/[PAMELA software]/DarthVader/TrackerLevel2/src/TrkLevel2.cpp
ViewVC logotype

Annotation of /DarthVader/TrackerLevel2/src/TrkLevel2.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1.46 - (hide annotations) (download)
Fri Apr 11 13:44:38 2008 UTC (16 years, 9 months ago) by pam-fi
Branch: MAIN
Changes since 1.45: +77 -27 lines
...

1 mocchiut 1.1 /**
2     * \file TrkLevel2.cpp
3     * \author Elena Vannuccini
4     */
5     #include <TrkLevel2.h>
6     #include <iostream>
7 pam-fi 1.14 #include <math.h>
8 mocchiut 1.1 using namespace std;
9     //......................................
10     // F77 routines
11     //......................................
12     extern "C" {
13     void dotrack_(int*, double*, double*, double*, double*, int*);
14 pam-fi 1.2 void dotrack2_(int*, double*, double*, double*, double*,double*, double*, double*,int*);
15 pam-fi 1.34 void mini2_(int*,int*,int*);
16     void guess_();
17     void gufld_(float*, float*);
18     float risxeta2_(float *);
19     float risxeta3_(float *);
20     float risxeta4_(float *);
21     float risyeta2_(float *);
22 mocchiut 1.1 }
23 pam-fi 1.26
24 mocchiut 1.1 //--------------------------------------
25     //
26     //
27     //--------------------------------------
28     TrkTrack::TrkTrack(){
29 pam-fi 1.21 // cout << "TrkTrack::TrkTrack()" << endl;
30 pam-fi 1.3 seqno = -1;
31     image = -1;
32 mocchiut 1.1 chi2 = 0;
33 pam-fi 1.14 nstep = 0;
34     for(int it1=0;it1<5;it1++){
35     al[it1] = 0;
36     for(int it2=0;it2<5;it2++)coval[it1][it2] = 0;
37 mocchiut 1.1 };
38     for(int ip=0;ip<6;ip++){
39 pam-fi 1.21 xgood[ip] = 0;
40     ygood[ip] = 0;
41     xm[ip] = 0;
42     ym[ip] = 0;
43     zm[ip] = 0;
44     resx[ip] = 0;
45     resy[ip] = 0;
46 pam-fi 1.32 tailx[ip] = 0;
47     taily[ip] = 0;
48 pam-fi 1.21 xv[ip] = 0;
49     yv[ip] = 0;
50     zv[ip] = 0;
51     axv[ip] = 0;
52     ayv[ip] = 0;
53     dedx_x[ip] = 0;
54     dedx_y[ip] = 0;
55 pam-fi 1.40 multmaxx[ip] = 0;
56     multmaxy[ip] = 0;
57     seedx[ip] = 0;
58     seedy[ip] = 0;
59     xpu[ip] = 0;
60     ypu[ip] = 0;
61    
62 pam-fi 1.21 };
63 pam-fi 1.44
64 pam-fi 1.41 // TrkParams::SetTrackingMode();
65     // TrkParams::SetPrecisionFactor();
66     // TrkParams::SetStepMin();
67     TrkParams::SetMiniDefault();
68 pam-fi 1.33 TrkParams::SetPFA();
69    
70 pam-fi 1.44 int ngf = TrkParams::nGF;
71     for(int i=0; i<ngf; i++){
72     xGF[i] = 0.;
73     yGF[i] = 0.;
74     }
75    
76    
77 mocchiut 1.1 };
78     //--------------------------------------
79     //
80     //
81     //--------------------------------------
82     TrkTrack::TrkTrack(const TrkTrack& t){
83 pam-fi 1.3 seqno = t.seqno;
84 mocchiut 1.1 image = t.image;
85     chi2 = t.chi2;
86 pam-fi 1.14 nstep = t.nstep;
87     for(int it1=0;it1<5;it1++){
88     al[it1] = t.al[it1];
89     for(int it2=0;it2<5;it2++)coval[it1][it2] = t.coval[it1][it2];
90 mocchiut 1.1 };
91     for(int ip=0;ip<6;ip++){
92 pam-fi 1.21 xgood[ip] = t.xgood[ip];
93     ygood[ip] = t.ygood[ip];
94     xm[ip] = t.xm[ip];
95     ym[ip] = t.ym[ip];
96     zm[ip] = t.zm[ip];
97     resx[ip] = t.resx[ip];
98     resy[ip] = t.resy[ip];
99 pam-fi 1.32 tailx[ip] = t.tailx[ip];
100     taily[ip] = t.taily[ip];
101 pam-fi 1.21 xv[ip] = t.xv[ip];
102     yv[ip] = t.yv[ip];
103     zv[ip] = t.zv[ip];
104     axv[ip] = t.axv[ip];
105     ayv[ip] = t.ayv[ip];
106     dedx_x[ip] = t.dedx_x[ip];
107     dedx_y[ip] = t.dedx_y[ip];
108 pam-fi 1.40 multmaxx[ip] = t.multmaxx[ip];
109     multmaxy[ip] = t.multmaxy[ip];
110     seedx[ip] = t.seedx[ip];
111     seedy[ip] = t.seedy[ip];
112     xpu[ip] = t.xpu[ip];
113     ypu[ip] = t.ypu[ip];
114 pam-fi 1.21 };
115 pam-fi 1.32
116 pam-fi 1.41 // TrkParams::SetTrackingMode();
117     // TrkParams::SetPrecisionFactor();
118     // TrkParams::SetStepMin();
119     TrkParams::SetMiniDefault();
120 pam-fi 1.33 TrkParams::SetPFA();
121    
122 pam-fi 1.44 int ngf = TrkParams::nGF;
123     for(int i=0; i<ngf; i++){
124     xGF[i] = t.xGF[i];
125     yGF[i] = t.yGF[i];
126     }
127 mocchiut 1.1 };
128     //--------------------------------------
129     //
130     //
131     //--------------------------------------
132 pam-fi 1.21 void TrkTrack::Copy(TrkTrack& t){
133    
134     t.seqno = seqno;
135     t.image = image;
136     t.chi2 = chi2;
137     t.nstep = nstep;
138     for(int it1=0;it1<5;it1++){
139     t.al[it1] = al[it1];
140     for(int it2=0;it2<5;it2++)t.coval[it1][it2] = coval[it1][it2];
141     };
142     for(int ip=0;ip<6;ip++){
143     t.xgood[ip] = xgood[ip];
144     t.ygood[ip] = ygood[ip];
145     t.xm[ip] = xm[ip];
146     t.ym[ip] = ym[ip];
147     t.zm[ip] = zm[ip];
148     t.resx[ip] = resx[ip];
149     t.resy[ip] = resy[ip];
150 pam-fi 1.32 t.tailx[ip] = tailx[ip];
151     t.taily[ip] = taily[ip];
152 pam-fi 1.21 t.xv[ip] = xv[ip];
153     t.yv[ip] = yv[ip];
154     t.zv[ip] = zv[ip];
155     t.axv[ip] = axv[ip];
156     t.ayv[ip] = ayv[ip];
157     t.dedx_x[ip] = dedx_x[ip];
158     t.dedx_y[ip] = dedx_y[ip];
159 pam-fi 1.40 t.multmaxx[ip] = multmaxx[ip];
160     t.multmaxy[ip] = multmaxy[ip];
161     t.seedx[ip] = seedx[ip];
162     t.seedy[ip] = seedy[ip];
163     t.xpu[ip] = xpu[ip];
164     t.ypu[ip] = ypu[ip];
165 pam-fi 1.21
166     };
167 pam-fi 1.44 int ngf = TrkParams::nGF;
168     for(int i=0; i<ngf; i++){
169     t.xGF[i] = xGF[i];
170     t.yGF[i] = yGF[i];
171     }
172 pam-fi 1.32
173 pam-fi 1.21
174     };
175     //--------------------------------------
176     //
177     //
178     //--------------------------------------
179 mocchiut 1.1 /**
180     * Evaluates the trajectory in the apparatus associated to the track.
181     * It integrates the equations of motion in the magnetic field. The magnetic field should be previously loaded ( by calling TrkLevel2::LoadField() ), otherwise an error message is returned.
182     * @param t pointer to an object of the class Trajectory,
183     * which z coordinates should be previously initialized by calling the proper constructor ( Trajectory::Trajectory(int n, float* zin) ).
184     * @return error flag.
185 pam-fi 1.44 *
186     * >>> OBSOLETE !!! use TrkTrack::DoTrack2(Trajectory* t) instead
187     *
188 mocchiut 1.1 */
189     int TrkTrack::DoTrack(Trajectory* t){
190    
191 pam-fi 1.44 cout << " int TrkTrack::DoTrack(Trajectory* t) --->> OBSOLETE !!! "<<endl;
192     cout << " use int TrkTrack::DoTrack2(Trajectory* t)"<<endl;
193    
194 mocchiut 1.1 double *dxout = new double[t->npoint];
195     double *dyout = new double[t->npoint];
196     double *dzin = new double[t->npoint];
197     double dal[5];
198    
199     int ifail = 0;
200    
201     for (int i=0; i<5; i++) dal[i] = (double)al[i];
202     for (int i=0; i<t->npoint; i++) dzin[i] = (double)t->z[i];
203    
204 pam-fi 1.26 TrkParams::Load(1);
205     if( !TrkParams::IsLoaded(1) ){
206     cout << "int TrkTrack::DoTrack(Trajectory* t) --- ERROR --- m.field not loaded"<<endl;
207     return 0;
208     }
209 mocchiut 1.1 dotrack_(&(t->npoint),dzin,dxout,dyout,dal,&ifail);
210    
211     for (int i=0; i<t->npoint; i++){
212 pam-fi 1.45 t->x[i] = (float)*(dxout+i);
213     t->y[i] = (float)*(dyout+i);
214 mocchiut 1.1 }
215    
216 pam-fi 1.45 delete [] dxout;
217     delete [] dyout;
218     delete [] dzin;
219 mocchiut 1.1
220     return ifail;
221     };
222     //--------------------------------------
223     //
224     //
225     //--------------------------------------
226 pam-fi 1.2 /**
227     * Evaluates the trajectory in the apparatus associated to the track.
228     * It integrates the equations of motion in the magnetic field. The magnetic field should be previously loaded ( by calling TrkLevel2::LoadField() ), otherwise an error message is returned.
229     * @param t pointer to an object of the class Trajectory,
230     * which z coordinates should be previously initialized by calling the proper constructor ( Trajectory::Trajectory(int n, float* zin) ).
231     * @return error flag.
232     */
233     int TrkTrack::DoTrack2(Trajectory* t){
234    
235     double *dxout = new double[t->npoint];
236     double *dyout = new double[t->npoint];
237     double *dthxout = new double[t->npoint];
238     double *dthyout = new double[t->npoint];
239     double *dtlout = new double[t->npoint];
240     double *dzin = new double[t->npoint];
241     double dal[5];
242    
243     int ifail = 0;
244    
245     for (int i=0; i<5; i++) dal[i] = (double)al[i];
246     for (int i=0; i<t->npoint; i++) dzin[i] = (double)t->z[i];
247    
248 pam-fi 1.26 TrkParams::Load(1);
249     if( !TrkParams::IsLoaded(1) ){
250     cout << "int TrkTrack::DoTrack2(Trajectory* t) --- ERROR --- m.field not loaded"<<endl;
251     return 0;
252     }
253 pam-fi 1.2 dotrack2_(&(t->npoint),dzin,dxout,dyout,dthxout,dthyout,dtlout,dal,&ifail);
254    
255     for (int i=0; i<t->npoint; i++){
256 pam-fi 1.45 t->x[i] = (float)*(dxout+i);
257     t->y[i] = (float)*(dyout+i);
258     t->thx[i] = (float)*(dthxout+i);
259     t->thy[i] = (float)*(dthyout+i);
260     t->tl[i] = (float)*(dtlout+i);
261 pam-fi 1.2 }
262    
263 pam-fi 1.45 delete [] dxout;
264     delete [] dyout;
265     delete [] dzin;
266     delete [] dthxout;
267     delete [] dthyout;
268     delete [] dtlout;
269 pam-fi 1.2
270     return ifail;
271     };
272     //--------------------------------------
273     //
274     //
275     //--------------------------------------
276 mocchiut 1.1 //float TrkTrack::BdL(){
277     //};
278     //--------------------------------------
279     //
280     //
281     //--------------------------------------
282     Float_t TrkTrack::GetRigidity(){
283     Float_t rig=0;
284     if(chi2>0)rig=1./al[4];
285     if(rig<0) rig=-rig;
286     return rig;
287     };
288     //
289     Float_t TrkTrack::GetDeflection(){
290     Float_t def=0;
291     if(chi2>0)def=al[4];
292     return def;
293     };
294     //
295 pam-fi 1.32 /**
296     * Method to retrieve the dE/dx measured on a tracker view.
297     * @param ip plane (0-5)
298     * @param iv view (0=x 1=y)
299     */
300     Float_t TrkTrack::GetDEDX(int ip, int iv){
301     if(iv==0 && ip>=0 && ip<6)return fabs(dedx_x[ip]);
302     else if(iv==1 && ip>=0 && ip<6)return fabs(dedx_y[ip]);
303     else {
304     cout << "TrkTrack::GetDEDX(int ip, int iv) -- wrong input parameters "<<ip<<iv<<endl;
305     return 0.;
306     }
307     }
308     /**
309     * Method to evaluate the dE/dx measured on a tracker plane.
310     * The two measurements on x- and y-view are averaged.
311     * @param ip plane (0-5)
312     */
313     Float_t TrkTrack::GetDEDX(int ip){
314     if( (Int_t)XGood(ip)+(Int_t)YGood(ip) == 0 ) return 0;
315     return (GetDEDX(ip,0)+GetDEDX(ip,1))/((Int_t)XGood(ip)+(Int_t)YGood(ip));
316     };
317    
318     /**
319     * Method to evaluate the dE/dx averaged over all planes.
320     */
321 mocchiut 1.1 Float_t TrkTrack::GetDEDX(){
322 pam-fi 1.32 Float_t dedx=0;
323     for(Int_t ip=0; ip<6; ip++)dedx+=GetDEDX(ip,0)*XGood(ip)+GetDEDX(ip,1)*YGood(ip);
324     dedx = dedx/(GetNX()+GetNY());
325     return dedx;
326     };
327     /**
328 pam-fi 1.44 * Returns 1 if the cluster on a tracker view includes bad strips
329     * (at least one bad strip among the four strip used by p.f.a.)
330 pam-fi 1.32 * @param ip plane (0-5)
331     * @param iv view (0=x 1=y)
332     */
333     Bool_t TrkTrack::IsBad(int ip,int iv){
334     if(iv==0 && ip>=0 && ip<6)return (xgood[ip]<0) ;
335     else if(iv==1 && ip>=0 && ip<6)return (ygood[ip]<0) ;
336     else {
337     cout << "TrkTrack::IsBad(int ip, int iv) -- wrong input parameters "<<ip<<iv<<endl;
338     return 0.;
339     }
340 mocchiut 1.1 };
341 pam-fi 1.32 /**
342     * Returns 1 if the signal on a tracker view is saturated.
343     * @param ip plane (0-5)
344     * @param iv view (0=x 1=y)
345     */
346     Bool_t TrkTrack::IsSaturated(int ip,int iv){
347     if(iv==0 && ip>=0 && ip<6)return (dedx_x[ip]<0) ;
348     else if(iv==1 && ip>=0 && ip<6)return (dedx_y[ip]<0) ;
349     else {
350     cout << "TrkTrack::IsSaturated(int ip, int iv) -- wrong input parameters "<<ip<<iv<<endl;
351     return 0.;
352     }
353     };
354     /**
355     * Returns 1 if either the x or the y signal on a tracker plane is saturated.
356     * @param ip plane (0-5)
357     */
358     Bool_t TrkTrack::IsSaturated(int ip){
359     return (IsSaturated(ip,0)||IsSaturated(ip,1));
360     };
361     /**
362     * Returns 1 if there is at least a saturated signal along the track.
363     */
364     Bool_t TrkTrack::IsSaturated(){
365     for(int ip=0; ip<6; ip++)for(int iv=0; iv<2; iv++)if(IsSaturated(ip,iv))return true;
366     return false;
367     }
368     /**
369     * Returns the track "lever-arm" on the x view, defined as the distance (in planes) between
370     * the upper and lower x measurements (the maximum value of lever-arm is 6).
371     */
372     Int_t TrkTrack::GetLeverArmX(){
373     int first_plane = -1;
374     int last_plane = -1;
375     for(Int_t ip=0; ip<6; ip++){
376     if( XGood(ip) && first_plane == -1 )first_plane = ip;
377     if( XGood(ip) && first_plane != -1 )last_plane = ip;
378     }
379     if( first_plane == -1 || last_plane == -1){
380     cout<< "Int_t TrkTrack::GetLeverArmX() -- XGood(ip) always false ??? "<<endl;
381     return 0;
382     }
383     return (last_plane-first_plane+1);
384     }
385     /**
386     * Returns the track "lever-arm" on the y view, defined as the distance (in planes) between
387     * the upper and lower y measurements (the maximum value of lever-arm is 6).
388     */
389     Int_t TrkTrack::GetLeverArmY(){
390     int first_plane = -1;
391     int last_plane = -1;
392     for(Int_t ip=0; ip<6; ip++){
393     if( YGood(ip) && first_plane == -1 )first_plane = ip;
394     if( YGood(ip) && first_plane != -1 )last_plane = ip;
395     }
396     if( first_plane == -1 || last_plane == -1){
397     cout<< "Int_t TrkTrack::GetLeverArmY() -- YGood(ip) always false ??? "<<endl;
398     return 0;
399     }
400     return (last_plane-first_plane+1);
401     }
402 pam-fi 1.37 /**
403     * Returns the reduced chi-square of track x-projection
404     */
405     Float_t TrkTrack::GetChi2X(){
406     float chiq=0;
407     for(int ip=0; ip<6; ip++)if(XGood(ip))chiq+= pow((xv[ip]-xm[ip])/resx[ip],2.);
408     if(GetNX()>3)chiq=chiq/(GetNX()-3);
409     else chiq=0;
410     if(chiq==0)cout << " Float_t TrkTrack::GetChi2X() -- WARNING -- value not defined "<<chiq<<endl;
411     return chiq;
412     }
413     /**
414     * Returns the reduced chi-square of track y-projection
415     */
416     Float_t TrkTrack::GetChi2Y(){
417     float chiq=0;
418     for(int ip=0; ip<6; ip++)if(YGood(ip))chiq+= pow((yv[ip]-ym[ip])/resy[ip],2.);
419     if(GetNY()>2)chiq=chiq/(GetNY()-2);
420     else chiq=0;
421     if(chiq==0)cout << " Float_t TrkTrack::GetChi2Y() -- WARNING -- value not defined "<<chiq<<endl;
422     return chiq;
423     }
424     /**
425     * Returns the logarythm of the likeliwood-function of track x-projection
426     */
427     Float_t TrkTrack::GetLnLX(){
428     float lnl=0;
429     for(int ip=0; ip<6; ip++)
430     if( XGood(ip) && tailx[ip]!=0 )
431     lnl += (tailx[ip]+1.) * log( (tailx[ip]*pow(resx[ip],2.) + pow(xv[ip]-xm[ip],2.)) / (tailx[ip]*pow(resx[ip],2)) );
432     if(GetNX()>3)lnl=lnl/(GetNX()-3);
433     else lnl=0;
434 pam-fi 1.38 if(lnl==0){
435     cout << " Float_t TrkTrack::GetLnLX() -- WARNING -- value not defined "<<lnl<<endl;
436     Dump();
437     }
438 pam-fi 1.37 return lnl;
439    
440     }
441     /**
442     * Returns the logarythm of the likeliwood-function of track y-projection
443     */
444     Float_t TrkTrack::GetLnLY(){
445     float lnl=0;
446     for(int ip=0; ip<6; ip++)
447     if( YGood(ip) && taily[ip]!=0 )
448     lnl += (taily[ip]+1.) * log( (taily[ip]*pow(resy[ip],2.) + pow(yv[ip]-ym[ip],2.)) / (taily[ip]*pow(resy[ip],2)) );
449     if(GetNY()>2)lnl=lnl/(GetNY()-2);
450     else lnl=0;
451 pam-fi 1.38 if(lnl==0){
452     cout << " Float_t TrkTrack::GetLnLY() -- WARNING -- value not defined "<<lnl<<endl;
453     Dump();
454     }
455 pam-fi 1.37 return lnl;
456    
457     }
458 pam-fi 1.39 /**
459     * Returns the effective angle, relative to the sensor, on each plane.
460     * @param ip plane (0-5)
461     * @param iv view (0=x 1=y)
462     */
463     Float_t TrkTrack::GetEffectiveAngle(int ip, int iv){
464    
465     if(ip<0 || ip>5){
466     cout << "Float_t TrkTrack::GetEffectiveAngle(int "<<ip<<", int "<<iv<<") ==> wrong input"<<endl;
467     return 0.;
468     }
469    
470     float v[3]={xv[ip],yv[ip],zv[ip]};
471     //-----------------------------------------
472     // effective angle (relative to the sensor)
473     //-----------------------------------------
474     float axv_geo = axv[ip];
475     float muhall_h = 297.61; //cm**2/Vs
476     float BY = TrkParams::GetBY(v);
477     float axv_eff = 0;
478     if(ip==5) axv_geo = -1*axv_geo;
479     if(ip==5) BY = -1*BY;
480     axv_eff = 180.*atan( tan(axv_geo*acos(-1.)/180.) + muhall_h * BY * 0.0001)/acos(-1.);
481     //-----------------------------------------
482     // effective angle (relative to the sensor)
483     //-----------------------------------------
484     float ayv_geo = ayv[ip];
485     float muhall_e = 1258.18; //cm**2/Vs
486     float BX = TrkParams::GetBX(v);
487     float ayv_eff = 0;
488     ayv_eff = 180.*atan( tan(ayv_geo*acos(-1.)/180.) + muhall_e * BX * 0.0001)/acos(-1.);
489    
490     if (iv==0)return axv_eff;
491     else if(iv==1)return ayv_eff;
492     else{
493     cout << "Float_t TrkTrack::GetEffectiveAngle(int "<<ip<<", int "<<iv<<") ==> wrong input"<<endl;
494     return 0.;
495     }
496    
497     };
498    
499 mocchiut 1.1 //--------------------------------------
500     //
501     //
502     //--------------------------------------
503     void TrkTrack::Dump(){
504     cout << endl << "========== Track " ;
505 pam-fi 1.13 cout << endl << "seq. n. : "<< seqno;
506     cout << endl << "image n. : "<< image;
507     cout << endl << "al : "; for(int i=0; i<5; i++)cout << al[i] << " ";
508 mocchiut 1.1 cout << endl << "chi^2 : "<< chi2;
509 pam-fi 1.13 cout << endl << "n.step : "<< nstep;
510 pam-fi 1.30 cout << endl << "xgood : "; for(int i=0; i<6; i++)cout << XGood(i) ;
511     cout << endl << "ygood : "; for(int i=0; i<6; i++)cout << YGood(i) ;
512 mocchiut 1.1 cout << endl << "xm : "; for(int i=0; i<6; i++)cout << xm[i] << " ";
513     cout << endl << "ym : "; for(int i=0; i<6; i++)cout << ym[i] << " ";
514     cout << endl << "zm : "; for(int i=0; i<6; i++)cout << zm[i] << " ";
515 pam-fi 1.13 cout << endl << "xv : "; for(int i=0; i<6; i++)cout << xv[i] << " ";
516     cout << endl << "yv : "; for(int i=0; i<6; i++)cout << yv[i] << " ";
517     cout << endl << "zv : "; for(int i=0; i<6; i++)cout << zv[i] << " ";
518     cout << endl << "resx : "; for(int i=0; i<6; i++)cout << resx[i] << " ";
519     cout << endl << "resy : "; for(int i=0; i<6; i++)cout << resy[i] << " ";
520 pam-fi 1.34 cout << endl << "tailx : "; for(int i=0; i<6; i++)cout << tailx[i] << " ";
521     cout << endl << "taily : "; for(int i=0; i<6; i++)cout << taily[i] << " ";
522 pam-fi 1.13 cout << endl << "coval : "; for(int i=0; i<5; i++)cout << coval[0][i]<<" ";
523     cout << endl << " "; for(int i=0; i<5; i++)cout << coval[1][i]<<" ";
524     cout << endl << " "; for(int i=0; i<5; i++)cout << coval[2][i]<<" ";
525     cout << endl << " "; for(int i=0; i<5; i++)cout << coval[3][i]<<" ";
526     cout << endl << " "; for(int i=0; i<5; i++)cout << coval[4][i]<<" ";
527 mocchiut 1.1 cout << endl << "dedx_x : "; for(int i=0; i<6; i++)cout << dedx_x[i] << " ";
528     cout << endl << "dedx_y : "; for(int i=0; i<6; i++)cout << dedx_y[i] << " ";
529 pam-fi 1.40 cout << endl << "maxs x : "; for(int i=0; i<6; i++)cout << GetClusterX_MaxStrip(i) << " ";
530     cout << endl << "maxs y : "; for(int i=0; i<6; i++)cout << GetClusterY_MaxStrip(i) << " ";
531     cout << endl << "mult x : "; for(int i=0; i<6; i++)cout << GetClusterX_Multiplicity(i) << " ";
532     cout << endl << "mult y : "; for(int i=0; i<6; i++)cout << GetClusterY_Multiplicity(i) << " ";
533     cout << endl << "seed x : "; for(int i=0; i<6; i++)cout << GetClusterX_Seed(i) << " ";
534     cout << endl << "seed y : "; for(int i=0; i<6; i++)cout << GetClusterY_Seed(i) << " ";
535     cout << endl << "xpu : "; for(int i=0; i<6; i++)cout << xpu[i] << " ";
536     cout << endl << "ypu : "; for(int i=0; i<6; i++)cout << ypu[i] << " ";
537    
538 pam-fi 1.14 cout << endl;
539 mocchiut 1.1 }
540 pam-fi 1.13 /**
541     * Set the TrkTrack position measurements
542     */
543     void TrkTrack::SetMeasure(double *xmeas, double *ymeas, double *zmeas){
544     for(int i=0; i<6; i++) xm[i]=*xmeas++;
545     for(int i=0; i<6; i++) ym[i]=*ymeas++;
546     for(int i=0; i<6; i++) zm[i]=*zmeas++;
547     }
548     /**
549     * Set the TrkTrack position resolution
550     */
551     void TrkTrack::SetResolution(double *rx, double *ry){
552     for(int i=0; i<6; i++) resx[i]=*rx++;
553     for(int i=0; i<6; i++) resy[i]=*ry++;
554     }
555     /**
556 pam-fi 1.34 * Set the TrkTrack tails position resolution
557     */
558     void TrkTrack::SetTail(double *tx, double *ty, double factor){
559     for(int i=0; i<6; i++) tailx[i]=factor*(*tx++);
560     for(int i=0; i<6; i++) taily[i]=factor*(*ty++);
561     }
562     /**
563     * Set the TrkTrack Student parameter (resx,resy,tailx,taily)
564     * from previous gausian fit
565     *@param flag =0 standard, =1 with noise correction
566     */
567     void TrkTrack::SetStudentParam(int flag){
568     float sx[11]={0.000128242,
569     0.000136942,
570     0.000162718,
571     0.000202644,
572     0.00025597,
573     0.000317456,
574     0.000349048,
575     0.000384638,
576     0.000457295,
577     0.000512319,
578     0.000538573};
579     float tx[11]={1.79402,
580     2.04876,
581     2.88376,
582     3.3,
583     3.14084,
584     4.07686,
585     4.44736,
586     3.5179,
587     3.38697,
588     3.45739,
589     3.18627};
590     float sy[11]={0.000483075,
591     0.000466925,
592     0.000431658,
593     0.000428317,
594     0.000433854,
595     0.000444044,
596     0.000482098,
597     0.000537579,
598     0.000636279,
599     0.000741998,
600     0.000864261};
601     float ty[11]={0.997032,
602     1.11147,
603     1.18526,
604     1.61404,
605     2.21908,
606     3.08959,
607     4.48833,
608     4.42687,
609     4.65253,
610     4.52043,
611     4.29926};
612     int index;
613     float fact;
614     for(int i=0; i<6; i++) {
615     index = int((fabs(axv[i])+1.)/2.);
616     if(index>10) index=10;
617     tailx[i]=tx[index];
618     if(flag==1) {
619     if(fabs(axv[i])<=10.) fact = resx[i]/risxeta2_(&(axv[i]));
620     if(fabs(axv[i])>10.&&fabs(axv[i])<=15.) fact = resx[i]/risxeta3_(&(axv[i]));
621     if(fabs(axv[i])>15.) fact = resx[i]/risxeta4_(&(axv[i]));
622     } else fact = 1.;
623     resx[i] = sx[index]*fact;
624     }
625     for(int i=0; i<6; i++) {
626     index = int((fabs(ayv[i])+1.)/2.);
627     if(index>10) index=10;
628     taily[i]=ty[index];
629     if(flag==1) fact = resy[i]/risyeta2_(&(ayv[i]));
630     else fact = 1.;
631     resy[i] = sy[index]*fact;
632     }
633     }
634     /**
635     * Set the TrkTrack good measurement
636 pam-fi 1.13 */
637     void TrkTrack::SetGood(int *xg, int *yg){
638 pam-fi 1.33
639 pam-fi 1.13 for(int i=0; i<6; i++) xgood[i]=*xg++;
640     for(int i=0; i<6; i++) ygood[i]=*yg++;
641     }
642    
643     /**
644     * Load the magnetic field
645     */
646 pam-fi 1.16 void TrkTrack::LoadField(TString path){
647    
648 pam-fi 1.26 // strcpy(path_.path,path.Data());
649     // path_.pathlen = path.Length();
650     // path_.error = 0;
651     // readb_();
652    
653 pam-fi 1.41 // TrkParams::SetTrackingMode();
654     // TrkParams::SetPrecisionFactor();
655     // TrkParams::SetStepMin();
656     TrkParams::SetMiniDefault();
657 pam-fi 1.33
658 pam-fi 1.26 TrkParams::Set(path,1);
659 pam-fi 1.28 TrkParams::Load(1);
660 pam-fi 1.16
661 pam-fi 1.13 };
662 pam-fi 1.19
663 pam-fi 1.25
664 pam-fi 1.19 /**
665     * Method to fill minimization-routine common
666     */
667     void TrkTrack::FillMiniStruct(cMini2track& track){
668    
669     for(int i=0; i<6; i++){
670    
671 pam-fi 1.33 // cout << i<<" - "<<xgood[i]<<" "<<XGood(i)<<endl;
672     // cout << i<<" - "<<ygood[i]<<" "<<YGood(i)<<endl;
673 pam-fi 1.30 track.xgood[i]=XGood(i);
674     track.ygood[i]=YGood(i);
675 pam-fi 1.19
676     track.xm[i]=xm[i];
677     track.ym[i]=ym[i];
678     track.zm[i]=zm[i];
679    
680     // --- temporaneo ----------------------------
681 pam-fi 1.46 // float segment = 100.;
682     // track.xm_a[i]=xm[i];
683     // track.xm_b[i]=xm[i];
684     // track.ym_a[i]=ym[i];
685     // track.ym_b[i]=ym[i];
686     // if( XGood(i) && !YGood(i) ){
687     // track.ym_a[i] = track.ym_a[i]+segment;
688     // track.ym_b[i] = track.ym_b[i]-segment;
689     // }else if( !XGood(i) && YGood(i)){
690     // track.xm_a[i] = track.xm_a[i]+segment;
691     // track.xm_b[i] = track.xm_b[i]-segment;
692     // }
693     // --- temporaneo ----------------------------
694    
695     if( XGood(i) || YGood(i) ){
696     double segment = 2.;//cm
697     // NB: i parametri di allineamento hanno una notazione particolare!!!
698     // sensor = 0 (hybrid side), 1
699     // ladder = 0-2 (increasing x)
700     // plane = 0-5 (from bottom to top!!!)
701     int is = (int)GetSensor(i); if(i==5)is=1-is;
702     int ip = 5-i;
703     int il = (int)GetLadder(i);
704    
705     double omega = 0.;
706     double beta = 0.;
707     double gamma = 0.;
708     if(
709     (is < 0 || is > 1 || ip < 0 || ip > 5 || il < 0 || il > 2) &&
710     true){
711     // se il piano risulta colpito, ladder e sensore devono essere
712     // assegnati correttamente
713     cout << " void TrkTrack::FillMiniStruct(cMini2track&) --- WARNING --- sensor not defined, cannot read alignment parameters "<<endl;
714     cout << " is ip il = "<<is<<" "<<ip<<" "<<il<<endl;
715     }else{
716     omega = alignparameters_.omega[is][il][ip];
717     beta = alignparameters_.beta[is][il][ip];
718     gamma = alignparameters_.gamma[is][il][ip];
719     }
720    
721     if( XGood(i) && !YGood(i) ){
722     track.xm_a[i] = xm[i] - omega * segment;
723     track.ym_a[i] = ym[i] + segment;
724     // track.zm_a[i] = zm[i] + beta * segment;//not used yet
725     track.xm_b[i] = xm[i] + omega * segment;
726     track.ym_b[i] = ym[i] - segment;
727     // track.zm_b[i] = zm[i] - beta * segment;//not used yet
728     }else if( !XGood(i) && YGood(i) ){
729     track.xm_a[i] = xm[i] + segment;
730     track.ym_a[i] = ym[i] + omega * segment;
731     // track.zm_a[i] = zm[i] - gamma * segment;//not used yet
732     track.xm_b[i] = xm[i] - segment;
733     track.ym_b[i] = ym[i] - omega * segment;
734     // track.zm_b[i] = zm[i] + gamma * segment;//not used yet
735     }
736 pam-fi 1.19 }
737    
738 pam-fi 1.46 track.resx[i]=resx[i];
739 pam-fi 1.19 track.resy[i]=resy[i];
740 pam-fi 1.34 track.tailx[i]=tailx[i];
741     track.taily[i]=taily[i];
742 pam-fi 1.19 }
743    
744     for(int i=0; i<5; i++) track.al[i]=al[i];
745     track.zini = 23.5;
746     // ZINI = 23.5 !!! it should be the same parameter in all codes
747    
748     }
749     /**
750     * Method to set values from minimization-routine common
751     */
752     void TrkTrack::SetFromMiniStruct(cMini2track *track){
753    
754     for(int i=0; i<5; i++) {
755     al[i]=track->al[i];
756     for(int j=0; j<5; j++) coval[i][j]=track->cov[i][j];
757     }
758     chi2 = track->chi2;
759     nstep = track->nstep;
760     for(int i=0; i<6; i++){
761     xv[i] = track->xv[i];
762     yv[i] = track->yv[i];
763     zv[i] = track->zv[i];
764     xm[i] = track->xm[i];
765     ym[i] = track->ym[i];
766     zm[i] = track->zm[i];
767     axv[i] = track->axv[i];
768     ayv[i] = track->ayv[i];
769     }
770    
771     }
772 pam-fi 1.13 /**
773 pam-fi 1.33 * \brief Method to re-evaluate coordinates of clusters associated with a track.
774     *
775     * The method can be applied only after recovering level1 information
776     * (either by reprocessing single events from level0 or from
777     * the TrkLevel1 branch, if present); it calls F77 subroutines that
778     * read the level1 common and fill the minimization-routine common.
779     * Some clusters can be excluded or added by means of the methods:
780     *
781     * TrkTrack::ResetXGood(int ip)
782     * TrkTrack::ResetYGood(int ip)
783     * TrkTrack::SetXGood(int ip, int cid, int is)
784     * TrkTrack::SetYGood(int ip, int cid, int is)
785     *
786     * NB! The method TrkTrack::SetGood(int *xg, int *yg) set the plane-mask (0-1)
787     * for the minimization-routine common. It deletes the cluster information
788     * (at least for the moment...) thus cannot be applied before
789     * TrkTrack::EvaluateClusterPositions().
790     *
791     * Different p.f.a. can be applied by calling (once) the method:
792     *
793     * TrkParams::SetPFA(0); //Set ETA p.f.a.
794     *
795     * @see TrkParams::SetPFA(int)
796     */
797 pam-fi 1.36 Bool_t TrkTrack::EvaluateClusterPositions(){
798 pam-fi 1.33
799 pam-fi 1.42 // cout << "void TrkTrack::GetClusterositions() "<<endl;
800 pam-fi 1.33
801     TrkParams::Load( );
802 pam-fi 1.36 if( !TrkParams::IsLoaded() )return false;
803 pam-fi 1.33
804     for(int ip=0; ip<6; ip++){
805     // cout << ip<<" ** "<<xm[ip]<<" / "<<ym[ip]<<endl;;
806     int icx = GetClusterX_ID(ip)+1;
807     int icy = GetClusterY_ID(ip)+1;
808     int sensor = GetSensor(ip)+1;//<< convenzione "Paolo"
809     if(ip==5 && sensor!=0)sensor=3-sensor;//<< convenzione "Elena"
810     int ladder = GetLadder(ip)+1;
811     float ax = axv[ip];
812     float ay = ayv[ip];
813     float v[3];
814     v[0]=xv[ip];
815     v[1]=yv[ip];
816     v[2]=zv[ip];
817     float bfx = 10*TrkParams::GetBX(v);//Tesla
818     float bfy = 10*TrkParams::GetBY(v);//Tesla
819     int ipp=ip+1;
820     xyzpam_(&ipp,&icx,&icy,&ladder,&sensor,&ax,&ay,&bfx,&bfy);
821 pam-fi 1.36 if(icx<0 || icy<0)return false;
822 pam-fi 1.33 }
823 pam-fi 1.36 return true;
824 pam-fi 1.33 }
825     /**
826     * \brief Tracking method. It calls F77 mini routine.
827     *
828     * @param pfixed Particle momentum. If pfixed=0 the momentum
829     * is left as a free parameter, otherwise it is fixed to the input value.
830     * @param fail Output flag (!=0 if the fit failed).
831     * @param iprint Flag to set debug mode ( 0 = no output; 1 = verbose; 2 = debug).
832     * @param froml1 Flag to re-evaluate positions (see TrkTrack::GetClusterPositions()).
833     *
834     * The option to re-evaluate positions can be used only after recovering
835     * level1 information, eg. by reprocessing the single event.
836     *
837     * Example:
838     *
839     * if( !event->GetTrkLevel0() )return false;
840     * event->GetTrkLevel0()->ProcessEvent(); // re-processing level0->level1
841     * int fail=0;
842     * event->GetTrkLevel2()->GetTrack(0)->Fit(0.,fail,0,1);
843     *
844     * @see EvaluateClusterPositions()
845     *
846     * The fitting procedure can be varied by changing the tracking mode,
847 pam-fi 1.41 * the fit-precision factor, the minimum number of step, etc.
848 pam-fi 1.33 * @see SetTrackingMode(int)
849     * @see SetPrecisionFactor(double)
850     * @see SetStepMin(int)
851 pam-fi 1.41 * @see SetDeltaB(int,double)
852 pam-fi 1.13 */
853 pam-fi 1.33 void TrkTrack::Fit(double pfixed, int& fail, int iprint, int froml1){
854 pam-fi 1.15
855     float al_ini[] = {0.,0.,0.,0.,0.};
856    
857 pam-fi 1.33 TrkParams::Load( );
858     if( !TrkParams::IsLoaded() )return;
859    
860 pam-fi 1.13 extern cMini2track track_;
861     fail = 0;
862 pam-fi 1.36
863 pam-fi 1.19 FillMiniStruct(track_);
864 pam-fi 1.36
865     if(froml1!=0){
866     if( !EvaluateClusterPositions() ){
867     cout << "void TrkTrack::Fit("<<pfixed<<","<<fail<<","<<iprint<<","<<froml1<<") --- ERROR evaluating cluster positions "<<endl;
868     FillMiniStruct(track_) ;
869     fail = 1;
870     return;
871     }
872     }else{
873     FillMiniStruct(track_);
874     }
875 pam-fi 1.33
876 pam-fi 1.19 // if fit variables have been reset, evaluate the initial guess
877 pam-fi 1.15 if(al[0]==-9999.&&al[1]==-9999.&&al[2]==-9999.&&al[3]==-9999.&&al[4]==-9999.)guess_();
878    
879 pam-fi 1.16 // --------------------- free momentum
880 pam-fi 1.14 if(pfixed==0.) {
881 pam-fi 1.19 track_.pfixed=0.;
882 pam-fi 1.14 }
883 pam-fi 1.16 // --------------------- fixed momentum
884 pam-fi 1.13 if(pfixed!=0.) {
885 pam-fi 1.19 al[4]=1./pfixed;
886     track_.pfixed=pfixed;
887 pam-fi 1.13 }
888 pam-fi 1.15
889 pam-fi 1.19 // store temporarily the initial guess
890 pam-fi 1.15 for(int i=0; i<5; i++) al_ini[i]=track_.al[i];
891    
892 pam-fi 1.19 // ------------------------------------------
893     // call mini routine
894 pam-fi 1.33 // TrkParams::Load(1);
895     // if( !TrkParams::IsLoaded(1) ){
896     // cout << "void TrkTrack::Fit(double pfixed, int& fail, int iprint) --- ERROR --- m.field not loaded"<<endl;
897     // return;
898     // }
899 pam-fi 1.13 int istep=0;
900     int ifail=0;
901     mini2_(&istep,&ifail, &iprint);
902     if(ifail!=0) {
903 pam-fi 1.19 if(iprint)cout << "ERROR: ifail= " << ifail << endl;
904 pam-fi 1.13 fail = 1;
905     }
906 pam-fi 1.19 // ------------------------------------------
907 pam-fi 1.15
908 pam-fi 1.19 SetFromMiniStruct(&track_);
909 pam-fi 1.15
910 pam-fi 1.20 if(fail){
911 pam-fi 1.33 if(iprint)cout << " >>>> fit failed "<<endl;
912 pam-fi 1.20 for(int i=0; i<5; i++) al[i]=al_ini[i];
913     }
914 pam-fi 1.15
915 pam-fi 1.13 };
916 pam-fi 1.33 /**
917 pam-fi 1.15 * Reset the fit parameters
918 pam-fi 1.13 */
919     void TrkTrack::FitReset(){
920     for(int i=0; i<5; i++) al[i]=-9999.;
921     chi2=0.;
922     nstep=0;
923 pam-fi 1.33 // for(int i=0; i<6; i++) xv[i]=0.;
924     // for(int i=0; i<6; i++) yv[i]=0.;
925     // for(int i=0; i<6; i++) zv[i]=0.;
926     // for(int i=0; i<6; i++) axv[i]=0.;
927     // for(int i=0; i<6; i++) ayv[i]=0.;
928 pam-fi 1.13 for(int i=0; i<5; i++) {
929     for(int j=0; j<5; j++) coval[i][j]=0.;
930     }
931     }
932 pam-fi 1.33 /**
933 pam-fi 1.31 * Set the tracking mode
934     */
935 pam-fi 1.27 void TrkTrack::SetTrackingMode(int trackmode){
936     extern cMini2track track_;
937     track_.trackmode = trackmode;
938     }
939 pam-fi 1.33 /**
940 pam-fi 1.31 * Set the factor scale for tracking precision
941     */
942     void TrkTrack::SetPrecisionFactor(double fact){
943     extern cMini2track track_;
944     track_.fact = fact;
945     }
946 pam-fi 1.33 /**
947 pam-fi 1.34 * Set the minimum number of steps for tracking precision
948 pam-fi 1.31 */
949     void TrkTrack::SetStepMin(int istepmin){
950     extern cMini2track track_;
951     track_.istepmin = istepmin;
952     }
953 pam-fi 1.35 /**
954 pam-fi 1.41 * Set deltaB parameters (id=0,1). By default they are set to zero.
955     */
956     void TrkTrack::SetDeltaB(int id, double db){
957     if(id!=0 && id!=1)cout << "void TrkTrack::SetDeltaB(int id,double db) -- wrong input parameters: "<<id<<" "<<db<<endl;
958     TrkParams::SetDeltaB(id,db);
959     }
960    
961     /**
962 pam-fi 1.44 * Returns true if the track is inside the magnet cavity.
963     * @param toll Tolerance around the nominal volume (toll>0 define an inner fiducial volume)
964 pam-fi 1.35 */
965 pam-fi 1.44 Bool_t TrkTrack::IsInsideCavity(float toll){
966    
967     // float xmagntop, ymagntop, xmagnbottom, ymagnbottom;
968     // xmagntop = xv[0] + (ZMAGNHIGH-zv[0])*tan(acos(-1.0)*axv[0]/180.);
969     // ymagntop = yv[0] + (ZMAGNHIGH-zv[0])*tan(acos(-1.0)*ayv[0]/180.);
970     // xmagnbottom = xv[5] + (ZMAGNLOW-zv[5])*tan(acos(-1.0)*axv[5]/180.);
971     // ymagnbottom = yv[5] + (ZMAGNLOW-zv[5])*tan(acos(-1.0)*ayv[5]/180.);
972     // if( xmagntop>XMAGNLOW && xmagntop<XMAGNHIGH &&
973     // ymagntop>YMAGNLOW && ymagntop<YMAGNHIGH &&
974     // xmagnbottom>XMAGNLOW && xmagnbottom<XMAGNHIGH &&
975     // ymagnbottom>YMAGNLOW && ymagnbottom<YMAGNHIGH ) return(true);
976     // else return(false);
977    
978     int ngf = TrkParams::nGF;
979     for(int i=0; i<ngf; i++){
980     //
981     // cout << endl << TrkParams::GF_element[i];
982     if(
983     TrkParams::GF_element[i].CompareTo("CUF") &&
984     TrkParams::GF_element[i].CompareTo("T2") &&
985     TrkParams::GF_element[i].CompareTo("T3") &&
986     TrkParams::GF_element[i].CompareTo("T4") &&
987     TrkParams::GF_element[i].CompareTo("T5") &&
988     TrkParams::GF_element[i].CompareTo("CLF") &&
989     true)continue;
990     // apply condition only within the cavity
991     // cout << " -- "<<xGF[i]<<" "<<yGF[i];
992     if(
993     xGF[i] <= TrkParams::xGF_min[i] + toll ||
994     xGF[i] >= TrkParams::xGF_max[i] - toll ||
995     yGF[i] <= TrkParams::yGF_min[i] + toll ||
996     yGF[i] >= TrkParams::yGF_max[i] - toll ||
997     false){
998    
999     return false;
1000     }
1001     }
1002     return true;
1003    
1004    
1005     }
1006     /**
1007     * Returns true if the track is inside the nominal acceptance, which is defined
1008     * by the intersection among magnet cavity, silicon-plane sensitive area and
1009     * ToF sensitive area (nominal values from the official document used to
1010     * calculate the geometrical factor)
1011     */
1012     Bool_t TrkTrack::IsInsideAcceptance(){
1013    
1014     int ngf = TrkParams::nGF;
1015     for(int i=0; i<ngf; i++){
1016     if(
1017     xGF[i] <= TrkParams::xGF_min[i] ||
1018     xGF[i] >= TrkParams::xGF_max[i] ||
1019     yGF[i] <= TrkParams::yGF_min[i] ||
1020     yGF[i] >= TrkParams::yGF_max[i] ||
1021     false)return false;
1022     }
1023     return true;
1024    
1025 pam-fi 1.35 }
1026 pam-fi 1.33 /**
1027 pam-fi 1.32 * Method to retrieve ID (0,1,...) of x-cluster (if any) associated to this track.
1028     * If no cluster is associated, ID=-1.
1029 pam-fi 1.29 * @param ip Tracker plane (0-5)
1030     */
1031 pam-fi 1.32 Int_t TrkTrack::GetClusterX_ID(int ip){
1032     return ((Int_t)fabs(xgood[ip]))%10000000-1;
1033 pam-fi 1.29 };
1034 pam-fi 1.33 /**
1035 pam-fi 1.32 * Method to retrieve ID (0-xxx) of y-cluster (if any) associated to this track.
1036     * If no cluster is associated, ID=-1.
1037 pam-fi 1.29 * @param ip Tracker plane (0-5)
1038     */
1039 pam-fi 1.32 Int_t TrkTrack::GetClusterY_ID(int ip){
1040     return ((Int_t)fabs(ygood[ip]))%10000000-1;
1041     };
1042 pam-fi 1.40
1043 pam-fi 1.33 /**
1044 pam-fi 1.46 * Method to retrieve the ladder (0-2, increasing x) traversed by the track on this plane.
1045 pam-fi 1.32 * If no ladder is traversed (dead area) the metod retuns -1.
1046     * @param ip Tracker plane (0-5)
1047     */
1048     Int_t TrkTrack::GetLadder(int ip){
1049     if(XGood(ip))return (Int_t)fabs(xgood[ip]/100000000)-1;
1050     if(YGood(ip))return (Int_t)fabs(ygood[ip]/100000000)-1;
1051     return -1;
1052     };
1053 pam-fi 1.33 /**
1054 pam-fi 1.32 * Method to retrieve the sensor (0-1, increasing y) traversed by the track on this plane.
1055     * If no sensor is traversed (dead area) the metod retuns -1.
1056     * @param ip Tracker plane (0-5)
1057     */
1058     Int_t TrkTrack::GetSensor(int ip){
1059     if(XGood(ip))return (Int_t)((Int_t)fabs(xgood[ip]/10000000)%10)-1;
1060     if(YGood(ip))return (Int_t)((Int_t)fabs(ygood[ip]/10000000)%10)-1;
1061     return -1;
1062 pam-fi 1.29 };
1063    
1064 pam-fi 1.33 /**
1065     * \brief Method to include a x-cluster to the track.
1066     * @param ip Tracker plane (0-5)
1067 pam-fi 1.46 * @param clid Cluster ID (0 = no-cluster, 1,2,... otherwise )
1068     * @param il Ladder (0-2, increasing x, -1 if no sensitive area is hit)
1069     * @param is Sensor (0-1, increasing y, -1 if no sensitive area is hit)
1070     * @param bad True if the cluster contains bad strips
1071 pam-fi 1.33 * @see Fit(double pfixed, int& fail, int iprint, int froml1)
1072     */
1073 pam-fi 1.46 void TrkTrack::SetXGood(int ip, int clid, int il, int is, bool bad){
1074     // int il=0; //ladder (temporary)
1075     // bool bad=false; //ladder (temporary)
1076     if(ip<0||ip>5||clid<0||il<-1||il>2||is<-1||is>1)
1077     cout << " void TrkTrack::SetXGood(int,int,int,int,bool) --> MA SEI DI COCCIO?!?!"<<endl;
1078     xgood[ip]=(il+1)*100000000+(is+1)*10000000+clid;
1079 pam-fi 1.33 if(bad)xgood[ip]=-xgood[ip];
1080     };
1081     /**
1082     * \brief Method to include a y-cluster to the track.
1083     * @param ip Tracker plane (0-5)
1084 pam-fi 1.46 * @param clid Cluster ID (0 = no-cluster, 1,2,... otherwise )
1085     * @param il Ladder (0-2, increasing x, -1 if no sensitive area is hit)
1086     * @param is Sensor (0-1, increasing y, -1 if no sensitive area is hit)
1087     * @param bad True if the cluster contains bad strips
1088 pam-fi 1.33 * @see Fit(double pfixed, int& fail, int iprint, int froml1)
1089     */
1090 pam-fi 1.46 void TrkTrack::SetYGood(int ip, int clid, int il, int is, bool bad){
1091     // int il=0; //ladder (temporary)
1092     // bool bad=false; //ladder (temporary)
1093     if(ip<0||ip>5||clid<0||il<-1||il>2||is<-1||is>1)
1094     cout << " void TrkTrack::SetYGood(int,int,int,int,bool) --> MA SEI DI COCCIO?!?!"<<endl;
1095     ygood[ip]=(il+1)*100000000+(is+1)*10000000+clid;
1096 pam-fi 1.33 if(bad)ygood[ip]=-ygood[ip];
1097     };
1098 pam-fi 1.29
1099 pam-fi 1.43 /**
1100     * \brief Average X
1101     * Average value of <xv>, evaluated from the first to the last hit x view.
1102     */
1103     Float_t TrkTrack::GetXav(){
1104    
1105     int first_plane = -1;
1106     int last_plane = -1;
1107     for(Int_t ip=0; ip<6; ip++){
1108     if( XGood(ip) && first_plane == -1 )first_plane = ip;
1109     if( XGood(ip) && first_plane != -1 )last_plane = ip;
1110     }
1111     if( first_plane == -1 || last_plane == -1){
1112     return -100;
1113     }
1114     if( last_plane-first_plane+1 ==0 )return -100;
1115    
1116     Float_t av = 0;
1117     for(int ip=first_plane; ip<=last_plane; ip++)av+=xv[ip];
1118    
1119     return (av/(last_plane-first_plane+1));
1120     }
1121     /**
1122     * \brief Average Y
1123     * Average value of <yv>, evaluated from the first to the last hit x view.
1124     */
1125     Float_t TrkTrack::GetYav(){
1126    
1127     int first_plane = -1;
1128     int last_plane = -1;
1129     for(Int_t ip=0; ip<6; ip++){
1130     if( XGood(ip) && first_plane == -1 )first_plane = ip;
1131     if( XGood(ip) && first_plane != -1 )last_plane = ip;
1132     }
1133     if( first_plane == -1 || last_plane == -1){
1134     return -100;
1135     }
1136     if( last_plane-first_plane+1 ==0 )return -100;
1137    
1138     Float_t av = 0;
1139     for(int ip=first_plane; ip<=last_plane; ip++)av+=yv[ip];
1140    
1141     return (av/(last_plane-first_plane+1));
1142     }
1143     /**
1144     * \brief Average Z
1145     * Average value of <zv>, evaluated from the first to the last hit x view.
1146     */
1147     Float_t TrkTrack::GetZav(){
1148    
1149     int first_plane = -1;
1150     int last_plane = -1;
1151     for(Int_t ip=0; ip<6; ip++){
1152     if( XGood(ip) && first_plane == -1 )first_plane = ip;
1153     if( XGood(ip) && first_plane != -1 )last_plane = ip;
1154     }
1155     if( first_plane == -1 || last_plane == -1){
1156     return -100;
1157     }
1158     if( last_plane-first_plane+1 ==0 )return -100;
1159    
1160     Float_t av = 0;
1161     for(int ip=first_plane; ip<=last_plane; ip++)av+=zv[ip];
1162    
1163     return (av/(last_plane-first_plane+1));
1164     }
1165    
1166     /**
1167     * \brief Number of column traversed
1168     */
1169     Int_t TrkTrack::GetNColumns(){
1170     int sensors[] = {0,0,0,0,0,0};
1171     for(int ip=0; ip<6; ip++){
1172     int sensorid = GetLadder(ip)+3*GetSensor(ip);
1173     if(XGood(ip)||YGood(ip))
1174     if(sensorid>=0 && sensorid<6)sensors[sensorid]=1;
1175     }
1176     int nsensors=0;
1177     for(int is=0; is<6; is++)nsensors += sensors[is];
1178     return nsensors;
1179     };
1180     /**
1181     * \brief Give the maximum energy release
1182     */
1183     Float_t TrkTrack::GetDEDX_max(int ip, int iv){
1184     Float_t max=0;
1185     int pfrom = 0;
1186     int pto = 6;
1187     int vfrom = 0;
1188     int vto = 2;
1189     if(ip>=0&&ip<6){
1190     pfrom = ip;
1191     pto = ip+1;
1192     }
1193     if(iv>=0&&iv<2){
1194     vfrom = iv;
1195     vto = iv+1;
1196     }
1197     for(int i=pfrom; i<pto; i++)
1198     for(int j=0; j<vto; j++)
1199     if(GetDEDX(i,j)>max)max=GetDEDX(i,j);
1200    
1201     return max;
1202    
1203     };
1204    
1205     /**
1206     * \brief Give the minimum energy release
1207     */
1208     Float_t TrkTrack::GetDEDX_min(int ip, int iv){
1209     Float_t min=100000000;
1210     int pfrom = 0;
1211     int pto = 6;
1212     int vfrom = 0;
1213     int vto = 2;
1214     if(ip>=0&&ip<6){
1215     pfrom = ip;
1216     pto = ip+1;
1217     }
1218     if(iv>=0&&iv<2){
1219     vfrom = iv;
1220     vto = iv+1;
1221     }
1222     for(int i=pfrom; i<pto; i++)
1223     for(int j=0; j<vto; j++)
1224     if(GetDEDX(i,j)<min)min=GetDEDX(i,j);
1225    
1226     return min;
1227    
1228     };
1229    
1230     /**
1231     * \brief Give the maximum spatial residual release
1232     */
1233     Float_t TrkTrack::GetResidual_max(int ip, int iv){
1234     Float_t max=0;
1235     int pfrom = 0;
1236     int pto = 6;
1237     int vfrom = 0;
1238     int vto = 2;
1239     if(ip>=0&&ip<6){
1240     pfrom = ip;
1241     pto = ip+1;
1242     }
1243     if(iv>=0&&iv<2){
1244     vfrom = iv;
1245     vto = iv+1;
1246     }
1247     for(int i=pfrom; i<pto; i++){
1248     for(int j=0; j<vto; j++){
1249     if(j==0 && XGood(i) && fabs(xm[i]-xv[i])>fabs(max))max=xv[i]-xm[i];
1250     if(j==1 && YGood(i) && fabs(ym[i]-yv[i])>fabs(max))max=yv[i]-ym[i];
1251     }
1252     }
1253     return max;
1254    
1255     };
1256    
1257    
1258     /**
1259     * \brief Give the maximum multiplicity on the x view
1260     */
1261     Int_t TrkTrack::GetClusterX_Multiplicity_max(){
1262     int max=0;
1263     for(int ip=0; ip<6; ip++)
1264     if(GetClusterX_Multiplicity(ip)>max)max=GetClusterX_Multiplicity(ip);
1265     return max;
1266     };
1267     /**
1268     * \brief Give the minimum multiplicity on the x view
1269     */
1270     Int_t TrkTrack::GetClusterX_Multiplicity_min(){
1271     int min=50;
1272     for(int ip=0; ip<6; ip++)
1273     if(GetClusterX_Multiplicity(ip)<min)min=GetClusterX_Multiplicity(ip);
1274     return min;
1275     };
1276     /**
1277     * \brief Give the maximum multiplicity on the x view
1278     */
1279     Int_t TrkTrack::GetClusterY_Multiplicity_max(){
1280     int max=0;
1281     for(int ip=0; ip<6; ip++)
1282     if(GetClusterY_Multiplicity(ip)>max)max=GetClusterY_Multiplicity(ip);
1283     return max;
1284     };
1285     /**
1286     * \brief Give the minimum multiplicity on the x view
1287     */
1288     Int_t TrkTrack::GetClusterY_Multiplicity_min(){
1289     int min=50;
1290     for(int ip=0; ip<6; ip++)
1291     if(GetClusterY_Multiplicity(ip)<min)min=GetClusterY_Multiplicity(ip);
1292     return min;
1293     };
1294    
1295     /**
1296     * \brief Give the minimum seed on the x view
1297     */
1298     Float_t TrkTrack::GetClusterX_Seed_min(){
1299     Float_t min=100000;
1300     for(int ip=0; ip<6; ip++)
1301     if(XGood(ip) && GetClusterX_Seed(ip)<min)min=GetClusterX_Seed(ip);
1302     return min;
1303     };
1304     /**
1305     * \brief Give the minimum seed on the x view
1306     */
1307     Float_t TrkTrack::GetClusterY_Seed_min(){
1308     Float_t min=100000;
1309     for(int ip=0; ip<6; ip++)
1310     if(YGood(ip) && GetClusterY_Seed(ip)<min)min=GetClusterY_Seed(ip);
1311     return min;
1312     };
1313    
1314    
1315 mocchiut 1.1 //--------------------------------------
1316     //
1317     //
1318     //--------------------------------------
1319 pam-fi 1.10 void TrkTrack::Clear(){
1320 pam-fi 1.21 // cout << "TrkTrack::Clear()"<<endl;
1321     seqno = -1;
1322     image = -1;
1323     chi2 = 0;
1324     nstep = 0;
1325     for(int it1=0;it1<5;it1++){
1326     al[it1] = 0;
1327     for(int it2=0;it2<5;it2++)coval[it1][it2] = 0;
1328     };
1329     for(int ip=0;ip<6;ip++){
1330     xgood[ip] = 0;
1331     ygood[ip] = 0;
1332     xm[ip] = 0;
1333     ym[ip] = 0;
1334     zm[ip] = 0;
1335     resx[ip] = 0;
1336     resy[ip] = 0;
1337 pam-fi 1.32 tailx[ip] = 0;
1338     taily[ip] = 0;
1339 pam-fi 1.21 xv[ip] = 0;
1340     yv[ip] = 0;
1341     zv[ip] = 0;
1342     axv[ip] = 0;
1343     ayv[ip] = 0;
1344     dedx_x[ip] = 0;
1345     dedx_y[ip] = 0;
1346    
1347     };
1348 pam-fi 1.44 int ngf = TrkParams::nGF;
1349     for(int i=0; i<ngf; i++){
1350     xGF[i] = 0.;
1351     yGF[i] = 0.;
1352     }
1353 pam-fi 1.32 // if(clx)clx->Clear();
1354     // if(cly)cly->Clear();
1355     // clx.Clear();
1356     // cly.Clear();
1357 pam-fi 1.10 };
1358     //--------------------------------------
1359     //
1360     //
1361     //--------------------------------------
1362 pam-fi 1.11 void TrkTrack::Delete(){
1363 pam-fi 1.21 // cout << "TrkTrack::Delete()"<<endl;
1364 pam-fi 1.32 Clear();
1365     // if(clx)delete clx;
1366     // if(cly)delete cly;
1367 pam-fi 1.11 };
1368 pam-fi 1.21 //--------------------------------------
1369 pam-fi 1.11 //
1370     //
1371     //--------------------------------------
1372 pam-fi 1.10
1373     //--------------------------------------
1374     //
1375     //
1376     //--------------------------------------
1377 mocchiut 1.1 TrkSinglet::TrkSinglet(){
1378 pam-fi 1.21 // cout << "TrkSinglet::TrkSinglet() " << GetUniqueID()<<endl;
1379 pam-fi 1.44 // plane = 0;
1380     // coord[0] = 0;
1381     // coord[1] = 0;
1382     // sgnl = 0;
1383     // multmax = 0;
1384 pam-fi 1.21 // cls = 0;
1385 pam-fi 1.44 Clear();
1386 mocchiut 1.1 };
1387     //--------------------------------------
1388     //
1389     //
1390     //--------------------------------------
1391     TrkSinglet::TrkSinglet(const TrkSinglet& s){
1392 pam-fi 1.21 // cout << "TrkSinglet::TrkSinglet(const TrkSinglet& s) " << GetUniqueID()<<endl;
1393 mocchiut 1.1 plane = s.plane;
1394     coord[0] = s.coord[0];
1395     coord[1] = s.coord[1];
1396     sgnl = s.sgnl;
1397 pam-fi 1.44 multmax = s.multmax;
1398 pam-fi 1.9 // cls = 0;//<<<<pointer
1399 pam-fi 1.32 // cls = TRef(s.cls);
1400 mocchiut 1.1 };
1401     //--------------------------------------
1402     //
1403     //
1404     //--------------------------------------
1405     void TrkSinglet::Dump(){
1406     int i=0;
1407     cout << endl << "========== Singlet " ;
1408 pam-fi 1.44 cout << endl << "plane : " << plane;
1409     cout << endl << "coord[2] : "; while( i<2 && cout << coord[i] << " ") i++;
1410     cout << endl << "sgnl : " << sgnl;
1411     cout << endl << "max.strip : ";
1412     cout << endl << "multiplicity : ";
1413 mocchiut 1.1 }
1414     //--------------------------------------
1415     //
1416     //
1417     //--------------------------------------
1418 pam-fi 1.21 void TrkSinglet::Clear(){
1419     // cout << "TrkSinglet::Clear() " << GetUniqueID()<<endl;
1420     // cls=0;
1421     plane=-1;
1422     coord[0]=-999;
1423     coord[1]=-999;
1424     sgnl=0;
1425 pam-fi 1.44 multmax = 0;
1426 pam-fi 1.21
1427     }
1428     //--------------------------------------
1429     //
1430     //
1431     //--------------------------------------
1432 mocchiut 1.1 TrkLevel2::TrkLevel2(){
1433 mocchiut 1.24 // cout <<"TrkLevel2::TrkLevel2()"<<endl;
1434 mocchiut 1.1 for(Int_t i=0; i<12 ; i++){
1435 pam-fi 1.32 good[i] = -1;
1436     VKmask[i] = 0;
1437     VKflag[i] = 0;
1438     };
1439 pam-fi 1.21 Track = 0;
1440     SingletX = 0;
1441     SingletY = 0;
1442 pam-fi 1.6
1443 mocchiut 1.1 }
1444     //--------------------------------------
1445     //
1446     //
1447     //--------------------------------------
1448 pam-fi 1.23 void TrkLevel2::Set(){
1449     if(!Track)Track = new TClonesArray("TrkTrack");
1450     if(!SingletX)SingletX = new TClonesArray("TrkSinglet");
1451     if(!SingletY)SingletY = new TClonesArray("TrkSinglet");
1452     }
1453     //--------------------------------------
1454     //
1455     //
1456     //--------------------------------------
1457 mocchiut 1.1 void TrkLevel2::Dump(){
1458 pam-fi 1.10
1459     //
1460 mocchiut 1.1 cout << endl << endl << "=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-";
1461 pam-fi 1.40 cout << endl << "good : "; for(int i=0; i<12; i++) cout << hex <<" 0x"<< good[i]<<dec;
1462     cout << endl << "ntrk() : " << ntrk() ;
1463     cout << endl << "nclsx() : " << nclsx();
1464     cout << endl << "nclsy() : " << nclsy();
1465 pam-fi 1.21 if(Track){
1466     TClonesArray &t = *Track;
1467     for(int i=0; i<ntrk(); i++) ((TrkTrack *)t[i])->Dump();
1468     }
1469 pam-fi 1.40 // if(SingletX){
1470     // TClonesArray &sx = *SingletX;
1471     // for(int i=0; i<nclsx(); i++) ((TrkSinglet *)sx[i])->Dump();
1472     // }
1473     // if(SingletY){
1474     // TClonesArray &sy = *SingletY;
1475     // for(int i=0; i<nclsy(); i++) ((TrkSinglet *)sy[i])->Dump();
1476     // }
1477     cout << endl;
1478 mocchiut 1.1 }
1479 pam-fi 1.36 /**
1480     * \brief Dump processing status
1481     */
1482     void TrkLevel2::StatusDump(int view){
1483     cout << "DSP n. "<<view+1<<" status: "<<hex<<good[view]<<endl;
1484     };
1485     /**
1486     * \brief Check event status
1487     *
1488     * Check the event status, according to a flag-mask given as input.
1489     * Return true if the view passes the check.
1490     *
1491     * @param view View number (0-11)
1492     * @param flagmask Mask of flags to check (eg. flagmask=0x111 no missing packet,
1493     * no crc error, no software alarm)
1494     *
1495     * @see TrkLevel2 class definition to know how the status flag is defined
1496     *
1497     */
1498     Bool_t TrkLevel2::StatusCheck(int view, int flagmask){
1499    
1500     if( view<0 || view >= 12)return false;
1501     return !(good[view]&flagmask);
1502    
1503     };
1504    
1505    
1506 mocchiut 1.1 //--------------------------------------
1507     //
1508     //
1509     //--------------------------------------
1510     /**
1511 pam-fi 1.32 * The method returns false if the viking-chip was masked
1512     * either apriori ,on the basis of the mask read from the DB,
1513     * or run-by-run, on the basis of the calibration parameters)
1514     * @param iv Tracker view (0-11)
1515     * @param ivk Viking-chip number (0-23)
1516     */
1517     Bool_t TrkLevel2::GetVKMask(int iv, int ivk){
1518     Int_t whichbit = (Int_t)pow(2,ivk);
1519     return (whichbit&VKmask[iv])!=0;
1520     }
1521     /**
1522     * The method returns false if the viking-chip was masked
1523     * for this event due to common-noise computation failure.
1524     * @param iv Tracker view (0-11)
1525     * @param ivk Viking-chip number (0-23)
1526     */
1527     Bool_t TrkLevel2::GetVKFlag(int iv, int ivk){
1528     Int_t whichbit = (Int_t)pow(2,ivk);
1529     return (whichbit&VKflag[iv])!=0;
1530     }
1531     /**
1532     * The method returns true if the viking-chip was masked, either
1533     * forced (see TrkLevel2::GetVKMask(int,int)) or
1534     * for this event only (TrkLevel2::GetVKFlag(int,int)).
1535     * @param iv Tracker view (0-11)
1536 pam-fi 1.44 * @param ivk Viking-chip number (0-23)
1537 mocchiut 1.1 */
1538 pam-fi 1.32 Bool_t TrkLevel2::IsMaskedVK(int iv, int ivk){
1539     return !(GetVKMask(iv,ivk)&&GetVKFlag(iv,ivk) );
1540     };
1541 pam-fi 1.10
1542 pam-fi 1.9 //--------------------------------------
1543     //
1544     //
1545     //--------------------------------------
1546     /**
1547     * Fills a TrkLevel2 object with values from a struct cTrkLevel2 (to get data from F77 common).
1548 pam-fi 1.29 * Ref to Level1 data (clusters) is also set. If l1==NULL no references are set.
1549     * (NB It make sense to set references only if events are stored in a tree that contains also the Level1 branch)
1550 pam-fi 1.9 */
1551     void TrkLevel2::SetFromLevel2Struct(cTrkLevel2 *l2, TrkLevel1 *l1){
1552    
1553 pam-fi 1.29 // cout << "void TrkLevel2::SetFromLevel2Struct(cTrkLevel2 *l2, TrkLevel1 *l1)"<<endl;
1554     Clear();
1555 pam-fi 1.32
1556 pam-fi 1.9 // temporary objects:
1557 pam-fi 1.29 TrkSinglet* t_singlet = new TrkSinglet();
1558     TrkTrack* t_track = new TrkTrack();
1559    
1560     // -----------------
1561     // general variables
1562     // -----------------
1563     for(Int_t i=0; i<12 ; i++){
1564     good[i] = l2->good[i];
1565 pam-fi 1.32 VKmask[i]=0;
1566     VKflag[i]=0;
1567     for(Int_t ii=0; ii<24 ; ii++){
1568     Int_t setbit = (Int_t)pow(2,ii);
1569     if( l2->vkflag[ii][i]!=-1 )VKmask[i]=VKmask[i]|setbit;
1570     if( l2->vkflag[ii][i]!=0 )VKflag[i]=VKflag[i]|setbit;
1571     };
1572 pam-fi 1.29 };
1573     // --------------
1574     // *** TRACKS ***
1575     // --------------
1576     if(!Track) Track = new TClonesArray("TrkTrack");
1577     TClonesArray &t = *Track;
1578 pam-fi 1.32
1579 pam-fi 1.29 for(int i=0; i<l2->ntrk; i++){
1580     t_track->seqno = i;// NBNBNBNB deve sempre essere = i
1581     t_track->image = l2->image[i]-1;
1582     t_track->chi2 = l2->chi2_nt[i];
1583     t_track->nstep = l2->nstep_nt[i];
1584     for(int it1=0;it1<5;it1++){
1585     t_track->al[it1] = l2->al_nt[i][it1];
1586     for(int it2=0;it2<5;it2++)
1587     t_track->coval[it1][it2] = l2->coval[i][it2][it1];
1588 pam-fi 1.9 };
1589 pam-fi 1.29 for(int ip=0;ip<6;ip++){
1590 pam-fi 1.32 // ---------------------------------
1591     // new implementation of xgood/ygood
1592     // ---------------------------------
1593     t_track->xgood[ip] = l2->cltrx[i][ip]; //cluster ID
1594     t_track->ygood[ip] = l2->cltry[i][ip]; //cluster ID
1595     t_track->xgood[ip] += 10000000*l2->ls[i][ip]; // ladder+sensor
1596     t_track->ygood[ip] += 10000000*l2->ls[i][ip]; // ladder+sensor
1597     if(l2->xbad[i][ip]>0)t_track->xgood[ip]=-t_track->xgood[ip];
1598     if(l2->ybad[i][ip]>0)t_track->ygood[ip]=-t_track->ygood[ip];
1599     // if(l2->xbad[i][ip]>0 || l2->ybad[i][ip]>0){
1600     // if(l2->dedx_x[i][ip]<0 || l2->dedx_y[i][ip]<0){
1601     // cout << ip << " - "<< l2->cltrx[i][ip] << " "<<l2->cltry[i][ip]<<" "<<l2->ls[i][ip]<<endl;
1602     // cout << ip << " - "<<t_track->xgood[ip]<<" "<<t_track->ygood[ip]<<endl;
1603     // cout << ip << " - "<<t_track->GetClusterX_ID(ip)<<" "<<t_track->GetClusterY_ID(ip)<<" "<<t_track->GetLadder(ip)<<" "<<t_track->GetSensor(ip)<<endl;
1604     // cout << ip << " - "<<t_track->BadClusterX(ip)<<" "<<t_track->BadClusterY(ip)<<endl;
1605     // cout << ip << " - "<<t_track->SaturatedClusterX(ip)<<" "<<t_track->SaturatedClusterY(ip)<<endl;
1606     // }
1607 pam-fi 1.29 t_track->xm[ip] = l2->xm_nt[i][ip];
1608     t_track->ym[ip] = l2->ym_nt[i][ip];
1609     t_track->zm[ip] = l2->zm_nt[i][ip];
1610     t_track->resx[ip] = l2->resx_nt[i][ip];
1611     t_track->resy[ip] = l2->resy_nt[i][ip];
1612 pam-fi 1.32 t_track->tailx[ip] = l2->tailx[i][ip];
1613     t_track->taily[ip] = l2->taily[i][ip];
1614 pam-fi 1.29 t_track->xv[ip] = l2->xv_nt[i][ip];
1615     t_track->yv[ip] = l2->yv_nt[i][ip];
1616     t_track->zv[ip] = l2->zv_nt[i][ip];
1617     t_track->axv[ip] = l2->axv_nt[i][ip];
1618     t_track->ayv[ip] = l2->ayv_nt[i][ip];
1619     t_track->dedx_x[ip] = l2->dedx_x[i][ip];
1620     t_track->dedx_y[ip] = l2->dedx_y[i][ip];
1621 pam-fi 1.40 t_track->multmaxx[ip] = l2->multmaxx[i][ip];
1622     t_track->multmaxy[ip] = l2->multmaxy[i][ip];
1623     t_track->seedx[ip] = l2->seedx[i][ip];
1624     t_track->seedy[ip] = l2->seedy[i][ip];
1625     t_track->xpu[ip] = l2->xpu[i][ip];
1626     t_track->ypu[ip] = l2->ypu[i][ip];
1627 pam-fi 1.29 //-----------------------------------------------------
1628     //-----------------------------------------------------
1629     //-----------------------------------------------------
1630     //-----------------------------------------------------
1631     };
1632 pam-fi 1.44 // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1633     // evaluated coordinates (to define GF)
1634     // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1635     int ngf = TrkParams::nGF;
1636     float *zgf = TrkParams::zGF;
1637     Trajectory tgf = Trajectory(ngf,zgf);
1638     tgf.DoTrack2(t_track->al);//<<<< integrate the trajectory
1639     for(int ip=0; ip<ngf; ip++){
1640     t_track->xGF[ip] = tgf.x[ip];
1641     t_track->yGF[ip] = tgf.y[ip];
1642     }
1643    
1644 pam-fi 1.32 // if(t_track->IsSaturated())t_track->Dump();
1645 pam-fi 1.29 new(t[i]) TrkTrack(*t_track);
1646     t_track->Clear();
1647 pam-fi 1.44 };//end loop over track
1648 pam-fi 1.32
1649 pam-fi 1.29 // ----------------
1650     // *** SINGLETS ***
1651     // ----------------
1652     if(!SingletX)SingletX = new TClonesArray("TrkSinglet");
1653     TClonesArray &sx = *SingletX;
1654     for(int i=0; i<l2->nclsx; i++){
1655     t_singlet->plane = l2->planex[i];
1656     t_singlet->coord[0] = l2->xs[i][0];
1657     t_singlet->coord[1] = l2->xs[i][1];
1658     t_singlet->sgnl = l2->signlxs[i];
1659 pam-fi 1.44 t_singlet->multmax = l2->multmaxsx[i];
1660     if(l2->sxbad[i]>0) t_singlet->multmax = -1*t_singlet->multmax;
1661 pam-fi 1.29 //-----------------------------------------------------
1662 pam-fi 1.32 // if(l1) t_singlet->cls = l1->GetCluster(l2->clsx[i]-1);
1663 pam-fi 1.29 //-----------------------------------------------------
1664     new(sx[i]) TrkSinglet(*t_singlet);
1665     t_singlet->Clear();
1666     }
1667     if(!SingletY)SingletY = new TClonesArray("TrkSinglet");
1668     TClonesArray &sy = *SingletY;
1669     for(int i=0; i<l2->nclsy; i++){
1670     t_singlet->plane = l2->planey[i];
1671     t_singlet->coord[0] = l2->ys[i][0];
1672     t_singlet->coord[1] = l2->ys[i][1];
1673     t_singlet->sgnl = l2->signlys[i];
1674 pam-fi 1.44 t_singlet->multmax = l2->multmaxsy[i];
1675     if(l2->sybad[i]>0) t_singlet->multmax = -1*t_singlet->multmax;
1676 pam-fi 1.26 //-----------------------------------------------------
1677 pam-fi 1.32 // if(l1) t_singlet->cls = l1->GetCluster(l2->clsy[i]-1);
1678 pam-fi 1.26 //-----------------------------------------------------
1679 pam-fi 1.29 new(sy[i]) TrkSinglet(*t_singlet);
1680     t_singlet->Clear();
1681     };
1682 pam-fi 1.44
1683    
1684 pam-fi 1.5
1685 pam-fi 1.29 delete t_track;
1686     delete t_singlet;
1687 mocchiut 1.1 }
1688 pam-fi 1.7 /**
1689     * Fills a struct cTrkLevel2 with values from a TrkLevel2 object (to put data into a F77 common).
1690     */
1691    
1692     void TrkLevel2::GetLevel2Struct(cTrkLevel2 *l2) const {
1693    
1694     // general variables
1695 pam-fi 1.10 // l2->good2 = good2 ;
1696 pam-fi 1.7 for(Int_t i=0; i<12 ; i++){
1697 pam-fi 1.10 // l2->crc[i] = crc[i];
1698     l2->good[i] = good[i];
1699 pam-fi 1.7 };
1700     // *** TRACKS ***
1701    
1702 pam-fi 1.21 if(Track){
1703     l2->ntrk = Track->GetEntries();
1704     for(Int_t i=0;i<l2->ntrk;i++){
1705     l2->image[i] = 1 + ((TrkTrack *)Track->At(i))->image;
1706     l2->chi2_nt[i] = ((TrkTrack *)Track->At(i))->chi2;
1707     l2->nstep_nt[i] = ((TrkTrack *)Track->At(i))->nstep;
1708     for(int it1=0;it1<5;it1++){
1709     l2->al_nt[i][it1] = ((TrkTrack *)Track->At(i))->al[it1];
1710     for(int it2=0;it2<5;it2++)
1711     l2->coval[i][it2][it1] = ((TrkTrack *)Track->At(i))->coval[it1][it2];
1712     };
1713     for(int ip=0;ip<6;ip++){
1714 pam-fi 1.30 l2->xgood_nt[i][ip] = ((TrkTrack *)Track->At(i))->XGood(ip);
1715     l2->ygood_nt[i][ip] = ((TrkTrack *)Track->At(i))->YGood(ip);
1716 pam-fi 1.21 l2->xm_nt[i][ip] = ((TrkTrack *)Track->At(i))->xm[ip];
1717     l2->ym_nt[i][ip] = ((TrkTrack *)Track->At(i))->ym[ip];
1718     l2->zm_nt[i][ip] = ((TrkTrack *)Track->At(i))->zm[ip];
1719     l2->resx_nt[i][ip] = ((TrkTrack *)Track->At(i))->resx[ip];
1720     l2->resy_nt[i][ip] = ((TrkTrack *)Track->At(i))->resy[ip];
1721 pam-fi 1.32 l2->tailx[i][ip] = ((TrkTrack *)Track->At(i))->tailx[ip];
1722     l2->taily[i][ip] = ((TrkTrack *)Track->At(i))->taily[ip];
1723 pam-fi 1.21 l2->xv_nt[i][ip] = ((TrkTrack *)Track->At(i))->xv[ip];
1724     l2->yv_nt[i][ip] = ((TrkTrack *)Track->At(i))->yv[ip];
1725     l2->zv_nt[i][ip] = ((TrkTrack *)Track->At(i))->zv[ip];
1726     l2->axv_nt[i][ip] = ((TrkTrack *)Track->At(i))->axv[ip];
1727     l2->ayv_nt[i][ip] = ((TrkTrack *)Track->At(i))->ayv[ip];
1728     l2->dedx_x[i][ip] = ((TrkTrack *)Track->At(i))->dedx_x[ip];
1729     l2->dedx_y[i][ip] = ((TrkTrack *)Track->At(i))->dedx_y[ip];
1730     };
1731     }
1732     }
1733     // *** SINGLETS ***
1734     if(SingletX){
1735     l2->nclsx = SingletX->GetEntries();
1736     for(Int_t i=0;i<l2->nclsx;i++){
1737     l2->planex[i] = ((TrkSinglet *)SingletX->At(i))->plane;
1738     l2->xs[i][0] = ((TrkSinglet *)SingletX->At(i))->coord[0];
1739     l2->xs[i][1] = ((TrkSinglet *)SingletX->At(i))->coord[1];
1740     l2->signlxs[i] = ((TrkSinglet *)SingletX->At(i))->sgnl;
1741     }
1742 pam-fi 1.7 }
1743    
1744 pam-fi 1.21 if(SingletY){
1745     l2->nclsy = SingletY->GetEntries();
1746     for(Int_t i=0;i<l2->nclsy;i++){
1747     l2->planey[i] = ((TrkSinglet *)SingletY->At(i))->plane;
1748     l2->ys[i][0] = ((TrkSinglet *)SingletY->At(i))->coord[0];
1749     l2->ys[i][1] = ((TrkSinglet *)SingletY->At(i))->coord[1];
1750     l2->signlys[i] = ((TrkSinglet *)SingletY->At(i))->sgnl;
1751     }
1752 pam-fi 1.7 }
1753     }
1754 mocchiut 1.1 //--------------------------------------
1755     //
1756     //
1757     //--------------------------------------
1758     void TrkLevel2::Clear(){
1759     for(Int_t i=0; i<12 ; i++){
1760 pam-fi 1.21 good[i] = -1;
1761 pam-fi 1.32 VKflag[i] = 0;
1762     VKmask[i] = 0;
1763 pam-fi 1.21 };
1764     // if(Track)Track->Clear("C");
1765     // if(SingletX)SingletX->Clear("C");
1766     // if(SingletY)SingletY->Clear("C");
1767     if(Track)Track->Delete();
1768     if(SingletX)SingletX->Delete();
1769     if(SingletY)SingletY->Delete();
1770     }
1771     // //--------------------------------------
1772     // //
1773     // //
1774     // //--------------------------------------
1775 pam-fi 1.11 void TrkLevel2::Delete(){
1776    
1777 pam-fi 1.21 // cout << "void TrkLevel2::Delete()"<<endl;
1778     Clear();
1779     if(Track)delete Track;
1780     if(SingletX)delete SingletX;
1781     if(SingletY)delete SingletY;
1782    
1783 pam-fi 1.11 }
1784     //--------------------------------------
1785     //
1786     //
1787     //--------------------------------------
1788 mocchiut 1.1 /**
1789     * Sort physical tracks and stores them in a TObjectArray, ordering by increasing chi**2 value (in case of track image, it selects the one with lower chi**2). The total number of physical tracks is given by GetNTracks() and the it-th physical track can be retrieved by means of the method GetTrack(int it).
1790     * This method is overridden by PamLevel2::GetTracks(), where calorimeter and TOF information is used.
1791     */
1792 pam-fi 1.8 TRefArray *TrkLevel2::GetTracks_NFitSorted(){
1793 pam-fi 1.3
1794 pam-fi 1.21 if(!Track)return 0;
1795    
1796     TRefArray *sorted = new TRefArray();
1797 pam-fi 1.8
1798 pam-fi 1.21 TClonesArray &t = *Track;
1799 pam-fi 1.8 // TClonesArray &ts = *PhysicalTrack;
1800 pam-fi 1.21 int N = ntrk();
1801     vector<int> m(N); for(int i=0; i<N; i++)m[i]=1;
1802 pam-fi 1.8 // int m[50]; for(int i=0; i<N; i++)m[i]=1;
1803    
1804 pam-fi 1.21 int indo=0;
1805     int indi=0;
1806 pam-fi 1.26 while(N > 0){
1807     // while(N != 0){
1808 pam-fi 1.21 int nfit =0;
1809     float chi2ref = numeric_limits<float>::max();
1810 pam-fi 1.9
1811 pam-fi 1.21 // first loop to search maximum num. of fit points
1812     for(int i=0; i < ntrk(); i++){
1813     if( ((TrkTrack *)t[i])->GetNtot() >= nfit && m[i]==1){
1814     nfit = ((TrkTrack *)t[i])->GetNtot();
1815     }
1816     }
1817     //second loop to search minimum chi2 among selected
1818 pam-fi 1.26 for(int i=0; i<ntrk(); i++){
1819 pam-fi 1.21 Float_t chi2 = ((TrkTrack *)t[i])->chi2;
1820 pam-fi 1.26 if(chi2 < 0) chi2 = -chi2*1000;
1821 pam-fi 1.21 if( chi2 < chi2ref
1822     && ((TrkTrack *)t[i])->GetNtot() == nfit
1823     && m[i]==1){
1824     chi2ref = ((TrkTrack *)t[i])->chi2;
1825     indi = i;
1826     };
1827     };
1828     if( ((TrkTrack *)t[indi])->HasImage() ){
1829     m[((TrkTrack *)t[indi])->image] = 0;
1830     N--;
1831 pam-fi 1.8
1832 pam-fi 1.26 // cout << "i** "<< ((TrkTrack *)t[indi])->image << " " << nfiti <<" "<<chi2i<<endl;
1833 pam-fi 1.21 };
1834     sorted->Add( (TrkTrack*)t[indi] );
1835 pam-fi 1.3
1836 pam-fi 1.21 m[indi] = 0;
1837 pam-fi 1.26 // cout << "SORTED "<< indo << " "<< indi << " "<< N << " "<<((TrkTrack *)t[indi])->image<<" "<<chi2ref<<endl;
1838 pam-fi 1.21 N--;
1839     indo++;
1840     }
1841     m.clear();
1842 pam-fi 1.26 // cout << "GetTracks_NFitSorted(it): Done"<< endl;
1843 pam-fi 1.8
1844 pam-fi 1.21 return sorted;
1845 pam-fi 1.6 // return PhysicalTrack;
1846 pam-fi 1.3 }
1847 mocchiut 1.1 //--------------------------------------
1848     //
1849     //
1850     //--------------------------------------
1851     /**
1852     * Retrieves the is-th stored track.
1853     * @param it Track number, ranging from 0 to ntrk().
1854     * Fitted tracks ( images included ) are stored in a TObjectArray ( TrkLevel2::Track ) in the same order they are returned by the F77 fitting routine.
1855     */
1856     TrkTrack *TrkLevel2::GetStoredTrack(int is){
1857    
1858     if(is >= this->ntrk()){
1859 pam-fi 1.42 cout << "TrkTrack *TrkLevel2::GetStoredTrack(int) >> Track "<< is << "doen not exits! " << endl;
1860     cout << "Stored tracks ntrk() = "<< this->ntrk() << endl;
1861 mocchiut 1.1 return 0;
1862     }
1863 pam-fi 1.21 if(!Track){
1864     cout << "TrkTrack *TrkLevel2::GetStoredTrack(int is) >> (TClonesArray*) Track ==0 "<<endl;
1865     };
1866 mocchiut 1.1 TClonesArray &t = *(Track);
1867     TrkTrack *track = (TrkTrack*)t[is];
1868     return track;
1869     }
1870     //--------------------------------------
1871     //
1872     //
1873     //--------------------------------------
1874     /**
1875 pam-fi 1.6 * Retrieves the is-th stored X singlet.
1876     * @param it Singlet number, ranging from 0 to nclsx().
1877     */
1878     TrkSinglet *TrkLevel2::GetSingletX(int is){
1879    
1880     if(is >= this->nclsx()){
1881 pam-fi 1.42 cout << "TrkSinglet *TrkLevel2::GetSingletX(int) >> Singlet "<< is << "doen not exits! " << endl;
1882     cout << "Stored x-singlets nclsx() = "<< this->nclsx() << endl;
1883 pam-fi 1.6 return 0;
1884     }
1885 pam-fi 1.21 if(!SingletX)return 0;
1886 pam-fi 1.6 TClonesArray &t = *(SingletX);
1887     TrkSinglet *singlet = (TrkSinglet*)t[is];
1888     return singlet;
1889     }
1890     //--------------------------------------
1891     //
1892     //
1893     //--------------------------------------
1894     /**
1895     * Retrieves the is-th stored Y singlet.
1896     * @param it Singlet number, ranging from 0 to nclsx().
1897     */
1898     TrkSinglet *TrkLevel2::GetSingletY(int is){
1899    
1900     if(is >= this->nclsy()){
1901 pam-fi 1.42 cout << "TrkSinglet *TrkLevel2::GetSingletY(int) >> Singlet "<< is << "doen not exits! " << endl;
1902     cout << "Stored y-singlets nclsx() = "<< this->nclsx() << endl;
1903 pam-fi 1.6 return 0;
1904     }
1905 pam-fi 1.21 if(!SingletY)return 0;
1906 pam-fi 1.6 TClonesArray &t = *(SingletY);
1907     TrkSinglet *singlet = (TrkSinglet*)t[is];
1908     return singlet;
1909     }
1910     //--------------------------------------
1911     //
1912     //
1913     //--------------------------------------
1914     /**
1915 mocchiut 1.1 * Retrieves the it-th "physical" track, sorted by the method GetNTracks().
1916     * @param it Track number, ranging from 0 to GetNTracks().
1917     */
1918 pam-fi 1.10
1919 pam-fi 1.8 TrkTrack *TrkLevel2::GetTrack(int it){
1920    
1921     if(it >= this->GetNTracks()){
1922 pam-fi 1.42 cout << "TrkTrack *TrkLevel2::GetTrack(int) >> Track "<< it << "does not exits! " << endl;
1923     cout << "Physical tracks GetNTracks() = "<< this->ntrk() << endl;
1924 pam-fi 1.8 return 0;
1925     }
1926    
1927     TRefArray *sorted = GetTracks(); //TEMPORANEO
1928 pam-fi 1.21 if(!sorted)return 0;
1929 pam-fi 1.8 TrkTrack *track = (TrkTrack*)sorted->At(it);
1930 pam-fi 1.21 sorted->Clear();
1931     delete sorted;
1932 pam-fi 1.8 return track;
1933 mocchiut 1.1 }
1934 pam-fi 1.6 /**
1935     * Give the number of "physical" tracks, sorted by the method GetTracks().
1936     */
1937 pam-fi 1.5 Int_t TrkLevel2::GetNTracks(){
1938 pam-fi 1.8
1939     Float_t ntot=0;
1940 pam-fi 1.21 if(!Track)return 0;
1941 pam-fi 1.8 TClonesArray &t = *Track;
1942 mocchiut 1.12 for(int i=0; i<ntrk(); i++) {
1943 pam-fi 1.8 if( ((TrkTrack *)t[i])->GetImageSeqNo() == -1 ) ntot+=1.;
1944     else ntot+=0.5;
1945     }
1946     return (Int_t)ntot;
1947    
1948 pam-fi 1.5 };
1949 mocchiut 1.1 //--------------------------------------
1950     //
1951     //
1952     //--------------------------------------
1953     /**
1954     * Retrieves (if present) the image of the it-th "physical" track, sorted by the method GetNTracks().
1955     * @param it Track number, ranging from 0 to GetNTracks().
1956     */
1957 pam-fi 1.8 TrkTrack *TrkLevel2::GetTrackImage(int it){
1958    
1959 pam-fi 1.21 if(it >= this->GetNTracks()){
1960 pam-fi 1.42 cout << "TrkTrack *TrkLevel2::GetTrackImage(int) >> Track "<< it << "does not exits! " << endl;
1961     cout << "Physical tracks GetNTracks() = "<< this->ntrk() << endl;
1962 pam-fi 1.21 return 0;
1963     }
1964 pam-fi 1.8
1965 pam-fi 1.21 TRefArray* sorted = GetTracks(); //TEMPORANEO
1966     if(!sorted)return 0;
1967     TrkTrack *track = (TrkTrack*)sorted->At(it);
1968 pam-fi 1.8
1969 pam-fi 1.21 if(!track->HasImage()){
1970 pam-fi 1.42 cout << "TrkTrack *TrkLevel2::GetTrackImage(int) >> Track "<< it << "does not have image! " << endl;
1971 pam-fi 1.21 return 0;
1972     }
1973     if(!Track)return 0;
1974     TrkTrack *image = (TrkTrack*)(*Track)[track->image];
1975    
1976     sorted->Delete();
1977     delete sorted;
1978 pam-fi 1.8
1979 pam-fi 1.21 return image;
1980 pam-fi 1.8
1981 mocchiut 1.1 }
1982     //--------------------------------------
1983     //
1984     //
1985     //--------------------------------------
1986     /**
1987     * Loads the magnetic field.
1988     * @param s Path of the magnetic-field files.
1989     */
1990 pam-fi 1.16 void TrkLevel2::LoadField(TString path){
1991     //
1992 pam-fi 1.26 // strcpy(path_.path,path.Data());
1993     // path_.pathlen = path.Length();
1994     // path_.error = 0;
1995     // readb_();
1996    
1997 pam-fi 1.41 // TrkParams::SetTrackingMode();
1998     // TrkParams::SetPrecisionFactor();
1999     // TrkParams::SetStepMin();
2000     TrkParams::SetMiniDefault();
2001 pam-fi 1.33
2002 pam-fi 1.26 TrkParams::Set(path,1);
2003 pam-fi 1.28 TrkParams::Load(1);
2004 pam-fi 1.26
2005 pam-fi 1.16 //
2006 mocchiut 1.1 };
2007 pam-fi 1.33 // /**
2008     // * Get BY (kGauss)
2009     // * @param v (x,y,z) coordinates in cm
2010     // */
2011     // float TrkLevel2::GetBX(float* v){
2012     // float b[3];
2013     // gufld_(v,b);
2014     // return b[0]/10.;
2015     // }
2016     // /**
2017     // * Get BY (kGauss)
2018     // * @param v (x,y,z) coordinates in cm
2019     // */
2020     // float TrkLevel2::GetBY(float* v){
2021     // float b[3];
2022     // gufld_(v,b);
2023     // return b[1]/10.;
2024     // }
2025     // /**
2026     // * Get BY (kGauss)
2027     // * @param v (x,y,z) coordinates in cm
2028     // */
2029     // float TrkLevel2::GetBZ(float* v){
2030     // float b[3];
2031     // gufld_(v,b);
2032     // return b[2]/10.;
2033     // }
2034 mocchiut 1.1 //--------------------------------------
2035     //
2036     //
2037     //--------------------------------------
2038     /**
2039 pam-fi 1.6 * Get tracker-plane (mechanical) z-coordinate
2040     * @param plane_id plane index (1=TOP,2,3,4,5,6=BOTTOM)
2041     */
2042     Float_t TrkLevel2::GetZTrk(Int_t plane_id){
2043     switch(plane_id){
2044     case 1: return ZTRK1;
2045     case 2: return ZTRK2;
2046     case 3: return ZTRK3;
2047     case 4: return ZTRK4;
2048     case 5: return ZTRK5;
2049     case 6: return ZTRK6;
2050     default: return 0.;
2051     };
2052     };
2053     //--------------------------------------
2054     //
2055     //
2056     //--------------------------------------
2057     /**
2058 pam-fi 1.2 * Trajectory default constructor.
2059     * (By default is created with z-coordinates inside the tracking volume)
2060     */
2061     Trajectory::Trajectory(){
2062     npoint = 10;
2063     x = new float[npoint];
2064     y = new float[npoint];
2065     z = new float[npoint];
2066     thx = new float[npoint];
2067     thy = new float[npoint];
2068     tl = new float[npoint];
2069 pam-fi 1.6 float dz = ((ZTRK1)-(ZTRK6))/(npoint-1);
2070 pam-fi 1.2 for(int i=0; i<npoint; i++){
2071     x[i] = 0;
2072     y[i] = 0;
2073 pam-fi 1.6 z[i] = (ZTRK1) - i*dz;
2074 pam-fi 1.2 thx[i] = 0;
2075     thy[i] = 0;
2076     tl[i] = 0;
2077     }
2078     }
2079     //--------------------------------------
2080     //
2081     //
2082     //--------------------------------------
2083     /**
2084 mocchiut 1.1 * Trajectory constructor.
2085 pam-fi 1.2 * (By default is created with z-coordinates inside the tracking volume)
2086 mocchiut 1.1 * \param n Number of points
2087     */
2088     Trajectory::Trajectory(int n){
2089 pam-fi 1.2 if(n<=0){
2090     cout << "NB! Trajectory must have at least 1 point >>> created with 10 points" << endl;
2091     n=10;
2092     }
2093 mocchiut 1.1 npoint = n;
2094     x = new float[npoint];
2095     y = new float[npoint];
2096     z = new float[npoint];
2097 pam-fi 1.2 thx = new float[npoint];
2098     thy = new float[npoint];
2099     tl = new float[npoint];
2100 pam-fi 1.6 float dz = ((ZTRK1)-(ZTRK6))/(npoint-1);
2101 mocchiut 1.1 for(int i=0; i<npoint; i++){
2102 pam-fi 1.2 x[i] = 0;
2103 mocchiut 1.1 y[i] = 0;
2104 pam-fi 1.6 z[i] = (ZTRK1) - i*dz;
2105 pam-fi 1.2 thx[i] = 0;
2106     thy[i] = 0;
2107     tl[i] = 0;
2108 mocchiut 1.1 }
2109     }
2110     //--------------------------------------
2111     //
2112     //
2113     //--------------------------------------
2114     /**
2115     * Trajectory constructor.
2116     * \param n Number of points
2117     * \param pz Pointer to float array, defining z coordinates
2118     */
2119     Trajectory::Trajectory(int n, float* zin){
2120 pam-fi 1.2 npoint = 10;
2121     if(n>0)npoint = n;
2122 mocchiut 1.1 x = new float[npoint];
2123     y = new float[npoint];
2124     z = new float[npoint];
2125 pam-fi 1.2 thx = new float[npoint];
2126     thy = new float[npoint];
2127     tl = new float[npoint];
2128     int i=0;
2129     do{
2130 pam-fi 1.21 x[i] = 0;
2131     y[i] = 0;
2132     z[i] = zin[i];
2133     thx[i] = 0;
2134     thy[i] = 0;
2135     tl[i] = 0;
2136     i++;
2137 pam-fi 1.2 }while(zin[i-1] > zin[i] && i < npoint);
2138     npoint=i;
2139     if(npoint != n)cout << "NB! Trajectory created with "<<npoint<<" points"<<endl;
2140 mocchiut 1.1 }
2141 pam-fi 1.21 void Trajectory::Delete(){
2142    
2143     if(x) delete [] x;
2144     if(y) delete [] y;
2145     if(z) delete [] z;
2146     if(thx) delete [] thx;
2147     if(thy) delete [] thy;
2148     if(tl) delete [] tl;
2149    
2150     }
2151 mocchiut 1.1 //--------------------------------------
2152     //
2153     //
2154     //--------------------------------------
2155     /**
2156     * Dump the trajectory coordinates.
2157     */
2158     void Trajectory::Dump(){
2159     cout <<endl<< "Trajectory ========== "<<endl;
2160     for (int i=0; i<npoint; i++){
2161 pam-fi 1.2 cout << i <<" >> " << x[i] <<" "<< y[i] <<" "<< z[i] ;
2162     cout <<" -- " << thx[i] <<" "<< thy[i] ;
2163     cout <<" -- " << tl[i] << endl;
2164 mocchiut 1.1 };
2165     }
2166 pam-fi 1.2 //--------------------------------------
2167     //
2168     //
2169     //--------------------------------------
2170     /**
2171     * Get trajectory length between two points
2172     * @param ifirst first point (default 0)
2173     * @param ilast last point (default npoint)
2174     */
2175     float Trajectory::GetLength(int ifirst, int ilast){
2176     if( ifirst<0 ) ifirst = 0;
2177     if( ilast>=npoint) ilast = npoint-1;
2178     float l=0;
2179     for(int i=ifirst;i<=ilast;i++){
2180     l=l+tl[i];
2181     };
2182     if(z[ilast] > ZINI)l=l-tl[ilast];
2183     if(z[ifirst] < ZINI) l=l-tl[ifirst];
2184    
2185     return l;
2186 mocchiut 1.1
2187 pam-fi 1.2 }
2188 pam-fi 1.6
2189 pam-fi 1.19 /**
2190     * Evaluates the trajectory in the apparatus associated to the track.
2191     * It integrates the equations of motion in the magnetic field. The magnetic field should be previously loaded ( by calling TrkLevel2::LoadField() ), otherwise an error message is returned.
2192     * @param t pointer to an object of the class Trajectory,
2193     * which z coordinates should be previously initialized by calling the proper constructor ( Trajectory::Trajectory(int n, float* zin) ).
2194     * @return error flag.
2195     */
2196     int Trajectory::DoTrack2(float* al){
2197    
2198 pam-fi 1.45 // double *dxout = new double[npoint];
2199     // double *dyout = new double[npoint];
2200     // double *dthxout = new double[npoint];
2201     // double *dthyout = new double[npoint];
2202     // double *dtlout = new double[npoint];
2203     // double *dzin = new double[npoint];
2204    
2205     double *dxout;
2206     double *dyout;
2207     double *dthxout;
2208     double *dthyout;
2209     double *dtlout;
2210     double *dzin;
2211    
2212     dxout = (double*) malloc(npoint*sizeof(double));
2213     dyout = (double*) malloc(npoint*sizeof(double));
2214     dthxout = (double*) malloc(npoint*sizeof(double));
2215     dthyout = (double*) malloc(npoint*sizeof(double));
2216     dtlout = (double*) malloc(npoint*sizeof(double));
2217     dzin = (double*) malloc(npoint*sizeof(double));
2218    
2219     double dal[5];
2220 pam-fi 1.19
2221     int ifail = 0;
2222    
2223     for (int i=0; i<5; i++) dal[i] = (double)al[i];
2224     for (int i=0; i<npoint; i++) dzin[i] = (double)z[i];
2225    
2226 pam-fi 1.26 TrkParams::Load(1);
2227     if( !TrkParams::IsLoaded(1) ){
2228     cout << "int Trajectory::DoTrack2(float* al) --- ERROR --- m.field not loaded"<<endl;
2229     return 0;
2230     }
2231 pam-fi 1.19 dotrack2_(&(npoint),dzin,dxout,dyout,dthxout,dthyout,dtlout,dal,&ifail);
2232    
2233     for (int i=0; i<npoint; i++){
2234 pam-fi 1.45 x[i] = (float)*(dxout+i);
2235     y[i] = (float)*(dyout+i);
2236     thx[i] = (float)*(dthxout+i);
2237     thy[i] = (float)*(dthyout+i);
2238     tl[i] = (float)*(dtlout+i);
2239     }
2240    
2241     if(dxout) free( dxout );
2242     if(dyout) free( dyout );
2243     if(dthxout)free( dthxout );
2244     if(dthyout)free( dthyout );
2245     if(dtlout) free( dtlout );
2246     if(dzin) free( dzin );
2247    
2248     // delete [] dxout;
2249     // delete [] dyout;
2250     // delete [] dthxout;
2251     // delete [] dthyout;
2252     // delete [] dtlout;
2253     // delete [] dzin;
2254    
2255 pam-fi 1.19
2256     return ifail;
2257     };
2258 pam-fi 1.10
2259 mocchiut 1.1 ClassImp(TrkLevel2);
2260     ClassImp(TrkSinglet);
2261     ClassImp(TrkTrack);
2262     ClassImp(Trajectory);

  ViewVC Help
Powered by ViewVC 1.1.23