
2038          cout << "** TrkLevel2 ** Track "<< it << "does not exits! " << endl;                  cout << "TrkTrack *TrkLevel2::GetTrack(int) >> Track "<< it << "does not exits! " << endl;
2039          cout << "                Physical tracks GetNTracks() = "<< this->ntrk() << endl;                  cout << "Physical tracks GetNTracks() = "<< this->ntrk() << endl;
2040          return 0;                  return 0;
2041      }          }
2042      TrkTrack *track = (TrkTrack*)(*(this->GetTracks()))[it];          
2043          GetTracks()->Delete();////TEMPORANEO          TRefArray *sorted = GetTracks();  //TEMPORANEO  
2044      return track;          if(!sorted)return 0;
2045            TrkTrack *track = (TrkTrack*)sorted->At(it);
2046            sorted->Clear();
2047            delete sorted;
2048            return track;
2049  }  }
2050    /**
2051     * Give the number of "physical" tracks, sorted by the method GetTracks().
2052     */
2053  Int_t TrkLevel2::GetNTracks(){  Int_t TrkLevel2::GetNTracks(){
2054          Int_t ntot=0;                  
2055          ntot = GetTracks()->GetEntries();          Float_t ntot=0;
2056          GetTracks()->Delete();////TEMPORANEO          if(!Track)return 0;
2057          return ntot;          TClonesArray &t = *Track;
2058            for(int i=0; i<ntrk(); i++) {    
2059                    if( ((TrkTrack *)t[i])->GetImageSeqNo() == -1 ) ntot+=1.;
2060                    else ntot+=0.5;
2061            }
2062            return (Int_t)ntot;
2063    
2064  };  };
2065  //--------------------------------------  //--------------------------------------
2066  //  //
# Line 498  Int_t TrkLevel2::GetNTracks(){ Line 2073  Int_t TrkLevel2::GetNTracks(){
2073  TrkTrack *TrkLevel2::GetTrackImage(int it){  TrkTrack *TrkLevel2::GetTrackImage(int it){
2074    
2075      if(it >= this->GetNTracks()){      if(it >= this->GetNTracks()){
2076          cout << "** TrkLevel2 ** Track "<< it << "does not exits! " << endl;          cout << "TrkTrack *TrkLevel2::GetTrackImage(int) >> Track "<< it << "does not exits! " << endl;
2077          cout << "                Physical tracks GetNTracks() = "<< this->ntrk() << endl;          cout << "Physical tracks GetNTracks() = "<< this->ntrk() << endl;
2078          return 0;          return 0;
2079      }      }
2080      TrkTrack *track = (TrkTrack*)(*(this->GetTracks()))[it];          
2081        TRefArray* sorted = GetTracks(); //TEMPORANEO
2082        if(!sorted)return 0;
2083        TrkTrack *track = (TrkTrack*)sorted->At(it);
2084            
2085      if(!track->HasImage()){      if(!track->HasImage()){
2086          cout << "** TrkLevel2 ** Track "<< it << "does not have image! " << endl;          cout << "TrkTrack *TrkLevel2::GetTrackImage(int) >> Track "<< it << "does not have image! " << endl;
2087          return 0;          return 0;
2088      }      }
2089        if(!Track)return 0;
2090      TrkTrack *image = (TrkTrack*)(*Track)[track->image];      TrkTrack *image = (TrkTrack*)(*Track)[track->image];
2091    
2092        sorted->Delete();
2093        delete sorted;
2094    
2095      return image;      return image;
2096            
2097  }  }
# Line 519  TrkTrack *TrkLevel2::GetTrackImage(int i Line 2103  TrkTrack *TrkLevel2::GetTrackImage(int i
2103   * Loads the magnetic field.   * Loads the magnetic field.
2104   * @param s Path of the magnetic-field files.   * @param s Path of the magnetic-field files.
2105   */   */
2106  void TrkLevel2::LoadField(TString s){  void TrkLevel2::LoadField(TString path){
2107      readb_(s.Data());  //
2108    //     strcpy(path_.path,path.Data());
2109    //     path_.pathlen = path.Length();
2110    //     path_.error   = 0;
2111    //     readb_();
2112    
2113    //     TrkParams::SetTrackingMode();
2114    //     TrkParams::SetPrecisionFactor();
2115    //     TrkParams::SetStepMin();
2116        TrkParams::SetMiniDefault();
2117    
2118        TrkParams::Set(path,1);
2119        TrkParams::Load(1);
2120        if( !TrkParams::IsLoaded(1) ){
2121            cout << "void TrkLevel2::LoadField(TString path) --- ERROR --- m.field not loaded"<<endl;
2122        }
2123    
2124    //
2125    };
2126    // /**
2127    //  * Get BY (kGauss)
2128    //  * @param v (x,y,z) coordinates in cm
2129    //  */
2130    // float TrkLevel2::GetBX(float* v){
2131    //     float b[3];
2132    //     gufld_(v,b);
2133    //     return b[0]/10.;
2134    // }
2135    // /**
2136    //  * Get BY (kGauss)
2137    //  * @param v (x,y,z) coordinates in cm
2138    //  */
2139    // float TrkLevel2::GetBY(float* v){
2140    //     float b[3];
2141    //     gufld_(v,b);
2142    //     return b[1]/10.;
2143    // }
2144    // /**
2145    //  * Get BY (kGauss)
2146    //  * @param v (x,y,z) coordinates in cm
2147    //  */
2148    // float TrkLevel2::GetBZ(float* v){
2149    //     float b[3];
2150    //     gufld_(v,b);
2151    //     return b[2]/10.;
2152    // }
2153    //--------------------------------------
2154    //
2155    //
2156    //--------------------------------------
2157    /**
2158     * Get tracker-plane (mechanical) z-coordinate
2159     * @param plane_id plane index (1=TOP,2,3,4,5,6=BOTTOM)
2160     */
2161    Float_t TrkLevel2::GetZTrk(Int_t plane_id){
2162            switch(plane_id){
2163                    case 1: return ZTRK1;
2164                    case 2: return ZTRK2;
2165                    case 3: return ZTRK3;
2166                    case 4: return ZTRK4;
2167                    case 5: return ZTRK5;
2168                    case 6: return ZTRK6;
2169                    default: return 0.;
2170            };
2171  };  };
2172  //--------------------------------------  //--------------------------------------
2173  //  //
# Line 538  Trajectory::Trajectory(){ Line 2185  Trajectory::Trajectory(){
2185      thx = new float[npoint];      thx = new float[npoint];
2186      thy = new float[npoint];      thy = new float[npoint];
2187      tl = new float[npoint];      tl = new float[npoint];
2188      float dz = ((ZTRKUP)-(ZTRKDW))/(npoint-1);      float dz = ((ZTRK1)-(ZTRK6))/(npoint-1);
2189      for(int i=0; i<npoint; i++){      for(int i=0; i<npoint; i++){
2190          x[i] = 0;          x[i] = 0;
2191          y[i] = 0;          y[i] = 0;
2192          z[i] = (ZTRKUP) - i*dz;          z[i] = (ZTRK1) - i*dz;
2193          thx[i] = 0;          thx[i] = 0;
2194          thy[i] = 0;          thy[i] = 0;
2195          tl[i] = 0;          tl[i] = 0;
# Line 569  Trajectory::Trajectory(int n){ Line 2216  Trajectory::Trajectory(int n){
2216      thx = new float[npoint];      thx = new float[npoint];
2217      thy = new float[npoint];      thy = new float[npoint];
2218      tl = new float[npoint];      tl = new float[npoint];
2219      float dz = ((ZTRKUP)-(ZTRKDW))/(npoint-1);      float dz = ((ZTRK1)-(ZTRK6))/(npoint-1);
2220      for(int i=0; i<npoint; i++){      for(int i=0; i<npoint; i++){
2221          x[i] = 0;          x[i] = 0;
2222          y[i] = 0;          y[i] = 0;
2223          z[i] = (ZTRKUP) - i*dz;          z[i] = (ZTRK1) - i*dz;
2224          thx[i] = 0;          thx[i] = 0;
2225          thy[i] = 0;          thy[i] = 0;
2226          tl[i] = 0;          tl[i] = 0;
# Line 610  Trajectory::Trajectory(int n, float* zin Line 2257  Trajectory::Trajectory(int n, float* zin
2257      npoint=i;      npoint=i;
2258      if(npoint != n)cout << "NB! Trajectory created with "<<npoint<<" points"<<endl;      if(npoint != n)cout << "NB! Trajectory created with "<<npoint<<" points"<<endl;
2259  }  }
2260    void Trajectory::Delete(){
2261        
2262        if(x) delete [] x;
2263        if(y) delete [] y;
2264        if(z) delete [] z;
2265        if(thx) delete [] thx;
2266        if(thy) delete [] thy;
2267        if(tl) delete [] tl;
2268    
2269    }
2270  //--------------------------------------  //--------------------------------------
2271  //  //
2272  //  //
# Line 647  float Trajectory::GetLength(int ifirst, Line 2304  float Trajectory::GetLength(int ifirst,
2304      return l;      return l;
2305    
2306  }  }
2307    
2308    /**
2309     * Evaluates the trajectory in the apparatus associated to the track.
2310     * It integrates the equations of motion in the magnetic field.
2311     * @param al Track state-vector (X0,Y0,sin(theta),phi,deflection).
2312     * @param zini z-coordinate of the reference plane (Z0).
2313     * @return error flag.
2314     *
2315     * This method is needed when you want to integrate the particle trajectory
2316     * starting from a track state-vector relative to an arbitrary reference plane.
2317     * The default reference plane, used by the tracker routines, is at zini=23.5.
2318     * If you give as input the track state-vector from a TrkTrack object,
2319     * you can use Trajectory::DoTrack(float* al) instead.
2320     */
2321    int Trajectory::DoTrack(float* al, float zini){
2322    
2323    //      double *dxout   = new double[npoint];
2324    //      double *dyout   = new double[npoint];
2325    //      double *dthxout = new double[npoint];
2326    //      double *dthyout = new double[npoint];
2327    //      double *dtlout  = new double[npoint];
2328    //      double *dzin    = new double[npoint];
2329        
2330        double *dxout;
2331        double *dyout;
2332        double *dthxout;
2333        double *dthyout;
2334        double *dtlout;
2335        double *dzin;
2336        
2337        dxout   = (double*) malloc(npoint*sizeof(double));
2338        dyout   = (double*) malloc(npoint*sizeof(double));
2339        dthxout = (double*) malloc(npoint*sizeof(double));
2340        dthyout = (double*) malloc(npoint*sizeof(double));
2341        dtlout  = (double*) malloc(npoint*sizeof(double));
2342        dzin    = (double*) malloc(npoint*sizeof(double));
2343        
2344        double dal[5];
2345    
2346        double dzini = (double)zini;
2347    
2348        int ifail = 0;
2349        
2350        for (int i=0; i<5; i++)      dal[i]  = (double)al[i];
2351        for (int i=0; i<npoint; i++) dzin[i] = (double)z[i];
2352    
2353        TrkParams::Load(1);
2354        if( !TrkParams::IsLoaded(1) ){
2355            cout << "int Trajectory::DoTrack(float* al) --- ERROR --- m.field not loaded"<<endl;
2356            return 0;
2357        }
2358    //    dotrack2_(&(npoint),dzin,dxout,dyout,dthxout,dthyout,dtlout,dal,&ifail);
2359        dotrack3_(&(npoint),dzin,dxout,dyout,dthxout,dthyout,dtlout,dal,&dzini,&ifail);
2360        
2361        for (int i=0; i<npoint; i++){
2362            x[i]   = (float)*(dxout+i);
2363            y[i]   = (float)*(dyout+i);
2364            thx[i] = (float)*(dthxout+i);
2365            thy[i] = (float)*(dthyout+i);
2366            tl[i]  = (float)*(dtlout+i);
2367        }
2368    
2369        if(dxout)  free( dxout );
2370        if(dyout)  free( dyout );
2371        if(dthxout)free( dthxout );
2372        if(dthyout)free( dthyout );
2373        if(dtlout) free( dtlout );
2374        if(dzin)   free( dzin );
2375    
2376    //      delete [] dxout;
2377    //      delete [] dyout;
2378    //      delete [] dthxout;
2379    //      delete [] dthyout;
2380    //      delete [] dtlout;
2381    //      delete [] dzin;
2382    
2383    
2384        return ifail;
2385    };
2386    
2387    /**
2388     *
2389     * >>> OBSOLETE !!! use Trajectory::DoTrack(float* al, float zini) instead
2390     *
2391     */
2392    int Trajectory::DoTrack2(float* al, float zini){
2393    
2394        cout << endl;
2395        cout << " int Trajectory::DoTrack2(float* al, float zini) --->> NB NB !! this method is going to be eliminated !!! "<<endl;
2396        cout << " >>>> replace it with TrkTrack::DoTrack(Trajectory* t) <<<<"<<endl;
2397        cout << " (Sorry Wolfgang!! Don't be totally confused!! By Elena)"<<endl;
2398        cout << endl;
2399    
2400        return DoTrack(al,zini);
2401    
2402    };
2403    
2404    
2405    
2406  ClassImp(TrkLevel2);  ClassImp(TrkLevel2);
2407  ClassImp(TrkSinglet);  ClassImp(TrkSinglet);
2408  ClassImp(TrkTrack);  ClassImp(TrkTrack);

Legend:
Removed from v.1.5  
changed lines
  Added in v.1.55

  ViewVC Help
Powered by ViewVC 1.1.23