/[PAMELA software]/DarthVader/TrackerLevel2/src/TrkLevel2.cpp
ViewVC logotype

Diff of /DarthVader/TrackerLevel2/src/TrkLevel2.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 1.4 by mocchiut, Fri Jun 30 09:22:04 2006 UTC revision 1.56 by pam-fi, Thu Feb 27 11:24:43 2014 UTC
# Line 4  Line 4 
4   */   */
5  #include <TrkLevel2.h>  #include <TrkLevel2.h>
6  #include <iostream>  #include <iostream>
7    #include <math.h>
8  using namespace std;  using namespace std;
9  //......................................  //......................................
10  // F77 routines  // F77 routines
# Line 11  using namespace std; Line 12  using namespace std;
12  extern "C" {      extern "C" {    
13      void dotrack_(int*, double*, double*, double*, double*, int*);      void dotrack_(int*, double*, double*, double*, double*, int*);
14      void dotrack2_(int*, double*, double*, double*, double*,double*, double*, double*,int*);      void dotrack2_(int*, double*, double*, double*, double*,double*, double*, double*,int*);
15      int  readb_(const char*);      void dotrack3_(int*, double*, double*, double*, double*,double*, double*, double*,double*,int*);
16        void mini2_(int*,int*,int*);
17        void guess_();
18        void gufld_(float*, float*);
19        float risxeta2_(float *);
20        float risxeta3_(float *);
21        float risxeta4_(float *);
22        float risyeta2_(float *);
23  }  }
24    
25  //--------------------------------------  //--------------------------------------
26  //  //
27  //  //
28  //--------------------------------------  //--------------------------------------
29  TrkTrack::TrkTrack(){  TrkTrack::TrkTrack(){
30    //    cout << "TrkTrack::TrkTrack()" << endl;
31      seqno = -1;      seqno = -1;
32      image = -1;      image = -1;
33      chi2  = 0;      chi2  = 0;
34        nstep = 0;
35      for(int it1=0;it1<5;it1++){      for(int it1=0;it1<5;it1++){
36          al[it1] = 0;          al[it1] = 0;
37          for(int it2=0;it2<5;it2++)          for(int it2=0;it2<5;it2++)coval[it1][it2] = 0;
             coval[it1][it2] = 0;  
38      };      };
39      for(int ip=0;ip<6;ip++){      for(int ip=0;ip<6;ip++){
40          xgood[ip]  = 0;          xgood[ip]  = 0;
# Line 34  TrkTrack::TrkTrack(){ Line 44  TrkTrack::TrkTrack(){
44          zm[ip]     = 0;          zm[ip]     = 0;
45          resx[ip]   = 0;          resx[ip]   = 0;
46          resy[ip]   = 0;          resy[ip]   = 0;
47            tailx[ip]   = 0;
48            taily[ip]   = 0;
49          xv[ip]     = 0;          xv[ip]     = 0;
50          yv[ip]     = 0;          yv[ip]     = 0;
51          zv[ip]     = 0;          zv[ip]     = 0;
# Line 41  TrkTrack::TrkTrack(){ Line 53  TrkTrack::TrkTrack(){
53          ayv[ip]    = 0;          ayv[ip]    = 0;
54          dedx_x[ip] = 0;          dedx_x[ip] = 0;
55          dedx_y[ip] = 0;          dedx_y[ip] = 0;
56      };              multmaxx[ip] = 0;
57            multmaxy[ip] = 0;
58            seedx[ip]  = 0;  
59            seedy[ip]  = 0;
60            xpu[ip]    = 0;  
61            ypu[ip]    = 0;  
62    
63        };
64        
65    //     TrkParams::SetTrackingMode();
66    //     TrkParams::SetPrecisionFactor();
67    //     TrkParams::SetStepMin();
68        TrkParams::SetMiniDefault();
69        TrkParams::SetPFA();
70    
71        int ngf = TrkParams::nGF;
72        for(int i=0; i<ngf; i++){
73            xGF[i] = 0.;
74            yGF[i] = 0.;
75        }
76    
77    
78  };  };
79  //--------------------------------------  //--------------------------------------
80  //  //
# Line 51  TrkTrack::TrkTrack(const TrkTrack& t){ Line 84  TrkTrack::TrkTrack(const TrkTrack& t){
84      seqno = t.seqno;      seqno = t.seqno;
85      image = t.image;      image = t.image;
86      chi2  = t.chi2;      chi2  = t.chi2;
87        nstep = t.nstep;
88      for(int it1=0;it1<5;it1++){      for(int it1=0;it1<5;it1++){
89          al[it1] = t.al[it1];          al[it1] = t.al[it1];
90          for(int it2=0;it2<5;it2++)          for(int it2=0;it2<5;it2++)coval[it1][it2] = t.coval[it1][it2];
             coval[it1][it2] = t.coval[it1][it2];  
91      };      };
92      for(int ip=0;ip<6;ip++){      for(int ip=0;ip<6;ip++){
93          xgood[ip]  = t.xgood[ip];          xgood[ip]  = t.xgood[ip];
# Line 64  TrkTrack::TrkTrack(const TrkTrack& t){ Line 97  TrkTrack::TrkTrack(const TrkTrack& t){
97          zm[ip]     = t.zm[ip];          zm[ip]     = t.zm[ip];
98          resx[ip]   = t.resx[ip];          resx[ip]   = t.resx[ip];
99          resy[ip]   = t.resy[ip];          resy[ip]   = t.resy[ip];
100            tailx[ip]  = t.tailx[ip];
101            taily[ip]  = t.taily[ip];
102          xv[ip]     = t.xv[ip];          xv[ip]     = t.xv[ip];
103          yv[ip]     = t.yv[ip];          yv[ip]     = t.yv[ip];
104          zv[ip]     = t.zv[ip];          zv[ip]     = t.zv[ip];
# Line 71  TrkTrack::TrkTrack(const TrkTrack& t){ Line 106  TrkTrack::TrkTrack(const TrkTrack& t){
106          ayv[ip]    = t.ayv[ip];          ayv[ip]    = t.ayv[ip];
107          dedx_x[ip] = t.dedx_x[ip];          dedx_x[ip] = t.dedx_x[ip];
108          dedx_y[ip] = t.dedx_y[ip];          dedx_y[ip] = t.dedx_y[ip];
109      };              multmaxx[ip] = t.multmaxx[ip];
110            multmaxy[ip] = t.multmaxy[ip];
111            seedx[ip]    = t.seedx[ip];  
112            seedy[ip]    = t.seedy[ip];
113            xpu[ip]      = t.xpu[ip];  
114            ypu[ip]      = t.ypu[ip];  
115        };
116    
117    //     TrkParams::SetTrackingMode();
118    //     TrkParams::SetPrecisionFactor();
119    //     TrkParams::SetStepMin();  
120        TrkParams::SetMiniDefault();
121        TrkParams::SetPFA();
122    
123        int ngf = TrkParams::nGF;
124        for(int i=0; i<ngf; i++){
125            xGF[i] = t.xGF[i];
126            yGF[i] = t.yGF[i];
127        }
128    };
129    //--------------------------------------
130    //
131    //
132    //--------------------------------------
133    void TrkTrack::Copy(TrkTrack& t){
134    
135        t.seqno = seqno;
136        t.image = image;
137        t.chi2  = chi2;
138        t.nstep = nstep;
139        for(int it1=0;it1<5;it1++){
140            t.al[it1] = al[it1];
141            for(int it2=0;it2<5;it2++)t.coval[it1][it2] = coval[it1][it2];
142        };
143        for(int ip=0;ip<6;ip++){
144            t.xgood[ip]  = xgood[ip];
145            t.ygood[ip]  = ygood[ip];
146            t.xm[ip]     = xm[ip];
147            t.ym[ip]     = ym[ip];
148            t.zm[ip]     = zm[ip];
149            t.resx[ip]   = resx[ip];
150            t.resy[ip]   = resy[ip];
151            t.tailx[ip]  = tailx[ip];
152            t.taily[ip]  = taily[ip];
153            t.xv[ip]     = xv[ip];
154            t.yv[ip]     = yv[ip];
155            t.zv[ip]     = zv[ip];
156            t.axv[ip]    = axv[ip];
157            t.ayv[ip]    = ayv[ip];
158            t.dedx_x[ip] = dedx_x[ip];
159            t.dedx_y[ip] = dedx_y[ip];
160            t.multmaxx[ip] = multmaxx[ip];
161            t.multmaxy[ip] = multmaxy[ip];
162            t.seedx[ip]    = seedx[ip];  
163            t.seedy[ip]    = seedy[ip];
164            t.xpu[ip]      = xpu[ip];  
165            t.ypu[ip]      = ypu[ip];  
166                
167        };
168        int ngf = TrkParams::nGF;
169        for(int i=0; i<ngf; i++){
170            t.xGF[i] = xGF[i];
171            t.yGF[i] = yGF[i];
172        }
173    
174        
175  };  };
176  //--------------------------------------  //--------------------------------------
177  //  //
178  //  //
179  //--------------------------------------  //--------------------------------------
180  /**  /**
181   * Evaluates the trajectory in the apparatus associated to the track.   *
182   * It integrates the equations of motion in the magnetic field. The magnetic field should be previously loaded ( by calling  TrkLevel2::LoadField() ), otherwise an error message is returned.     * >>> OBSOLETE !!! use TrkTrack::DoTrack(Trajectory* t) instead
183     *
184     */
185    int TrkTrack::DoTrack2(Trajectory* t){
186    
187        cout << endl;
188        cout << " int TrkTrack::DoTrack2(Trajectory* t) --->> NB NB !! this method is going to be eliminated !!! "<<endl;
189        cout << " >>>> replace it with TrkTrack::DoTrack(Trajectory* t) <<<<"<<endl;
190        cout << " (Sorry Wolfgang!! Don't be totally confused!! By Elena)"<<endl;
191        cout << endl;
192    
193        return DoTrack(t);
194    
195    };
196    //--------------------------------------
197    //
198    //
199    //--------------------------------------
200    /**
201     * Evaluates the trajectory in the apparatus associated to the track state-vector.
202     * It integrates the equations of motion in the magnetic field.
203   * @param t pointer to an object of the class Trajectory,   * @param t pointer to an object of the class Trajectory,
204   * which z coordinates should be previously initialized by calling the proper constructor ( Trajectory::Trajectory(int n, float* zin) ).   * which z coordinates should be previously assigned.
205   * @return error flag.   * @return error flag.
206   */   */
207  int TrkTrack::DoTrack(Trajectory* t){  int TrkTrack::DoTrack(Trajectory* t){
208    
209      double *dxout = new double[t->npoint];      double *dxout   = new double[t->npoint];
210      double *dyout = new double[t->npoint];      double *dyout   = new double[t->npoint];
211      double *dzin = new double[t->npoint];      double *dthxout = new double[t->npoint];
212        double *dthyout = new double[t->npoint];
213        double *dtlout  = new double[t->npoint];
214        double *dzin    = new double[t->npoint];
215      double dal[5];      double dal[5];
216    
217      int ifail = 0;      int ifail = 0;
# Line 96  int TrkTrack::DoTrack(Trajectory* t){ Line 219  int TrkTrack::DoTrack(Trajectory* t){
219      for (int i=0; i<5; i++)         dal[i]  = (double)al[i];      for (int i=0; i<5; i++)         dal[i]  = (double)al[i];
220      for (int i=0; i<t->npoint; i++) dzin[i] = (double)t->z[i];      for (int i=0; i<t->npoint; i++) dzin[i] = (double)t->z[i];
221    
222      dotrack_(&(t->npoint),dzin,dxout,dyout,dal,&ifail);      TrkParams::Load(1);
223        if( !TrkParams::IsLoaded(1) ){
224            cout << "int TrkTrack::DoTrack(Trajectory* t) --- ERROR --- m.field not loaded"<<endl;
225            return 0;
226        }
227        dotrack2_(&(t->npoint),dzin,dxout,dyout,dthxout,dthyout,dtlout,dal,&ifail);
228            
229      for (int i=0; i<t->npoint; i++){      for (int i=0; i<t->npoint; i++){
230          t->x[i] = (float)*dxout++;          t->x[i]   = (float)*(dxout+i);
231          t->y[i] = (float)*dyout++;          t->y[i]   = (float)*(dyout+i);
232            t->thx[i] = (float)*(dthxout+i);
233            t->thy[i] = (float)*(dthyout+i);
234            t->tl[i]  = (float)*(dtlout+i);
235      }      }
236    
237  //    delete [] dxout;      delete [] dxout;
238  //    delete [] dyout;      delete [] dyout;
239  //    delete [] dzin;      delete [] dzin;
240        delete [] dthxout;
241        delete [] dthyout;
242        delete [] dtlout;
243    
244      return ifail;      return ifail;
245  };  };
# Line 113  int TrkTrack::DoTrack(Trajectory* t){ Line 247  int TrkTrack::DoTrack(Trajectory* t){
247  //  //
248  //  //
249  //--------------------------------------  //--------------------------------------
250    //float TrkTrack::BdL(){
251    //};
252    //--------------------------------------
253    //
254    //
255    //--------------------------------------
256    Float_t TrkTrack::GetRigidity(){
257            Float_t rig=0;
258            if(chi2>0)rig=1./al[4];
259            if(rig<0) rig=-rig;
260            return rig;
261    };
262    //
263    Float_t TrkTrack::GetDeflection(){
264            Float_t def=0;
265            if(chi2>0)def=al[4];
266            return def;
267    };
268    //
269  /**  /**
270   * Evaluates the trajectory in the apparatus associated to the track.   * Method to retrieve the dE/dx measured on a tracker view.
271   * It integrates the equations of motion in the magnetic field. The magnetic field should be previously loaded ( by calling  TrkLevel2::LoadField() ), otherwise an error message is returned.     * @param ip plane (0-5)
272   * @param t pointer to an object of the class Trajectory,   * @param iv view (0=x 1=y)
  * which z coordinates should be previously initialized by calling the proper constructor ( Trajectory::Trajectory(int n, float* zin) ).  
  * @return error flag.  
273   */   */
274  int TrkTrack::DoTrack2(Trajectory* t){  Float_t TrkTrack::GetDEDX(int ip, int iv){
275        if(iv==0 && ip>=0 && ip<6)return fabs(dedx_x[ip]);
276        else if(iv==1 && ip>=0 && ip<6)return fabs(dedx_y[ip]);
277        else {
278            cout << "TrkTrack::GetDEDX(int ip, int iv) -- wrong input parameters "<<ip<<iv<<endl;
279            return 0.;
280        }
281    }
282    /**
283     * Method to evaluate the dE/dx measured on a tracker plane.
284     * The two measurements on x- and y-view are averaged.
285     * @param ip plane (0-5)
286     */
287    Float_t TrkTrack::GetDEDX(int ip){
288        if( (Int_t)XGood(ip)+(Int_t)YGood(ip) == 0 ) return 0;
289        return (GetDEDX(ip,0)+GetDEDX(ip,1))/((Int_t)XGood(ip)+(Int_t)YGood(ip));
290    };
291    
292      double *dxout   = new double[t->npoint];  /**
293      double *dyout   = new double[t->npoint];   * Method to evaluate the dE/dx averaged over all planes.
294      double *dthxout = new double[t->npoint];   */
295      double *dthyout = new double[t->npoint];  Float_t TrkTrack::GetDEDX(){
296      double *dtlout  = new double[t->npoint];      Float_t dedx=0;
297      double *dzin    = new double[t->npoint];      for(Int_t ip=0; ip<6; ip++)dedx+=GetDEDX(ip,0)*XGood(ip)+GetDEDX(ip,1)*YGood(ip);
298      double dal[5];      dedx = dedx/(GetNX()+GetNY());
299        return dedx;
300    };
301    /**
302     * Returns 1 if the cluster on a tracker view includes bad strips
303     * (at least one bad strip among the four strip used by p.f.a.)
304     * @param ip plane (0-5)
305     * @param iv view (0=x 1=y)
306     */
307    Bool_t TrkTrack::IsBad(int ip,int iv){
308        if(iv==0 && ip>=0 && ip<6)return (xgood[ip]<0) ;
309        else if(iv==1 && ip>=0 && ip<6)return (ygood[ip]<0) ;
310        else {
311            cout << "TrkTrack::IsBad(int ip, int iv) -- wrong input parameters "<<ip<<iv<<endl;
312            return 0.;
313        }
314    };
315    /**
316     * Returns 1 if the signal on a tracker view is saturated.
317     * @param ip plane (0-5)
318     * @param iv view (0=x 1=y)
319     */
320    Bool_t TrkTrack::IsSaturated(int ip,int iv){
321        if(iv==0 && ip>=0 && ip<6)return (dedx_x[ip]<0) ;
322        else if(iv==1 && ip>=0 && ip<6)return (dedx_y[ip]<0) ;
323        else {
324            cout << "TrkTrack::IsSaturated(int ip, int iv) -- wrong input parameters "<<ip<<iv<<endl;
325            return 0.;
326        }
327    };
328    /**
329     * Returns 1 if either the x or the y signal on a tracker plane is saturated.
330     * @param ip plane (0-5)
331     */
332    Bool_t TrkTrack::IsSaturated(int ip){
333        return (IsSaturated(ip,0)||IsSaturated(ip,1));
334    };
335    /**
336     * Returns 1 if there is at least a saturated signal along the track.
337     */
338    Bool_t TrkTrack::IsSaturated(){
339        for(int ip=0; ip<6; ip++)for(int iv=0; iv<2; iv++)if(IsSaturated(ip,iv))return true;
340        return false;
341    }
342    /**
343     * Returns the track "lever-arm" on the x view, defined as the distance (in planes) between
344     * the upper and lower x measurements (the maximum value of lever-arm is 6).
345     */
346    Int_t TrkTrack::GetLeverArmX(){
347        int first_plane = -1;
348        int last_plane  = -1;
349        for(Int_t ip=0; ip<6; ip++){
350            if( XGood(ip) && first_plane == -1 )first_plane = ip;
351            if( XGood(ip) && first_plane != -1 )last_plane = ip;
352        }
353        if( first_plane == -1 || last_plane == -1){
354            cout<< "Int_t TrkTrack::GetLeverArmX() -- XGood(ip) always false ??? "<<endl;
355            return 0;
356        }
357        return (last_plane-first_plane+1);
358    }
359    /**
360     * Returns the track "lever-arm" on the y view, defined as the distance (in planes) between
361     * the upper and lower y measurements (the maximum value of lever-arm is 6).
362     */
363    Int_t TrkTrack::GetLeverArmY(){
364        int first_plane = -1;
365        int last_plane  = -1;
366        for(Int_t ip=0; ip<6; ip++){
367            if( YGood(ip) && first_plane == -1 )first_plane = ip;
368            if( YGood(ip) && first_plane != -1 )last_plane = ip;
369        }
370        if( first_plane == -1 || last_plane == -1){
371            cout<< "Int_t TrkTrack::GetLeverArmY() -- YGood(ip) always false ??? "<<endl;
372            return 0;
373        }
374        return (last_plane-first_plane+1);
375    }
376    /**
377     * Returns the track "lever-arm" on the x+y view, defined as the distance (in planes) between
378     * the upper and lower x,y (couple) measurements (the maximum value of lever-arm is 6).
379     */
380    Int_t TrkTrack::GetLeverArmXY(){
381        int first_plane = -1;
382        int last_plane  = -1;
383        for(Int_t ip=0; ip<6; ip++){
384            if( XGood(ip)*YGood(ip) && first_plane == -1 )first_plane = ip;
385            if( XGood(ip)*YGood(ip) && first_plane != -1 )last_plane = ip;
386        }
387        if( first_plane == -1 || last_plane == -1){
388            cout<< "Int_t TrkTrack::GetLeverArmXY() -- XGood(ip)*YGood(ip) always false ??? "<<endl;
389            return 0;
390        }
391        return (last_plane-first_plane+1);
392    }
393    /**
394     * Returns the reduced chi-square of track x-projection
395     */
396    Float_t  TrkTrack::GetChi2X(){
397        float chiq=0;
398        for(int ip=0; ip<6; ip++)if(XGood(ip))chiq+= pow((xv[ip]-xm[ip])/resx[ip],2.);
399        if(GetNX()>3)chiq=chiq/(GetNX()-3);
400        else chiq=0;
401        if(chiq==0)cout << " Float_t  TrkTrack::GetChi2X() -- WARNING -- value not defined "<<chiq<<endl;
402        return chiq;
403    }
404    /**
405     * Returns the reduced chi-square of track y-projection
406     */
407    Float_t  TrkTrack::GetChi2Y(){
408        float chiq=0;
409        for(int ip=0; ip<6; ip++)if(YGood(ip))chiq+= pow((yv[ip]-ym[ip])/resy[ip],2.);
410        if(GetNY()>2)chiq=chiq/(GetNY()-2);
411        else chiq=0;
412        if(chiq==0)cout << " Float_t  TrkTrack::GetChi2Y() -- WARNING -- value not defined "<<chiq<<endl;
413        return chiq;
414    }
415    /**
416     * Returns the logarythm of the likeliwood-function of  track x-projection
417     */
418    Float_t TrkTrack::GetLnLX(){
419        float lnl=0;
420        for(int ip=0; ip<6; ip++)
421            if( XGood(ip) && tailx[ip]!=0 )
422                lnl += (tailx[ip]+1.) * log( (tailx[ip]*pow(resx[ip],2.) + pow(xv[ip]-xm[ip],2.)) / (tailx[ip]*pow(resx[ip],2)) );
423        if(GetNX()>3)lnl=lnl/(GetNX()-3);
424        else lnl=0;
425        if(lnl==0){
426            cout << " Float_t  TrkTrack::GetLnLX() -- WARNING -- value not defined "<<lnl<<endl;
427            Dump();
428        }
429        return lnl;
430        
431    }
432    /**
433     * Returns the logarythm of the likeliwood-function of  track y-projection
434     */
435    Float_t TrkTrack::GetLnLY(){
436        float lnl=0;
437        for(int ip=0; ip<6; ip++)
438            if( YGood(ip) && taily[ip]!=0 )
439                lnl += (taily[ip]+1.) * log( (taily[ip]*pow(resy[ip],2.) + pow(yv[ip]-ym[ip],2.)) / (taily[ip]*pow(resy[ip],2)) );
440        if(GetNY()>2)lnl=lnl/(GetNY()-2);
441        else lnl=0;
442        if(lnl==0){
443            cout << " Float_t  TrkTrack::GetLnLY() -- WARNING -- value not defined "<<lnl<<endl;
444            Dump();
445        }
446        return lnl;
447        
448    }
449    /**
450     * Returns the effective angle, relative to the sensor, on each plane.
451     * @param ip plane (0-5)
452     * @param iv view (0=x 1=y)
453     */
454    Float_t TrkTrack::GetEffectiveAngle(int ip, int iv){
455    
456      int ifail = 0;      if(ip<0 || ip>5){
457            cout << "Float_t TrkTrack::GetEffectiveAngle(int "<<ip<<", int "<<iv<<") ==> wrong input"<<endl;
458            return 0.;
459        }
460    
461      for (int i=0; i<5; i++)         dal[i]  = (double)al[i];      float v[3]={xv[ip],yv[ip],zv[ip]};
462      for (int i=0; i<t->npoint; i++) dzin[i] = (double)t->z[i];      //-----------------------------------------
463        // effective angle (relative to the sensor)
464        //-----------------------------------------
465        float axv_geo  = axv[ip];
466        float muhall_h = 297.61; //cm**2/Vs
467        float BY = TrkParams::GetBY(v);
468        float axv_eff = 0;
469        if(ip==5) axv_geo = -1*axv_geo;
470        if(ip==5) BY      = -1*BY;
471        axv_eff = 180.*atan( tan(axv_geo*acos(-1.)/180.) + muhall_h * BY * 0.0001)/acos(-1.);
472        //-----------------------------------------
473        // effective angle (relative to the sensor)
474        //-----------------------------------------
475        float ayv_geo = ayv[ip];
476        float muhall_e = 1258.18; //cm**2/Vs
477        float BX = TrkParams::GetBX(v);
478        float ayv_eff = 0;
479        ayv_eff = 180.*atan( tan(ayv_geo*acos(-1.)/180.) + muhall_e * BX * 0.0001)/acos(-1.);
480      
481        if     (iv==0)return axv_eff;
482        else if(iv==1)return ayv_eff;
483        else{
484            cout << "Float_t TrkTrack::GetEffectiveAngle(int "<<ip<<", int "<<iv<<") ==> wrong input"<<endl;
485            return 0.;
486        }
487      
488    };
489    
490    //--------------------------------------
491    //
492    //
493    //--------------------------------------
494    void TrkTrack::Dump(){
495        cout << endl << "========== Track " ;
496        cout << endl << "seq.  n. : "<< seqno;
497        cout << endl << "image n. : "<< image;
498        cout << endl << "al       : "; for(int i=0; i<5; i++)cout << al[i] << " ";
499        cout << endl << "chi^2    : "<< chi2;
500        cout << endl << "n.step   : "<< nstep;
501        cout << endl << "xgood    : "; for(int i=0; i<6; i++)cout << XGood(i) ;
502        cout << endl << "ygood    : "; for(int i=0; i<6; i++)cout << YGood(i) ;
503        cout << endl << "xm       : "; for(int i=0; i<6; i++)cout << xm[i] << " ";
504        cout << endl << "ym       : "; for(int i=0; i<6; i++)cout << ym[i] << " ";
505        cout << endl << "zm       : "; for(int i=0; i<6; i++)cout << zm[i] << " ";
506        cout << endl << "xv       : "; for(int i=0; i<6; i++)cout << xv[i] << " ";
507        cout << endl << "yv       : "; for(int i=0; i<6; i++)cout << yv[i] << " ";
508        cout << endl << "zv       : "; for(int i=0; i<6; i++)cout << zv[i] << " ";
509        cout << endl << "resx     : "; for(int i=0; i<6; i++)cout << resx[i] << " ";
510        cout << endl << "resy     : "; for(int i=0; i<6; i++)cout << resy[i] << " ";
511        cout << endl << "tailx    : "; for(int i=0; i<6; i++)cout << tailx[i] << " ";
512        cout << endl << "taily    : "; for(int i=0; i<6; i++)cout << taily[i] << " ";
513        cout << endl << "coval    : "; for(int i=0; i<5; i++)cout << coval[0][i]<<" ";
514        cout << endl << "           "; for(int i=0; i<5; i++)cout << coval[1][i]<<" ";
515        cout << endl << "           "; for(int i=0; i<5; i++)cout << coval[2][i]<<" ";
516        cout << endl << "           "; for(int i=0; i<5; i++)cout << coval[3][i]<<" ";
517        cout << endl << "           "; for(int i=0; i<5; i++)cout << coval[4][i]<<" ";
518        cout << endl << "dedx_x   : "; for(int i=0; i<6; i++)cout << dedx_x[i] << " ";
519        cout << endl << "dedx_y   : "; for(int i=0; i<6; i++)cout << dedx_y[i] << " ";
520        cout << endl << "maxs x   : "; for(int i=0; i<6; i++)cout << GetClusterX_MaxStrip(i) << " ";
521        cout << endl << "maxs y   : "; for(int i=0; i<6; i++)cout << GetClusterY_MaxStrip(i) << " ";
522        cout << endl << "mult x   : "; for(int i=0; i<6; i++)cout << GetClusterX_Multiplicity(i) << " ";
523        cout << endl << "mult y   : "; for(int i=0; i<6; i++)cout << GetClusterY_Multiplicity(i) << " ";
524        cout << endl << "seed x   : "; for(int i=0; i<6; i++)cout << GetClusterX_Seed(i) << " ";
525        cout << endl << "seed y   : "; for(int i=0; i<6; i++)cout << GetClusterY_Seed(i) << " ";
526        cout << endl << "xpu      : "; for(int i=0; i<6; i++)cout << xpu[i] << " ";
527        cout << endl << "ypu      : "; for(int i=0; i<6; i++)cout << ypu[i] << " ";
528    
529        cout << endl;
530    }
531    /**
532     * Set the TrkTrack position measurements
533     */
534    void TrkTrack::SetMeasure(double *xmeas, double *ymeas, double *zmeas){
535        for(int i=0; i<6; i++) xm[i]=*xmeas++;
536        for(int i=0; i<6; i++) ym[i]=*ymeas++;
537        for(int i=0; i<6; i++) zm[i]=*zmeas++;
538    }
539    /**
540     * Set the TrkTrack position resolution
541     */
542    void TrkTrack::SetResolution(double *rx, double *ry){
543        for(int i=0; i<6; i++) resx[i]=*rx++;
544        for(int i=0; i<6; i++) resy[i]=*ry++;
545    }
546    /**
547     * Set the TrkTrack tails position resolution
548     */
549    void TrkTrack::SetTail(double *tx, double *ty, double factor){
550        for(int i=0; i<6; i++) tailx[i]=factor*(*tx++);
551        for(int i=0; i<6; i++) taily[i]=factor*(*ty++);
552    }
553    /**
554     * Set the TrkTrack Student parameter (resx,resy,tailx,taily)
555     * from previous gausian fit
556     *@param flag =0 standard, =1 with noise correction
557     */
558    void TrkTrack::SetStudentParam(int flag){
559        float sx[11]={0.000128242,
560                       0.000136942,
561                       0.000162718,
562                       0.000202644,
563                       0.00025597,
564                       0.000317456,
565                       0.000349048,
566                       0.000384638,
567                       0.000457295,
568                       0.000512319,
569                       0.000538573};
570        float tx[11]={1.79402,
571                       2.04876,
572                       2.88376,
573                       3.3,
574                       3.14084,
575                       4.07686,
576                       4.44736,
577                       3.5179,
578                       3.38697,
579                       3.45739,
580                       3.18627};
581        float sy[11]={0.000483075,
582                       0.000466925,
583                       0.000431658,
584                       0.000428317,
585                       0.000433854,
586                       0.000444044,
587                       0.000482098,
588                       0.000537579,
589                       0.000636279,
590                       0.000741998,
591                       0.000864261};
592        float ty[11]={0.997032,
593                       1.11147,
594                       1.18526,
595                       1.61404,
596                       2.21908,
597                       3.08959,
598                       4.48833,
599                       4.42687,
600                       4.65253,
601                       4.52043,
602                       4.29926};
603        int index;
604        float fact=0.;
605        for(int i=0; i<6; i++) {
606            index = int((fabs(axv[i])+1.)/2.);
607            if(index>10) index=10;
608            tailx[i]=tx[index];
609            if(flag==1) {
610                if(fabs(axv[i])<=10.) fact = resx[i]/risxeta2_(&(axv[i]));
611                if(fabs(axv[i])>10.&&fabs(axv[i])<=15.) fact = resx[i]/risxeta3_(&(axv[i]));
612                if(fabs(axv[i])>15.) fact = resx[i]/risxeta4_(&(axv[i]));
613            } else fact = 1.;
614            resx[i] = sx[index]*fact;
615        }
616        for(int i=0; i<6; i++) {
617            index = int((fabs(ayv[i])+1.)/2.);
618            if(index>10) index=10;
619            taily[i]=ty[index];
620            if(flag==1) fact = resy[i]/risyeta2_(&(ayv[i]));
621            else fact = 1.;
622            resy[i] = sy[index]*fact;
623        }
624    }
625    /**
626     * Set the TrkTrack good measurement
627     */
628    void TrkTrack::SetGood(int *xg, int *yg){
629    
630        for(int i=0; i<6; i++) xgood[i]=*xg++;
631        for(int i=0; i<6; i++) ygood[i]=*yg++;
632    }
633    
634    /**
635     * Load the magnetic field
636     */
637    void TrkTrack::LoadField(TString path){
638        
639    //     strcpy(path_.path,path.Data());
640    //     path_.pathlen = path.Length();
641    //     path_.error   = 0;
642    //     readb_();
643    
644    //     TrkParams::SetTrackingMode();
645    //     TrkParams::SetPrecisionFactor();
646    //     TrkParams::SetStepMin();
647        TrkParams::SetMiniDefault();
648    
649        TrkParams::Set(path,1);
650        TrkParams::Load(1);
651        if( !TrkParams::IsLoaded(1) ){
652            cout << "void TrkTrack::LoadField(TString path) --- ERROR --- m.field not loaded"<<endl;
653        }
654    
655    };
656    
657    
658    /**
659     * Method to fill minimization-routine common
660     */
661    void TrkTrack::FillMiniStruct(cMini2track& track){
662    
663        for(int i=0; i<6; i++){
664    
665    //      cout << i<<" - "<<xgood[i]<<" "<<XGood(i)<<endl;
666    //      cout << i<<" - "<<ygood[i]<<" "<<YGood(i)<<endl;
667            track.xgood[i]=XGood(i);
668            track.ygood[i]=YGood(i);
669            
670            track.xm[i]=xm[i];
671            track.ym[i]=ym[i];
672            track.zm[i]=zm[i];
673            
674    //      --- temporaneo ----------------------------
675    //      float segment = 100.;
676    //      track.xm_a[i]=xm[i];
677    //      track.xm_b[i]=xm[i];
678    //      track.ym_a[i]=ym[i];
679    //      track.ym_b[i]=ym[i];
680    //      if(       XGood(i) && !YGood(i) ){
681    //          track.ym_a[i] = track.ym_a[i]+segment;
682    //          track.ym_b[i] = track.ym_b[i]-segment;
683    //      }else if( !XGood(i) && YGood(i)){
684    //          track.xm_a[i] = track.xm_a[i]+segment;
685    //          track.xm_b[i] = track.xm_b[i]-segment;
686    //      }
687    //      --- temporaneo ----------------------------
688    
689            if( XGood(i) || YGood(i) ){
690                //NB!! the length of the sensor is not exactely taken into account    
691                double segment = 7.;// 2.;//cm //Elena 10th
692                // NB: i parametri di allineamento hanno una notazione particolare!!!
693                // sensor = 0 (hybrid side), 1
694                // ladder = 0-2 (increasing x)
695                // plane  = 0-5 (from bottom to top!!!)
696                int is = (int)GetSensor(i); if(i==5)is=1-is;
697                int ip = 5-i;
698                int il = (int)GetLadder(i);
699                
700                double omega   = 0.;
701                //      double beta    = 0.;// EM GCC 4.7
702                //      double gamma   = 0.;
703                if(
704                    (is < 0 || is > 1 || ip < 0 || ip > 5 || il < 0 || il > 2) &&
705                    true){
706                    // se il piano risulta colpito, ladder e sensore devono essere
707                    // assegnati correttamente
708                    cout << " void TrkTrack::FillMiniStruct(cMini2track&) --- WARNING --- sensor not defined, cannot read alignment parameters "<<endl;
709                    cout << " is ip il = "<<is<<" "<<ip<<" "<<il<<endl;
710                }else{
711                    omega   = alignparameters_.omega[is][il][ip];
712                    //              beta    = alignparameters_.beta[is][il][ip];// EM GCC 4.7 unused
713                    //              gamma   = alignparameters_.gamma[is][il][ip];// EM GCC 4.7 unused
714                }
715                
716                if(       XGood(i) && !YGood(i) ){
717                    track.xm_a[i] = xm[i] - omega * segment;
718                    track.ym_a[i] = ym[i] + segment;
719    //          track.zm_a[i] = zm[i] + beta * segment;//not used yet
720                    track.xm_b[i] = xm[i] + omega * segment;
721                    track.ym_b[i] = ym[i] - segment;
722    //          track.zm_b[i] = zm[i] - beta * segment;//not used yet
723                }else if( !XGood(i) && YGood(i) ){
724                    track.xm_a[i] = xm[i] + segment;
725                    track.ym_a[i] = ym[i] + omega * segment;
726    //          track.zm_a[i] = zm[i] - gamma * segment;//not used yet
727                    track.xm_b[i] = xm[i] - segment;
728                    track.ym_b[i] = ym[i] - omega * segment;
729    //          track.zm_b[i] = zm[i] + gamma * segment;//not used yet
730                }
731            }
732            
733            track.resx[i]=resx[i];
734            track.resy[i]=resy[i];
735            track.tailx[i]=tailx[i];
736            track.taily[i]=taily[i];
737        }
738    
739        for(int i=0; i<5; i++) track.al[i]=al[i];
740        track.zini = 23.5;
741    // ZINI = 23.5 !!! it should be the same parameter in all codes
742        
743    }
744    /**
745     * Method to set values from  minimization-routine common
746     */
747    void TrkTrack::SetFromMiniStruct(cMini2track *track){
748    
749        for(int i=0; i<5; i++) {
750            al[i]=track->al[i];
751            for(int j=0; j<5; j++) coval[i][j]=track->cov[i][j];
752        }
753        chi2  = track->chi2;
754        nstep = track->nstep;
755        for(int i=0; i<6; i++){
756            xv[i]  = track->xv[i];
757            yv[i]  = track->yv[i];
758            zv[i]  = track->zv[i];
759            xm[i]  = track->xm[i];
760            ym[i]  = track->ym[i];
761            zm[i]  = track->zm[i];
762            axv[i] = track->axv[i];
763            ayv[i] = track->ayv[i];
764            resx[i] = track->resx[i]; //Elena 10th
765            resy[i] = track->resy[i];
766        }
767        
768    }
769    /**
770     * \brief Method to re-evaluate coordinates of clusters associated with a track.
771     *
772     * The method can be applied only after recovering level1 information
773     * (either by reprocessing single events from level0 or from  
774     * the TrkLevel1 branch, if present); it calls F77 subroutines that
775     * read the level1 common and fill the minimization-routine common.
776     * Some clusters can be excluded or added by means of the methods:
777     *
778     * TrkTrack::ResetXGood(int ip)
779     * TrkTrack::ResetYGood(int ip)
780     * TrkTrack::SetXGood(int ip, int cid, int is)
781     * TrkTrack::SetYGood(int ip, int cid, int is)
782     *
783     * NB! The method TrkTrack::SetGood(int *xg, int *yg) set the plane-mask (0-1)
784     * for the minimization-routine common. It deletes the cluster information
785     * (at least for the moment...) thus cannot be applied before
786     * TrkTrack::EvaluateClusterPositions().  
787     *
788     * Different p.f.a. can be applied by calling (once) the method:
789     *
790     * TrkParams::SetPFA(0); //Set ETA p.f.a.
791     *
792     * @see TrkParams::SetPFA(int)
793     */
794    Bool_t TrkTrack::EvaluateClusterPositions(){
795        
796    //     cout << "void TrkTrack::GetClusterositions() "<<endl;
797    
798        TrkParams::Load(1);
799        if( !TrkParams::IsLoaded(1) ){
800            cout << "Bool_t TrkTrack::EvaluateClusterPositions() ---ERROR--- m.field not loaded "<<endl;
801            return false;
802        }    
803        TrkParams::Load(4);
804        if( !TrkParams::IsLoaded(4) ){
805            cout << "Bool_t TrkTrack::EvaluateClusterPositions() ---ERROR--- p.f.a. par. not loaded "<<endl;
806            return false;
807        }
808        TrkParams::Load(5);
809        if( !TrkParams::IsLoaded(5) ){
810            cout << "Bool_t TrkTrack::EvaluateClusterPositions() ---ERROR--- alignment par. not loaded "<<endl;
811            return false;
812        }
813    
814        for(int ip=0; ip<6; ip++){
815    //      cout << ip<<" ** "<<xm[ip]<<" / "<<ym[ip]<<endl;;
816            int icx = GetClusterX_ID(ip)+1;//0=no-cluster,1-N
817            int icy = GetClusterY_ID(ip)+1;//0=no-cluster,1-N
818            int sensor = GetSensor(ip)+1;//<< convenzione "Paolo"
819            if(ip==5 && sensor!=0)sensor=3-sensor;//<< convenzione "Elena"
820            int ladder = GetLadder(ip)+1;
821            float ax = axv[ip];
822            float ay = ayv[ip];
823            float v[3];
824            v[0]=xv[ip];
825            v[1]=yv[ip];
826            v[2]=zv[ip];
827            float bfx = 10*TrkParams::GetBX(v);//Tesla
828            float bfy = 10*TrkParams::GetBY(v);//Tesla
829            int ipp=ip+1;
830            xyzpam_(&ipp,&icx,&icy,&ladder,&sensor,&ax,&ay,&bfx,&bfy);
831            //      if(icx<0 || icy<0)return false;
832        }
833        return true;
834    }
835    /**
836     * \brief Tracking method. It calls F77 mini routine.
837     *
838     * @param pfixed Particle momentum. If pfixed=0 the momentum
839     * is left as a free parameter, otherwise it is fixed to the input value.
840     * @param fail Output flag (!=0 if the fit failed).
841     * @param iprint Flag to set debug mode ( 0 = no output; 1 = verbose; 2 = debug).
842     * @param froml1 Flag to re-evaluate positions (see TrkTrack::GetClusterPositions()).
843     *
844     * The option to re-evaluate positions can be used only after recovering
845     * level1 information, eg. by reprocessing the single event.
846     *
847     * Example:
848     *
849     * if( !event->GetTrkLevel0() )return false;
850     * event->GetTrkLevel0()->ProcessEvent(); // re-processing level0->level1
851     * int fail=0;
852     * event->GetTrkLevel2()->GetTrack(0)->Fit(0.,fail,0,1);
853     *
854     * @see EvaluateClusterPositions()
855     *
856     * The fitting procedure can be varied by changing the tracking mode,
857     * the fit-precision factor, the minimum number of step, etc.
858     * @see SetTrackingMode(int)
859     * @see SetPrecisionFactor(double)
860     * @see SetStepMin(int)
861     * @see SetDeltaB(int,double)
862     */
863    void TrkTrack::Fit(double pfixed, int& fail, int iprint, int froml1){
864    
865        TrkParams::Load(1);
866        if( !TrkParams::IsLoaded(1) ){
867            cout << "void TrkTrack::Fit(double,int&,int,int) ---ERROR--- m.field not loaded "<<endl;
868            return;
869        }
870        TrkParams::Load(5);
871        if( !TrkParams::IsLoaded(5) ){
872            cout << "void TrkTrack::Fit(double,int&,int,int) ---ERROR--- align.param. not loaded "<<endl;
873            return;
874        }
875    
876        float al_ini[] = {0.,0.,0.,0.,0.};
877    
878        extern cMini2track track_;
879        fail = 0;
880    
881        //    FillMiniStruct(track_);
882            
883        if(froml1!=0){
884            if( !EvaluateClusterPositions() ){
885                cout << "void TrkTrack::Fit("<<pfixed<<","<<fail<<","<<iprint<<","<<froml1<<") --- ERROR evaluating cluster positions "<<endl;
886                FillMiniStruct(track_) ;
887                fail = 1;
888                return;
889            }
890        }else{
891            FillMiniStruct(track_);
892        }
893        
894        // if fit variables have been reset, evaluate the initial guess
895        if(al[0]==-9999.&&al[1]==-9999.&&al[2]==-9999.&&al[3]==-9999.&&al[4]==-9999.)guess_();
896    
897        // --------------------- free momentum
898        if(pfixed==0.) {
899            track_.pfixed=0.;
900        }
901        // --------------------- fixed momentum
902        if(pfixed!=0.) {
903            al[4]=1./pfixed;    
904            track_.pfixed=pfixed;
905        }
906    
907        //  store temporarily the initial guess
908        for(int i=0; i<5; i++) al_ini[i]=track_.al[i];
909    
910        //  ------------------------------------------
911        //  call mini routine
912        //  ------------------------------------------
913        int istep=0;
914        int ifail=0;
915        mini2_(&istep,&ifail, &iprint);
916        if(ifail!=0) {
917            if(iprint)cout << "ERROR: ifail= " << ifail << endl;
918            fail = 1;
919        }
920        if(chi2!=chi2){
921            if(iprint)cout << "ERROR: chi2= " << chi2 << endl;      
922            FitReset();
923            fail = 1;      
924        }
925        //  ------------------------------------------
926        
927        SetFromMiniStruct(&track_);
928    
929        if(fail){
930            if(iprint)cout << " >>>> fit failed "<<endl;
931            for(int i=0; i<5; i++) al[i]=al_ini[i];
932        }
933    
934    };
935    /**
936     * Reset the fit parameters
937     */
938    void TrkTrack::FitReset(){
939        for(int i=0; i<5; i++) al[i]=-9999.;
940        chi2=0.;
941        nstep=0;
942    //     for(int i=0; i<6; i++) xv[i]=0.;
943    //     for(int i=0; i<6; i++) yv[i]=0.;
944    //     for(int i=0; i<6; i++) zv[i]=0.;
945    //     for(int i=0; i<6; i++) axv[i]=0.;
946    //     for(int i=0; i<6; i++) ayv[i]=0.;
947        for(int i=0; i<5; i++) {
948            for(int j=0; j<5; j++) coval[i][j]=0.;
949        }
950    }
951    /**
952     * Set the tracking mode
953     */
954    void TrkTrack::SetTrackingMode(int trackmode){
955        extern cMini2track track_;
956        track_.trackmode = trackmode;
957    }
958    /**
959     * Set the factor scale for tracking precision
960     */
961    void TrkTrack::SetPrecisionFactor(double fact){
962        extern cMini2track track_;
963        track_.fact = fact;
964    }
965    /**
966     * Set the minimum number of steps for tracking precision
967     */
968    void TrkTrack::SetStepMin(int istepmin){
969        extern cMini2track track_;
970        track_.istepmin = istepmin;
971    }
972    /**
973     * Set deltaB parameters (id=0,1). By default they are set to zero.
974     */
975    void TrkTrack::SetDeltaB(int id, double db){
976        if(id!=0 && id!=1)cout << "void TrkTrack::SetDeltaB(int id,double db) -- wrong input parameters: "<<id<<" "<<db<<endl;
977        TrkParams::SetDeltaB(id,db);
978    }
979    
980    /**
981     * Returns true if the track is inside the magnet cavity.
982     * @param toll Tolerance around the nominal volume (toll>0 define an inner fiducial volume)
983     */
984    Bool_t TrkTrack::IsInsideCavity(float toll){
985    
986    //     float xmagntop, ymagntop, xmagnbottom, ymagnbottom;
987    //     xmagntop = xv[0] + (ZMAGNHIGH-zv[0])*tan(acos(-1.0)*axv[0]/180.);
988    //     ymagntop = yv[0] + (ZMAGNHIGH-zv[0])*tan(acos(-1.0)*ayv[0]/180.);
989    //     xmagnbottom = xv[5] + (ZMAGNLOW-zv[5])*tan(acos(-1.0)*axv[5]/180.);
990    //     ymagnbottom = yv[5] + (ZMAGNLOW-zv[5])*tan(acos(-1.0)*ayv[5]/180.);
991    //     if( xmagntop>XMAGNLOW && xmagntop<XMAGNHIGH &&
992    //      ymagntop>YMAGNLOW && ymagntop<YMAGNHIGH &&
993    //      xmagnbottom>XMAGNLOW && xmagnbottom<XMAGNHIGH &&
994    //      ymagnbottom>YMAGNLOW && ymagnbottom<YMAGNHIGH ) return(true);
995    //     else return(false);
996    
997        int ngf = TrkParams::nGF;
998        for(int i=0; i<ngf; i++){
999            //
1000    //      cout << endl << TrkParams::GF_element[i];
1001            if(
1002                TrkParams::GF_element[i].CompareTo("CUF") &&
1003                TrkParams::GF_element[i].CompareTo("T2")  &&
1004                TrkParams::GF_element[i].CompareTo("T3")  &&
1005                TrkParams::GF_element[i].CompareTo("T4")  &&
1006                TrkParams::GF_element[i].CompareTo("T5")  &&
1007                TrkParams::GF_element[i].CompareTo("CLF") &&
1008                true)continue;
1009            // apply condition only within the cavity
1010    //      cout << " -- "<<xGF[i]<<" "<<yGF[i];
1011            if(
1012                xGF[i] <= TrkParams::xGF_min[i] + toll ||
1013                xGF[i] >= TrkParams::xGF_max[i] - toll ||
1014                yGF[i] <= TrkParams::yGF_min[i] + toll ||
1015                yGF[i] >= TrkParams::yGF_max[i] - toll ||
1016                false){
1017                
1018                return false;
1019            }
1020        }
1021        return true;
1022    
1023    
1024    }
1025    /**
1026     * Returns true if the track is inside the nominal acceptance, which is defined
1027     * by the intersection among magnet cavity, silicon-plane sensitive area and
1028     * ToF sensitive area (nominal values from the official document used to
1029     * calculate the geometrical factor)
1030     * @param toll Tolerance around the nominal volume (toll>0 define an inner fiducial volume)
1031     */
1032    // Bool_t TrkTrack::IsInsideAcceptance(){
1033    
1034    //     int ngf = TrkParams::nGF;
1035    //     for(int i=0; i<ngf; i++){
1036    //      if(
1037    //          xGF[i] <= TrkParams::xGF_min[i] ||
1038    //          xGF[i] >= TrkParams::xGF_max[i] ||
1039    //          yGF[i] <= TrkParams::yGF_min[i] ||
1040    //          yGF[i] >= TrkParams::yGF_max[i] ||
1041    //          false)return false;
1042    //     }
1043    //     return true;
1044    
1045    // }
1046    Bool_t TrkTrack::IsInsideAcceptance(float toll){
1047    
1048    
1049        int ngf = TrkParams::nGF;
1050        for(int i=0; i<ngf; i++){
1051            //
1052    //      cout << endl << TrkParams::GF_element[i];
1053            if(
1054                TrkParams::GF_element[i].CompareTo("S11") &&
1055                TrkParams::GF_element[i].CompareTo("S12") &&
1056                TrkParams::GF_element[i].CompareTo("S21") &&
1057                TrkParams::GF_element[i].CompareTo("S22") &&
1058                TrkParams::GF_element[i].CompareTo("T1")  &&
1059                TrkParams::GF_element[i].CompareTo("CUF") &&
1060                TrkParams::GF_element[i].CompareTo("T2")  &&
1061                TrkParams::GF_element[i].CompareTo("T3")  &&
1062                TrkParams::GF_element[i].CompareTo("T4")  &&
1063                TrkParams::GF_element[i].CompareTo("T5")  &&
1064                TrkParams::GF_element[i].CompareTo("CLF") &&
1065                TrkParams::GF_element[i].CompareTo("T6")  &&
1066                TrkParams::GF_element[i].CompareTo("S31") &&
1067                TrkParams::GF_element[i].CompareTo("S32") &&
1068                true)continue;
1069            // apply condition only within the cavity
1070    //      cout << " -- "<<xGF[i]<<" "<<yGF[i];
1071            if(
1072                xGF[i] <= TrkParams::xGF_min[i] + toll ||
1073                xGF[i] >= TrkParams::xGF_max[i] - toll ||
1074                yGF[i] <= TrkParams::yGF_min[i] + toll ||
1075                yGF[i] >= TrkParams::yGF_max[i] - toll ||
1076                false){
1077                
1078                return false;
1079            }
1080        }
1081        return true;
1082    }
1083    
1084    /**
1085     * Returns true if the track is inside one of the surfaces which define the
1086     * geometrical acceptance.
1087     * @param surf tag of the surface (possible values are: S11 S12 S21 S22 T1
1088     * CUF T2 T3 T4 T5 CLF T6 S31 S32).
1089     * @param toll  Tolerance around the nominal surface (toll>0 define an inner
1090     * fiducial surface)
1091    */
1092    Bool_t TrkTrack::IsInsideGFSurface(const char* surf, float toll){
1093    
1094    
1095        int ngf = TrkParams::nGF;
1096        bool SURFOK = false;
1097        for(int i=0; i<ngf; i++){
1098            if(  !TrkParams::GF_element[i].CompareTo(surf)  ){
1099                SURFOK=true;
1100                if(
1101                    xGF[i] > TrkParams::xGF_min[i] + toll &&
1102                    xGF[i] < TrkParams::xGF_max[i] - toll &&
1103                    yGF[i] > TrkParams::yGF_min[i] + toll &&
1104                    yGF[i] < TrkParams::yGF_max[i] - toll &&
1105                    true)return true;
1106            }
1107        }
1108        if( !SURFOK )cout << " Bool_t TrkTrack::IsInsideGFSurface(char* surf, float toll) --> suface "<<surf<<" not defined "<<endl;
1109        return false;
1110    
1111    }
1112    
1113    /**
1114     * Method to retrieve ID (0,1,...) of x-cluster (if any) associated to this track.
1115     * If no cluster is associated, ID=-1.
1116     * @param ip Tracker plane (0-5)
1117     */
1118    Int_t TrkTrack::GetClusterX_ID(int ip){
1119        return ((Int_t)fabs(xgood[ip]))%10000000-1;
1120    };
1121    /**
1122     * Method to retrieve ID (0-xxx) of y-cluster (if any) associated to this track.
1123     * If no cluster is associated, ID=-1.
1124     * @param ip Tracker plane (0-5)
1125     */
1126    Int_t TrkTrack::GetClusterY_ID(int ip){
1127        return ((Int_t)fabs(ygood[ip]))%10000000-1;
1128    };
1129    
1130    /**
1131     * Method to retrieve the ladder (0-2, increasing x) traversed by the track on this plane.
1132     * If no ladder is traversed (dead area) the metod retuns -1.
1133     * @param ip Tracker plane (0-5)
1134     */
1135    Int_t TrkTrack::GetLadder(int ip){
1136        if(XGood(ip))return (Int_t)fabs(xgood[ip]/100000000)-1;
1137        if(YGood(ip))return (Int_t)fabs(ygood[ip]/100000000)-1;
1138        return -1;
1139    };
1140    /**
1141     * Method to retrieve the sensor (0-1, increasing y) traversed by the track on this plane.
1142     * If no sensor is traversed (dead area) the metod retuns -1.
1143     * @param ip Tracker plane (0-5)
1144     */
1145    Int_t TrkTrack::GetSensor(int ip){
1146        if(XGood(ip))return (Int_t)((Int_t)fabs(xgood[ip]/10000000)%10)-1;
1147        if(YGood(ip))return (Int_t)((Int_t)fabs(ygood[ip]/10000000)%10)-1;
1148        return -1;
1149    };
1150    
1151    /**
1152     * \brief Method to include a x-cluster to the track.
1153     * @param ip Tracker plane (0-5)
1154     * @param clid Cluster ID (0 = no-cluster, 1,2,... otherwise )
1155     * @param il Ladder (0-2, increasing x, -1 if no sensitive area is hit)
1156     * @param is Sensor (0-1, increasing y, -1 if no sensitive area is hit)
1157     * @param bad True if the cluster contains bad strips  
1158     * @see Fit(double pfixed, int& fail, int iprint, int froml1)
1159     */
1160    void TrkTrack::SetXGood(int ip, int clid, int il, int is, bool bad){
1161    //    int il=0;       //ladder (temporary)
1162    //    bool bad=false; //ladder (temporary)
1163        if(ip<0||ip>5||clid<1||il<-1||il>2||is<-1||is>1)
1164            cout << " void TrkTrack::SetXGood(int,int,int,int,bool) --> MA SEI DI COCCIO?!?!"<<endl;
1165        xgood[ip]=(il+1)*100000000+(is+1)*10000000+clid;
1166        if(bad)xgood[ip]=-xgood[ip];
1167    };
1168    /**
1169     * \brief Method to include a y-cluster to the track.
1170     * @param ip Tracker plane (0-5)
1171     * @param clid Cluster ID (0 = no-cluster, 1,2,... otherwise )
1172     * @param il Ladder (0-2, increasing x, -1 if no sensitive area is hit)
1173     * @param is Sensor (0-1, increasing y, -1 if no sensitive area is hit)
1174     * @param bad True if the cluster contains bad strips  
1175     * @see Fit(double pfixed, int& fail, int iprint, int froml1)
1176     */
1177    void TrkTrack::SetYGood(int ip, int clid, int il, int is, bool bad){
1178    //    int il=0;       //ladder (temporary)
1179    //    bool bad=false; //ladder (temporary)
1180        if(ip<0||ip>5||clid<1||il<-1||il>2||is<-1||is>1)
1181            cout << " void TrkTrack::SetYGood(int,int,int,int,bool) --> MA SEI DI COCCIO?!?!"<<endl;
1182        ygood[ip]=(il+1)*100000000+(is+1)*10000000+clid;
1183        if(bad)ygood[ip]=-ygood[ip];
1184    };
1185    
1186    /**
1187     * \brief Average X
1188     * Average value of <xv>, evaluated from the first to the last hit x view.
1189     */
1190    Float_t TrkTrack::GetXav(){
1191    
1192        int first_plane = -1;
1193        int last_plane  = -1;
1194        for(Int_t ip=0; ip<6; ip++){
1195            if( XGood(ip) && first_plane == -1 )first_plane = ip;
1196            if( XGood(ip) && first_plane != -1 )last_plane = ip;
1197        }
1198        if( first_plane == -1 || last_plane == -1){
1199            return -100;
1200        }
1201        if( last_plane-first_plane+1 ==0 )return -100;
1202    
1203        Float_t av = 0;    
1204        for(int ip=first_plane; ip<=last_plane; ip++)av+=xv[ip];
1205        
1206        return (av/(last_plane-first_plane+1));    
1207    }
1208    /**
1209     * \brief Average Y
1210     * Average value of <yv>, evaluated from the first to the last hit x view.
1211     */
1212    Float_t TrkTrack::GetYav(){
1213    
1214        int first_plane = -1;
1215        int last_plane  = -1;
1216        for(Int_t ip=0; ip<6; ip++){
1217            if( XGood(ip) && first_plane == -1 )first_plane = ip;
1218            if( XGood(ip) && first_plane != -1 )last_plane = ip;
1219        }
1220        if( first_plane == -1 || last_plane == -1){
1221            return -100;
1222        }
1223        if( last_plane-first_plane+1 ==0 )return -100;
1224    
1225        Float_t av = 0;    
1226        for(int ip=first_plane; ip<=last_plane; ip++)av+=yv[ip];
1227    
1228        return (av/(last_plane-first_plane+1));    
1229    }
1230    /**
1231     * \brief Average Z
1232     * Average value of <zv>, evaluated from the first to the last hit x view.
1233     */
1234    Float_t TrkTrack::GetZav(){
1235    
1236        int first_plane = -1;
1237        int last_plane  = -1;
1238        for(Int_t ip=0; ip<6; ip++){
1239            if( XGood(ip) && first_plane == -1 )first_plane = ip;
1240            if( XGood(ip) && first_plane != -1 )last_plane = ip;
1241        }
1242        if( first_plane == -1 || last_plane == -1){
1243            return -100;
1244        }
1245        if( last_plane-first_plane+1 ==0 )return -100;
1246    
1247        Float_t av = 0;    
1248        for(int ip=first_plane; ip<=last_plane; ip++)av+=zv[ip];
1249        
1250        return (av/(last_plane-first_plane+1));    
1251    }
1252    
1253    /**
1254     * \brief Number of column traversed
1255     */
1256    Int_t TrkTrack::GetNColumns(){
1257        int sensors[] = {0,0,0,0,0,0};
1258        for(int ip=0; ip<6; ip++){
1259            int sensorid = GetLadder(ip)+3*GetSensor(ip);    
1260            if(XGood(ip)||YGood(ip))
1261                if(sensorid>=0 && sensorid<6)sensors[sensorid]=1;
1262        }
1263        int nsensors=0;
1264        for(int is=0; is<6; is++)nsensors += sensors[is];
1265        return nsensors;
1266    };
1267    /**
1268     * \brief Give the maximum energy release
1269     */
1270    Float_t TrkTrack::GetDEDX_max(int ip, int iv){
1271        Float_t max=0;
1272        int pfrom = 0;
1273        int pto   = 6;
1274        int vfrom = 0;
1275        int vto   = 2;
1276        if(ip>=0&&ip<6){
1277            pfrom = ip;
1278            pto   = ip+1;
1279        }
1280        if(iv>=0&&iv<2){
1281            vfrom = iv;
1282            vto   = iv+1;
1283        }
1284        for(int i=pfrom; i<pto; i++)
1285            for(int j=vfrom; j<vto; j++){
1286                if(j==0 && XGood(i) && GetDEDX(i,j)>max)max=GetDEDX(i,j);
1287                if(j==1 && YGood(i) && GetDEDX(i,j)>max)max=GetDEDX(i,j);
1288            }
1289        return max;
1290    
1291    };
1292    
1293    /**
1294     * \brief Give the minimum energy release
1295     */
1296    Float_t TrkTrack::GetDEDX_min(int ip, int iv){
1297        Float_t min=100000000;
1298        int pfrom = 0;
1299        int pto   = 6;
1300        int vfrom = 0;
1301        int vto   = 2;
1302        if(ip>=0&&ip<6){
1303            pfrom = ip;
1304            pto   = ip+1;
1305        }
1306        if(iv>=0&&iv<2){
1307            vfrom = iv;
1308            vto   = iv+1;
1309        }
1310        for(int i=pfrom; i<pto; i++)
1311            for(int j=vfrom; j<vto; j++){
1312                if(j==0 && XGood(i) && GetDEDX(i,j)<min)min=GetDEDX(i,j);
1313                if(j==1 && YGood(i) && GetDEDX(i,j)<min)min=GetDEDX(i,j);
1314            }
1315        return min;
1316    
1317    };
1318    
1319    /**
1320     * \brief Give the maximum spatial residual  
1321     */
1322    Float_t TrkTrack::GetResidual_max(int ip, int iv){
1323        Float_t max=0;
1324        int pfrom = 0;
1325        int pto   = 6;
1326        int vfrom = 0;
1327        int vto   = 2;
1328        if(ip>=0&&ip<6){
1329            pfrom = ip;
1330            pto   = ip+1;
1331        }
1332        if(iv>=0&&iv<2){
1333            vfrom = iv;
1334            vto   = iv+1;
1335        }
1336        for(int i=pfrom; i<pto; i++){
1337            for(int j=vfrom; j<vto; j++){
1338                if(j==0 && XGood(i) && fabs(xm[i]-xv[i])>fabs(max))max=xm[i]-xv[i];
1339                if(j==1 && YGood(i) && fabs(ym[i]-yv[i])>fabs(max))max=ym[i]-yv[i];
1340            }
1341        }
1342        return max;
1343    
1344    };
1345    /**
1346     * \brief Give the anerage spatial residual
1347     */
1348    Float_t TrkTrack::GetResidual_av(int ip, int iv){
1349        //
1350    //Sum$((xm>-50)*(xm-xv)/resx)/sqrt(TrkTrack.GetNX()*TrkTrack.GetChi2X())<0.3
1351    
1352        Float_t av  = 0.;
1353        int     nav = 0;
1354        //
1355        int pfrom = 0;
1356        int pto   = 6;
1357        int vfrom = 0;
1358        int vto   = 2;
1359        if(ip>=0&&ip<6){
1360            pfrom = ip;
1361            pto   = ip+1;
1362        }
1363        if(iv>=0&&iv<2){
1364            vfrom = iv;
1365            vto   = iv+1;
1366        }
1367        for(int i=pfrom; i<pto; i++){
1368            for(int j=vfrom; j<vto; j++){
1369                nav++;
1370                if(j==0 && XGood(i)) av += (xm[i]-xv[i])/resx[i];
1371                if(j==1 && YGood(i)) av += (ym[i]-yv[i])/resy[i];
1372            }
1373        }
1374        if(nav==0)return -100.;
1375        return av/nav;
1376    
1377    };
1378    
1379    
1380    /**
1381     * \brief Give the maximum multiplicity on the x view
1382     */
1383    Int_t TrkTrack::GetClusterX_Multiplicity_max(){
1384        int max=0;
1385        for(int ip=0; ip<6; ip++)
1386            if(GetClusterX_Multiplicity(ip)>max)max=GetClusterX_Multiplicity(ip);
1387        return max;
1388    };
1389    /**
1390     * \brief Give the minimum multiplicity on the x view
1391     */
1392    Int_t TrkTrack::GetClusterX_Multiplicity_min(){
1393        int min=50;
1394        for(int ip=0; ip<6; ip++)
1395            if(GetClusterX_Multiplicity(ip)<min)min=GetClusterX_Multiplicity(ip);
1396        return min;
1397    };
1398    /**
1399     * \brief Give the maximum multiplicity on the x view
1400     */
1401    Int_t TrkTrack::GetClusterY_Multiplicity_max(){
1402        int max=0;
1403        for(int ip=0; ip<6; ip++)
1404            if(GetClusterY_Multiplicity(ip)>max)max=GetClusterY_Multiplicity(ip);
1405        return max;
1406    };
1407    /**
1408     * \brief Give the minimum multiplicity on the x view
1409     */
1410    Int_t TrkTrack::GetClusterY_Multiplicity_min(){
1411        int min=50;
1412        for(int ip=0; ip<6; ip++)
1413            if(GetClusterY_Multiplicity(ip)<min)min=GetClusterY_Multiplicity(ip);
1414        return min;
1415    };
1416    
1417      dotrack2_(&(t->npoint),dzin,dxout,dyout,dthxout,dthyout,dtlout,dal,&ifail);  /**
1418         * \brief Give the minimum seed on the x view
1419      for (int i=0; i<t->npoint; i++){   */
1420          t->x[i]   = (float)*dxout++;  Float_t TrkTrack::GetClusterX_Seed_min(){
1421          t->y[i]   = (float)*dyout++;      Float_t min=100000;
1422          t->thx[i] = (float)*dthxout++;      for(int ip=0; ip<6; ip++)
1423          t->thy[i] = (float)*dthyout++;          if(XGood(ip) && GetClusterX_Seed(ip)<min)min=GetClusterX_Seed(ip);
1424          t->tl[i]  = (float)*dtlout++;      return min;
1425      }  };
1426    /**
1427     * \brief Give the minimum seed on the x view
1428     */
1429    Float_t TrkTrack::GetClusterY_Seed_min(){
1430        Float_t min=100000;
1431        for(int ip=0; ip<6; ip++)
1432            if(YGood(ip) && GetClusterY_Seed(ip)<min)min=GetClusterY_Seed(ip);
1433        return min;
1434    };
1435    
 //    delete [] dxout;  
 //    delete [] dyout;  
 //    delete [] dzin;  
1436    
     return ifail;  
 };  
1437  //--------------------------------------  //--------------------------------------
1438  //  //
1439  //  //
1440  //--------------------------------------  //--------------------------------------
1441  //float TrkTrack::BdL(){  void TrkTrack::Clear(){
1442  //};  //    cout << "TrkTrack::Clear()"<<endl;
1443        seqno = -1;
1444        image = -1;
1445        chi2  = 0;
1446        nstep = 0;
1447        for(int it1=0;it1<5;it1++){
1448            al[it1] = 0;
1449            for(int it2=0;it2<5;it2++)coval[it1][it2] = 0;
1450        };
1451        for(int ip=0;ip<6;ip++){
1452            xgood[ip]  = 0;
1453            ygood[ip]  = 0;
1454            xm[ip]     = 0;
1455            ym[ip]     = 0;
1456            zm[ip]     = 0;
1457            resx[ip]   = 0;
1458            resy[ip]   = 0;
1459            tailx[ip]  = 0;
1460            taily[ip]  = 0;
1461            xv[ip]     = 0;
1462            yv[ip]     = 0;
1463            zv[ip]     = 0;
1464            axv[ip]    = 0;
1465            ayv[ip]    = 0;
1466            dedx_x[ip] = 0;
1467            dedx_y[ip] = 0;
1468    
1469        };
1470        int ngf = TrkParams::nGF;
1471        for(int i=0; i<ngf; i++){
1472            xGF[i] = 0.;
1473            yGF[i] = 0.;
1474        }
1475    //     if(clx)clx->Clear();
1476    //     if(cly)cly->Clear();
1477    //    clx.Clear();
1478    //    cly.Clear();
1479    };
1480  //--------------------------------------  //--------------------------------------
1481  //  //
1482  //  //
1483  //--------------------------------------  //--------------------------------------
1484  Float_t TrkTrack::GetRigidity(){  void TrkTrack::Delete(){
1485          Float_t rig=0;  //    cout << "TrkTrack::Delete()"<<endl;
1486          if(chi2>0)rig=1./al[4];      Clear();
1487          if(rig<0) rig=-rig;  //    if(clx)delete clx;
1488          return rig;  //    if(cly)delete cly;
 };  
 //  
 Float_t TrkTrack::GetDeflection(){  
         Float_t def=0;  
         if(chi2>0)def=al[4];  
         return def;  
 };  
 //  
 Float_t TrkTrack::GetDEDX(){  
         Float_t dedx=0;  
         for(Int_t i=0; i<6; i++)dedx+=dedx_x[i]*xgood[i]+dedx_y[i]*ygood[i];  
         dedx = dedx/(this->GetNX()+this->GetNY());  
         return dedx;  
1489  };  };
   
1490  //--------------------------------------  //--------------------------------------
1491  //  //
1492  //  //
1493  //--------------------------------------  //--------------------------------------
1494  void TrkTrack::Dump(){  
     cout << endl << "========== Track " ;  
     cout << endl << "al       : "; for(int i=0; i<5; i++)cout << al[i] << " ";  
     cout << endl << "chi^2    : "<< chi2;  
     cout << endl << "xgood    : "; for(int i=0; i<6; i++)cout << xgood[i] ;  
     cout << endl << "ygood    : "; for(int i=0; i<6; i++)cout << ygood[i] ;  
     cout << endl << "xm       : "; for(int i=0; i<6; i++)cout << xm[i] << " ";  
     cout << endl << "ym       : "; for(int i=0; i<6; i++)cout << ym[i] << " ";  
     cout << endl << "zm       : "; for(int i=0; i<6; i++)cout << zm[i] << " ";  
     cout << endl << "dedx_x   : "; for(int i=0; i<6; i++)cout << dedx_x[i] << " ";  
     cout << endl << "dedx_y   : "; for(int i=0; i<6; i++)cout << dedx_y[i] << " ";  
 }  
1495  //--------------------------------------  //--------------------------------------
1496  //  //
1497  //  //
1498  //--------------------------------------  //--------------------------------------
1499  TrkSinglet::TrkSinglet(){  TrkSinglet::TrkSinglet(){
1500      plane    = 0;  //    cout << "TrkSinglet::TrkSinglet() " << GetUniqueID()<<endl;
1501      coord[0] = 0;  //     plane    = 0;
1502      coord[1] = 0;  //     coord[0] = 0;
1503      sgnl     = 0;  //     coord[1] = 0;
1504    //     sgnl     = 0;
1505    //     multmax  = 0;
1506    //    cls      = 0;
1507        Clear();
1508  };  };
1509  //--------------------------------------  //--------------------------------------
1510  //  //
1511  //  //
1512  //--------------------------------------  //--------------------------------------
1513  TrkSinglet::TrkSinglet(const TrkSinglet& s){  TrkSinglet::TrkSinglet(const TrkSinglet& s){
1514    //    cout << "TrkSinglet::TrkSinglet(const TrkSinglet& s) " << GetUniqueID()<<endl;
1515      plane    = s.plane;      plane    = s.plane;
1516      coord[0] = s.coord[0];      coord[0] = s.coord[0];
1517      coord[1] = s.coord[1];      coord[1] = s.coord[1];
1518      sgnl     = s.sgnl;      sgnl     = s.sgnl;
1519        multmax  = s.multmax;
1520    //      cls      = 0;//<<<<pointer
1521    //    cls      = TRef(s.cls);
1522  };  };
1523  //--------------------------------------  //--------------------------------------
1524  //  //
# Line 224  TrkSinglet::TrkSinglet(const TrkSinglet& Line 1527  TrkSinglet::TrkSinglet(const TrkSinglet&
1527  void TrkSinglet::Dump(){  void TrkSinglet::Dump(){
1528      int i=0;      int i=0;
1529      cout << endl << "========== Singlet " ;      cout << endl << "========== Singlet " ;
1530      cout << endl << "plane    : " << plane;      cout << endl << "plane        : " << plane;
1531      cout << endl << "coord[2] : "; while( i<2 && cout << coord[i] << " ") i++;      cout << endl << "coord[2]     : "; while( i<2 && cout << coord[i] << " ") i++;
1532      cout << endl << "sgnl     : " << sgnl;      cout << endl << "sgnl         : " << sgnl;
1533        cout << endl << "max.strip    : ";
1534        cout << endl << "multiplicity : ";
1535    }
1536    //--------------------------------------
1537    //
1538    //
1539    //--------------------------------------
1540    void TrkSinglet::Clear(){
1541    //    cout << "TrkSinglet::Clear() " << GetUniqueID()<<endl;
1542    //    cls=0;
1543        plane=-1;
1544        coord[0]=-999;
1545        coord[1]=-999;
1546        sgnl=0;
1547        multmax  = 0;
1548        
1549  }  }
1550  //--------------------------------------  //--------------------------------------
1551  //  //
1552  //  //
1553  //--------------------------------------  //--------------------------------------
1554  TrkLevel2::TrkLevel2(){  TrkLevel2::TrkLevel2(){
1555      good2    = -1;    //    cout <<"TrkLevel2::TrkLevel2()"<<endl;
1556      for(Int_t i=0; i<12 ; i++){      for(Int_t i=0; i<12 ; i++){
1557          crc[i] = -1;          good[i] = -1;
1558            VKmask[i] = 0;
1559            VKflag[i] = 0;  
1560      };      };
1561      Track    = new TClonesArray("TrkTrack");      Track    = 0;
1562      SingletX = new TClonesArray("TrkSinglet");      SingletX = 0;
1563      SingletY = new TClonesArray("TrkSinglet");      SingletY = 0;
1564  //    Track    = 0;  
1565  //    Singlet = 0;  }
1566  //    SingletY = 0;  //--------------------------------------
1567    //
1568    //
1569    //--------------------------------------
1570    void TrkLevel2::Set(){
1571        if(!Track)Track    = new TClonesArray("TrkTrack");
1572        if(!SingletX)SingletX = new TClonesArray("TrkSinglet");
1573        if(!SingletY)SingletY = new TClonesArray("TrkSinglet");
1574  }  }
1575  //--------------------------------------  //--------------------------------------
1576  //  //
1577  //  //
1578  //--------------------------------------  //--------------------------------------
1579  void TrkLevel2::Dump(){  void TrkLevel2::Dump(){
1580      TClonesArray &t  = *Track;          
1581      TClonesArray &sx = *SingletX;          //
     TClonesArray &sy = *SingletY;  
   
1582      cout << endl << endl << "=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-";      cout << endl << endl << "=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-";
1583      cout << endl << "good2    : " << good2;      cout << endl << "good     : "; for(int i=0; i<12; i++) cout << hex <<" 0x"<< good[i]<<dec;
1584      cout << endl << "crc      : "; for(int i=0; i<12; i++) cout << crc[i];      cout << endl << "ntrk()   : " << ntrk() ;
1585      cout << endl << "ntrk()   : " << this->ntrk() ;      cout << endl << "nclsx()  : " << nclsx();
1586      cout << endl << "nclsx()  : " << this->nclsx();      cout << endl << "nclsy()  : " << nclsy();
1587      cout << endl << "nclsy()  : " << this->nclsy();      if(Track){
1588      for(int i=0; i<this->ntrk(); i++)     ((TrkTrack *)t[i])->Dump();          TClonesArray &t  = *Track;
1589      for(int i=0; i<this->nclsx(); i++) ((TrkSinglet *)sx[i])->Dump();          for(int i=0; i<ntrk(); i++)     ((TrkTrack *)t[i])->Dump();
1590      for(int i=0; i<this->nclsy(); i++) ((TrkSinglet *)sy[i])->Dump();      }      
1591    //     if(SingletX){
1592    //      TClonesArray &sx = *SingletX;
1593    //      for(int i=0; i<nclsx(); i++) ((TrkSinglet *)sx[i])->Dump();
1594    //     }
1595    //     if(SingletY){
1596    //      TClonesArray &sy = *SingletY;
1597    //      for(int i=0; i<nclsy(); i++) ((TrkSinglet *)sy[i])->Dump();
1598    //     }
1599        cout << endl;
1600    }
1601    /**
1602     * \brief Dump processing status
1603     */
1604    void TrkLevel2::StatusDump(int view){
1605        cout << "DSP n. "<<view+1<<" status: "<<hex<<good[view]<<endl;    
1606    };
1607    /**
1608     * \brief Check event status
1609     *
1610     * Check the event status, according to a flag-mask given as input.
1611     * Return true if the view passes the check.
1612     *
1613     * @param view View number (0-11)
1614     * @param flagmask Mask of flags to check (eg. flagmask=0x111 no missing packet,
1615     *  no crc error, no software alarm)
1616     *
1617     * @see TrkLevel2 class definition to know how the status flag is defined
1618     *
1619     */
1620    Bool_t TrkLevel2::StatusCheck(int view, int flagmask){
1621    
1622        if( view<0 || view >= 12)return false;
1623        return !(good[view]&flagmask);
1624    
1625    };
1626    
1627    
1628    //--------------------------------------
1629    //
1630    //
1631    //--------------------------------------
1632    /**
1633     * The method returns false if the viking-chip was masked  
1634     * either apriori ,on the basis of the mask read from the DB,
1635     * or run-by-run, on the basis of the calibration parameters)
1636     * @param iv Tracker view (0-11)
1637     * @param ivk Viking-chip number (0-23)
1638     */
1639    Bool_t TrkLevel2::GetVKMask(int iv, int ivk){
1640        Int_t whichbit = (Int_t)pow(2,ivk);
1641        return (whichbit&VKmask[iv])!=0;    
1642    }
1643    /**
1644     * The method returns false if the viking-chip was masked  
1645     * for this event due to common-noise computation failure.
1646     * @param iv Tracker view (0-11)
1647     * @param ivk Viking-chip number (0-23)
1648     */
1649    Bool_t TrkLevel2::GetVKFlag(int iv, int ivk){
1650        Int_t whichbit = (Int_t)pow(2,ivk);
1651        return (whichbit&VKflag[iv])!=0;    
1652  }  }
1653    /**
1654     * The method returns true if the viking-chip was masked, either
1655     * forced (see TrkLevel2::GetVKMask(int,int)) or
1656     * for this event only (TrkLevel2::GetVKFlag(int,int)).
1657     * @param iv Tracker view (0-11)
1658     * @param ivk Viking-chip number (0-23)
1659     */
1660    Bool_t TrkLevel2::IsMaskedVK(int iv, int ivk){
1661        return !(GetVKMask(iv,ivk)&&GetVKFlag(iv,ivk) );
1662    };
1663    
1664  //--------------------------------------  //--------------------------------------
1665  //  //
1666  //  //
1667  //--------------------------------------  //--------------------------------------
1668  /**  /**
1669   * Fills a TrkLevel2 object with values from a struct cTrkLevel2 (to get data from F77 common).   * Fills a TrkLevel2 object with values from a struct cTrkLevel2 (to get data from F77 common).
1670     * Ref to Level1 data (clusters) is also set. If l1==NULL no references are set.
1671     * (NB It make sense to set references only if events are stored in a tree that contains also the Level1 branch)
1672   */   */
1673  void TrkLevel2::FillCommonVar(cTrkLevel2 *l2){  void TrkLevel2::SetFromLevel2Struct(cTrkLevel2 *l2, TrkLevel1 *l1){
1674      //  
1675  //    Track    = new TClonesArray("TrkTrack");  //    cout << "void TrkLevel2::SetFromLevel2Struct(cTrkLevel2 *l2, TrkLevel1 *l1)"<<endl;
1676  //    SingletX = new TClonesArray("TrkSinglet");      Clear();
1677  //    SingletY = new TClonesArray("TrkSinglet");  
1678  //  temporary objects:  //  temporary objects:
1679      TrkSinglet* t_singlet = new TrkSinglet();      TrkSinglet* t_singlet = new TrkSinglet();
1680      TrkTrack*   t_track   = new TrkTrack();      TrkTrack*   t_track   = new TrkTrack();
1681    
1682    //  -----------------
1683  //  general variables  //  general variables
1684      good2 = l2->good2;  //  -----------------
1685      for(Int_t i=0; i<12 ; i++){      for(Int_t i=0; i<12 ; i++){
1686          crc[i] = l2->crc[i];          good[i] = l2->good[i];
1687            VKmask[i]=0;
1688            VKflag[i]=0;
1689            for(Int_t ii=0; ii<24 ; ii++){
1690                Int_t setbit = (Int_t)pow(2,ii);
1691                if( l2->vkflag[ii][i]!=-1 )VKmask[i]=VKmask[i]|setbit;
1692                if( l2->vkflag[ii][i]!=0  )VKflag[i]=VKflag[i]|setbit;
1693            };
1694      };      };
1695    //  --------------
1696  //  *** TRACKS ***  //  *** TRACKS ***
1697    //  --------------
1698        if(!Track) Track = new TClonesArray("TrkTrack");
1699      TClonesArray &t = *Track;      TClonesArray &t = *Track;
1700    
1701      for(int i=0; i<l2->ntrk; i++){      for(int i=0; i<l2->ntrk; i++){
1702          t_track->seqno = i;          t_track->seqno = i;// NBNBNBNB deve sempre essere = i
1703          t_track->image = l2->image[i]-1;          t_track->image = l2->image[i]-1;
 //      cout << "track "<<i<<t_track->seqno << t_track->image<<endl;  
1704          t_track->chi2  = l2->chi2_nt[i];          t_track->chi2  = l2->chi2_nt[i];
1705            t_track->nstep = l2->nstep_nt[i];
1706          for(int it1=0;it1<5;it1++){          for(int it1=0;it1<5;it1++){
1707              t_track->al[it1] = l2->al_nt[i][it1];              t_track->al[it1] = l2->al_nt[i][it1];
1708              for(int it2=0;it2<5;it2++)              for(int it2=0;it2<5;it2++)
1709                  t_track->coval[it1][it2] = l2->coval[i][it2][it1];                  t_track->coval[it1][it2] = l2->coval[i][it2][it1];
1710          };          };
1711          for(int ip=0;ip<6;ip++){          for(int ip=0;ip<6;ip++){
1712              t_track->xgood[ip]  = l2->xgood_nt[i][ip];              // ---------------------------------
1713              t_track->ygood[ip]  = l2->ygood_nt[i][ip];              // new implementation of xgood/ygood
1714                // ---------------------------------
1715                t_track->xgood[ip]  = l2->cltrx[i][ip]; //cluster ID
1716                t_track->ygood[ip]  = l2->cltry[i][ip]; //cluster ID
1717                t_track->xgood[ip] += 10000000*l2->ls[i][ip]; // ladder+sensor
1718                t_track->ygood[ip] += 10000000*l2->ls[i][ip]; // ladder+sensor
1719                if(l2->xbad[i][ip]>0)t_track->xgood[ip]=-t_track->xgood[ip];
1720                if(l2->ybad[i][ip]>0)t_track->ygood[ip]=-t_track->ygood[ip];
1721    //          if(l2->xbad[i][ip]>0 || l2->ybad[i][ip]>0){
1722    //          if(l2->dedx_x[i][ip]<0 || l2->dedx_y[i][ip]<0){
1723    //              cout << ip << " - "<< l2->cltrx[i][ip] << " "<<l2->cltry[i][ip]<<" "<<l2->ls[i][ip]<<endl;
1724    //              cout << ip << " - "<<t_track->xgood[ip]<<" "<<t_track->ygood[ip]<<endl;
1725    //              cout << ip << " - "<<t_track->GetClusterX_ID(ip)<<" "<<t_track->GetClusterY_ID(ip)<<" "<<t_track->GetLadder(ip)<<" "<<t_track->GetSensor(ip)<<endl;
1726    //              cout << ip << " - "<<t_track->BadClusterX(ip)<<" "<<t_track->BadClusterY(ip)<<endl;
1727    //              cout << ip << " - "<<t_track->SaturatedClusterX(ip)<<" "<<t_track->SaturatedClusterY(ip)<<endl;
1728    //          }
1729              t_track->xm[ip]     = l2->xm_nt[i][ip];              t_track->xm[ip]     = l2->xm_nt[i][ip];
1730              t_track->ym[ip]     = l2->ym_nt[i][ip];              t_track->ym[ip]     = l2->ym_nt[i][ip];
1731              t_track->zm[ip]     = l2->zm_nt[i][ip];              t_track->zm[ip]     = l2->zm_nt[i][ip];
1732              t_track->resx[ip]   = l2->resx_nt[i][ip];              t_track->resx[ip]   = l2->resx_nt[i][ip];
1733              t_track->resy[ip]   = l2->resy_nt[i][ip];              t_track->resy[ip]   = l2->resy_nt[i][ip];
1734                t_track->tailx[ip]  = l2->tailx[i][ip];
1735                t_track->taily[ip]  = l2->taily[i][ip];
1736              t_track->xv[ip]     = l2->xv_nt[i][ip];              t_track->xv[ip]     = l2->xv_nt[i][ip];
1737              t_track->yv[ip]     = l2->yv_nt[i][ip];              t_track->yv[ip]     = l2->yv_nt[i][ip];
1738              t_track->zv[ip]     = l2->zv_nt[i][ip];              t_track->zv[ip]     = l2->zv_nt[i][ip];
# Line 310  void TrkLevel2::FillCommonVar(cTrkLevel2 Line 1740  void TrkLevel2::FillCommonVar(cTrkLevel2
1740              t_track->ayv[ip]    = l2->ayv_nt[i][ip];              t_track->ayv[ip]    = l2->ayv_nt[i][ip];
1741              t_track->dedx_x[ip] = l2->dedx_x[i][ip];              t_track->dedx_x[ip] = l2->dedx_x[i][ip];
1742              t_track->dedx_y[ip] = l2->dedx_y[i][ip];              t_track->dedx_y[ip] = l2->dedx_y[i][ip];
1743                t_track->multmaxx[ip] = l2->multmaxx[i][ip];
1744                t_track->multmaxy[ip] = l2->multmaxy[i][ip];
1745                t_track->seedx[ip]  = l2->seedx[i][ip];  
1746                t_track->seedy[ip]  = l2->seedy[i][ip];
1747                t_track->xpu[ip]    = l2->xpu[i][ip];  
1748                t_track->ypu[ip]    = l2->ypu[i][ip];  
1749                //-----------------------------------------------------
1750                //-----------------------------------------------------
1751                //-----------------------------------------------------
1752                //-----------------------------------------------------
1753          };          };
1754            // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1755            // evaluated coordinates (to define GF)
1756            // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1757            int    ngf = TrkParams::nGF;
1758            float *zgf = TrkParams::zGF;
1759            Trajectory tgf = Trajectory(ngf,zgf);
1760            tgf.DoTrack(t_track->al);//<<<< integrate the trajectory
1761            for(int ip=0; ip<ngf; ip++){
1762                t_track->xGF[ip] = tgf.x[ip];
1763                t_track->yGF[ip] = tgf.y[ip];
1764            }
1765            
1766    //      if(t_track->IsSaturated())t_track->Dump();
1767          new(t[i]) TrkTrack(*t_track);          new(t[i]) TrkTrack(*t_track);
1768          t_track->Clear();          t_track->Clear();
1769      };      };//end loop over track
1770    
1771    //  ----------------
1772  //  *** SINGLETS ***  //  *** SINGLETS ***
1773    //  ----------------
1774        if(!SingletX)SingletX = new TClonesArray("TrkSinglet");
1775      TClonesArray &sx = *SingletX;      TClonesArray &sx = *SingletX;
1776      for(int i=0; i<l2->nclsx; i++){      for(int i=0; i<l2->nclsx; i++){
1777          t_singlet->plane    = l2->planex[i];          t_singlet->plane    = l2->planex[i];
1778          t_singlet->coord[0] = l2->xs[i][0];          t_singlet->coord[0] = l2->xs[i][0];
1779          t_singlet->coord[1] = l2->xs[i][1];          t_singlet->coord[1] = l2->xs[i][1];
1780          t_singlet->sgnl     = l2->signlxs[i];          t_singlet->sgnl     = l2->signlxs[i];
1781            t_singlet->multmax = l2->multmaxsx[i];
1782            if(l2->sxbad[i]>0) t_singlet->multmax = -1*t_singlet->multmax;
1783            //-----------------------------------------------------
1784    //      if(l1) t_singlet->cls      = l1->GetCluster(l2->clsx[i]-1);
1785            //-----------------------------------------------------
1786          new(sx[i]) TrkSinglet(*t_singlet);          new(sx[i]) TrkSinglet(*t_singlet);
1787          t_singlet->Clear();          t_singlet->Clear();
1788      }      }
1789        if(!SingletY)SingletY = new TClonesArray("TrkSinglet");
1790      TClonesArray &sy = *SingletY;      TClonesArray &sy = *SingletY;
1791      for(int i=0; i<l2->nclsy; i++){      for(int i=0; i<l2->nclsy; i++){
1792          t_singlet->plane    = l2->planey[i];          t_singlet->plane    = l2->planey[i];
1793          t_singlet->coord[0] = l2->ys[i][0];          t_singlet->coord[0] = l2->ys[i][0];
1794          t_singlet->coord[1] = l2->ys[i][1];          t_singlet->coord[1] = l2->ys[i][1];
1795          t_singlet->sgnl     = l2->signlys[i];          t_singlet->sgnl     = l2->signlys[i];
1796            t_singlet->multmax  = l2->multmaxsy[i];
1797            if(l2->sybad[i]>0) t_singlet->multmax = -1*t_singlet->multmax;
1798            //-----------------------------------------------------
1799    //      if(l1) t_singlet->cls      = l1->GetCluster(l2->clsy[i]-1);
1800            //-----------------------------------------------------
1801          new(sy[i]) TrkSinglet(*t_singlet);          new(sy[i]) TrkSinglet(*t_singlet);
1802          t_singlet->Clear();          t_singlet->Clear();
1803          };      };
1804    
1805    
1806            
1807        delete t_track;
1808        delete t_singlet;
1809    }
1810    /**
1811     * Fills a struct cTrkLevel2 with values from a TrkLevel2 object (to put data into a F77 common).
1812     */
1813    
1814    void TrkLevel2::GetLevel2Struct(cTrkLevel2 *l2) const {
1815      
1816    //  general variables
1817    //    l2->good2 = good2 ;
1818        for(Int_t i=0; i<12 ; i++){
1819    //      l2->crc[i] = crc[i];
1820                    l2->good[i] = good[i];
1821        };
1822    //  *** TRACKS ***
1823    
1824        if(Track){
1825            l2->ntrk              =  Track->GetEntries();    
1826            for(Int_t i=0;i<l2->ntrk;i++){
1827                l2->image[i] = 1 + ((TrkTrack *)Track->At(i))->image;
1828                l2->chi2_nt[i] =  ((TrkTrack *)Track->At(i))->chi2;
1829                l2->nstep_nt[i] =  ((TrkTrack *)Track->At(i))->nstep;
1830                for(int it1=0;it1<5;it1++){
1831                    l2->al_nt[i][it1] = ((TrkTrack *)Track->At(i))->al[it1];
1832                    for(int it2=0;it2<5;it2++)
1833                        l2->coval[i][it2][it1] = ((TrkTrack *)Track->At(i))->coval[it1][it2];
1834                };
1835                for(int ip=0;ip<6;ip++){
1836                    l2->xgood_nt[i][ip] = ((TrkTrack *)Track->At(i))->XGood(ip);
1837                    l2->ygood_nt[i][ip] = ((TrkTrack *)Track->At(i))->YGood(ip);
1838                    l2->xm_nt[i][ip]    = ((TrkTrack *)Track->At(i))->xm[ip];
1839                    l2->ym_nt[i][ip]    = ((TrkTrack *)Track->At(i))->ym[ip];
1840                    l2->zm_nt[i][ip]    = ((TrkTrack *)Track->At(i))->zm[ip];
1841                    l2->resx_nt[i][ip]  = ((TrkTrack *)Track->At(i))->resx[ip];
1842                    l2->resy_nt[i][ip]  = ((TrkTrack *)Track->At(i))->resy[ip];
1843                    l2->tailx[i][ip]  = ((TrkTrack *)Track->At(i))->tailx[ip];
1844                    l2->taily[i][ip]  = ((TrkTrack *)Track->At(i))->taily[ip];
1845                    l2->xv_nt[i][ip]    = ((TrkTrack *)Track->At(i))->xv[ip];
1846                    l2->yv_nt[i][ip]    = ((TrkTrack *)Track->At(i))->yv[ip];
1847                    l2->zv_nt[i][ip]    = ((TrkTrack *)Track->At(i))->zv[ip];
1848                    l2->axv_nt[i][ip]   = ((TrkTrack *)Track->At(i))->axv[ip];
1849                    l2->ayv_nt[i][ip]   = ((TrkTrack *)Track->At(i))->ayv[ip];
1850                    l2->dedx_x[i][ip]   = ((TrkTrack *)Track->At(i))->dedx_x[ip];
1851                    l2->dedx_y[i][ip]   = ((TrkTrack *)Track->At(i))->dedx_y[ip];
1852                };
1853            }
1854        }
1855    //  *** SINGLETS ***    
1856        if(SingletX){
1857            l2->nclsx              = SingletX->GetEntries();
1858            for(Int_t i=0;i<l2->nclsx;i++){
1859                l2->planex[i]  = ((TrkSinglet *)SingletX->At(i))->plane;
1860                l2->xs[i][0]   = ((TrkSinglet *)SingletX->At(i))->coord[0];
1861                l2->xs[i][1]   = ((TrkSinglet *)SingletX->At(i))->coord[1];
1862                l2->signlxs[i] = ((TrkSinglet *)SingletX->At(i))->sgnl;
1863            }
1864        }
1865    
1866        if(SingletY){
1867            l2->nclsy              = SingletY->GetEntries();
1868            for(Int_t i=0;i<l2->nclsy;i++){
1869                l2->planey[i]  = ((TrkSinglet *)SingletY->At(i))->plane;
1870                l2->ys[i][0]   = ((TrkSinglet *)SingletY->At(i))->coord[0];
1871                l2->ys[i][1]   = ((TrkSinglet *)SingletY->At(i))->coord[1];
1872                l2->signlys[i] = ((TrkSinglet *)SingletY->At(i))->sgnl;
1873            }
1874        }
1875  }  }
1876  //--------------------------------------  //--------------------------------------
1877  //  //
1878  //  //
1879  //--------------------------------------  //--------------------------------------
1880  void TrkLevel2::Clear(){  void TrkLevel2::Clear(){
     good2    = -1;  
1881      for(Int_t i=0; i<12 ; i++){      for(Int_t i=0; i<12 ; i++){
1882          crc[i] = -1;          good[i] = -1;
1883            VKflag[i] = 0;
1884            VKmask[i] = 0;
1885      };      };
1886      Track->RemoveAll();  //    if(Track)Track->Clear("C");
1887      SingletX->RemoveAll();  //    if(SingletX)SingletX->Clear("C");
1888      SingletY->RemoveAll();  //    if(SingletY)SingletY->Clear("C");
1889        if(Track)Track->Delete();
1890        if(SingletX)SingletX->Delete();
1891        if(SingletY)SingletY->Delete();
1892    }
1893    // //--------------------------------------
1894    // //
1895    // //
1896    // //--------------------------------------
1897    void TrkLevel2::Delete(){
1898            
1899    //    cout << "void TrkLevel2::Delete()"<<endl;
1900        Clear();
1901        if(Track)delete Track;
1902        if(SingletX)delete SingletX;
1903        if(SingletY)delete SingletY;
1904    
1905  }  }
1906  //--------------------------------------  //--------------------------------------
1907  //  //
# Line 355  void TrkLevel2::Clear(){ Line 1911  void TrkLevel2::Clear(){
1911   * Sort physical tracks and stores them in a TObjectArray, ordering by increasing chi**2 value (in case of track image, it selects the one with lower chi**2). The total number of physical tracks is given by GetNTracks() and the it-th physical track can be retrieved by means of the method GetTrack(int it).   * Sort physical tracks and stores them in a TObjectArray, ordering by increasing chi**2 value (in case of track image, it selects the one with lower chi**2). The total number of physical tracks is given by GetNTracks() and the it-th physical track can be retrieved by means of the method GetTrack(int it).
1912   * This method is overridden by PamLevel2::GetTracks(), where calorimeter and TOF information is used.   * This method is overridden by PamLevel2::GetTracks(), where calorimeter and TOF information is used.
1913   */   */
1914  TClonesArray *TrkLevel2::GetTracks(){  TRefArray *TrkLevel2::GetTracks_NFitSorted(){
     TClonesArray *sorted = GetTracks_NFitSorted();  
     return sorted;  
 };  
   
 TClonesArray *TrkLevel2::GetTracks_Chi2Sorted(){  
   
     TClonesArray *sorted = new TClonesArray("TrkTrack");  
     TClonesArray &t = *Track;  
     TClonesArray &ts = *sorted;  
     int N=this->ntrk();  
     vector<int> m(N); for(int i=0; i<N; i++)m[i]=1;  
1915    
1916      int indo=0;      if(!Track)return 0;
     int indi=0;  
     while(N != 0){  
         float chi2ref=1000000;  
         for(int i=0; i<this->ntrk(); i++){  
             if(((TrkTrack *)t[i])->chi2 < chi2ref && m[i]==1){  
                 chi2ref = ((TrkTrack *)t[i])->chi2;  
                 indi = i;  
             }  
         }  
         if( ((TrkTrack *)t[indi])->image != -1 ){  
             m[((TrkTrack *)t[indi])->image] = 0;  
             N--;  
         }  
         new(ts[indo]) TrkTrack(*(TrkTrack*)t[indi]);  
         m[indi] = 0;  
         N--;      
         indo++;  
     }  
     return sorted;  
 }  
 TClonesArray *TrkLevel2::GetTracks_NFitSorted(){  
1917    
1918      TClonesArray *sorted = new TClonesArray("TrkTrack");      //    TRefArray *sorted = new TRefArray();
1919      TClonesArray &t = *Track;      TRefArray *sorted = NULL;
1920      TClonesArray &ts = *sorted;          
1921      int N=this->ntrk();      TClonesArray &t  = *Track;
1922    //    TClonesArray &ts = *PhysicalTrack;
1923        int N = ntrk();
1924      vector<int> m(N); for(int i=0; i<N; i++)m[i]=1;      vector<int> m(N); for(int i=0; i<N; i++)m[i]=1;
1925    //      int m[50]; for(int i=0; i<N; i++)m[i]=1;
1926            
1927      int indo=0;      int indo=0;
1928      int indi=0;      int indi=0;
1929      while(N != 0){      while(N > 0){
1930    //    while(N != 0){
1931          int nfit =0;          int nfit =0;
1932          float chi2ref=1000000;          float chi2ref = numeric_limits<float>::max();
1933                    
1934          // first loop to search maximum num. of fit points          // first loop to search maximum num. of fit points
1935          for(int i=0; i<this->ntrk(); i++){          for(int i=0; i < ntrk(); i++){
1936              if( ((TrkTrack *)t[i])->GetNtot() >= nfit && m[i]==1){              if( ((TrkTrack *)t[i])->GetNtot() >= nfit && m[i]==1){
1937                  nfit =    ((TrkTrack *)t[i])->GetNtot();                  nfit =    ((TrkTrack *)t[i])->GetNtot();
 //              cout << "1** "<<i<< " " << nfit<<endl;  
1938              }              }
1939          }          }
1940          //second loop to search minimum chi2 among selected          //second loop to search minimum chi2 among selected
1941          for(int i=0; i<this->ntrk(); i++){          for(int i=0; i<ntrk(); i++){
1942              if(    ((TrkTrack *)t[i])->chi2 < chi2ref              Float_t chi2 = ((TrkTrack *)t[i])->chi2;
1943                  && ((TrkTrack *)t[i])->GetNtot()== nfit              if(chi2 < 0) chi2 = -chi2*1000;
1944                  && m[i]==1){              if(    chi2 < chi2ref
1945                       && ((TrkTrack *)t[i])->GetNtot() == nfit
1946                       && m[i]==1){
1947                  chi2ref = ((TrkTrack *)t[i])->chi2;                  chi2ref = ((TrkTrack *)t[i])->chi2;
1948                  indi = i;                  indi = i;
1949  //              cout << "2** "<<i<< " " << nfit <<" "<<chi2ref<<endl;              };
1950              }          };
         }  
1951          if( ((TrkTrack *)t[indi])->HasImage() ){          if( ((TrkTrack *)t[indi])->HasImage() ){
1952              m[((TrkTrack *)t[indi])->image] = 0;              m[((TrkTrack *)t[indi])->image] = 0;
1953              N--;              N--;
1954            
 //          Int_t nfiti=((TrkTrack *)t[((TrkTrack *)t[indi])->image  ])->GetNtot();  
 //          Float_t chi2i=((TrkTrack *)t[((TrkTrack *)t[indi])->image  ])->chi2;  
                   
1955  //          cout << "i** "<< ((TrkTrack *)t[indi])->image << " " << nfiti <<" "<<chi2i<<endl;  //          cout << "i** "<< ((TrkTrack *)t[indi])->image << " " << nfiti <<" "<<chi2i<<endl;
1956          }          };
1957          new(ts[indo]) TrkTrack(*(TrkTrack*)t[indi]);          if(!sorted)sorted = new TRefArray( TProcessID::GetProcessWithUID(t[indi]));
1958            sorted->Add( (TrkTrack*)t[indi] );      
1959                    
1960          m[indi] = 0;          m[indi] = 0;
1961    //      cout << "SORTED "<< indo << " "<< indi << " "<< N << " "<<((TrkTrack *)t[indi])->image<<" "<<chi2ref<<endl;
1962          N--;              N--;    
1963          indo++;          indo++;
1964      }      }
1965        m.clear();
1966    //    cout << "GetTracks_NFitSorted(it): Done"<< endl;
1967    
1968      return sorted;      return sorted;
1969    //    return PhysicalTrack;
1970  }  }
1971  //--------------------------------------  //--------------------------------------
1972  //  //
# Line 447  TClonesArray *TrkLevel2::GetTracks_NFitS Line 1980  TClonesArray *TrkLevel2::GetTracks_NFitS
1980  TrkTrack *TrkLevel2::GetStoredTrack(int is){  TrkTrack *TrkLevel2::GetStoredTrack(int is){
1981    
1982      if(is >= this->ntrk()){      if(is >= this->ntrk()){
1983          cout << "** TrkLevel2 ** Track "<< is << "doen not exits! " << endl;          cout << "TrkTrack *TrkLevel2::GetStoredTrack(int) >> Track "<< is << "doen not exits! " << endl;
1984          cout << "                Stored tracks ntrk() = "<< this->ntrk() << endl;          cout << "Stored tracks ntrk() = "<< this->ntrk() << endl;
1985          return 0;          return 0;
1986      }      }
1987        if(!Track){
1988            cout << "TrkTrack *TrkLevel2::GetStoredTrack(int is) >> (TClonesArray*) Track ==0 "<<endl;
1989        };
1990      TClonesArray &t = *(Track);      TClonesArray &t = *(Track);
1991      TrkTrack *track = (TrkTrack*)t[is];      TrkTrack *track = (TrkTrack*)t[is];
1992      return track;      return track;
# Line 460  TrkTrack *TrkLevel2::GetStoredTrack(int Line 1996  TrkTrack *TrkLevel2::GetStoredTrack(int
1996  //  //
1997  //--------------------------------------  //--------------------------------------
1998  /**  /**
1999     * Retrieves the is-th stored X singlet.
2000     * @param it Singlet number, ranging from 0 to nclsx().
2001     */
2002    TrkSinglet *TrkLevel2::GetSingletX(int is){
2003    
2004            if(is >= this->nclsx()){
2005                    cout << "TrkSinglet *TrkLevel2::GetSingletX(int) >> Singlet "<< is << "doen not exits! " << endl;
2006                    cout << "Stored x-singlets nclsx() = "<< this->nclsx() << endl;
2007                    return 0;
2008            }
2009            if(!SingletX)return 0;
2010            TClonesArray &t = *(SingletX);
2011            TrkSinglet *singlet = (TrkSinglet*)t[is];
2012            return singlet;
2013    }
2014    //--------------------------------------
2015    //
2016    //
2017    //--------------------------------------
2018    /**
2019     * Retrieves the is-th stored Y singlet.
2020     * @param it Singlet number, ranging from 0 to nclsx().
2021     */
2022    TrkSinglet *TrkLevel2::GetSingletY(int is){
2023    
2024            if(is >= this->nclsy()){
2025                    cout << "TrkSinglet *TrkLevel2::GetSingletY(int) >> Singlet "<< is << "doen not exits! " << endl;
2026                    cout << "Stored y-singlets nclsx() = "<< this->nclsx() << endl;
2027                    return 0;
2028            }
2029            if(!SingletY)return 0;
2030            TClonesArray &t = *(SingletY);
2031            TrkSinglet *singlet = (TrkSinglet*)t[is];
2032            return singlet;
2033    }
2034    //--------------------------------------
2035    //
2036    //
2037    //--------------------------------------
2038    /**
2039   * Retrieves the it-th "physical" track, sorted by the method GetNTracks().   * Retrieves the it-th "physical" track, sorted by the method GetNTracks().
2040   * @param it Track number, ranging from 0 to GetNTracks().   * @param it Track number, ranging from 0 to GetNTracks().
2041   */   */
2042    
2043  TrkTrack *TrkLevel2::GetTrack(int it){  TrkTrack *TrkLevel2::GetTrack(int it){
2044            
2045      if(it >= this->GetNTracks()){          if(it >= this->GetNTracks()){
2046          cout << "** TrkLevel2 ** Track "<< it << "does not exits! " << endl;                  cout << "TrkTrack *TrkLevel2::GetTrack(int) >> Track "<< it << "does not exits! " << endl;
2047          cout << "                Physical tracks GetNTracks() = "<< this->ntrk() << endl;                  cout << "Physical tracks GetNTracks() = "<< this->ntrk() << endl;
2048          return 0;                  return 0;
2049      }          }
2050      TrkTrack *track = (TrkTrack*)(*(this->GetTracks()))[it];          
2051      return track;          TRefArray *sorted = GetTracks();  //TEMPORANEO  
2052            if(!sorted)return 0;
2053            TrkTrack *track = (TrkTrack*)sorted->At(it);
2054            sorted->Clear();
2055            delete sorted;
2056            return track;
2057  }  }
2058    /**
2059     * Give the number of "physical" tracks, sorted by the method GetTracks().
2060     */
2061    Int_t TrkLevel2::GetNTracks(){
2062                    
2063            Float_t ntot=0;
2064            if(!Track)return 0;
2065            TClonesArray &t = *Track;
2066            for(int i=0; i<ntrk(); i++) {    
2067                    if( ((TrkTrack *)t[i])->GetImageSeqNo() == -1 ) ntot+=1.;
2068                    else ntot+=0.5;
2069            }
2070            return (Int_t)ntot;
2071    
2072    };
2073  //--------------------------------------  //--------------------------------------
2074  //  //
2075  //  //
# Line 484  TrkTrack *TrkLevel2::GetTrack(int it){ Line 2081  TrkTrack *TrkLevel2::GetTrack(int it){
2081  TrkTrack *TrkLevel2::GetTrackImage(int it){  TrkTrack *TrkLevel2::GetTrackImage(int it){
2082    
2083      if(it >= this->GetNTracks()){      if(it >= this->GetNTracks()){
2084          cout << "** TrkLevel2 ** Track "<< it << "does not exits! " << endl;          cout << "TrkTrack *TrkLevel2::GetTrackImage(int) >> Track "<< it << "does not exits! " << endl;
2085          cout << "                Physical tracks GetNTracks() = "<< this->ntrk() << endl;          cout << "Physical tracks GetNTracks() = "<< this->ntrk() << endl;
2086          return 0;          return 0;
2087      }      }
2088      TrkTrack *track = (TrkTrack*)(*(this->GetTracks()))[it];          
2089        TRefArray* sorted = GetTracks(); //TEMPORANEO
2090        if(!sorted)return 0;
2091        TrkTrack *track = (TrkTrack*)sorted->At(it);
2092            
2093      if(!track->HasImage()){      if(!track->HasImage()){
2094          cout << "** TrkLevel2 ** Track "<< it << "does not have image! " << endl;          cout << "TrkTrack *TrkLevel2::GetTrackImage(int) >> Track "<< it << "does not have image! " << endl;
2095          return 0;          return 0;
2096      }      }
2097        if(!Track)return 0;
2098      TrkTrack *image = (TrkTrack*)(*Track)[track->image];      TrkTrack *image = (TrkTrack*)(*Track)[track->image];
2099    
2100        sorted->Delete();
2101        delete sorted;
2102    
2103      return image;      return image;
2104            
2105  }  }
# Line 505  TrkTrack *TrkLevel2::GetTrackImage(int i Line 2111  TrkTrack *TrkLevel2::GetTrackImage(int i
2111   * Loads the magnetic field.   * Loads the magnetic field.
2112   * @param s Path of the magnetic-field files.   * @param s Path of the magnetic-field files.
2113   */   */
2114  void TrkLevel2::LoadField(TString s){  void TrkLevel2::LoadField(TString path){
2115      readb_(s.Data());  //
2116    //     strcpy(path_.path,path.Data());
2117    //     path_.pathlen = path.Length();
2118    //     path_.error   = 0;
2119    //     readb_();
2120    
2121    //     TrkParams::SetTrackingMode();
2122    //     TrkParams::SetPrecisionFactor();
2123    //     TrkParams::SetStepMin();
2124        TrkParams::SetMiniDefault();
2125    
2126        TrkParams::Set(path,1);
2127        TrkParams::Load(1);
2128        if( !TrkParams::IsLoaded(1) ){
2129            cout << "void TrkLevel2::LoadField(TString path) --- ERROR --- m.field not loaded"<<endl;
2130        }
2131    
2132    //
2133    };
2134    // /**
2135    //  * Get BY (kGauss)
2136    //  * @param v (x,y,z) coordinates in cm
2137    //  */
2138    // float TrkLevel2::GetBX(float* v){
2139    //     float b[3];
2140    //     gufld_(v,b);
2141    //     return b[0]/10.;
2142    // }
2143    // /**
2144    //  * Get BY (kGauss)
2145    //  * @param v (x,y,z) coordinates in cm
2146    //  */
2147    // float TrkLevel2::GetBY(float* v){
2148    //     float b[3];
2149    //     gufld_(v,b);
2150    //     return b[1]/10.;
2151    // }
2152    // /**
2153    //  * Get BY (kGauss)
2154    //  * @param v (x,y,z) coordinates in cm
2155    //  */
2156    // float TrkLevel2::GetBZ(float* v){
2157    //     float b[3];
2158    //     gufld_(v,b);
2159    //     return b[2]/10.;
2160    // }
2161    //--------------------------------------
2162    //
2163    //
2164    //--------------------------------------
2165    /**
2166     * Get tracker-plane (mechanical) z-coordinate
2167     * @param plane_id plane index (1=TOP,2,3,4,5,6=BOTTOM)
2168     */
2169    Float_t TrkLevel2::GetZTrk(Int_t plane_id){
2170            switch(plane_id){
2171                    case 1: return ZTRK1;
2172                    case 2: return ZTRK2;
2173                    case 3: return ZTRK3;
2174                    case 4: return ZTRK4;
2175                    case 5: return ZTRK5;
2176                    case 6: return ZTRK6;
2177                    default: return 0.;
2178            };
2179  };  };
2180  //--------------------------------------  //--------------------------------------
2181  //  //
# Line 524  Trajectory::Trajectory(){ Line 2193  Trajectory::Trajectory(){
2193      thx = new float[npoint];      thx = new float[npoint];
2194      thy = new float[npoint];      thy = new float[npoint];
2195      tl = new float[npoint];      tl = new float[npoint];
2196      float dz = ((ZTRKUP)-(ZTRKDW))/(npoint-1);      float dz = ((ZTRK1)-(ZTRK6))/(npoint-1);
2197      for(int i=0; i<npoint; i++){      for(int i=0; i<npoint; i++){
2198          x[i] = 0;          x[i] = 0;
2199          y[i] = 0;          y[i] = 0;
2200          z[i] = (ZTRKUP) - i*dz;          z[i] = (ZTRK1) - i*dz;
2201          thx[i] = 0;          thx[i] = 0;
2202          thy[i] = 0;          thy[i] = 0;
2203          tl[i] = 0;          tl[i] = 0;
# Line 555  Trajectory::Trajectory(int n){ Line 2224  Trajectory::Trajectory(int n){
2224      thx = new float[npoint];      thx = new float[npoint];
2225      thy = new float[npoint];      thy = new float[npoint];
2226      tl = new float[npoint];      tl = new float[npoint];
2227      float dz = ((ZTRKUP)-(ZTRKDW))/(npoint-1);      float dz = ((ZTRK1)-(ZTRK6))/(npoint-1);
2228      for(int i=0; i<npoint; i++){      for(int i=0; i<npoint; i++){
2229          x[i] = 0;          x[i] = 0;
2230          y[i] = 0;          y[i] = 0;
2231          z[i] = (ZTRKUP) - i*dz;          z[i] = (ZTRK1) - i*dz;
2232          thx[i] = 0;          thx[i] = 0;
2233          thy[i] = 0;          thy[i] = 0;
2234          tl[i] = 0;          tl[i] = 0;
# Line 596  Trajectory::Trajectory(int n, float* zin Line 2265  Trajectory::Trajectory(int n, float* zin
2265      npoint=i;      npoint=i;
2266      if(npoint != n)cout << "NB! Trajectory created with "<<npoint<<" points"<<endl;      if(npoint != n)cout << "NB! Trajectory created with "<<npoint<<" points"<<endl;
2267  }  }
2268    void Trajectory::Delete(){
2269        
2270        if(x) delete [] x;
2271        if(y) delete [] y;
2272        if(z) delete [] z;
2273        if(thx) delete [] thx;
2274        if(thy) delete [] thy;
2275        if(tl) delete [] tl;
2276    
2277    }
2278  //--------------------------------------  //--------------------------------------
2279  //  //
2280  //  //
# Line 633  float Trajectory::GetLength(int ifirst, Line 2312  float Trajectory::GetLength(int ifirst,
2312      return l;      return l;
2313    
2314  }  }
2315    
2316    /**
2317     * Evaluates the trajectory in the apparatus associated to the track.
2318     * It integrates the equations of motion in the magnetic field.
2319     * @param al Track state-vector (X0,Y0,sin(theta),phi,deflection).
2320     * @param zini z-coordinate of the reference plane (Z0).
2321     * @return error flag.
2322     *
2323     * This method is needed when you want to integrate the particle trajectory
2324     * starting from a track state-vector relative to an arbitrary reference plane.
2325     * The default reference plane, used by the tracker routines, is at zini=23.5.
2326     * If you give as input the track state-vector from a TrkTrack object,
2327     * you can use Trajectory::DoTrack(float* al) instead.
2328     */
2329    int Trajectory::DoTrack(float* al, float zini){
2330    
2331    //      double *dxout   = new double[npoint];
2332    //      double *dyout   = new double[npoint];
2333    //      double *dthxout = new double[npoint];
2334    //      double *dthyout = new double[npoint];
2335    //      double *dtlout  = new double[npoint];
2336    //      double *dzin    = new double[npoint];
2337        
2338        double *dxout;
2339        double *dyout;
2340        double *dthxout;
2341        double *dthyout;
2342        double *dtlout;
2343        double *dzin;
2344        
2345        dxout   = (double*) malloc(npoint*sizeof(double));
2346        dyout   = (double*) malloc(npoint*sizeof(double));
2347        dthxout = (double*) malloc(npoint*sizeof(double));
2348        dthyout = (double*) malloc(npoint*sizeof(double));
2349        dtlout  = (double*) malloc(npoint*sizeof(double));
2350        dzin    = (double*) malloc(npoint*sizeof(double));
2351        
2352        double dal[5];
2353    
2354        double dzini = (double)zini;
2355    
2356        int ifail = 0;
2357        
2358        for (int i=0; i<5; i++)      dal[i]  = (double)al[i];
2359        for (int i=0; i<npoint; i++) dzin[i] = (double)z[i];
2360    
2361        TrkParams::Load(1);
2362        if( !TrkParams::IsLoaded(1) ){
2363            cout << "int Trajectory::DoTrack(float* al) --- ERROR --- m.field not loaded"<<endl;
2364            return 0;
2365        }
2366    //    dotrack2_(&(npoint),dzin,dxout,dyout,dthxout,dthyout,dtlout,dal,&ifail);
2367        dotrack3_(&(npoint),dzin,dxout,dyout,dthxout,dthyout,dtlout,dal,&dzini,&ifail);
2368        
2369        for (int i=0; i<npoint; i++){
2370            x[i]   = (float)*(dxout+i);
2371            y[i]   = (float)*(dyout+i);
2372            thx[i] = (float)*(dthxout+i);
2373            thy[i] = (float)*(dthyout+i);
2374            tl[i]  = (float)*(dtlout+i);
2375        }
2376    
2377        if(dxout)  free( dxout );
2378        if(dyout)  free( dyout );
2379        if(dthxout)free( dthxout );
2380        if(dthyout)free( dthyout );
2381        if(dtlout) free( dtlout );
2382        if(dzin)   free( dzin );
2383    
2384    //      delete [] dxout;
2385    //      delete [] dyout;
2386    //      delete [] dthxout;
2387    //      delete [] dthyout;
2388    //      delete [] dtlout;
2389    //      delete [] dzin;
2390    
2391    
2392        return ifail;
2393    };
2394    
2395    /**
2396     *
2397     * >>> OBSOLETE !!! use Trajectory::DoTrack(float* al, float zini) instead
2398     *
2399     */
2400    int Trajectory::DoTrack2(float* al, float zini){
2401    
2402        cout << endl;
2403        cout << " int Trajectory::DoTrack2(float* al, float zini) --->> NB NB !! this method is going to be eliminated !!! "<<endl;
2404        cout << " >>>> replace it with TrkTrack::DoTrack(Trajectory* t) <<<<"<<endl;
2405        cout << " (Sorry Wolfgang!! Don't be totally confused!! By Elena)"<<endl;
2406        cout << endl;
2407    
2408        return DoTrack(al,zini);
2409    
2410    };
2411    
2412    
2413    
2414  ClassImp(TrkLevel2);  ClassImp(TrkLevel2);
2415  ClassImp(TrkSinglet);  ClassImp(TrkSinglet);
2416  ClassImp(TrkTrack);  ClassImp(TrkTrack);

Legend:
Removed from v.1.4  
changed lines
  Added in v.1.56

  ViewVC Help
Powered by ViewVC 1.1.23