/[PAMELA software]/DarthVader/TrackerLevel2/src/TrkLevel2.cpp
ViewVC logotype

Diff of /DarthVader/TrackerLevel2/src/TrkLevel2.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 1.3 by pam-fi, Wed Jun 14 10:01:44 2006 UTC revision 1.60 by pam-fi, Thu Jan 28 14:38:24 2016 UTC
# Line 4  Line 4 
4   */   */
5  #include <TrkLevel2.h>  #include <TrkLevel2.h>
6  #include <iostream>  #include <iostream>
7    #include <math.h>
8  using namespace std;  using namespace std;
9  //......................................  //......................................
10  // F77 routines  // F77 routines
# Line 11  using namespace std; Line 12  using namespace std;
12  extern "C" {      extern "C" {    
13      void dotrack_(int*, double*, double*, double*, double*, int*);      void dotrack_(int*, double*, double*, double*, double*, int*);
14      void dotrack2_(int*, double*, double*, double*, double*,double*, double*, double*,int*);      void dotrack2_(int*, double*, double*, double*, double*,double*, double*, double*,int*);
15      int  readb_(const char*);      void dotrack3_(int*, double*, double*, double*, double*,double*, double*, double*,double*,int*);
16        void mini2_(int*,int*,int*);
17        void guess_();
18        void gufld_(float*, float*);
19        float risxeta2_(float *);
20        float risxeta3_(float *);
21        float risxeta4_(float *);
22        float risyeta2_(float *);
23  }  }
24    
25  //--------------------------------------  //--------------------------------------
26  //  //
27  //  //
28  //--------------------------------------  //--------------------------------------
29  TrkTrack::TrkTrack(){  TrkTrack::TrkTrack(){
30    //    cout << "TrkTrack::TrkTrack()" << endl;
31      seqno = -1;      seqno = -1;
32      image = -1;      image = -1;
33      chi2  = 0;      chi2  = 0;
34        nstep = 0;
35      for(int it1=0;it1<5;it1++){      for(int it1=0;it1<5;it1++){
36          al[it1] = 0;          al[it1] = 0;
37          for(int it2=0;it2<5;it2++)          for(int it2=0;it2<5;it2++)coval[it1][it2] = 0;
             coval[it1][it2] = 0;  
38      };      };
39      for(int ip=0;ip<6;ip++){      for(int ip=0;ip<6;ip++){
40          xgood[ip]  = 0;          xgood[ip]  = 0;
# Line 34  TrkTrack::TrkTrack(){ Line 44  TrkTrack::TrkTrack(){
44          zm[ip]     = 0;          zm[ip]     = 0;
45          resx[ip]   = 0;          resx[ip]   = 0;
46          resy[ip]   = 0;          resy[ip]   = 0;
47            tailx[ip]   = 0;
48            taily[ip]   = 0;
49          xv[ip]     = 0;          xv[ip]     = 0;
50          yv[ip]     = 0;          yv[ip]     = 0;
51          zv[ip]     = 0;          zv[ip]     = 0;
# Line 41  TrkTrack::TrkTrack(){ Line 53  TrkTrack::TrkTrack(){
53          ayv[ip]    = 0;          ayv[ip]    = 0;
54          dedx_x[ip] = 0;          dedx_x[ip] = 0;
55          dedx_y[ip] = 0;          dedx_y[ip] = 0;
56      };              multmaxx[ip] = 0;
57            multmaxy[ip] = 0;
58            seedx[ip]  = 0;  
59            seedy[ip]  = 0;
60            xpu[ip]    = 0;  
61            ypu[ip]    = 0;  
62    
63        };
64        
65    //     TrkParams::SetTrackingMode();
66    //     TrkParams::SetPrecisionFactor();
67    //     TrkParams::SetStepMin();
68        TrkParams::SetMiniDefault();
69        TrkParams::SetPFA();
70    
71        int ngf = TrkParams::nGF;
72        for(int i=0; i<ngf; i++){
73            xGF[i] = 0.;
74            yGF[i] = 0.;
75        }
76    
77    
78  };  };
79  //--------------------------------------  //--------------------------------------
80  //  //
# Line 51  TrkTrack::TrkTrack(const TrkTrack& t){ Line 84  TrkTrack::TrkTrack(const TrkTrack& t){
84      seqno = t.seqno;      seqno = t.seqno;
85      image = t.image;      image = t.image;
86      chi2  = t.chi2;      chi2  = t.chi2;
87        nstep = t.nstep;
88      for(int it1=0;it1<5;it1++){      for(int it1=0;it1<5;it1++){
89          al[it1] = t.al[it1];          al[it1] = t.al[it1];
90          for(int it2=0;it2<5;it2++)          for(int it2=0;it2<5;it2++)coval[it1][it2] = t.coval[it1][it2];
             coval[it1][it2] = t.coval[it1][it2];  
91      };      };
92      for(int ip=0;ip<6;ip++){      for(int ip=0;ip<6;ip++){
93          xgood[ip]  = t.xgood[ip];          xgood[ip]  = t.xgood[ip];
# Line 64  TrkTrack::TrkTrack(const TrkTrack& t){ Line 97  TrkTrack::TrkTrack(const TrkTrack& t){
97          zm[ip]     = t.zm[ip];          zm[ip]     = t.zm[ip];
98          resx[ip]   = t.resx[ip];          resx[ip]   = t.resx[ip];
99          resy[ip]   = t.resy[ip];          resy[ip]   = t.resy[ip];
100            tailx[ip]  = t.tailx[ip];
101            taily[ip]  = t.taily[ip];
102          xv[ip]     = t.xv[ip];          xv[ip]     = t.xv[ip];
103          yv[ip]     = t.yv[ip];          yv[ip]     = t.yv[ip];
104          zv[ip]     = t.zv[ip];          zv[ip]     = t.zv[ip];
# Line 71  TrkTrack::TrkTrack(const TrkTrack& t){ Line 106  TrkTrack::TrkTrack(const TrkTrack& t){
106          ayv[ip]    = t.ayv[ip];          ayv[ip]    = t.ayv[ip];
107          dedx_x[ip] = t.dedx_x[ip];          dedx_x[ip] = t.dedx_x[ip];
108          dedx_y[ip] = t.dedx_y[ip];          dedx_y[ip] = t.dedx_y[ip];
109      };              multmaxx[ip] = t.multmaxx[ip];
110            multmaxy[ip] = t.multmaxy[ip];
111            seedx[ip]    = t.seedx[ip];  
112            seedy[ip]    = t.seedy[ip];
113            xpu[ip]      = t.xpu[ip];  
114            ypu[ip]      = t.ypu[ip];  
115        };
116    
117    //     TrkParams::SetTrackingMode();
118    //     TrkParams::SetPrecisionFactor();
119    //     TrkParams::SetStepMin();  
120        TrkParams::SetMiniDefault();
121        TrkParams::SetPFA();
122    
123        int ngf = TrkParams::nGF;
124        for(int i=0; i<ngf; i++){
125            xGF[i] = t.xGF[i];
126            yGF[i] = t.yGF[i];
127        }
128  };  };
129  //--------------------------------------  //--------------------------------------
130  //  //
131  //  //
132  //--------------------------------------  //--------------------------------------
133  /**  void TrkTrack::Copy(TrkTrack& t){
  * Evaluates the trajectory in the apparatus associated to the track.  
  * It integrates the equations of motion in the magnetic field. The magnetic field should be previously loaded ( by calling  TrkLevel2::LoadField() ), otherwise an error message is returned.    
  * @param t pointer to an object of the class Trajectory,  
  * which z coordinates should be previously initialized by calling the proper constructor ( Trajectory::Trajectory(int n, float* zin) ).  
  * @return error flag.  
  */  
 int TrkTrack::DoTrack(Trajectory* t){  
   
     double *dxout = new double[t->npoint];  
     double *dyout = new double[t->npoint];  
     double *dzin = new double[t->npoint];  
     double dal[5];  
134    
135      int ifail = 0;      t.seqno = seqno;
136        t.image = image;
137      for (int i=0; i<5; i++)         dal[i]  = (double)al[i];      t.chi2  = chi2;
138      for (int i=0; i<t->npoint; i++) dzin[i] = (double)t->z[i];      t.nstep = nstep;
139        for(int it1=0;it1<5;it1++){
140            t.al[it1] = al[it1];
141            for(int it2=0;it2<5;it2++)t.coval[it1][it2] = coval[it1][it2];
142        };
143        for(int ip=0;ip<6;ip++){
144            t.xgood[ip]  = xgood[ip];
145            t.ygood[ip]  = ygood[ip];
146            t.xm[ip]     = xm[ip];
147            t.ym[ip]     = ym[ip];
148            t.zm[ip]     = zm[ip];
149            t.resx[ip]   = resx[ip];
150            t.resy[ip]   = resy[ip];
151            t.tailx[ip]  = tailx[ip];
152            t.taily[ip]  = taily[ip];
153            t.xv[ip]     = xv[ip];
154            t.yv[ip]     = yv[ip];
155            t.zv[ip]     = zv[ip];
156            t.axv[ip]    = axv[ip];
157            t.ayv[ip]    = ayv[ip];
158            t.dedx_x[ip] = dedx_x[ip];
159            t.dedx_y[ip] = dedx_y[ip];
160            t.multmaxx[ip] = multmaxx[ip];
161            t.multmaxy[ip] = multmaxy[ip];
162            t.seedx[ip]    = seedx[ip];  
163            t.seedy[ip]    = seedy[ip];
164            t.xpu[ip]      = xpu[ip];  
165            t.ypu[ip]      = ypu[ip];  
166                
167        };
168        int ngf = TrkParams::nGF;
169        for(int i=0; i<ngf; i++){
170            t.xGF[i] = xGF[i];
171            t.yGF[i] = yGF[i];
172        }
173    
     dotrack_(&(t->npoint),dzin,dxout,dyout,dal,&ifail);  
174            
175      for (int i=0; i<t->npoint; i++){  };
176          t->x[i] = (float)*dxout++;  //--------------------------------------
177          t->y[i] = (float)*dyout++;  //
178      }  //
179    //--------------------------------------
180    /**
181     *
182     * >>> OBSOLETE !!! use TrkTrack::DoTrack(Trajectory* t) instead
183     *
184     */
185    int TrkTrack::DoTrack2(Trajectory* t){
186    
187  //    delete [] dxout;      cout << endl;
188  //    delete [] dyout;      cout << " int TrkTrack::DoTrack2(Trajectory* t) --->> NB NB !! this method is going to be eliminated !!! "<<endl;
189  //    delete [] dzin;      cout << " >>>> replace it with TrkTrack::DoTrack(Trajectory* t) <<<<"<<endl;
190        cout << " (Sorry Wolfgang!! Don't be totally confused!! By Elena)"<<endl;
191        cout << endl;
192    
193        return DoTrack(t);
194    
     return ifail;  
195  };  };
196  //--------------------------------------  //--------------------------------------
197  //  //
198  //  //
199  //--------------------------------------  //--------------------------------------
200  /**  /**
201   * Evaluates the trajectory in the apparatus associated to the track.   * Evaluates the trajectory in the apparatus associated to the track state-vector.
202   * It integrates the equations of motion in the magnetic field. The magnetic field should be previously loaded ( by calling  TrkLevel2::LoadField() ), otherwise an error message is returned.     * It integrates the equations of motion in the magnetic field.
203   * @param t pointer to an object of the class Trajectory,   * @param t pointer to an object of the class Trajectory,
204   * which z coordinates should be previously initialized by calling the proper constructor ( Trajectory::Trajectory(int n, float* zin) ).   * which z coordinates should be previously assigned.
205   * @return error flag.   * @return error flag.
206   */   */
207  int TrkTrack::DoTrack2(Trajectory* t){  int TrkTrack::DoTrack(Trajectory* t){
208    
209      double *dxout   = new double[t->npoint];      double *dxout   = new double[t->npoint];
210      double *dyout   = new double[t->npoint];      double *dyout   = new double[t->npoint];
# Line 135  int TrkTrack::DoTrack2(Trajectory* t){ Line 219  int TrkTrack::DoTrack2(Trajectory* t){
219      for (int i=0; i<5; i++)         dal[i]  = (double)al[i];      for (int i=0; i<5; i++)         dal[i]  = (double)al[i];
220      for (int i=0; i<t->npoint; i++) dzin[i] = (double)t->z[i];      for (int i=0; i<t->npoint; i++) dzin[i] = (double)t->z[i];
221    
222        TrkParams::Load(1);
223        if( !TrkParams::IsLoaded(1) ){
224            cout << "int TrkTrack::DoTrack(Trajectory* t) --- ERROR --- m.field not loaded"<<endl;
225            return 0;
226        }
227      dotrack2_(&(t->npoint),dzin,dxout,dyout,dthxout,dthyout,dtlout,dal,&ifail);      dotrack2_(&(t->npoint),dzin,dxout,dyout,dthxout,dthyout,dtlout,dal,&ifail);
228            
229      for (int i=0; i<t->npoint; i++){      for (int i=0; i<t->npoint; i++){
230          t->x[i]   = (float)*dxout++;          t->x[i]   = (float)*(dxout+i);
231          t->y[i]   = (float)*dyout++;          t->y[i]   = (float)*(dyout+i);
232          t->thx[i] = (float)*dthxout++;          t->thx[i] = (float)*(dthxout+i);
233          t->thy[i] = (float)*dthyout++;          t->thy[i] = (float)*(dthyout+i);
234          t->tl[i]  = (float)*dtlout++;          t->tl[i]  = (float)*(dtlout+i);
235        }
236    
237        delete [] dxout;
238        delete [] dyout;
239        delete [] dzin;
240        delete [] dthxout;
241        delete [] dthyout;
242        delete [] dtlout;
243    
244        return ifail;
245    };
246    //--------------------------------------
247    //
248    //
249    //--------------------------------------
250    //float TrkTrack::BdL(){
251    //};
252    //--------------------------------------
253    //
254    //
255    //--------------------------------------
256    Float_t TrkTrack::GetRigidity(){
257            Float_t rig=0;
258            if(chi2>0)rig=1./al[4];
259            if(rig<0) rig=-rig;
260            return rig;
261    };
262    //
263    Float_t TrkTrack::GetDeflection(){
264            Float_t def=0;
265            if(chi2>0)def=al[4];
266            return def;
267    };
268    //
269    /**
270     * Method to retrieve the dE/dx measured on a tracker view.
271     * @param ip plane (0-5)
272     * @param iv view (0=x 1=y)
273     */
274    Float_t TrkTrack::GetDEDX(int ip, int iv){
275        if(iv==0 && ip>=0 && ip<6)return fabs(dedx_x[ip]);
276        else if(iv==1 && ip>=0 && ip<6)return fabs(dedx_y[ip]);
277        else {
278            cout << "TrkTrack::GetDEDX(int ip, int iv) -- wrong input parameters "<<ip<<iv<<endl;
279            return 0.;
280        }
281    }
282    /**
283     * Method to evaluate the dE/dx measured on a tracker plane.
284     * The two measurements on x- and y-view are averaged.
285     * @param ip plane (0-5)
286     */
287    Float_t TrkTrack::GetDEDX(int ip){
288        if( (Int_t)XGood(ip)+(Int_t)YGood(ip) == 0 ) return 0;
289        return (GetDEDX(ip,0)+GetDEDX(ip,1))/((Int_t)XGood(ip)+(Int_t)YGood(ip));
290    };
291    
292    /**
293     * Method to evaluate the dE/dx averaged over all planes.
294     */
295    Float_t TrkTrack::GetDEDX(){
296        Float_t dedx=0;
297        for(Int_t ip=0; ip<6; ip++)dedx+=GetDEDX(ip,0)*XGood(ip)+GetDEDX(ip,1)*YGood(ip);
298        dedx = dedx/(GetNX()+GetNY());
299        return dedx;
300    };
301    /**
302     * Returns 1 if the cluster on a tracker view includes bad strips
303     * (at least one bad strip among the four strip used by p.f.a.)
304     * @param ip plane (0-5)
305     * @param iv view (0=x 1=y)
306     */
307    Bool_t TrkTrack::IsBad(int ip,int iv){
308        if(iv==0 && ip>=0 && ip<6)return (xgood[ip]<0) ;
309        else if(iv==1 && ip>=0 && ip<6)return (ygood[ip]<0) ;
310        else {
311            cout << "TrkTrack::IsBad(int ip, int iv) -- wrong input parameters "<<ip<<iv<<endl;
312            return 0.;
313        }
314    };
315    /**
316     * Returns 1 if the signal on a tracker view is saturated.
317     * @param ip plane (0-5)
318     * @param iv view (0=x 1=y)
319     */
320    Bool_t TrkTrack::IsSaturated(int ip,int iv){
321        if(iv==0 && ip>=0 && ip<6)return (dedx_x[ip]<0) ;
322        else if(iv==1 && ip>=0 && ip<6)return (dedx_y[ip]<0) ;
323        else {
324            cout << "TrkTrack::IsSaturated(int ip, int iv) -- wrong input parameters "<<ip<<iv<<endl;
325            return 0.;
326        }
327    };
328    /**
329     * Returns 1 if either the x or the y signal on a tracker plane is saturated.
330     * @param ip plane (0-5)
331     */
332    Bool_t TrkTrack::IsSaturated(int ip){
333        return (IsSaturated(ip,0)||IsSaturated(ip,1));
334    };
335    /**
336     * Returns 1 if there is at least a saturated signal along the track.
337     */
338    Bool_t TrkTrack::IsSaturated(){
339        for(int ip=0; ip<6; ip++)for(int iv=0; iv<2; iv++)if(IsSaturated(ip,iv))return true;
340        return false;
341    }
342    /**
343     * Returns the track "lever-arm" on the x view, defined as the distance (in planes) between
344     * the upper and lower x measurements (the maximum value of lever-arm is 6).
345     */
346    Int_t TrkTrack::GetLeverArmX(){
347        int first_plane = -1;
348        int last_plane  = -1;
349        for(Int_t ip=0; ip<6; ip++){
350            if( XGood(ip) && first_plane == -1 )first_plane = ip;
351            if( XGood(ip) && first_plane != -1 )last_plane = ip;
352        }
353        if( first_plane == -1 || last_plane == -1){
354            cout<< "Int_t TrkTrack::GetLeverArmX() -- XGood(ip) always false ??? "<<endl;
355            return 0;
356        }
357        return (last_plane-first_plane+1);
358    }
359    /**
360     * Returns the track "lever-arm" on the y view, defined as the distance (in planes) between
361     * the upper and lower y measurements (the maximum value of lever-arm is 6).
362     */
363    Int_t TrkTrack::GetLeverArmY(){
364        int first_plane = -1;
365        int last_plane  = -1;
366        for(Int_t ip=0; ip<6; ip++){
367            if( YGood(ip) && first_plane == -1 )first_plane = ip;
368            if( YGood(ip) && first_plane != -1 )last_plane = ip;
369        }
370        if( first_plane == -1 || last_plane == -1){
371            cout<< "Int_t TrkTrack::GetLeverArmY() -- YGood(ip) always false ??? "<<endl;
372            return 0;
373        }
374        return (last_plane-first_plane+1);
375    }
376    /**
377     * Returns the track "lever-arm" on the x+y view, defined as the distance (in planes) between
378     * the upper and lower x,y (couple) measurements (the maximum value of lever-arm is 6).
379     */
380    Int_t TrkTrack::GetLeverArmXY(){
381        int first_plane = -1;
382        int last_plane  = -1;
383        for(Int_t ip=0; ip<6; ip++){
384            if( XGood(ip) && YGood(ip) && first_plane == -1 )first_plane = ip;
385            if( XGood(ip) && YGood(ip) && first_plane != -1 )last_plane = ip;
386        }
387        if( first_plane == -1 || last_plane == -1){
388            cout<< "Int_t TrkTrack::GetLeverArmXY() -- XGood(ip)*YGood(ip) always false ??? "<<endl;
389            return 0;
390        }
391        return (last_plane-first_plane+1);
392    }
393    /**
394     * Returns the number of hit planes
395     */
396    Int_t TrkTrack::GetNhit()  {
397      int np=0;
398      for(Int_t ip=0; ip<6; ip++) np += (XGood(ip)||YGood(ip)) ;
399      return np;
400    };
401    /**
402     * Returns the reduced chi-square of track x-projection
403     */
404    Float_t  TrkTrack::GetChi2X(){
405        float chiq=0;
406        for(int ip=0; ip<6; ip++)if(XGood(ip))chiq+= pow((xv[ip]-xm[ip])/resx[ip],2.);
407        if(GetNX()>3)chiq=chiq/(GetNX()-3);
408        else chiq=0;
409        //    if(chiq==0)cout << " Float_t  TrkTrack::GetChi2X() -- WARNING -- value not defined "<<chiq<<endl;
410        return chiq;
411    }
412    /**
413     * Returns the reduced chi-square of track y-projection
414     */
415    Float_t  TrkTrack::GetChi2Y(){
416        float chiq=0;
417        for(int ip=0; ip<6; ip++)if(YGood(ip))chiq+= pow((yv[ip]-ym[ip])/resy[ip],2.);
418        if(GetNY()>2)chiq=chiq/(GetNY()-2);
419        else chiq=0;
420        //    if(chiq==0)cout << " Float_t  TrkTrack::GetChi2Y() -- WARNING -- value not defined "<<chiq<<endl;
421        return chiq;
422    }
423    /**
424     * Returns the logarythm of the likeliwood-function of  track x-projection
425     */
426    Float_t TrkTrack::GetLnLX(){
427        float lnl=0;
428        for(int ip=0; ip<6; ip++)
429            if( XGood(ip) && tailx[ip]!=0 )
430                lnl += (tailx[ip]+1.) * log( (tailx[ip]*pow(resx[ip],2.) + pow(xv[ip]-xm[ip],2.)) / (tailx[ip]*pow(resx[ip],2)) );
431        if(GetNX()>3)lnl=lnl/(GetNX()-3);
432        else lnl=0;
433        if(lnl==0){
434            cout << " Float_t  TrkTrack::GetLnLX() -- WARNING -- value not defined "<<lnl<<endl;
435            Dump();
436        }
437        return lnl;
438        
439    }
440    /**
441     * Returns the logarythm of the likeliwood-function of  track y-projection
442     */
443    Float_t TrkTrack::GetLnLY(){
444        float lnl=0;
445        for(int ip=0; ip<6; ip++)
446            if( YGood(ip) && taily[ip]!=0 )
447                lnl += (taily[ip]+1.) * log( (taily[ip]*pow(resy[ip],2.) + pow(yv[ip]-ym[ip],2.)) / (taily[ip]*pow(resy[ip],2)) );
448        if(GetNY()>2)lnl=lnl/(GetNY()-2);
449        else lnl=0;
450        if(lnl==0){
451            cout << " Float_t  TrkTrack::GetLnLY() -- WARNING -- value not defined "<<lnl<<endl;
452            Dump();
453        }
454        return lnl;
455        
456    }
457    /**
458     * Returns the effective angle, relative to the sensor, on each plane.
459     * @param ip plane (0-5)
460     * @param iv view (0=x 1=y)
461     */
462    Float_t TrkTrack::GetEffectiveAngle(int ip, int iv){
463    
464        if(ip<0 || ip>5){
465            cout << "Float_t TrkTrack::GetEffectiveAngle(int "<<ip<<", int "<<iv<<") ==> wrong input"<<endl;
466            return 0.;
467        }
468    
469        float v[3]={xv[ip],yv[ip],zv[ip]};
470        //-----------------------------------------
471        // effective angle (relative to the sensor)
472        //-----------------------------------------
473        float axv_geo  = axv[ip];
474        float muhall_h = 297.61; //cm**2/Vs
475        float BY = TrkParams::GetBY(v);
476        float axv_eff = 0;
477        if(ip==5) axv_geo = -1*axv_geo;
478        if(ip==5) BY      = -1*BY;
479        axv_eff = 180.*atan( tan(axv_geo*acos(-1.)/180.) + muhall_h * BY * 0.0001)/acos(-1.);
480        //-----------------------------------------
481        // effective angle (relative to the sensor)
482        //-----------------------------------------
483        float ayv_geo = ayv[ip];
484        float muhall_e = 1258.18; //cm**2/Vs
485        float BX = TrkParams::GetBX(v);
486        float ayv_eff = 0;
487        ayv_eff = 180.*atan( tan(ayv_geo*acos(-1.)/180.) + muhall_e * BX * 0.0001)/acos(-1.);
488      
489        if     (iv==0)return axv_eff;
490        else if(iv==1)return ayv_eff;
491        else{
492            cout << "Float_t TrkTrack::GetEffectiveAngle(int "<<ip<<", int "<<iv<<") ==> wrong input"<<endl;
493            return 0.;
494        }
495      
496    };
497    
498    //--------------------------------------
499    //
500    //
501    //--------------------------------------
502    void TrkTrack::Dump(){
503        cout << endl << "========== Track " ;
504        cout << endl << "seq.  n. : "<< seqno;
505        cout << endl << "image n. : "<< image;
506        cout << endl << "al       : "; for(int i=0; i<5; i++)cout << al[i] << " ";
507        cout << endl << "chi^2    : "<< chi2;
508        cout << endl << "n.step   : "<< nstep;
509        cout << endl << "xgood    : "; for(int i=0; i<6; i++)cout << XGood(i) ;
510        cout << endl << "ygood    : "; for(int i=0; i<6; i++)cout << YGood(i) ;
511        cout << endl << "xm       : "; for(int i=0; i<6; i++)cout << xm[i] << " ";
512        cout << endl << "ym       : "; for(int i=0; i<6; i++)cout << ym[i] << " ";
513        cout << endl << "zm       : "; for(int i=0; i<6; i++)cout << zm[i] << " ";
514        cout << endl << "xv       : "; for(int i=0; i<6; i++)cout << xv[i] << " ";
515        cout << endl << "yv       : "; for(int i=0; i<6; i++)cout << yv[i] << " ";
516        cout << endl << "zv       : "; for(int i=0; i<6; i++)cout << zv[i] << " ";
517        cout << endl << "resx     : "; for(int i=0; i<6; i++)cout << resx[i] << " ";
518        cout << endl << "resy     : "; for(int i=0; i<6; i++)cout << resy[i] << " ";
519        cout << endl << "tailx    : "; for(int i=0; i<6; i++)cout << tailx[i] << " ";
520        cout << endl << "taily    : "; for(int i=0; i<6; i++)cout << taily[i] << " ";
521        cout << endl << "coval    : "; for(int i=0; i<5; i++)cout << coval[0][i]<<" ";
522        cout << endl << "           "; for(int i=0; i<5; i++)cout << coval[1][i]<<" ";
523        cout << endl << "           "; for(int i=0; i<5; i++)cout << coval[2][i]<<" ";
524        cout << endl << "           "; for(int i=0; i<5; i++)cout << coval[3][i]<<" ";
525        cout << endl << "           "; for(int i=0; i<5; i++)cout << coval[4][i]<<" ";
526        cout << endl << "dedx_x   : "; for(int i=0; i<6; i++)cout << dedx_x[i] << " ";
527        cout << endl << "dedx_y   : "; for(int i=0; i<6; i++)cout << dedx_y[i] << " ";
528        cout << endl << "maxs x   : "; for(int i=0; i<6; i++)cout << GetClusterX_MaxStrip(i) << " ";
529        cout << endl << "maxs y   : "; for(int i=0; i<6; i++)cout << GetClusterY_MaxStrip(i) << " ";
530        cout << endl << "mult x   : "; for(int i=0; i<6; i++)cout << GetClusterX_Multiplicity(i) << " ";
531        cout << endl << "mult y   : "; for(int i=0; i<6; i++)cout << GetClusterY_Multiplicity(i) << " ";
532        cout << endl << "seed x   : "; for(int i=0; i<6; i++)cout << GetClusterX_Seed(i) << " ";
533        cout << endl << "seed y   : "; for(int i=0; i<6; i++)cout << GetClusterY_Seed(i) << " ";
534        cout << endl << "xpu      : "; for(int i=0; i<6; i++)cout << xpu[i] << " ";
535        cout << endl << "ypu      : "; for(int i=0; i<6; i++)cout << ypu[i] << " ";
536    
537        cout << endl;
538    }
539    /**
540     * Set the TrkTrack position measurements
541     */
542    void TrkTrack::SetMeasure(double *xmeas, double *ymeas, double *zmeas){
543        for(int i=0; i<6; i++) xm[i]=*xmeas++;
544        for(int i=0; i<6; i++) ym[i]=*ymeas++;
545        for(int i=0; i<6; i++) zm[i]=*zmeas++;
546    }
547    /**
548     * Set the TrkTrack position resolution
549     */
550    void TrkTrack::SetResolution(double *rx, double *ry){
551        for(int i=0; i<6; i++) resx[i]=*rx++;
552        for(int i=0; i<6; i++) resy[i]=*ry++;
553    }
554    /**
555     * Set the TrkTrack tails position resolution
556     */
557    void TrkTrack::SetTail(double *tx, double *ty, double factor){
558        for(int i=0; i<6; i++) tailx[i]=factor*(*tx++);
559        for(int i=0; i<6; i++) taily[i]=factor*(*ty++);
560    }
561    /**
562     * Set the TrkTrack Student parameter (resx,resy,tailx,taily)
563     * from previous gausian fit
564     *@param flag =0 standard, =1 with noise correction
565     */
566    void TrkTrack::SetStudentParam(int flag){
567        float sx[11]={0.000128242,
568                       0.000136942,
569                       0.000162718,
570                       0.000202644,
571                       0.00025597,
572                       0.000317456,
573                       0.000349048,
574                       0.000384638,
575                       0.000457295,
576                       0.000512319,
577                       0.000538573};
578        float tx[11]={1.79402,
579                       2.04876,
580                       2.88376,
581                       3.3,
582                       3.14084,
583                       4.07686,
584                       4.44736,
585                       3.5179,
586                       3.38697,
587                       3.45739,
588                       3.18627};
589        float sy[11]={0.000483075,
590                       0.000466925,
591                       0.000431658,
592                       0.000428317,
593                       0.000433854,
594                       0.000444044,
595                       0.000482098,
596                       0.000537579,
597                       0.000636279,
598                       0.000741998,
599                       0.000864261};
600        float ty[11]={0.997032,
601                       1.11147,
602                       1.18526,
603                       1.61404,
604                       2.21908,
605                       3.08959,
606                       4.48833,
607                       4.42687,
608                       4.65253,
609                       4.52043,
610                       4.29926};
611        int index;
612        float fact=0.;
613        for(int i=0; i<6; i++) {
614            index = int((fabs(axv[i])+1.)/2.);
615            if(index>10) index=10;
616            tailx[i]=tx[index];
617            if(flag==1) {
618                if(fabs(axv[i])<=10.) fact = resx[i]/risxeta2_(&(axv[i]));
619                if(fabs(axv[i])>10.&&fabs(axv[i])<=15.) fact = resx[i]/risxeta3_(&(axv[i]));
620                if(fabs(axv[i])>15.) fact = resx[i]/risxeta4_(&(axv[i]));
621            } else fact = 1.;
622            resx[i] = sx[index]*fact;
623        }
624        for(int i=0; i<6; i++) {
625            index = int((fabs(ayv[i])+1.)/2.);
626            if(index>10) index=10;
627            taily[i]=ty[index];
628            if(flag==1) fact = resy[i]/risyeta2_(&(ayv[i]));
629            else fact = 1.;
630            resy[i] = sy[index]*fact;
631        }
632    }
633    /**
634     * Set the TrkTrack good measurement
635     */
636    void TrkTrack::SetGood(int *xg, int *yg){
637    
638        for(int i=0; i<6; i++) xgood[i]=*xg++;
639        for(int i=0; i<6; i++) ygood[i]=*yg++;
640    }
641    
642    /**
643     * Load the magnetic field
644     */
645    void TrkTrack::LoadField(TString path){
646        
647    //     strcpy(path_.path,path.Data());
648    //     path_.pathlen = path.Length();
649    //     path_.error   = 0;
650    //     readb_();
651    
652    //     TrkParams::SetTrackingMode();
653    //     TrkParams::SetPrecisionFactor();
654    //     TrkParams::SetStepMin();
655        TrkParams::SetMiniDefault();
656    
657        TrkParams::Set(path,1);
658        TrkParams::Load(1);
659        if( !TrkParams::IsLoaded(1) ){
660            cout << "void TrkTrack::LoadField(TString path) --- ERROR --- m.field not loaded"<<endl;
661        }
662    
663    };
664    
665    
666    /**
667     * Method to fill minimization-routine common
668     */
669    void TrkTrack::FillMiniStruct(cMini2track& track){
670    
671        for(int i=0; i<6; i++){
672    
673    //      cout << i<<" - "<<xgood[i]<<" "<<XGood(i)<<endl;
674    //      cout << i<<" - "<<ygood[i]<<" "<<YGood(i)<<endl;
675          track.xgood[i] = (double) XGood(i);
676            track.ygood[i] = (double) YGood(i);
677            
678            track.xm[i]= (double) xm[i];
679            track.ym[i]= (double) ym[i];
680            track.zm[i]= (double) zm[i];
681            
682    //      --- temporaneo ----------------------------
683    //      float segment = 100.;
684    //      track.xm_a[i]=xm[i];
685    //      track.xm_b[i]=xm[i];
686    //      track.ym_a[i]=ym[i];
687    //      track.ym_b[i]=ym[i];
688    //      if(       XGood(i) && !YGood(i) ){
689    //          track.ym_a[i] = track.ym_a[i]+segment;
690    //          track.ym_b[i] = track.ym_b[i]-segment;
691    //      }else if( !XGood(i) && YGood(i)){
692    //          track.xm_a[i] = track.xm_a[i]+segment;
693    //          track.xm_b[i] = track.xm_b[i]-segment;
694    //      }
695    //      --- temporaneo ----------------------------
696    
697            if( XGood(i) || YGood(i) ){
698                //NB!! the length of the sensor is not exactely taken into account    
699                double segment = 7.;// 2.;//cm //Elena 10th
700                // NB: i parametri di allineamento hanno una notazione particolare!!!
701                // sensor = 0 (hybrid side), 1
702                // ladder = 0-2 (increasing x)
703                // plane  = 0-5 (from bottom to top!!!)
704                int is = (int)GetSensor(i); if(i==5)is=1-is;
705                int ip = 5-i;
706                int il = (int)GetLadder(i);
707                
708                double omega   = 0.;
709                //      double beta    = 0.;// EM GCC 4.7
710                //      double gamma   = 0.;
711                if(
712                    (is < 0 || is > 1 || ip < 0 || ip > 5 || il < 0 || il > 2) &&
713                    true){
714                    // se il piano risulta colpito, ladder e sensore devono essere
715                    // assegnati correttamente
716                    cout << " void TrkTrack::FillMiniStruct(cMini2track&) --- WARNING --- sensor not defined, cannot read alignment parameters "<<endl;
717                    cout << " is ip il = "<<is<<" "<<ip<<" "<<il<<endl;
718                }else{
719                    omega   = alignparameters_.omega[is][il][ip];
720                    //              beta    = alignparameters_.beta[is][il][ip];// EM GCC 4.7 unused
721                    //              gamma   = alignparameters_.gamma[is][il][ip];// EM GCC 4.7 unused
722                }
723                
724                if(       XGood(i) && !YGood(i) ){
725                    track.xm_a[i] =  (double) xm[i] - omega * segment;
726                    track.ym_a[i] =  (double) ym[i] + segment;
727    //          track.zm_a[i] = zm[i] + beta * segment;//not used yet
728                    track.xm_b[i] =  (double) xm[i] + omega * segment;
729                    track.ym_b[i] =  (double) ym[i] - segment;
730    //          track.zm_b[i] = zm[i] - beta * segment;//not used yet
731                }else if( !XGood(i) && YGood(i) ){
732                    track.xm_a[i] =  (double) xm[i] + segment;
733                    track.ym_a[i] =  (double) ym[i] + omega * segment;
734    //          track.zm_a[i] = zm[i] - gamma * segment;//not used yet
735                    track.xm_b[i] =  (double) xm[i] - segment;
736                    track.ym_b[i] =  (double) ym[i] - omega * segment;
737    //          track.zm_b[i] = zm[i] + gamma * segment;//not used yet
738                }
739            }
740            
741            track.resx[i]= (double) resx[i];
742            track.resy[i]= (double) resy[i];
743            track.tailx[i]= (double) tailx[i];
744            track.taily[i]= (double) taily[i];
745        }
746    
747        for(int i=0; i<5; i++) track.al[i]= (double) al[i];
748        track.zini = 23.5;
749    // ZINI = 23.5 !!! it should be the same parameter in all codes
750        
751    }
752    /**
753     * Method to set values from  minimization-routine common
754     */
755    void TrkTrack::SetFromMiniStruct(cMini2track *track){
756    
757        for(int i=0; i<5; i++) {
758          al[i]= (float) (track->al[i]);
759            for(int j=0; j<5; j++) coval[i][j]= (float) (track->cov[i][j]);
760        }
761        chi2  =  (float) (track->chi2);
762        nstep =  (float) (track->nstep);
763        for(int i=0; i<6; i++){
764            xv[i]  =  (float) (track->xv[i]);
765            yv[i]  =  (float) (track->yv[i]);
766            zv[i]  =  (float) (track->zv[i]);
767            xm[i]  = (float)  (track->xm[i]);
768            ym[i]  =  (float) (track->ym[i]);
769            zm[i]  =  (float) (track->zm[i]);
770            axv[i] =  (float) (track->axv[i]);
771            ayv[i] =  (float) (track->ayv[i]);      
772            resx[i] = (float)  (track->resx[i]); //Elena 10th
773            resy[i] =  (float) (track->resy[i]);
774        }
775        
776    }
777    /**
778     * \brief Method to re-evaluate coordinates of clusters associated with a track.
779     *
780     * The method can be applied only after recovering level1 information
781     * (either by reprocessing single events from level0 or from  
782     * the TrkLevel1 branch, if present); it calls F77 subroutines that
783     * read the level1 common and fill the minimization-routine common.
784     * Some clusters can be excluded or added by means of the methods:
785     *
786     * TrkTrack::ResetXGood(int ip)
787     * TrkTrack::ResetYGood(int ip)
788     * TrkTrack::SetXGood(int ip, int cid, int is)
789     * TrkTrack::SetYGood(int ip, int cid, int is)
790     *
791     * NB! The method TrkTrack::SetGood(int *xg, int *yg) set the plane-mask (0-1)
792     * for the minimization-routine common. It deletes the cluster information
793     * (at least for the moment...) thus cannot be applied before
794     * TrkTrack::EvaluateClusterPositions().  
795     *
796     * Different p.f.a. can be applied by calling (once) the method:
797     *
798     * TrkParams::SetPFA(0); //Set ETA p.f.a.
799     *
800     * @see TrkParams::SetPFA(int)
801     */
802    Bool_t TrkTrack::EvaluateClusterPositions(){
803        
804    //     cout << "void TrkTrack::GetClusterositions() "<<endl;
805    
806        TrkParams::Load(1);
807        if( !TrkParams::IsLoaded(1) ){
808            cout << "Bool_t TrkTrack::EvaluateClusterPositions() ---ERROR--- m.field not loaded "<<endl;
809            return false;
810        }    
811        TrkParams::Load(4);
812        if( !TrkParams::IsLoaded(4) ){
813            cout << "Bool_t TrkTrack::EvaluateClusterPositions() ---ERROR--- p.f.a. par. not loaded "<<endl;
814            return false;
815        }
816        TrkParams::Load(5);
817        if( !TrkParams::IsLoaded(5) ){
818            cout << "Bool_t TrkTrack::EvaluateClusterPositions() ---ERROR--- alignment par. not loaded "<<endl;
819            return false;
820        }
821    
822        for(int ip=0; ip<6; ip++){
823    //      cout << ip<<" ** "<<xm[ip]<<" / "<<ym[ip]<<endl;;
824            int icx = GetClusterX_ID(ip)+1;//0=no-cluster,1-N
825            int icy = GetClusterY_ID(ip)+1;//0=no-cluster,1-N
826            int sensor = GetSensor(ip)+1;//<< convenzione "Paolo"
827            if(ip==5 && sensor!=0)sensor=3-sensor;//<< convenzione "Elena"
828            int ladder = GetLadder(ip)+1;
829            float ax = axv[ip];
830            float ay = ayv[ip];
831            float v[3];
832            v[0]=xv[ip];
833            v[1]=yv[ip];
834            v[2]=zv[ip];
835            float bfx = 10*TrkParams::GetBX(v);//Tesla
836            float bfy = 10*TrkParams::GetBY(v);//Tesla
837            int ipp=ip+1;
838            xyzpam_(&ipp,&icx,&icy,&ladder,&sensor,&ax,&ay,&bfx,&bfy);
839            //      if(icx<0 || icy<0)return false;
840        }
841        return true;
842    }
843    /**
844     * \brief Tracking method. It calls F77 mini routine.
845     *
846     * @param pfixed Particle momentum. If pfixed=0 the momentum
847     * is left as a free parameter, otherwise it is fixed to the input value.
848     * @param fail Output flag (!=0 if the fit failed).
849     * @param iprint Flag to set debug mode ( 0 = no output; 1 = verbose; 2 = debug).
850     * @param froml1 Flag to re-evaluate positions (see TrkTrack::GetClusterPositions()).
851     *
852     * The option to re-evaluate positions can be used only after recovering
853     * level1 information, eg. by reprocessing the single event.
854     *
855     * Example:
856     *
857     * if( !event->GetTrkLevel0() )return false;
858     * event->GetTrkLevel0()->ProcessEvent(); // re-processing level0->level1
859     * int fail=0;
860     * event->GetTrkLevel2()->GetTrack(0)->Fit(0.,fail,0,1);
861     *
862     * @see EvaluateClusterPositions()
863     *
864     * The fitting procedure can be varied by changing the tracking mode,
865     * the fit-precision factor, the minimum number of step, etc.
866     * @see SetTrackingMode(int)
867     * @see SetPrecisionFactor(double)
868     * @see SetStepMin(int)
869     * @see SetDeltaB(int,double)
870     */
871    void TrkTrack::Fit(double pfixed, int& fail, int iprint, int froml1){
872    
873        TrkParams::Load(1);
874        if( !TrkParams::IsLoaded(1) ){
875            cout << "void TrkTrack::Fit(double,int&,int,int) ---ERROR--- m.field not loaded "<<endl;
876            return;
877        }
878        TrkParams::Load(5);
879        if( !TrkParams::IsLoaded(5) ){
880            cout << "void TrkTrack::Fit(double,int&,int,int) ---ERROR--- align.param. not loaded "<<endl;
881            return;
882        }
883    
884        float al_ini[] = {0.,0.,0.,0.,0.};
885    
886        extern cMini2track track_;
887        fail = 0;
888    
889        //    FillMiniStruct(track_);
890            
891        if(froml1!=0){
892            if( !EvaluateClusterPositions() ){
893                cout << "void TrkTrack::Fit("<<pfixed<<","<<fail<<","<<iprint<<","<<froml1<<") --- ERROR evaluating cluster positions "<<endl;
894                FillMiniStruct(track_) ;
895                fail = 1;
896                return;
897            }
898        }else{
899            FillMiniStruct(track_);
900        }
901        
902        // if fit variables have been reset, evaluate the initial guess
903        if(al[0]==-9999.&&al[1]==-9999.&&al[2]==-9999.&&al[3]==-9999.&&al[4]==-9999.)guess_();
904    
905        // --------------------- free momentum
906        if(pfixed==0.) {
907            track_.pfixed=0.;
908        }
909        // --------------------- fixed momentum
910        if(pfixed!=0.) {
911            al[4]=1./pfixed;    
912            track_.pfixed=pfixed;
913        }
914    
915        //  store temporarily the initial guess
916        for(int i=0; i<5; i++) al_ini[i]=track_.al[i];
917    
918        //  ------------------------------------------
919        //  call mini routine
920        //  ------------------------------------------
921        int istep=0;
922        int ifail=0;
923        mini2_(&istep,&ifail, &iprint);
924        if(ifail!=0) {
925            if(iprint)cout << "ERROR: ifail= " << ifail << endl;
926            fail = 1;
927        }
928        if(chi2!=chi2){
929            if(iprint)cout << "ERROR: chi2= " << chi2 << endl;      
930            FitReset();
931            fail = 1;      
932        }
933        //  ------------------------------------------
934        
935        SetFromMiniStruct(&track_);
936    
937        if(fail){
938            if(iprint)cout << " >>>> fit failed "<<endl;
939            for(int i=0; i<5; i++) al[i]=al_ini[i];
940        }
941    
942    
943        //ELENA 2015
944        int ngf = TrkParams::nGF;
945        float* zgf =  TrkParams::zGF;    
946        Trajectory tj = Trajectory(ngf,zgf);
947        tj.DoTrack(al,ZINI);
948        for(int i=0; i<14; i++){
949            xGF[i] = tj.x[i];
950            yGF[i] = tj.y[i];
951        }
952        if(ngf!=14){
953            cout << "TrkTrack::Fit("<<pfixed<<","<<fail<<","<<iprint<<","<<froml1<<"<<) "<<endl;;
954            cout << "TrkParams::nGF = "<<TrkParams::nGF<<" != 14 "<<endl;
955            cout << "back-incompatibility !?!?! acceptance check not reliable"<<endl;
956        }
957        
958        
959    
960    };
961    /**
962     * Reset the fit parameters
963     */
964    void TrkTrack::FitReset(){
965        for(int i=0; i<5; i++) al[i]=-9999.;
966        chi2=0.;
967        nstep=0;
968    //     for(int i=0; i<6; i++) xv[i]=0.;
969    //     for(int i=0; i<6; i++) yv[i]=0.;
970    //     for(int i=0; i<6; i++) zv[i]=0.;
971    //     for(int i=0; i<6; i++) axv[i]=0.;
972    //     for(int i=0; i<6; i++) ayv[i]=0.;
973        for(int i=0; i<5; i++) {
974            for(int j=0; j<5; j++) coval[i][j]=0.;
975      }      }
976    }
977    /**
978     * Set the tracking mode
979     */
980    void TrkTrack::SetTrackingMode(int trackmode){
981        extern cMini2track track_;
982        track_.trackmode = trackmode;
983    }
984    /**
985     * Set the factor scale for tracking precision
986     */
987    void TrkTrack::SetPrecisionFactor(double fact){
988        extern cMini2track track_;
989        track_.fact = fact;
990    }
991    /**
992     * Set the minimum number of steps for tracking precision
993     */
994    void TrkTrack::SetStepMin(int istepmin){
995        extern cMini2track track_;
996        track_.istepmin = istepmin;
997    }
998    /**
999     * Set deltaB parameters (id=0,1). By default they are set to zero.
1000     */
1001    void TrkTrack::SetDeltaB(int id, double db){
1002        if(id!=0 && id!=1)cout << "void TrkTrack::SetDeltaB(int id,double db) -- wrong input parameters: "<<id<<" "<<db<<endl;
1003        TrkParams::SetDeltaB(id,db);
1004    }
1005    
1006  //    delete [] dxout;  /**
1007  //    delete [] dyout;   * Returns true if the track is inside the magnet cavity.
1008  //    delete [] dzin;   * @param toll Tolerance around the nominal volume (toll>0 define an inner fiducial volume)
1009     */
1010    Bool_t TrkTrack::IsInsideCavity(float toll){
1011    
1012    //     float xmagntop, ymagntop, xmagnbottom, ymagnbottom;
1013    //     xmagntop = xv[0] + (ZMAGNHIGH-zv[0])*tan(acos(-1.0)*axv[0]/180.);
1014    //     ymagntop = yv[0] + (ZMAGNHIGH-zv[0])*tan(acos(-1.0)*ayv[0]/180.);
1015    //     xmagnbottom = xv[5] + (ZMAGNLOW-zv[5])*tan(acos(-1.0)*axv[5]/180.);
1016    //     ymagnbottom = yv[5] + (ZMAGNLOW-zv[5])*tan(acos(-1.0)*ayv[5]/180.);
1017    //     if( xmagntop>XMAGNLOW && xmagntop<XMAGNHIGH &&
1018    //      ymagntop>YMAGNLOW && ymagntop<YMAGNHIGH &&
1019    //      xmagnbottom>XMAGNLOW && xmagnbottom<XMAGNHIGH &&
1020    //      ymagnbottom>YMAGNLOW && ymagnbottom<YMAGNHIGH ) return(true);
1021    //     else return(false);
1022    
1023        int ngf = TrkParams::nGF;
1024        for(int i=0; i<ngf; i++){
1025            //
1026    //      cout << endl << TrkParams::GF_element[i];
1027            if(
1028                TrkParams::GF_element[i].CompareTo("CUF") &&
1029                TrkParams::GF_element[i].CompareTo("T2")  &&
1030                TrkParams::GF_element[i].CompareTo("T3")  &&
1031                TrkParams::GF_element[i].CompareTo("T4")  &&
1032                TrkParams::GF_element[i].CompareTo("T5")  &&
1033                TrkParams::GF_element[i].CompareTo("CLF") &&
1034                true)continue;
1035            // apply condition only within the cavity
1036    //      cout << " -- "<<xGF[i]<<" "<<yGF[i];
1037            if(
1038                xGF[i] <= TrkParams::xGF_min[i] + toll ||
1039                xGF[i] >= TrkParams::xGF_max[i] - toll ||
1040                yGF[i] <= TrkParams::yGF_min[i] + toll ||
1041                yGF[i] >= TrkParams::yGF_max[i] - toll ||
1042                false){
1043                
1044                return false;
1045            }
1046        }
1047        return true;
1048    
1049    
1050    }
1051    /**
1052     * Returns true if the track is inside the nominal acceptance, which is defined
1053     * by the intersection among magnet cavity, silicon-plane sensitive area and
1054     * ToF sensitive area (nominal values from the official document used to
1055     * calculate the geometrical factor)
1056     * @param toll Tolerance around the nominal volume (toll>0 define an inner fiducial volume)
1057     */
1058    // Bool_t TrkTrack::IsInsideAcceptance(){
1059    
1060    //     int ngf = TrkParams::nGF;
1061    //     for(int i=0; i<ngf; i++){
1062    //      if(
1063    //          xGF[i] <= TrkParams::xGF_min[i] ||
1064    //          xGF[i] >= TrkParams::xGF_max[i] ||
1065    //          yGF[i] <= TrkParams::yGF_min[i] ||
1066    //          yGF[i] >= TrkParams::yGF_max[i] ||
1067    //          false)return false;
1068    //     }
1069    //     return true;
1070    
1071    // }
1072    Bool_t TrkTrack::IsInsideAcceptance(float toll){
1073    
1074    
1075        int ngf = TrkParams::nGF;
1076        for(int i=0; i<ngf; i++){
1077            //
1078    //      cout << endl << TrkParams::GF_element[i];
1079            if(
1080                TrkParams::GF_element[i].CompareTo("S11") &&
1081                TrkParams::GF_element[i].CompareTo("S12") &&
1082                TrkParams::GF_element[i].CompareTo("S21") &&
1083                TrkParams::GF_element[i].CompareTo("S22") &&
1084                TrkParams::GF_element[i].CompareTo("T1")  &&
1085                TrkParams::GF_element[i].CompareTo("CUF") &&
1086                TrkParams::GF_element[i].CompareTo("T2")  &&
1087                TrkParams::GF_element[i].CompareTo("T3")  &&
1088                TrkParams::GF_element[i].CompareTo("T4")  &&
1089                TrkParams::GF_element[i].CompareTo("T5")  &&
1090                TrkParams::GF_element[i].CompareTo("CLF") &&
1091                TrkParams::GF_element[i].CompareTo("T6")  &&
1092                TrkParams::GF_element[i].CompareTo("S31") &&
1093                TrkParams::GF_element[i].CompareTo("S32") &&
1094                true)continue;
1095            // apply condition only within the cavity
1096    //      cout << " -- "<<xGF[i]<<" "<<yGF[i];
1097            if(
1098                xGF[i] <= TrkParams::xGF_min[i] + toll ||
1099                xGF[i] >= TrkParams::xGF_max[i] - toll ||
1100                yGF[i] <= TrkParams::yGF_min[i] + toll ||
1101                yGF[i] >= TrkParams::yGF_max[i] - toll ||
1102                false){
1103                
1104                return false;
1105            }
1106        }
1107        return true;
1108    }
1109    
1110    /**
1111     * Returns true if the track is inside one of the surfaces which define the
1112     * geometrical acceptance.
1113     * @param surf tag of the surface (possible values are: S11 S12 S21 S22 T1
1114     * CUF T2 T3 T4 T5 CLF T6 S31 S32).
1115     * @param toll  Tolerance around the nominal surface (toll>0 define an inner
1116     * fiducial surface)
1117    */
1118    Bool_t TrkTrack::IsInsideGFSurface(const char* surf, float toll){
1119    
1120    
1121        int ngf = TrkParams::nGF;
1122        bool SURFOK = false;
1123        for(int i=0; i<ngf; i++){
1124            if(  !TrkParams::GF_element[i].CompareTo(surf)  ){
1125                SURFOK=true;
1126                if(
1127                    xGF[i] > TrkParams::xGF_min[i] + toll &&
1128                    xGF[i] < TrkParams::xGF_max[i] - toll &&
1129                    yGF[i] > TrkParams::yGF_min[i] + toll &&
1130                    yGF[i] < TrkParams::yGF_max[i] - toll &&
1131                    true)return true;
1132            }
1133        }
1134        if( !SURFOK )cout << " Bool_t TrkTrack::IsInsideGFSurface(char* surf, float toll) --> suface "<<surf<<" not defined "<<endl;
1135        return false;
1136    
1137    }
1138    
1139    /**
1140     * Method to retrieve ID (0,1,...) of x-cluster (if any) associated to this track.
1141     * If no cluster is associated, ID=-1.
1142     * @param ip Tracker plane (0-5)
1143     */
1144    Int_t TrkTrack::GetClusterX_ID(int ip){
1145        return ((Int_t)fabs(xgood[ip]))%10000000-1;
1146    };
1147    /**
1148     * Method to retrieve ID (0-xxx) of y-cluster (if any) associated to this track.
1149     * If no cluster is associated, ID=-1.
1150     * @param ip Tracker plane (0-5)
1151     */
1152    Int_t TrkTrack::GetClusterY_ID(int ip){
1153        return ((Int_t)fabs(ygood[ip]))%10000000-1;
1154    };
1155    
1156    /**
1157     * Method to retrieve the ladder (0-2, increasing x) traversed by the track on this plane.
1158     * If no ladder is traversed (dead area) the metod retuns -1.
1159     * @param ip Tracker plane (0-5)
1160     */
1161    Int_t TrkTrack::GetLadder(int ip){
1162        if(XGood(ip))return (Int_t)fabs(xgood[ip]/100000000)-1;
1163        if(YGood(ip))return (Int_t)fabs(ygood[ip]/100000000)-1;
1164        return -1;
1165    };
1166    /**
1167     * Method to retrieve the sensor (0-1, increasing y) traversed by the track on this plane.
1168     * If no sensor is traversed (dead area) the metod retuns -1.
1169     * @param ip Tracker plane (0-5)
1170     */
1171    Int_t TrkTrack::GetSensor(int ip){
1172        if(XGood(ip))return (Int_t)((Int_t)fabs(xgood[ip]/10000000)%10)-1;
1173        if(YGood(ip))return (Int_t)((Int_t)fabs(ygood[ip]/10000000)%10)-1;
1174        return -1;
1175    };
1176    
1177    /**
1178     * \brief Method to include a x-cluster to the track.
1179     * @param ip Tracker plane (0-5)
1180     * @param clid Cluster ID (0 = no-cluster, 1,2,... otherwise )
1181     * @param il Ladder (0-2, increasing x, -1 if no sensitive area is hit)
1182     * @param is Sensor (0-1, increasing y, -1 if no sensitive area is hit)
1183     * @param bad True if the cluster contains bad strips  
1184     * @see Fit(double pfixed, int& fail, int iprint, int froml1)
1185     */
1186    void TrkTrack::SetXGood(int ip, int clid, int il, int is, bool bad){
1187    //    int il=0;       //ladder (temporary)
1188    //    bool bad=false; //ladder (temporary)
1189        if(ip<0||ip>5||clid<1||il<-1||il>2||is<-1||is>1)
1190            cout << " void TrkTrack::SetXGood(int,int,int,int,bool) --> MA SEI DI COCCIO?!?!"<<endl;
1191        xgood[ip]=(il+1)*100000000+(is+1)*10000000+clid;
1192        if(bad)xgood[ip]=-xgood[ip];
1193    };
1194    /**
1195     * \brief Method to include a y-cluster to the track.
1196     * @param ip Tracker plane (0-5)
1197     * @param clid Cluster ID (0 = no-cluster, 1,2,... otherwise )
1198     * @param il Ladder (0-2, increasing x, -1 if no sensitive area is hit)
1199     * @param is Sensor (0-1, increasing y, -1 if no sensitive area is hit)
1200     * @param bad True if the cluster contains bad strips  
1201     * @see Fit(double pfixed, int& fail, int iprint, int froml1)
1202     */
1203    void TrkTrack::SetYGood(int ip, int clid, int il, int is, bool bad){
1204    //    int il=0;       //ladder (temporary)
1205    //    bool bad=false; //ladder (temporary)
1206        if(ip<0||ip>5||clid<1||il<-1||il>2||is<-1||is>1)
1207            cout << " void TrkTrack::SetYGood(int,int,int,int,bool) --> MA SEI DI COCCIO?!?!"<<endl;
1208        ygood[ip]=(il+1)*100000000+(is+1)*10000000+clid;
1209        if(bad)ygood[ip]=-ygood[ip];
1210    };
1211    
1212    /**
1213     * \brief Average X
1214     * Average value of <xv>, evaluated from the first to the last hit x view.
1215     */
1216    Float_t TrkTrack::GetXav(){
1217    
1218        int first_plane = -1;
1219        int last_plane  = -1;
1220        for(Int_t ip=0; ip<6; ip++){
1221            if( XGood(ip) && first_plane == -1 )first_plane = ip;
1222            if( XGood(ip) && first_plane != -1 )last_plane = ip;
1223        }
1224        if( first_plane == -1 || last_plane == -1){
1225            return -100;
1226        }
1227        if( last_plane-first_plane+1 ==0 )return -100;
1228    
1229        Float_t av = 0;    
1230        for(int ip=first_plane; ip<=last_plane; ip++)av+=xv[ip];
1231        
1232        return (av/(last_plane-first_plane+1));    
1233    }
1234    /**
1235     * \brief Average Y
1236     * Average value of <yv>, evaluated from the first to the last hit x view.
1237     */
1238    Float_t TrkTrack::GetYav(){
1239    
1240        int first_plane = -1;
1241        int last_plane  = -1;
1242        for(Int_t ip=0; ip<6; ip++){
1243            if( XGood(ip) && first_plane == -1 )first_plane = ip;
1244            if( XGood(ip) && first_plane != -1 )last_plane = ip;
1245        }
1246        if( first_plane == -1 || last_plane == -1){
1247            return -100;
1248        }
1249        if( last_plane-first_plane+1 ==0 )return -100;
1250    
1251        Float_t av = 0;    
1252        for(int ip=first_plane; ip<=last_plane; ip++)av+=yv[ip];
1253    
1254        return (av/(last_plane-first_plane+1));    
1255    }
1256    /**
1257     * \brief Average Z
1258     * Average value of <zv>, evaluated from the first to the last hit x view.
1259     */
1260    Float_t TrkTrack::GetZav(){
1261    
1262        int first_plane = -1;
1263        int last_plane  = -1;
1264        for(Int_t ip=0; ip<6; ip++){
1265            if( XGood(ip) && first_plane == -1 )first_plane = ip;
1266            if( XGood(ip) && first_plane != -1 )last_plane = ip;
1267        }
1268        if( first_plane == -1 || last_plane == -1){
1269            return -100;
1270        }
1271        if( last_plane-first_plane+1 ==0 )return -100;
1272    
1273        Float_t av = 0;    
1274        for(int ip=first_plane; ip<=last_plane; ip++)av+=zv[ip];
1275        
1276        return (av/(last_plane-first_plane+1));    
1277    }
1278    
1279    /**
1280     * \brief Number of column traversed
1281     */
1282    Int_t TrkTrack::GetNColumns(){
1283        int sensors[] = {0,0,0,0,0,0};
1284        for(int ip=0; ip<6; ip++){
1285            int sensorid = GetLadder(ip)+3*GetSensor(ip);    
1286            if(XGood(ip)||YGood(ip))
1287                if(sensorid>=0 && sensorid<6)sensors[sensorid]=1;
1288        }
1289        int nsensors=0;
1290        for(int is=0; is<6; is++)nsensors += sensors[is];
1291        return nsensors;
1292    };
1293    /**
1294     * \brief Give the maximum energy release
1295     */
1296    Float_t TrkTrack::GetDEDX_max(int ip, int iv){
1297        Float_t max=0;
1298        int pfrom = 0;
1299        int pto   = 6;
1300        int vfrom = 0;
1301        int vto   = 2;
1302        if(ip>=0&&ip<6){
1303            pfrom = ip;
1304            pto   = ip+1;
1305        }
1306        if(iv>=0&&iv<2){
1307            vfrom = iv;
1308            vto   = iv+1;
1309        }
1310        for(int i=pfrom; i<pto; i++)
1311            for(int j=vfrom; j<vto; j++){
1312                if(j==0 && XGood(i) && GetDEDX(i,j)>max)max=GetDEDX(i,j);
1313                if(j==1 && YGood(i) && GetDEDX(i,j)>max)max=GetDEDX(i,j);
1314            }
1315        return max;
1316    
1317    };
1318    
1319    /**
1320     * \brief Give the minimum energy release
1321     */
1322    Float_t TrkTrack::GetDEDX_min(int ip, int iv){
1323        Float_t min=100000000;
1324        int pfrom = 0;
1325        int pto   = 6;
1326        int vfrom = 0;
1327        int vto   = 2;
1328        if(ip>=0&&ip<6){
1329            pfrom = ip;
1330            pto   = ip+1;
1331        }
1332        if(iv>=0&&iv<2){
1333            vfrom = iv;
1334            vto   = iv+1;
1335        }
1336        for(int i=pfrom; i<pto; i++)
1337            for(int j=vfrom; j<vto; j++){
1338                if(j==0 && XGood(i) && GetDEDX(i,j)<min)min=GetDEDX(i,j);
1339                if(j==1 && YGood(i) && GetDEDX(i,j)<min)min=GetDEDX(i,j);
1340            }
1341        return min;
1342    
1343    };
1344    
1345    /**
1346     * \brief Give the maximum spatial residual  
1347     */
1348    Float_t TrkTrack::GetResidual_max(int ip, int iv){
1349        Float_t max=0;
1350        int pfrom = 0;
1351        int pto   = 6;
1352        int vfrom = 0;
1353        int vto   = 2;
1354        if(ip>=0&&ip<6){
1355            pfrom = ip;
1356            pto   = ip+1;
1357        }
1358        if(iv>=0&&iv<2){
1359            vfrom = iv;
1360            vto   = iv+1;
1361        }
1362        for(int i=pfrom; i<pto; i++){
1363            for(int j=vfrom; j<vto; j++){
1364                if(j==0 && XGood(i) && fabs(xm[i]-xv[i])>fabs(max))max=xm[i]-xv[i];
1365                if(j==1 && YGood(i) && fabs(ym[i]-yv[i])>fabs(max))max=ym[i]-yv[i];
1366            }
1367        }
1368        return max;
1369    
1370    };
1371    /**
1372     * \brief Give the anerage spatial residual
1373     */
1374    Float_t TrkTrack::GetResidual_av(int ip, int iv){
1375        //
1376    //Sum$((xm>-50)*(xm-xv)/resx)/sqrt(TrkTrack.GetNX()*TrkTrack.GetChi2X())<0.3
1377    
1378        Float_t av  = 0.;
1379        int     nav = 0;
1380        //
1381        int pfrom = 0;
1382        int pto   = 6;
1383        int vfrom = 0;
1384        int vto   = 2;
1385        if(ip>=0&&ip<6){
1386            pfrom = ip;
1387            pto   = ip+1;
1388        }
1389        if(iv>=0&&iv<2){
1390            vfrom = iv;
1391            vto   = iv+1;
1392        }
1393        for(int i=pfrom; i<pto; i++){
1394            for(int j=vfrom; j<vto; j++){
1395                nav++;
1396                if(j==0 && XGood(i)) av += (xm[i]-xv[i])/resx[i];
1397                if(j==1 && YGood(i)) av += (ym[i]-yv[i])/resy[i];
1398            }
1399        }
1400        if(nav==0)return -100.;
1401        return av/nav;
1402    
1403    };
1404    
1405    
1406    /**
1407     * \brief Give the maximum multiplicity on the x view
1408     */
1409    Int_t TrkTrack::GetClusterX_Multiplicity_max(){
1410        int max=0;
1411        for(int ip=0; ip<6; ip++)
1412            if(GetClusterX_Multiplicity(ip)>max)max=GetClusterX_Multiplicity(ip);
1413        return max;
1414    };
1415    /**
1416     * \brief Give the minimum multiplicity on the x view
1417     */
1418    Int_t TrkTrack::GetClusterX_Multiplicity_min(){
1419        int min=50;
1420        for(int ip=0; ip<6; ip++)
1421            if(GetClusterX_Multiplicity(ip)<min)min=GetClusterX_Multiplicity(ip);
1422        return min;
1423    };
1424    /**
1425     * \brief Give the maximum multiplicity on the x view
1426     */
1427    Int_t TrkTrack::GetClusterY_Multiplicity_max(){
1428        int max=0;
1429        for(int ip=0; ip<6; ip++)
1430            if(GetClusterY_Multiplicity(ip)>max)max=GetClusterY_Multiplicity(ip);
1431        return max;
1432    };
1433    /**
1434     * \brief Give the minimum multiplicity on the x view
1435     */
1436    Int_t TrkTrack::GetClusterY_Multiplicity_min(){
1437        int min=50;
1438        for(int ip=0; ip<6; ip++)
1439            if(GetClusterY_Multiplicity(ip)<min)min=GetClusterY_Multiplicity(ip);
1440        return min;
1441    };
1442    
1443      return ifail;  /**
1444     * \brief Give the minimum seed on the x view
1445     */
1446    Float_t TrkTrack::GetClusterX_Seed_min(){
1447        Float_t min=100000;
1448        for(int ip=0; ip<6; ip++)
1449            if(XGood(ip) && GetClusterX_Seed(ip)<min)min=GetClusterX_Seed(ip);
1450        return min;
1451    };
1452    /**
1453     * \brief Give the minimum seed on the x view
1454     */
1455    Float_t TrkTrack::GetClusterY_Seed_min(){
1456        Float_t min=100000;
1457        for(int ip=0; ip<6; ip++)
1458            if(YGood(ip) && GetClusterY_Seed(ip)<min)min=GetClusterY_Seed(ip);
1459        return min;
1460  };  };
1461    
1462    
1463  //--------------------------------------  //--------------------------------------
1464  //  //
1465  //  //
1466  //--------------------------------------  //--------------------------------------
1467  //float TrkTrack::BdL(){  void TrkTrack::Clear(){
1468  //};  //    cout << "TrkTrack::Clear()"<<endl;
1469        seqno = -1;
1470        image = -1;
1471        chi2  = 0;
1472        nstep = 0;
1473        for(int it1=0;it1<5;it1++){
1474            al[it1] = 0;
1475            for(int it2=0;it2<5;it2++)coval[it1][it2] = 0;
1476        };
1477        for(int ip=0;ip<6;ip++){
1478            xgood[ip]  = 0;
1479            ygood[ip]  = 0;
1480            xm[ip]     = 0;
1481            ym[ip]     = 0;
1482            zm[ip]     = 0;
1483            resx[ip]   = 0;
1484            resy[ip]   = 0;
1485            tailx[ip]  = 0;
1486            taily[ip]  = 0;
1487            xv[ip]     = 0;
1488            yv[ip]     = 0;
1489            zv[ip]     = 0;
1490            axv[ip]    = 0;
1491            ayv[ip]    = 0;
1492            dedx_x[ip] = 0;
1493            dedx_y[ip] = 0;
1494    
1495        };
1496        int ngf = TrkParams::nGF;
1497        for(int i=0; i<ngf; i++){
1498            xGF[i] = 0.;
1499            yGF[i] = 0.;
1500        }
1501    //     if(clx)clx->Clear();
1502    //     if(cly)cly->Clear();
1503    //    clx.Clear();
1504    //    cly.Clear();
1505    };
1506  //--------------------------------------  //--------------------------------------
1507  //  //
1508  //  //
1509  //--------------------------------------  //--------------------------------------
1510  Float_t TrkTrack::GetRigidity(){  void TrkTrack::Delete(){
1511          Float_t rig=0;  //    cout << "TrkTrack::Delete()"<<endl;
1512          if(chi2>0)rig=1./al[4];      Clear();
1513          if(rig<0) rig=-rig;  //    if(clx)delete clx;
1514          return rig;  //    if(cly)delete cly;
 };  
 //  
 Float_t TrkTrack::GetDeflection(){  
         Float_t def=0;  
         if(chi2>0)def=al[4];  
         return def;  
 };  
 //  
 Float_t TrkTrack::GetDEDX(){  
         Float_t dedx=0;  
         for(Int_t i=0; i<6; i++)dedx+=dedx_x[i]*xgood[i]+dedx_y[i]*ygood[i];  
         dedx = dedx/(this->GetNX()+this->GetNY());  
         return dedx;  
1515  };  };
   
1516  //--------------------------------------  //--------------------------------------
1517  //  //
1518  //  //
1519  //--------------------------------------  //--------------------------------------
1520  void TrkTrack::Dump(){  
     cout << endl << "========== Track " ;  
     cout << endl << "al       : "; for(int i=0; i<5; i++)cout << al[i] << " ";  
     cout << endl << "chi^2    : "<< chi2;  
     cout << endl << "xgood    : "; for(int i=0; i<6; i++)cout << xgood[i] ;  
     cout << endl << "ygood    : "; for(int i=0; i<6; i++)cout << ygood[i] ;  
     cout << endl << "xm       : "; for(int i=0; i<6; i++)cout << xm[i] << " ";  
     cout << endl << "ym       : "; for(int i=0; i<6; i++)cout << ym[i] << " ";  
     cout << endl << "zm       : "; for(int i=0; i<6; i++)cout << zm[i] << " ";  
     cout << endl << "dedx_x   : "; for(int i=0; i<6; i++)cout << dedx_x[i] << " ";  
     cout << endl << "dedx_y   : "; for(int i=0; i<6; i++)cout << dedx_y[i] << " ";  
 }  
1521  //--------------------------------------  //--------------------------------------
1522  //  //
1523  //  //
1524  //--------------------------------------  //--------------------------------------
1525  TrkSinglet::TrkSinglet(){  TrkSinglet::TrkSinglet(){
1526      plane    = 0;  //    cout << "TrkSinglet::TrkSinglet() " << GetUniqueID()<<endl;
1527      coord[0] = 0;  //     plane    = 0;
1528      coord[1] = 0;  //     coord[0] = 0;
1529      sgnl     = 0;  //     coord[1] = 0;
1530    //     sgnl     = 0;
1531    //     multmax  = 0;
1532    //    cls      = 0;
1533        Clear();
1534  };  };
1535  //--------------------------------------  //--------------------------------------
1536  //  //
1537  //  //
1538  //--------------------------------------  //--------------------------------------
1539  TrkSinglet::TrkSinglet(const TrkSinglet& s){  TrkSinglet::TrkSinglet(const TrkSinglet& s){
1540    //    cout << "TrkSinglet::TrkSinglet(const TrkSinglet& s) " << GetUniqueID()<<endl;
1541      plane    = s.plane;      plane    = s.plane;
1542      coord[0] = s.coord[0];      coord[0] = s.coord[0];
1543      coord[1] = s.coord[1];      coord[1] = s.coord[1];
1544      sgnl     = s.sgnl;      sgnl     = s.sgnl;
1545        multmax  = s.multmax;
1546    //      cls      = 0;//<<<<pointer
1547    //    cls      = TRef(s.cls);
1548  };  };
1549  //--------------------------------------  //--------------------------------------
1550  //  //
# Line 224  TrkSinglet::TrkSinglet(const TrkSinglet& Line 1553  TrkSinglet::TrkSinglet(const TrkSinglet&
1553  void TrkSinglet::Dump(){  void TrkSinglet::Dump(){
1554      int i=0;      int i=0;
1555      cout << endl << "========== Singlet " ;      cout << endl << "========== Singlet " ;
1556      cout << endl << "plane    : " << plane;      cout << endl << "plane        : " << plane;
1557      cout << endl << "coord[2] : "; while( i<2 && cout << coord[i] << " ") i++;      cout << endl << "coord[2]     : "; while( i<2 && cout << coord[i] << " ") i++;
1558      cout << endl << "sgnl     : " << sgnl;      cout << endl << "sgnl         : " << sgnl;
1559        cout << endl << "max.strip    : ";
1560        cout << endl << "multiplicity : ";
1561    }
1562    //--------------------------------------
1563    //
1564    //
1565    //--------------------------------------
1566    void TrkSinglet::Clear(){
1567    //    cout << "TrkSinglet::Clear() " << GetUniqueID()<<endl;
1568    //    cls=0;
1569        plane=-1;
1570        coord[0]=-999;
1571        coord[1]=-999;
1572        sgnl=0;
1573        multmax  = 0;
1574        
1575  }  }
1576  //--------------------------------------  //--------------------------------------
1577  //  //
1578  //  //
1579  //--------------------------------------  //--------------------------------------
1580  TrkLevel2::TrkLevel2(){  TrkLevel2::TrkLevel2(){
1581      good2    = -1;    //    cout <<"TrkLevel2::TrkLevel2()"<<endl;
1582      for(Int_t i=0; i<12 ; i++){      for(Int_t i=0; i<12 ; i++){
1583          crc[i] = -1;          good[i] = -1;
1584            VKmask[i] = 0;
1585            VKflag[i] = 0;  
1586      };      };
1587      Track    = new TClonesArray("TrkTrack");      Track    = 0;
1588      SingletX = new TClonesArray("TrkSinglet");      SingletX = 0;
1589      SingletY = new TClonesArray("TrkSinglet");      SingletY = 0;
1590  //    Track    = 0;  
1591  //    Singlet = 0;  }
1592  //    SingletY = 0;  //--------------------------------------
1593    //
1594    //
1595    //--------------------------------------
1596    void TrkLevel2::Set(){
1597        if(!Track)Track    = new TClonesArray("TrkTrack");
1598        if(!SingletX)SingletX = new TClonesArray("TrkSinglet");
1599        if(!SingletY)SingletY = new TClonesArray("TrkSinglet");
1600    }
1601    //--------------------------------------
1602    //
1603    //
1604    //--------------------------------------
1605    void TrkLevel2::SetTrackArray(TClonesArray *track){
1606        if(track && strcmp(track->GetClass()->GetName(),"TrkTrack")==0){
1607            if(Track)Track->Clear("C");    
1608            Track = track;
1609        }
1610  }  }
1611  //--------------------------------------  //--------------------------------------
1612  //  //
1613  //  //
1614  //--------------------------------------  //--------------------------------------
1615  void TrkLevel2::Dump(){  void TrkLevel2::Dump(){
1616      TClonesArray &t  = *Track;          
1617      TClonesArray &sx = *SingletX;          //
     TClonesArray &sy = *SingletY;  
   
1618      cout << endl << endl << "=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-";      cout << endl << endl << "=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-";
1619      cout << endl << "good2    : " << good2;      cout << endl << "good     : "; for(int i=0; i<12; i++) cout << hex <<" 0x"<< good[i]<<dec;
1620      cout << endl << "crc      : "; for(int i=0; i<12; i++) cout << crc[i];      cout << endl << "ntrk()   : " << ntrk() ;
1621      cout << endl << "ntrk()   : " << this->ntrk() ;      cout << endl << "nclsx()  : " << nclsx();
1622      cout << endl << "nclsx()  : " << this->nclsx();      cout << endl << "nclsy()  : " << nclsy();
1623      cout << endl << "nclsy()  : " << this->nclsy();      if(Track){
1624      for(int i=0; i<this->ntrk(); i++)     ((TrkTrack *)t[i])->Dump();          TClonesArray &t  = *Track;
1625      for(int i=0; i<this->nclsx(); i++) ((TrkSinglet *)sx[i])->Dump();          for(int i=0; i<ntrk(); i++)     ((TrkTrack *)t[i])->Dump();
1626      for(int i=0; i<this->nclsy(); i++) ((TrkSinglet *)sy[i])->Dump();      }      
1627    //     if(SingletX){
1628    //      TClonesArray &sx = *SingletX;
1629    //      for(int i=0; i<nclsx(); i++) ((TrkSinglet *)sx[i])->Dump();
1630    //     }
1631    //     if(SingletY){
1632    //      TClonesArray &sy = *SingletY;
1633    //      for(int i=0; i<nclsy(); i++) ((TrkSinglet *)sy[i])->Dump();
1634    //     }
1635        cout << endl;
1636  }  }
1637    /**
1638     * \brief Dump processing status
1639     */
1640    void TrkLevel2::StatusDump(int view){
1641        cout << "DSP n. "<<view+1<<" status: "<<hex<<good[view]<<endl;    
1642    };
1643    /**
1644     * \brief Check event status
1645     *
1646     * Check the event status, according to a flag-mask given as input.
1647     * Return true if the view passes the check.
1648     *
1649     * @param view View number (0-11)
1650     * @param flagmask Mask of flags to check (eg. flagmask=0x111 no missing packet,
1651     *  no crc error, no software alarm)
1652     *
1653     * @see TrkLevel2 class definition to know how the status flag is defined
1654     *
1655     */
1656    Bool_t TrkLevel2::StatusCheck(int view, int flagmask){
1657    
1658        if( view<0 || view >= 12)return false;
1659        return !(good[view]&flagmask);
1660    
1661    };
1662    
1663    
1664  //--------------------------------------  //--------------------------------------
1665  //  //
1666  //  //
1667  //--------------------------------------  //--------------------------------------
1668  /**  /**
1669   * Fills a TrkLevel2 object with values from a struct cTrkLevel2 (to get data from F77 common).   * The method returns false if the viking-chip was masked  
1670     * either apriori ,on the basis of the mask read from the DB,
1671     * or run-by-run, on the basis of the calibration parameters)
1672     * @param iv Tracker view (0-11)
1673     * @param ivk Viking-chip number (0-23)
1674   */   */
1675  void TrkLevel2::FillCommonVar(cTrkLevel2 *l2){  Bool_t TrkLevel2::GetVKMask(int iv, int ivk){
1676      //      Int_t whichbit = (Int_t)pow(2,ivk);
1677  //    Track    = new TClonesArray("TrkTrack");      return (whichbit&VKmask[iv])!=0;    
1678  //    SingletX = new TClonesArray("TrkSinglet");  }
1679  //    SingletY = new TClonesArray("TrkSinglet");  /**
1680     * The method returns false if the viking-chip was masked  
1681     * for this event due to common-noise computation failure.
1682     * @param iv Tracker view (0-11)
1683     * @param ivk Viking-chip number (0-23)
1684     */
1685    Bool_t TrkLevel2::GetVKFlag(int iv, int ivk){
1686        Int_t whichbit = (Int_t)pow(2,ivk);
1687        return (whichbit&VKflag[iv])!=0;    
1688    }
1689    /**
1690     * The method returns true if the viking-chip was masked, either
1691     * forced (see TrkLevel2::GetVKMask(int,int)) or
1692     * for this event only (TrkLevel2::GetVKFlag(int,int)).
1693     * @param iv Tracker view (0-11)
1694     * @param ivk Viking-chip number (0-23)
1695     */
1696    Bool_t TrkLevel2::IsMaskedVK(int iv, int ivk){
1697        return !(GetVKMask(iv,ivk)&&GetVKFlag(iv,ivk) );
1698    };
1699    
1700    //--------------------------------------
1701    //
1702    //
1703    //--------------------------------------
1704    /**
1705     * Fills a TrkLevel2 object with values from a struct cTrkLevel2 (to get data from F77 common).
1706     * Ref to Level1 data (clusters) is also set. If l1==NULL no references are set.
1707     * (NB It make sense to set references only if events are stored in a tree that contains also the Level1 branch)
1708     */
1709    void TrkLevel2::SetFromLevel2Struct(cTrkLevel2 *l2, TrkLevel1 *l1){
1710    
1711    //    cout << "void TrkLevel2::SetFromLevel2Struct(cTrkLevel2 *l2, TrkLevel1 *l1)"<<endl;
1712        Clear();
1713    
1714  //  temporary objects:  //  temporary objects:
1715      TrkSinglet* t_singlet = new TrkSinglet();      TrkSinglet* t_singlet = new TrkSinglet();
1716      TrkTrack*   t_track   = new TrkTrack();      TrkTrack*   t_track   = new TrkTrack();
1717    
1718    //  -----------------
1719  //  general variables  //  general variables
1720      good2 = l2->good2;  //  -----------------
1721      for(Int_t i=0; i<12 ; i++){      for(Int_t i=0; i<12 ; i++){
1722          crc[i] = l2->crc[i];          good[i] = l2->good[i];
1723            VKmask[i]=0;
1724            VKflag[i]=0;
1725            for(Int_t ii=0; ii<24 ; ii++){
1726                Int_t setbit = (Int_t)pow(2,ii);
1727                if( l2->vkflag[ii][i]!=-1 )VKmask[i]=VKmask[i]|setbit;
1728                if( l2->vkflag[ii][i]!=0  )VKflag[i]=VKflag[i]|setbit;
1729            };
1730      };      };
1731    //  --------------
1732  //  *** TRACKS ***  //  *** TRACKS ***
1733    //  --------------
1734        if(!Track) Track = new TClonesArray("TrkTrack");
1735      TClonesArray &t = *Track;      TClonesArray &t = *Track;
1736    
1737      for(int i=0; i<l2->ntrk; i++){      for(int i=0; i<l2->ntrk; i++){
1738          t_track->seqno = i;          t_track->seqno = i;// NBNBNBNB deve sempre essere = i
1739          t_track->image = l2->image[i]-1;          t_track->image = l2->image[i]-1;
 //      cout << "track "<<i<<t_track->seqno << t_track->image<<endl;  
1740          t_track->chi2  = l2->chi2_nt[i];          t_track->chi2  = l2->chi2_nt[i];
1741            t_track->nstep = l2->nstep_nt[i];
1742          for(int it1=0;it1<5;it1++){          for(int it1=0;it1<5;it1++){
1743              t_track->al[it1] = l2->al_nt[i][it1];              t_track->al[it1] = l2->al_nt[i][it1];
1744              for(int it2=0;it2<5;it2++)              for(int it2=0;it2<5;it2++)
1745                  t_track->coval[it1][it2] = l2->coval[i][it2][it1];                  t_track->coval[it1][it2] = l2->coval[i][it2][it1];
1746          };          };
1747          for(int ip=0;ip<6;ip++){          for(int ip=0;ip<6;ip++){
1748              t_track->xgood[ip]  = l2->xgood_nt[i][ip];              // ---------------------------------
1749              t_track->ygood[ip]  = l2->ygood_nt[i][ip];              // new implementation of xgood/ygood
1750                // ---------------------------------
1751                t_track->xgood[ip]  = l2->cltrx[i][ip]; //cluster ID
1752                t_track->ygood[ip]  = l2->cltry[i][ip]; //cluster ID
1753                t_track->xgood[ip] += 10000000*l2->ls[i][ip]; // ladder+sensor
1754                t_track->ygood[ip] += 10000000*l2->ls[i][ip]; // ladder+sensor
1755                if(l2->xbad[i][ip]>0)t_track->xgood[ip]=-t_track->xgood[ip];
1756                if(l2->ybad[i][ip]>0)t_track->ygood[ip]=-t_track->ygood[ip];
1757    //          if(l2->xbad[i][ip]>0 || l2->ybad[i][ip]>0){
1758    //          if(l2->dedx_x[i][ip]<0 || l2->dedx_y[i][ip]<0){
1759    //              cout << ip << " - "<< l2->cltrx[i][ip] << " "<<l2->cltry[i][ip]<<" "<<l2->ls[i][ip]<<endl;
1760    //              cout << ip << " - "<<t_track->xgood[ip]<<" "<<t_track->ygood[ip]<<endl;
1761    //              cout << ip << " - "<<t_track->GetClusterX_ID(ip)<<" "<<t_track->GetClusterY_ID(ip)<<" "<<t_track->GetLadder(ip)<<" "<<t_track->GetSensor(ip)<<endl;
1762    //              cout << ip << " - "<<t_track->BadClusterX(ip)<<" "<<t_track->BadClusterY(ip)<<endl;
1763    //              cout << ip << " - "<<t_track->SaturatedClusterX(ip)<<" "<<t_track->SaturatedClusterY(ip)<<endl;
1764    //          }
1765              t_track->xm[ip]     = l2->xm_nt[i][ip];              t_track->xm[ip]     = l2->xm_nt[i][ip];
1766              t_track->ym[ip]     = l2->ym_nt[i][ip];              t_track->ym[ip]     = l2->ym_nt[i][ip];
1767              t_track->zm[ip]     = l2->zm_nt[i][ip];              t_track->zm[ip]     = l2->zm_nt[i][ip];
1768              t_track->resx[ip]   = l2->resx_nt[i][ip];              t_track->resx[ip]   = l2->resx_nt[i][ip];
1769              t_track->resy[ip]   = l2->resy_nt[i][ip];              t_track->resy[ip]   = l2->resy_nt[i][ip];
1770                t_track->tailx[ip]  = l2->tailx[i][ip];
1771                t_track->taily[ip]  = l2->taily[i][ip];
1772              t_track->xv[ip]     = l2->xv_nt[i][ip];              t_track->xv[ip]     = l2->xv_nt[i][ip];
1773              t_track->yv[ip]     = l2->yv_nt[i][ip];              t_track->yv[ip]     = l2->yv_nt[i][ip];
1774              t_track->zv[ip]     = l2->zv_nt[i][ip];              t_track->zv[ip]     = l2->zv_nt[i][ip];
# Line 310  void TrkLevel2::FillCommonVar(cTrkLevel2 Line 1776  void TrkLevel2::FillCommonVar(cTrkLevel2
1776              t_track->ayv[ip]    = l2->ayv_nt[i][ip];              t_track->ayv[ip]    = l2->ayv_nt[i][ip];
1777              t_track->dedx_x[ip] = l2->dedx_x[i][ip];              t_track->dedx_x[ip] = l2->dedx_x[i][ip];
1778              t_track->dedx_y[ip] = l2->dedx_y[i][ip];              t_track->dedx_y[ip] = l2->dedx_y[i][ip];
1779                t_track->multmaxx[ip] = l2->multmaxx[i][ip];
1780                t_track->multmaxy[ip] = l2->multmaxy[i][ip];
1781                t_track->seedx[ip]  = l2->seedx[i][ip];  
1782                t_track->seedy[ip]  = l2->seedy[i][ip];
1783                t_track->xpu[ip]    = l2->xpu[i][ip];  
1784                t_track->ypu[ip]    = l2->ypu[i][ip];  
1785                //-----------------------------------------------------
1786                //-----------------------------------------------------
1787                //-----------------------------------------------------
1788                //-----------------------------------------------------
1789          };          };
1790            // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1791            // evaluated coordinates (to define GF)
1792            // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1793            int    ngf = TrkParams::nGF;
1794            float *zgf = TrkParams::zGF;
1795            Trajectory tgf = Trajectory(ngf,zgf);
1796            tgf.DoTrack(t_track->al);//<<<< integrate the trajectory
1797            for(int ip=0; ip<ngf; ip++){
1798                t_track->xGF[ip] = tgf.x[ip];
1799                t_track->yGF[ip] = tgf.y[ip];
1800            }
1801            
1802    //      if(t_track->IsSaturated())t_track->Dump();
1803          new(t[i]) TrkTrack(*t_track);          new(t[i]) TrkTrack(*t_track);
1804          t_track->Clear();          t_track->Clear();
1805      };      };//end loop over track
1806    
1807    //  ----------------
1808  //  *** SINGLETS ***  //  *** SINGLETS ***
1809    //  ----------------
1810        if(!SingletX)SingletX = new TClonesArray("TrkSinglet");
1811      TClonesArray &sx = *SingletX;      TClonesArray &sx = *SingletX;
1812      for(int i=0; i<l2->nclsx; i++){      for(int i=0; i<l2->nclsx; i++){
1813          t_singlet->plane    = l2->planex[i];          t_singlet->plane    = l2->planex[i];
1814          t_singlet->coord[0] = l2->xs[i][0];          t_singlet->coord[0] = l2->xs[i][0];
1815          t_singlet->coord[1] = l2->xs[i][1];          t_singlet->coord[1] = l2->xs[i][1];
1816          t_singlet->sgnl     = l2->signlxs[i];          t_singlet->sgnl     = l2->signlxs[i];
1817            t_singlet->multmax = l2->multmaxsx[i];
1818            if(l2->sxbad[i]>0) t_singlet->multmax = -1*t_singlet->multmax;
1819            //-----------------------------------------------------
1820    //      if(l1) t_singlet->cls      = l1->GetCluster(l2->clsx[i]-1);
1821            //-----------------------------------------------------
1822          new(sx[i]) TrkSinglet(*t_singlet);          new(sx[i]) TrkSinglet(*t_singlet);
1823          t_singlet->Clear();          t_singlet->Clear();
1824      }      }
1825        if(!SingletY)SingletY = new TClonesArray("TrkSinglet");
1826      TClonesArray &sy = *SingletY;      TClonesArray &sy = *SingletY;
1827      for(int i=0; i<l2->nclsy; i++){      for(int i=0; i<l2->nclsy; i++){
1828          t_singlet->plane    = l2->planey[i];          t_singlet->plane    = l2->planey[i];
1829          t_singlet->coord[0] = l2->ys[i][0];          t_singlet->coord[0] = l2->ys[i][0];
1830          t_singlet->coord[1] = l2->ys[i][1];          t_singlet->coord[1] = l2->ys[i][1];
1831          t_singlet->sgnl     = l2->signlys[i];          t_singlet->sgnl     = l2->signlys[i];
1832            t_singlet->multmax  = l2->multmaxsy[i];
1833            if(l2->sybad[i]>0) t_singlet->multmax = -1*t_singlet->multmax;
1834            //-----------------------------------------------------
1835    //      if(l1) t_singlet->cls      = l1->GetCluster(l2->clsy[i]-1);
1836            //-----------------------------------------------------
1837          new(sy[i]) TrkSinglet(*t_singlet);          new(sy[i]) TrkSinglet(*t_singlet);
1838          t_singlet->Clear();          t_singlet->Clear();
1839          };      };
1840    
1841    
1842            
1843        delete t_track;
1844        delete t_singlet;
1845    }
1846    /**
1847     * Fills a struct cTrkLevel2 with values from a TrkLevel2 object (to put data into a F77 common).
1848     */
1849    
1850    void TrkLevel2::GetLevel2Struct(cTrkLevel2 *l2) const {
1851      
1852    //  general variables
1853    //    l2->good2 = good2 ;
1854        for(Int_t i=0; i<12 ; i++){
1855    //      l2->crc[i] = crc[i];
1856                    l2->good[i] = good[i];
1857        };
1858    //  *** TRACKS ***
1859    
1860        if(Track){
1861            l2->ntrk              =  Track->GetEntries();    
1862            for(Int_t i=0;i<l2->ntrk;i++){
1863                l2->image[i] = 1 + ((TrkTrack *)Track->At(i))->image;
1864                l2->chi2_nt[i] =  ((TrkTrack *)Track->At(i))->chi2;
1865                l2->nstep_nt[i] =  ((TrkTrack *)Track->At(i))->nstep;
1866                for(int it1=0;it1<5;it1++){
1867                    l2->al_nt[i][it1] = ((TrkTrack *)Track->At(i))->al[it1];
1868                    for(int it2=0;it2<5;it2++)
1869                        l2->coval[i][it2][it1] = ((TrkTrack *)Track->At(i))->coval[it1][it2];
1870                };
1871                for(int ip=0;ip<6;ip++){
1872                    l2->xgood_nt[i][ip] = ((TrkTrack *)Track->At(i))->XGood(ip);
1873                    l2->ygood_nt[i][ip] = ((TrkTrack *)Track->At(i))->YGood(ip);
1874                    l2->xm_nt[i][ip]    = ((TrkTrack *)Track->At(i))->xm[ip];
1875                    l2->ym_nt[i][ip]    = ((TrkTrack *)Track->At(i))->ym[ip];
1876                    l2->zm_nt[i][ip]    = ((TrkTrack *)Track->At(i))->zm[ip];
1877                    l2->resx_nt[i][ip]  = ((TrkTrack *)Track->At(i))->resx[ip];
1878                    l2->resy_nt[i][ip]  = ((TrkTrack *)Track->At(i))->resy[ip];
1879                    l2->tailx[i][ip]  = ((TrkTrack *)Track->At(i))->tailx[ip];
1880                    l2->taily[i][ip]  = ((TrkTrack *)Track->At(i))->taily[ip];
1881                    l2->xv_nt[i][ip]    = ((TrkTrack *)Track->At(i))->xv[ip];
1882                    l2->yv_nt[i][ip]    = ((TrkTrack *)Track->At(i))->yv[ip];
1883                    l2->zv_nt[i][ip]    = ((TrkTrack *)Track->At(i))->zv[ip];
1884                    l2->axv_nt[i][ip]   = ((TrkTrack *)Track->At(i))->axv[ip];
1885                    l2->ayv_nt[i][ip]   = ((TrkTrack *)Track->At(i))->ayv[ip];
1886                    l2->dedx_x[i][ip]   = ((TrkTrack *)Track->At(i))->dedx_x[ip];
1887                    l2->dedx_y[i][ip]   = ((TrkTrack *)Track->At(i))->dedx_y[ip];
1888                };
1889            }
1890        }
1891    //  *** SINGLETS ***    
1892        if(SingletX){
1893            l2->nclsx              = SingletX->GetEntries();
1894            for(Int_t i=0;i<l2->nclsx;i++){
1895                l2->planex[i]  = ((TrkSinglet *)SingletX->At(i))->plane;
1896                l2->xs[i][0]   = ((TrkSinglet *)SingletX->At(i))->coord[0];
1897                l2->xs[i][1]   = ((TrkSinglet *)SingletX->At(i))->coord[1];
1898                l2->signlxs[i] = ((TrkSinglet *)SingletX->At(i))->sgnl;
1899            }
1900        }
1901    
1902        if(SingletY){
1903            l2->nclsy              = SingletY->GetEntries();
1904            for(Int_t i=0;i<l2->nclsy;i++){
1905                l2->planey[i]  = ((TrkSinglet *)SingletY->At(i))->plane;
1906                l2->ys[i][0]   = ((TrkSinglet *)SingletY->At(i))->coord[0];
1907                l2->ys[i][1]   = ((TrkSinglet *)SingletY->At(i))->coord[1];
1908                l2->signlys[i] = ((TrkSinglet *)SingletY->At(i))->sgnl;
1909            }
1910        }
1911  }  }
1912  //--------------------------------------  //--------------------------------------
1913  //  //
1914  //  //
1915  //--------------------------------------  //--------------------------------------
1916  void TrkLevel2::Clear(){  void TrkLevel2::Clear(){
     good2    = -1;  
1917      for(Int_t i=0; i<12 ; i++){      for(Int_t i=0; i<12 ; i++){
1918          crc[i] = -1;          good[i] = -1;
1919            VKflag[i] = 0;
1920            VKmask[i] = 0;
1921      };      };
1922      Track->RemoveAll();  //    if(Track)Track->Clear("C");
1923      SingletX->RemoveAll();  //    if(SingletX)SingletX->Clear("C");
1924      SingletY->RemoveAll();  //    if(SingletY)SingletY->Clear("C");
1925        if(Track)Track->Delete();
1926        if(SingletX)SingletX->Delete();
1927        if(SingletY)SingletY->Delete();
1928    }
1929    // //--------------------------------------
1930    // //
1931    // //
1932    // //--------------------------------------
1933    void TrkLevel2::Delete(){
1934            
1935    //    cout << "void TrkLevel2::Delete()"<<endl;
1936        Clear();
1937        if(Track)delete Track;
1938        if(SingletX)delete SingletX;
1939        if(SingletY)delete SingletY;
1940    
1941  }  }
1942  //--------------------------------------  //--------------------------------------
1943  //  //
# Line 355  void TrkLevel2::Clear(){ Line 1947  void TrkLevel2::Clear(){
1947   * Sort physical tracks and stores them in a TObjectArray, ordering by increasing chi**2 value (in case of track image, it selects the one with lower chi**2). The total number of physical tracks is given by GetNTracks() and the it-th physical track can be retrieved by means of the method GetTrack(int it).   * Sort physical tracks and stores them in a TObjectArray, ordering by increasing chi**2 value (in case of track image, it selects the one with lower chi**2). The total number of physical tracks is given by GetNTracks() and the it-th physical track can be retrieved by means of the method GetTrack(int it).
1948   * This method is overridden by PamLevel2::GetTracks(), where calorimeter and TOF information is used.   * This method is overridden by PamLevel2::GetTracks(), where calorimeter and TOF information is used.
1949   */   */
1950  TClonesArray *TrkLevel2::GetTracks(){  TRefArray *TrkLevel2::GetTracks_NFitSorted(){
     TClonesArray *sorted = GetTracks_NFitSorted();  
     return sorted;  
 };  
 TClonesArray *TrkLevel2::GetTracks_Chi2Sorted(){  
1951    
1952      TClonesArray *sorted = new TClonesArray("TrkTrack");      if(!Track)return 0;
     TClonesArray &t = *Track;  
     TClonesArray &ts = *sorted;  
     int N=this->ntrk();  
     vector<int> m(N); for(int i=0; i<N; i++)m[i]=1;  
   
     int indo=0;  
     int indi=0;  
     while(N != 0){  
         float chi2ref=1000000;  
         for(int i=0; i<this->ntrk(); i++){  
             if(((TrkTrack *)t[i])->chi2 < chi2ref && m[i]==1){  
                 chi2ref = ((TrkTrack *)t[i])->chi2;  
                 indi = i;  
             }  
         }  
         if( ((TrkTrack *)t[indi])->image != -1 ){  
             m[((TrkTrack *)t[indi])->image] = 0;  
             N--;  
         }  
         new(ts[indo]) TrkTrack(*(TrkTrack*)t[indi]);  
         m[indi] = 0;  
         N--;      
         indo++;  
     }  
     return sorted;  
 }  
 TClonesArray *TrkLevel2::GetTracks_NFitSorted(){  
1953    
1954      TClonesArray *sorted = new TClonesArray("TrkTrack");      //    TRefArray *sorted = new TRefArray();
1955      TClonesArray &t = *Track;      TRefArray *sorted = NULL;
1956      TClonesArray &ts = *sorted;          
1957      int N=this->ntrk();      TClonesArray &t  = *Track;
1958    //    TClonesArray &ts = *PhysicalTrack;
1959        int N = ntrk();
1960      vector<int> m(N); for(int i=0; i<N; i++)m[i]=1;      vector<int> m(N); for(int i=0; i<N; i++)m[i]=1;
1961    //      int m[50]; for(int i=0; i<N; i++)m[i]=1;
1962            
1963      int indo=0;      int indo=0;
1964      int indi=0;      int indi=0;
1965      while(N != 0){      while(N > 0){
1966    //    while(N != 0){
1967          int nfit =0;          int nfit =0;
1968          float chi2ref=1000000;          float chi2ref = numeric_limits<float>::max();
1969                    
1970          // first loop to search maximum num. of fit points          // first loop to search maximum num. of fit points
1971          for(int i=0; i<this->ntrk(); i++){          for(int i=0; i < ntrk(); i++){
1972              if( ((TrkTrack *)t[i])->GetNtot() >= nfit && m[i]==1){              if( ((TrkTrack *)t[i])->GetNtot() >= nfit && m[i]==1){
1973                  nfit =    ((TrkTrack *)t[i])->GetNtot();                  nfit =    ((TrkTrack *)t[i])->GetNtot();
 //              cout << "1** "<<i<< " " << nfit<<endl;  
1974              }              }
1975          }          }
1976          //second loop to search minimum chi2 among selected          //second loop to search minimum chi2 among selected
1977          for(int i=0; i<this->ntrk(); i++){          for(int i=0; i<ntrk(); i++){
1978              if(    ((TrkTrack *)t[i])->chi2 < chi2ref              Float_t chi2 = ((TrkTrack *)t[i])->chi2;
1979                  && ((TrkTrack *)t[i])->GetNtot()== nfit              if(chi2 < 0) chi2 = -chi2*1000;
1980                  && m[i]==1){              if(    chi2 < chi2ref
1981                       && ((TrkTrack *)t[i])->GetNtot() == nfit
1982                       && m[i]==1){
1983                  chi2ref = ((TrkTrack *)t[i])->chi2;                  chi2ref = ((TrkTrack *)t[i])->chi2;
1984                  indi = i;                  indi = i;
1985  //              cout << "2** "<<i<< " " << nfit <<" "<<chi2ref<<endl;              };
1986              }          };
         }  
1987          if( ((TrkTrack *)t[indi])->HasImage() ){          if( ((TrkTrack *)t[indi])->HasImage() ){
1988              m[((TrkTrack *)t[indi])->image] = 0;              m[((TrkTrack *)t[indi])->image] = 0;
1989              N--;              N--;
1990            
 //          Int_t nfiti=((TrkTrack *)t[((TrkTrack *)t[indi])->image  ])->GetNtot();  
 //          Float_t chi2i=((TrkTrack *)t[((TrkTrack *)t[indi])->image  ])->chi2;  
                   
1991  //          cout << "i** "<< ((TrkTrack *)t[indi])->image << " " << nfiti <<" "<<chi2i<<endl;  //          cout << "i** "<< ((TrkTrack *)t[indi])->image << " " << nfiti <<" "<<chi2i<<endl;
1992          }          };
1993          new(ts[indo]) TrkTrack(*(TrkTrack*)t[indi]);          if(!sorted)sorted = new TRefArray( TProcessID::GetProcessWithUID(t[indi]));
1994            sorted->Add( (TrkTrack*)t[indi] );      
1995                    
1996          m[indi] = 0;          m[indi] = 0;
1997    //      cout << "SORTED "<< indo << " "<< indi << " "<< N << " "<<((TrkTrack *)t[indi])->image<<" "<<chi2ref<<endl;
1998          N--;              N--;    
1999          indo++;          indo++;
2000      }      }
2001        m.clear();
2002    //    cout << "GetTracks_NFitSorted(it): Done"<< endl;
2003    
2004      return sorted;      return sorted;
2005    //    return PhysicalTrack;
2006  }  }
2007  //--------------------------------------  //--------------------------------------
2008  //  //
# Line 446  TClonesArray *TrkLevel2::GetTracks_NFitS Line 2016  TClonesArray *TrkLevel2::GetTracks_NFitS
2016  TrkTrack *TrkLevel2::GetStoredTrack(int is){  TrkTrack *TrkLevel2::GetStoredTrack(int is){
2017    
2018      if(is >= this->ntrk()){      if(is >= this->ntrk()){
2019          cout << "** TrkLevel2 ** Track "<< is << "doen not exits! " << endl;          cout << "TrkTrack *TrkLevel2::GetStoredTrack(int) >> Track "<< is << "doen not exits! " << endl;
2020          cout << "                Stored tracks ntrk() = "<< this->ntrk() << endl;          cout << "Stored tracks ntrk() = "<< this->ntrk() << endl;
2021          return 0;          return 0;
2022      }      }
2023        if(!Track){
2024            cout << "TrkTrack *TrkLevel2::GetStoredTrack(int is) >> (TClonesArray*) Track ==0 "<<endl;
2025        };
2026      TClonesArray &t = *(Track);      TClonesArray &t = *(Track);
2027      TrkTrack *track = (TrkTrack*)t[is];      TrkTrack *track = (TrkTrack*)t[is];
2028      return track;      return track;
# Line 459  TrkTrack *TrkLevel2::GetStoredTrack(int Line 2032  TrkTrack *TrkLevel2::GetStoredTrack(int
2032  //  //
2033  //--------------------------------------  //--------------------------------------
2034  /**  /**
2035     * Retrieves the is-th stored X singlet.
2036     * @param it Singlet number, ranging from 0 to nclsx().
2037     */
2038    TrkSinglet *TrkLevel2::GetSingletX(int is){
2039    
2040            if(is >= this->nclsx()){
2041                    cout << "TrkSinglet *TrkLevel2::GetSingletX(int) >> Singlet "<< is << "doen not exits! " << endl;
2042                    cout << "Stored x-singlets nclsx() = "<< this->nclsx() << endl;
2043                    return 0;
2044            }
2045            if(!SingletX)return 0;
2046            TClonesArray &t = *(SingletX);
2047            TrkSinglet *singlet = (TrkSinglet*)t[is];
2048            return singlet;
2049    }
2050    //--------------------------------------
2051    //
2052    //
2053    //--------------------------------------
2054    /**
2055     * Retrieves the is-th stored Y singlet.
2056     * @param it Singlet number, ranging from 0 to nclsx().
2057     */
2058    TrkSinglet *TrkLevel2::GetSingletY(int is){
2059    
2060            if(is >= this->nclsy()){
2061                    cout << "TrkSinglet *TrkLevel2::GetSingletY(int) >> Singlet "<< is << "doen not exits! " << endl;
2062                    cout << "Stored y-singlets nclsx() = "<< this->nclsx() << endl;
2063                    return 0;
2064            }
2065            if(!SingletY)return 0;
2066            TClonesArray &t = *(SingletY);
2067            TrkSinglet *singlet = (TrkSinglet*)t[is];
2068            return singlet;
2069    }
2070    //--------------------------------------
2071    //
2072    //
2073    //--------------------------------------
2074    /**
2075   * Retrieves the it-th "physical" track, sorted by the method GetNTracks().   * Retrieves the it-th "physical" track, sorted by the method GetNTracks().
2076   * @param it Track number, ranging from 0 to GetNTracks().   * @param it Track number, ranging from 0 to GetNTracks().
2077   */   */
2078    
2079  TrkTrack *TrkLevel2::GetTrack(int it){  TrkTrack *TrkLevel2::GetTrack(int it){
2080            
2081      if(it >= this->GetNTracks()){          if(it >= this->GetNTracks()){
2082          cout << "** TrkLevel2 ** Track "<< it << "does not exits! " << endl;                  cout << "TrkTrack *TrkLevel2::GetTrack(int) >> Track "<< it << "does not exits! " << endl;
2083          cout << "                Physical tracks GetNTracks() = "<< this->ntrk() << endl;                  cout << "Physical tracks GetNTracks() = "<< this->ntrk() << endl;
2084          return 0;                  return 0;
2085      }          }
2086      TrkTrack *track = (TrkTrack*)(*(this->GetTracks()))[it];          
2087      return track;          TRefArray *sorted = GetTracks();  //TEMPORANEO  
2088            if(!sorted)return 0;
2089            TrkTrack *track = (TrkTrack*)sorted->At(it);
2090            sorted->Clear();
2091            delete sorted;
2092            return track;
2093  }  }
2094    /**
2095     * Give the number of "physical" tracks, sorted by the method GetTracks().
2096     */
2097    Int_t TrkLevel2::GetNTracks(){
2098                    
2099            Float_t ntot=0;
2100            if(!Track)return 0;
2101            TClonesArray &t = *Track;
2102            for(int i=0; i<ntrk(); i++) {    
2103                    if( ((TrkTrack *)t[i])->GetImageSeqNo() == -1 ) ntot+=1.;
2104                    else ntot+=0.5;
2105            }
2106            return (Int_t)ntot;
2107    
2108    };
2109  //--------------------------------------  //--------------------------------------
2110  //  //
2111  //  //
# Line 483  TrkTrack *TrkLevel2::GetTrack(int it){ Line 2117  TrkTrack *TrkLevel2::GetTrack(int it){
2117  TrkTrack *TrkLevel2::GetTrackImage(int it){  TrkTrack *TrkLevel2::GetTrackImage(int it){
2118    
2119      if(it >= this->GetNTracks()){      if(it >= this->GetNTracks()){
2120          cout << "** TrkLevel2 ** Track "<< it << "does not exits! " << endl;          cout << "TrkTrack *TrkLevel2::GetTrackImage(int) >> Track "<< it << "does not exits! " << endl;
2121          cout << "                Physical tracks GetNTracks() = "<< this->ntrk() << endl;          cout << "Physical tracks GetNTracks() = "<< this->ntrk() << endl;
2122          return 0;          return 0;
2123      }      }
2124      TrkTrack *track = (TrkTrack*)(*(this->GetTracks()))[it];          
2125        TRefArray* sorted = GetTracks(); //TEMPORANEO
2126        if(!sorted)return 0;
2127        TrkTrack *track = (TrkTrack*)sorted->At(it);
2128            
2129      if(!track->HasImage()){      if(!track->HasImage()){
2130          cout << "** TrkLevel2 ** Track "<< it << "does not have image! " << endl;          cout << "TrkTrack *TrkLevel2::GetTrackImage(int) >> Track "<< it << "does not have image! " << endl;
2131          return 0;          return 0;
2132      }      }
2133        if(!Track)return 0;
2134      TrkTrack *image = (TrkTrack*)(*Track)[track->image];      TrkTrack *image = (TrkTrack*)(*Track)[track->image];
2135    
2136        sorted->Delete();
2137        delete sorted;
2138    
2139      return image;      return image;
2140            
2141  }  }
# Line 504  TrkTrack *TrkLevel2::GetTrackImage(int i Line 2147  TrkTrack *TrkLevel2::GetTrackImage(int i
2147   * Loads the magnetic field.   * Loads the magnetic field.
2148   * @param s Path of the magnetic-field files.   * @param s Path of the magnetic-field files.
2149   */   */
2150  void TrkLevel2::LoadField(TString s){  void TrkLevel2::LoadField(TString path){
2151      readb_(s.Data());  //
2152    //     strcpy(path_.path,path.Data());
2153    //     path_.pathlen = path.Length();
2154    //     path_.error   = 0;
2155    //     readb_();
2156    
2157    //     TrkParams::SetTrackingMode();
2158    //     TrkParams::SetPrecisionFactor();
2159    //     TrkParams::SetStepMin();
2160        TrkParams::SetMiniDefault();
2161    
2162        TrkParams::Set(path,1);
2163        TrkParams::Load(1);
2164        if( !TrkParams::IsLoaded(1) ){
2165            cout << "void TrkLevel2::LoadField(TString path) --- ERROR --- m.field not loaded"<<endl;
2166        }
2167    
2168    //
2169    };
2170    // /**
2171    //  * Get BY (kGauss)
2172    //  * @param v (x,y,z) coordinates in cm
2173    //  */
2174    // float TrkLevel2::GetBX(float* v){
2175    //     float b[3];
2176    //     gufld_(v,b);
2177    //     return b[0]/10.;
2178    // }
2179    // /**
2180    //  * Get BY (kGauss)
2181    //  * @param v (x,y,z) coordinates in cm
2182    //  */
2183    // float TrkLevel2::GetBY(float* v){
2184    //     float b[3];
2185    //     gufld_(v,b);
2186    //     return b[1]/10.;
2187    // }
2188    // /**
2189    //  * Get BY (kGauss)
2190    //  * @param v (x,y,z) coordinates in cm
2191    //  */
2192    // float TrkLevel2::GetBZ(float* v){
2193    //     float b[3];
2194    //     gufld_(v,b);
2195    //     return b[2]/10.;
2196    // }
2197    //--------------------------------------
2198    //
2199    //
2200    //--------------------------------------
2201    /**
2202     * Get tracker-plane (mechanical) z-coordinate
2203     * @param plane_id plane index (1=TOP,2,3,4,5,6=BOTTOM)
2204     */
2205    Float_t TrkLevel2::GetZTrk(Int_t plane_id){
2206            switch(plane_id){
2207                    case 1: return ZTRK1;
2208                    case 2: return ZTRK2;
2209                    case 3: return ZTRK3;
2210                    case 4: return ZTRK4;
2211                    case 5: return ZTRK5;
2212                    case 6: return ZTRK6;
2213                    default: return 0.;
2214            };
2215  };  };
2216  //--------------------------------------  //--------------------------------------
2217  //  //
# Line 516  void TrkLevel2::LoadField(TString s){ Line 2222  void TrkLevel2::LoadField(TString s){
2222   * (By default is created with z-coordinates inside the tracking volume)   * (By default is created with z-coordinates inside the tracking volume)
2223    */    */
2224  Trajectory::Trajectory(){  Trajectory::Trajectory(){
2225      npoint = 10;      npoint = 6;
2226      x = new float[npoint];      x = new float[npoint];
2227      y = new float[npoint];      y = new float[npoint];
2228      z = new float[npoint];      z = new float[npoint];
2229      thx = new float[npoint];      thx = new float[npoint];
2230      thy = new float[npoint];      thy = new float[npoint];
2231      tl = new float[npoint];      tl = new float[npoint];
2232      float dz = ((ZTRKUP)-(ZTRKDW))/(npoint-1);      float dz = ((ZTRK1)-(ZTRK6))/(npoint-1);
2233      for(int i=0; i<npoint; i++){      for(int i=0; i<npoint; i++){
2234          x[i] = 0;          x[i] = 0;
2235          y[i] = 0;          y[i] = 0;
2236          z[i] = (ZTRKUP) - i*dz;          z[i] = (ZTRK1) - i*dz;
2237          thx[i] = 0;          thx[i] = 0;
2238          thy[i] = 0;          thy[i] = 0;
2239          tl[i] = 0;          tl[i] = 0;
# Line 554  Trajectory::Trajectory(int n){ Line 2260  Trajectory::Trajectory(int n){
2260      thx = new float[npoint];      thx = new float[npoint];
2261      thy = new float[npoint];      thy = new float[npoint];
2262      tl = new float[npoint];      tl = new float[npoint];
2263      float dz = ((ZTRKUP)-(ZTRKDW))/(npoint-1);      float dz = ((ZTRK1)-(ZTRK6))/(npoint-1);
2264      for(int i=0; i<npoint; i++){      for(int i=0; i<npoint; i++){
2265          x[i] = 0;          x[i] = 0;
2266          y[i] = 0;          y[i] = 0;
2267          z[i] = (ZTRKUP) - i*dz;          z[i] = (ZTRK1) - i*dz;
2268          thx[i] = 0;          thx[i] = 0;
2269          thy[i] = 0;          thy[i] = 0;
2270          tl[i] = 0;          tl[i] = 0;
# Line 583  Trajectory::Trajectory(int n, float* zin Line 2289  Trajectory::Trajectory(int n, float* zin
2289      thy = new float[npoint];      thy = new float[npoint];
2290      tl = new float[npoint];      tl = new float[npoint];
2291      int i=0;      int i=0;
2292      do{      do{      
2293          x[i] = 0;          x[i] = 0.;
2294          y[i] = 0;          y[i] = 0.;
2295          z[i] = zin[i];          z[i] = zin[i];
2296          thx[i] = 0;          thx[i] = 0.;
2297          thy[i] = 0;          thy[i] = 0.;
2298          tl[i] = 0;          tl[i] = 0.;
2299          i++;                      i++;            
2300      }while(zin[i-1] > zin[i] && i < npoint);      }while(zin[i-1] > zin[i] && i < npoint);
2301      npoint=i;      npoint=i;
2302      if(npoint != n)cout << "NB! Trajectory created with "<<npoint<<" points"<<endl;      if(npoint != n)cout << "NB! Trajectory created with "<<npoint<<" points instean of "<<n<<endl;
2303        //    Dump();
2304    }
2305    void Trajectory::Delete(){
2306        
2307        if(x) delete [] x;
2308        if(y) delete [] y;
2309        if(z) delete [] z;
2310        if(thx) delete [] thx;
2311        if(thy) delete [] thy;
2312        if(tl) delete [] tl;
2313    
2314  }  }
2315  //--------------------------------------  //--------------------------------------
2316  //  //
# Line 632  float Trajectory::GetLength(int ifirst, Line 2349  float Trajectory::GetLength(int ifirst,
2349      return l;      return l;
2350    
2351  }  }
2352    
2353    /**
2354     * Evaluates the trajectory in the apparatus associated to the track.
2355     * It integrates the equations of motion in the magnetic field.
2356     * @param al Track state-vector (X0,Y0,sin(theta),phi,deflection).
2357     * @param zini z-coordinate of the reference plane (Z0).
2358     * @return error flag.
2359     *
2360     * This method is needed when you want to integrate the particle trajectory
2361     * starting from a track state-vector relative to an arbitrary reference plane.
2362     * The default reference plane, used by the tracker routines, is at zini=23.5.
2363     * If you give as input the track state-vector from a TrkTrack object,
2364     * you can use Trajectory::DoTrack(float* al) instead.
2365     */
2366    int Trajectory::DoTrack(float* al, float zini){
2367    
2368    //      double *dxout   = new double[npoint];
2369    //      double *dyout   = new double[npoint];
2370    //      double *dthxout = new double[npoint];
2371    //      double *dthyout = new double[npoint];
2372    //      double *dtlout  = new double[npoint];
2373    //      double *dzin    = new double[npoint];
2374        
2375        double *dxout;
2376        double *dyout;
2377        double *dthxout;
2378        double *dthyout;
2379        double *dtlout;
2380        double *dzin;
2381        
2382        dxout   = (double*) malloc(npoint*sizeof(double));
2383        dyout   = (double*) malloc(npoint*sizeof(double));
2384        dthxout = (double*) malloc(npoint*sizeof(double));
2385        dthyout = (double*) malloc(npoint*sizeof(double));
2386        dtlout  = (double*) malloc(npoint*sizeof(double));
2387        dzin    = (double*) malloc(npoint*sizeof(double));
2388        
2389        double dal[5];
2390    
2391        double dzini = (double)zini;
2392    
2393        int ifail = 0;
2394        
2395        for (int i=0; i<5; i++)      dal[i]  = (double)al[i];
2396        for (int i=0; i<npoint; i++) dzin[i] = (double)z[i];
2397    
2398        TrkParams::Load(1);
2399        if( !TrkParams::IsLoaded(1) ){
2400            cout << "int Trajectory::DoTrack(float* al) --- ERROR --- m.field not loaded"<<endl;
2401            return 0;
2402        }
2403    //    dotrack2_(&(npoint),dzin,dxout,dyout,dthxout,dthyout,dtlout,dal,&ifail);
2404        dotrack3_(&(npoint),dzin,dxout,dyout,dthxout,dthyout,dtlout,dal,&dzini,&ifail);
2405        
2406        for (int i=0; i<npoint; i++){
2407            x[i]   = (float)*(dxout+i);
2408            y[i]   = (float)*(dyout+i);
2409            thx[i] = (float)*(dthxout+i);
2410            thy[i] = (float)*(dthyout+i);
2411            tl[i]  = (float)*(dtlout+i);
2412        }
2413    
2414        if(dxout)  free( dxout );
2415        if(dyout)  free( dyout );
2416        if(dthxout)free( dthxout );
2417        if(dthyout)free( dthyout );
2418        if(dtlout) free( dtlout );
2419        if(dzin)   free( dzin );
2420    
2421    //      delete [] dxout;
2422    //      delete [] dyout;
2423    //      delete [] dthxout;
2424    //      delete [] dthyout;
2425    //      delete [] dtlout;
2426    //      delete [] dzin;
2427    
2428    
2429        return ifail;
2430    };
2431    
2432    /**
2433     *
2434     * >>> OBSOLETE !!! use Trajectory::DoTrack(float* al, float zini) instead
2435     *
2436     */
2437    int Trajectory::DoTrack2(float* al, float zini){
2438    
2439        cout << endl;
2440        cout << " int Trajectory::DoTrack2(float* al, float zini) --->> NB NB !! this method is going to be eliminated !!! "<<endl;
2441        cout << " >>>> replace it with TrkTrack::DoTrack(Trajectory* t) <<<<"<<endl;
2442        cout << " (Sorry Wolfgang!! Don't be totally confused!! By Elena)"<<endl;
2443        cout << endl;
2444    
2445        return DoTrack(al,zini);
2446    
2447    };
2448    
2449    
2450    
2451  ClassImp(TrkLevel2);  ClassImp(TrkLevel2);
2452  ClassImp(TrkSinglet);  ClassImp(TrkSinglet);
2453  ClassImp(TrkTrack);  ClassImp(TrkTrack);

Legend:
Removed from v.1.3  
changed lines
  Added in v.1.60

  ViewVC Help
Powered by ViewVC 1.1.23