| 1 |
************************************************************************* |
| 2 |
* |
| 3 |
* Subroutine tricircle.f |
| 4 |
* |
| 5 |
* - find the best circle passing through npoints: compute the circle |
| 6 |
* passing through every combination of 3 of them and average the |
| 7 |
* resulting centres and radii |
| 8 |
* |
| 9 |
* output variables: |
| 10 |
* - angle(npoints) angle of the tangent in the input points, in degrees, range -90..+90 |
| 11 |
* - residual(npoints) residuals |
| 12 |
* - chi sum of squared residuals |
| 13 |
* - xc,zc,radius circle parameters |
| 14 |
* - eflag error flag |
| 15 |
* |
| 16 |
* to be called inside ./fitxy.f |
| 17 |
* |
| 18 |
************************************************************************* |
| 19 |
|
| 20 |
|
| 21 |
subroutine tricircle(npoints,dep,indep,angle,residual,chi |
| 22 |
$ ,xc,zc,radius,eflag) |
| 23 |
|
| 24 |
|
| 25 |
c------------------------------------------------------------------------ |
| 26 |
c |
| 27 |
c local variables |
| 28 |
c |
| 29 |
c------------------------------------------------------------------------ |
| 30 |
|
| 31 |
integer npoints !fit number of points |
| 32 |
real dep(npoints),indep(npoints) !dependent and independent variables |
| 33 |
|
| 34 |
c real angle(npoints) !angle between the tangent line in the input points and |
| 35 |
c ! the independent variable axis |
| 36 |
c real residual(npoints) !residuals |
| 37 |
c real chi !sum of squared residuals |
| 38 |
c real xc,zc,radius !circle parameters |
| 39 |
double precision angle(npoints) !angle between the tangent line in the input points and |
| 40 |
! the independent variable axis |
| 41 |
double precision residual(npoints) !residuals EM GCC4.7 |
| 42 |
double precision chi !sum of squared residuals EM GCC4.7 |
| 43 |
double precision xc,zc,radius !circle parameters EM GCC4.7 |
| 44 |
|
| 45 |
integer eflag !error flag =1 if the procedure fails |
| 46 |
|
| 47 |
c integer nloops !number of combinations of 3 points out of npoints |
| 48 |
integer index(3) !indexes of the 3 chosen points |
| 49 |
|
| 50 |
parameter(scale=1000.) |
| 51 |
double precision z(3),x(3),unit(3),zzxx(3) !temp variables |
| 52 |
double precision a(3,3),d(3,3),e(3,3),f(3,3) |
| 53 |
double precision ir(3) |
| 54 |
double precision deta,detd,dete,detf !determinants |
| 55 |
integer ifail !=-1 if singular matrix error, =0 if not singular |
| 56 |
integer jfail !=0 if determinant can be evaluated, =-1 if determinat is probably too small, =+1 if too large |
| 57 |
|
| 58 |
integer ibig ! EM GCC4.7 |
| 59 |
c parameter (ibig=1.e4) !just a number greater than C(npoints,3) |
| 60 |
parameter (ibig=10000) !just a number greater than C(npoints,3) EM GCC 4.7 |
| 61 |
double precision xxc(ibig),zzc(ibig),rrr(ibig) !centres and radii to be averaged |
| 62 |
|
| 63 |
double precision tmp1,tmp2,tmp(npoints) !temp variables |
| 64 |
|
| 65 |
logical DEBUG |
| 66 |
|
| 67 |
real pigr !3.1415... |
| 68 |
pigr=ACOS(-1.) |
| 69 |
|
| 70 |
|
| 71 |
DEBUG = .false. |
| 72 |
if(eflag.eq.1)DEBUG = .true. |
| 73 |
|
| 74 |
eflag = 0 |
| 75 |
|
| 76 |
|
| 77 |
c------------------------------------------------------------------------ |
| 78 |
c choose 3 points out of npoints |
| 79 |
c------------------------------------------------------------------------ |
| 80 |
c nloops = fact(npoints) / (fact(3) * fact(npoints-3)) |
| 81 |
|
| 82 |
k=0 |
| 83 |
do i1=1,npoints-2 |
| 84 |
index(1)=i1 |
| 85 |
do i2=i1+1,npoints-1 |
| 86 |
index(2)=i2 |
| 87 |
do i3=i2+1,npoints |
| 88 |
index(3)=i3 |
| 89 |
|
| 90 |
k=k+1 !number of combinations |
| 91 |
c$$$ print*,' ' !??? |
| 92 |
c$$$ print*,'k =',k,' index =',index |
| 93 |
|
| 94 |
c------------------------------------------------------------------------ |
| 95 |
c build temp vectors |
| 96 |
c------------------------------------------------------------------------ |
| 97 |
do i=1,3 |
| 98 |
z(i)=indep(index(i))/scale !to avoid too big numbers in matrix computation |
| 99 |
x(i)=dep(index(i))/scale |
| 100 |
unit(i)=1. |
| 101 |
zzxx(i)=z(i)**2.+x(i)**2. |
| 102 |
enddo |
| 103 |
c$$$ print*,'z =',z,' x =',x !??? |
| 104 |
c$$$ print*,'unit =',unit,' zzxx =',zzxx |
| 105 |
|
| 106 |
c------------------------------------------------------------------------ |
| 107 |
c build the matrixes |
| 108 |
c------------------------------------------------------------------------ |
| 109 |
do i=1,3 |
| 110 |
a(i,1)=z(i) !A has (z x 1) as columns |
| 111 |
a(i,2)=x(i) |
| 112 |
a(i,3)=unit(i) |
| 113 |
d(i,1)=zzxx(i) !D has (zzxx x 1) as columns |
| 114 |
d(i,2)=x(i) |
| 115 |
d(i,3)=unit(i) |
| 116 |
e(i,1)=zzxx(i) !E has (zzxx z 1) as columns |
| 117 |
e(i,2)=z(i) |
| 118 |
e(i,3)=unit(i) |
| 119 |
f(i,1)=zzxx(i) !F has (zzxx z x) as columns |
| 120 |
f(i,2)=z(i) |
| 121 |
f(i,3)=x(i) |
| 122 |
enddo |
| 123 |
|
| 124 |
c$$$ print*,'matrix A:' !??? |
| 125 |
c$$$ do i=1,3 |
| 126 |
c$$$ print*,(a(i,j),j=1,3) |
| 127 |
c$$$ enddo |
| 128 |
c$$$ print*,'matrix D:' !??? |
| 129 |
c$$$ do i=1,3 |
| 130 |
c$$$ print*,(d(i,j),j=1,3) |
| 131 |
c$$$ enddo |
| 132 |
c$$$ print*,'matrix E:' !??? |
| 133 |
c$$$ do i=1,3 |
| 134 |
c$$$ print*,(e(i,j),j=1,3) |
| 135 |
c$$$ enddo |
| 136 |
c$$$ print*,'matrix F:' !??? |
| 137 |
c$$$ do i=1,3 |
| 138 |
c$$$ print*,(f(i,j),j=1,3) |
| 139 |
c$$$ enddo |
| 140 |
|
| 141 |
c------------------------------------------------------------------------ |
| 142 |
c compute the determinants of A, D, E and F matrixes |
| 143 |
c using DFACT (http://wwwasdoc.web.cern.ch/wwwasdoc/shortwrupsdir/f011/top.html) |
| 144 |
c------------------------------------------------------------------------ |
| 145 |
|
| 146 |
ifail=0 |
| 147 |
jfail=0 |
| 148 |
call DFACT(3,a,3,ir,ifail,deta,jfail) |
| 149 |
if(ifail.eq.-1) then |
| 150 |
if(DEBUG)then |
| 151 |
print*,'tricircle: ERROR: singular matrix A:' |
| 152 |
do i=1,3 |
| 153 |
print*,(a(i,j),j=1,3) |
| 154 |
enddo |
| 155 |
endif |
| 156 |
eflag=1 |
| 157 |
endif |
| 158 |
if(jfail.eq.-1) then |
| 159 |
if(DEBUG)then |
| 160 |
print* |
| 161 |
$ ,'tricircle: ERROR: matrix A: determinant too small?' |
| 162 |
do i=1,3 |
| 163 |
print*,(d(i,j),j=1,3) |
| 164 |
enddo |
| 165 |
endif |
| 166 |
eflag=1 |
| 167 |
elseif(jfail.eq.1) then |
| 168 |
if(DEBUG)then |
| 169 |
print* |
| 170 |
$ ,'tricircle: ERROR: matrix A: determinant too large?' |
| 171 |
do i=1,3 |
| 172 |
print*,(d(i,j),j=1,3) |
| 173 |
enddo |
| 174 |
endif |
| 175 |
eflag=1 |
| 176 |
endif |
| 177 |
|
| 178 |
ifail=0 |
| 179 |
jfail=0 |
| 180 |
call DFACT(3,d,3,ir,ifail,detd,jfail) |
| 181 |
if(ifail.eq.-1) then |
| 182 |
if(DEBUG)then |
| 183 |
print*,'tricircle: ERROR: singular matrix D:' |
| 184 |
do i=1,3 |
| 185 |
print*,(d(i,j),j=1,3) |
| 186 |
enddo |
| 187 |
endif |
| 188 |
eflag=1 |
| 189 |
endif |
| 190 |
if(jfail.eq.-1) then |
| 191 |
if(DEBUG)then |
| 192 |
print* |
| 193 |
$ ,'tricircle: ERROR: matrix D: determinant too small?' |
| 194 |
do i=1,3 |
| 195 |
print*,(d(i,j),j=1,3) |
| 196 |
enddo |
| 197 |
endif |
| 198 |
eflag=1 |
| 199 |
elseif(jfail.eq.1) then |
| 200 |
if(DEBUG)then |
| 201 |
print* |
| 202 |
$ ,'tricircle: ERROR: matrix D: determinant too large?' |
| 203 |
do i=1,3 |
| 204 |
print*,(d(i,j),j=1,3) |
| 205 |
enddo |
| 206 |
endif |
| 207 |
eflag=1 |
| 208 |
endif |
| 209 |
|
| 210 |
ifail=0 |
| 211 |
jfail=0 |
| 212 |
call DFACT(3,e,3,ir,ifail,dete,jfail) |
| 213 |
if(ifail.eq.-1) then |
| 214 |
if(DEBUG)then |
| 215 |
print*,'tricircle: ERROR: singular matrix E:' |
| 216 |
do i=1,3 |
| 217 |
print*,(e(i,j),j=1,3) |
| 218 |
enddo |
| 219 |
endif |
| 220 |
eflag=1 |
| 221 |
endif |
| 222 |
if(jfail.eq.-1) then |
| 223 |
if(DEBUG)then |
| 224 |
print* |
| 225 |
$ ,'tricircle: ERROR: matrix E: determinant too small?' |
| 226 |
do i=1,3 |
| 227 |
print*,(e(i,j),j=1,3) |
| 228 |
enddo |
| 229 |
endif |
| 230 |
eflag=1 |
| 231 |
elseif(jfail.eq.1) then |
| 232 |
if(DEBUG)then |
| 233 |
print* |
| 234 |
$ ,'tricircle: ERROR: matrix E: determinant too large?' |
| 235 |
do i=1,3 |
| 236 |
print*,(e(i,j),j=1,3) |
| 237 |
enddo |
| 238 |
endif |
| 239 |
eflag=1 |
| 240 |
endif |
| 241 |
|
| 242 |
ifail=0 |
| 243 |
jfail=0 |
| 244 |
call DFACT(3,f,3,ir,ifail,detf,jfail) |
| 245 |
c ifail=-1 !??? |
| 246 |
if(ifail.eq.-1) then |
| 247 |
if(DEBUG)then |
| 248 |
print*,'tricircle: ERROR: singular matrix F:' |
| 249 |
do i=1,3 |
| 250 |
print*,(f(i,j),j=1,3) |
| 251 |
enddo |
| 252 |
endif |
| 253 |
eflag=1 |
| 254 |
endif |
| 255 |
if(jfail.eq.-1) then |
| 256 |
if(DEBUG)then |
| 257 |
print* |
| 258 |
$ ,'tricircle: ERROR: matrix F: determinant too small?' |
| 259 |
do i=1,3 |
| 260 |
print*,(f(i,j),j=1,3) |
| 261 |
enddo |
| 262 |
endif |
| 263 |
eflag=1 |
| 264 |
elseif(jfail.eq.1) then |
| 265 |
if(DEBUG)then |
| 266 |
print* |
| 267 |
$ ,'tricircle: ERROR: matrix F: determinant too large?' |
| 268 |
do i=1,3 |
| 269 |
print*,(f(i,j),j=1,3) |
| 270 |
enddo |
| 271 |
endif |
| 272 |
eflag=1 |
| 273 |
endif |
| 274 |
|
| 275 |
c------------------------------------------------------------------------ |
| 276 |
c compute the centre and radius |
| 277 |
c------------------------------------------------------------------------ |
| 278 |
detd=-detd |
| 279 |
detf=-detf |
| 280 |
|
| 281 |
c xxc(k)=-detd/(2.*deta) |
| 282 |
c zzc(k)=-dete/(2.*deta) |
| 283 |
xxc(k)=-dete/(2.*deta) |
| 284 |
zzc(k)=-detd/(2.*deta) |
| 285 |
rrr(k)=SQRT((detd**2+dete**2)/(4.*deta**2.)-detf/deta) |
| 286 |
|
| 287 |
c$$$ write(30,*) xxc(k)*scale !??? |
| 288 |
c$$$ write(31,*) zzc(k)*scale !??? |
| 289 |
c$$$ write(32,*) rrr(k)*scale !??? |
| 290 |
c$$$ print*,'xxc =',xxc(k)*scale,' zzc =',zzc(k)*scale |
| 291 |
c$$$ $ ,' rrr =',rrr(k)*scale !??? |
| 292 |
|
| 293 |
enddo !index loops |
| 294 |
enddo |
| 295 |
enddo |
| 296 |
|
| 297 |
|
| 298 |
c------------------------------------------------------------------------ |
| 299 |
c averages the centres and the radii |
| 300 |
c------------------------------------------------------------------------ |
| 301 |
xc=0. |
| 302 |
zc=0. |
| 303 |
radius=0. |
| 304 |
do i=1,k |
| 305 |
xc=xc+xxc(i) |
| 306 |
zc=zc+zzc(i) |
| 307 |
radius=radius+rrr(i) |
| 308 |
enddo |
| 309 |
xc=xc/k * scale !back to micrometers |
| 310 |
zc=zc/k * scale |
| 311 |
radius=radius/k * scale |
| 312 |
|
| 313 |
c$$$ c------------------------------------------------------------------------ |
| 314 |
c$$$ c check for small radius...!??? |
| 315 |
c$$$ c------------------------------------------------------------------------ |
| 316 |
c$$$ num=200 |
| 317 |
c$$$ height=ABS(indep(1)-indep(6)) |
| 318 |
c$$$ if(radius.lt.(num*height)) then |
| 319 |
c$$$ xc=0. |
| 320 |
c$$$ zc=0. |
| 321 |
c$$$ radius=0. |
| 322 |
c$$$ print*,'tricircle: ERROR: bad circle' |
| 323 |
c$$$ print*,'radius' ,radius,' < ', num,' x',height |
| 324 |
c$$$ c$$$ print*,dep !??? |
| 325 |
c$$$ c$$$ print*,indep !??? |
| 326 |
c$$$ eflag=1 |
| 327 |
c$$$ endif |
| 328 |
|
| 329 |
|
| 330 |
c------------------------------------------------------------------------ |
| 331 |
c computes residuals and chi-squared |
| 332 |
c------------------------------------------------------------------------ |
| 333 |
chi=0. |
| 334 |
|
| 335 |
c print*,xc,zc,radius !??? |
| 336 |
do i=1,npoints |
| 337 |
tmp1 = SQRT(radius**2.-(indep(i)-zc)**2.) |
| 338 |
tmp2 = dep(i)-xc |
| 339 |
if(ABS(tmp2-tmp1).le.ABS(tmp2+tmp1)) then !it chooses the right sign |
| 340 |
tmp(i)=tmp1 !according to residuals |
| 341 |
else |
| 342 |
tmp(i)=-tmp1 |
| 343 |
endif |
| 344 |
residual(i)=tmp2 - tmp(i) |
| 345 |
chi=chi + residual(i)**2. |
| 346 |
c print*,dep(i) !??? |
| 347 |
c print*,indep(i) !??? |
| 348 |
c print*,tmp1,tmp2,tmp(i),residual(i) !??? |
| 349 |
enddo |
| 350 |
|
| 351 |
c------------------------------------------------------------------------ |
| 352 |
c it computes the angle between the tangent to the circumference and the |
| 353 |
c independent variable axis |
| 354 |
c------------------------------------------------------------------------ |
| 355 |
do i=1,npoints |
| 356 |
angle(i)=(zc-indep(i)) / tmp(i) |
| 357 |
angle(i)=ATAN(angle(i)) !-pi/2 <= angle <= pi/2 |
| 358 |
angle(i)=angle(i)/pigr*180. |
| 359 |
enddo |
| 360 |
|
| 361 |
return |
| 362 |
end |
| 363 |
|
| 364 |
|
| 365 |
|
| 366 |
|
| 367 |
|
| 368 |
|
| 369 |
|
| 370 |
|
| 371 |
|
| 372 |
|
| 373 |
c------------------------------------------------------------------------ |
| 374 |
c------------------------------------------------------------------------ |
| 375 |
c------------------------------------------------------------------------ |
| 376 |
|
| 377 |
|
| 378 |
c$$$c------------------------------------------------------------------------ |
| 379 |
c$$$c Function to find the factorial value |
| 380 |
c$$$c------------------------------------------------------------------------ |
| 381 |
c$$$ |
| 382 |
c$$$c from http://www.digitalcoding.com/programming/fortran/tutorial/ftute10.htm |
| 383 |
c$$$ |
| 384 |
c$$$ |
| 385 |
c$$$ FUNCTION FACT(N) |
| 386 |
c$$$ FACT=1 |
| 387 |
c$$$ DO 10 J=2,N |
| 388 |
c$$$ FACT=FACT*J |
| 389 |
c$$$10 CONTINUE |
| 390 |
c$$$ RETURN |
| 391 |
c$$$ END |
| 392 |
c$$$ |
| 393 |
c$$$c------------------------------------------------------------------------ |