/[PAMELA software]/DarthVader/TrackerLevel2/src/F77/mini.f
ViewVC logotype

Contents of /DarthVader/TrackerLevel2/src/F77/mini.f

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1.22 - (show annotations) (download)
Thu Nov 20 15:06:27 2008 UTC (16 years, 2 months ago) by bongi
Branch: MAIN
Changes since 1.21: +180 -51 lines
change in the fit method fot singlets

1 ************************************************************************
2 *
3 * subroutine to evaluate the vector alfa (AL)
4 * which minimizes CHI^2
5 *
6 * - modified from mini.f in order to call differente chi^2 routine.
7 * The new one includes also single clusters: in this case
8 * the residual is defined as the distance between the track and the
9 * segment AB associated to the single cluster.
10 *
11 *
12 ************************************************************************
13
14
15 SUBROUTINE MINI2(ISTEP,IFAIL,IPRINT)
16
17 IMPLICIT DOUBLE PRECISION (A-H,O-Z)
18
19 include 'commontracker.f' !tracker general common
20 include 'common_mini_2.f' !common for the tracking procedure
21
22 c logical DEBUG
23 c common/dbg/DEBUG
24
25 parameter (dinf=1.d15) !just a huge number...
26 c------------------------------------------------------------------------
27 c variables used in the tracking procedure (mini and its subroutines)
28 c
29 c N.B.: in mini & C. (and in the following block of variables too)
30 c the plane ordering is reversed in respect of normal
31 c ordering, but they maintain their Z coordinates. so plane number 1 is
32 c the first one that a particle meets, and its Z coordinate is > 0
33 c------------------------------------------------------------------------
34 DATA ZINI/23.5/ !!! ***PP*** to be changed !z coordinate of the reference plane
35
36 c DATA XGOOD,YGOOD/nplanes*1.,nplanes*1./ !planes to be used in the tracking
37
38 DATA STEPAL/5*1.d-7/ !alpha vector step
39 DATA ISTEPMAX/100/ !maximum number of steps in the chi^2 minimization
40 DATA TOLL/1.d-8/ !tolerance in reaching the next plane during
41 * !the tracking procedure
42 DATA STEPMAX/100./ !maximum number of steps in the trackin gprocess
43
44 c DATA ALMAX/dinf,dinf,1.,dinf,dinf/ !limits on alpha vector components
45 c DATA ALMIN/-dinf,-dinf,-1.,-dinf,-dinf/ !"
46 DATA ALMAX/dinf,dinf,1.,dinf,dinf/ !limits on alpha vector components
47 DATA ALMIN/-dinf,-dinf,-1.,-dinf,-dinf/ !"
48
49 c$$$ DIMENSION DAL(5) !increment of vector alfa
50 DIMENSION CHI2DD_R(4,4),CHI2D_R(4) !hessiano e gradiente di chi2
51
52 c elena--------
53 REAL*8 AVRESX,AVRESY
54 c elena--------
55
56 INTEGER IFLAG
57 c--------------------------------------------------------
58 c IFLAG =1 ---- chi2 derivatives computed by using
59 c incremental ratios and posxyz.f
60 c IFLAG =2 ---- the approximation of Golden is used
61 c (see chisq.f)
62 c
63 c NB: the two metods gives equivalent results BUT
64 c method 2 is faster!!
65 c--------------------------------------------------------
66 DATA IFLAG/2/
67
68 c LOGICAL TRKDEBUG,TRKVERBOSE
69 c COMMON/TRKD/TRKDEBUG,TRKVERBOSE
70 LOGICAL TRKDEBUG,TRKVERBOSE,STUDENT,FIRSTSTEPS,FIRSTSTUDENT
71 COMMON/TRKD/TRKDEBUG,TRKVERBOSE
72
73 DIMENSION AL0(5)
74 LOGICAL SUCCESS_NEW,SUCCESS_OLD
75
76 c$$$ PRINT*,'==========' ! TEST
77 c$$$ PRINT*,'START MINI' ! TEST
78 c$$$ PRINT*,'==========' ! TEST
79
80 *
81 * define kind of minimization (0x=chi2+gaussian or 1x=likelihood+student)
82 *
83 STUDENT = .false.
84 FIRSTSTEPS = .true.
85 FIRSTSTUDENT = .true.
86 IF(MOD(INT(TRACKMODE/10),10).EQ.1) STUDENT = .true.
87
88 IF(IPRINT.EQ.1) THEN
89 TRKVERBOSE = .TRUE.
90 TRKDEBUG = .FALSE.
91 ELSEIF(IPRINT.EQ.2)THEN
92 TRKVERBOSE = .TRUE.
93 TRKDEBUG = .TRUE.
94 ELSE
95 TRKVERBOSE = .FALSE.
96 TRKDEBUG = .FALSE.
97 ENDIF
98
99 * ----------------------------------------------------------
100 * evaluate average spatial resolution
101 * ----------------------------------------------------------
102 AVRESX = RESXAV
103 AVRESY = RESYAV
104 NX = 0.0
105 NY = 0.0
106 DO IP=1,6
107 IF( XGOOD(IP).EQ.1 )THEN
108 NX=NX+1.0
109 AVRESX=AVRESX+RESX(IP)
110 ENDIF
111 IF( YGOOD(IP).EQ.1 )THEN
112 NY=NY+1.0
113 AVRESY=AVRESY+RESY(IP)
114 ENDIF
115 ENDDO
116 IF(NX.NE.0.0)AVRESX=AVRESX/NX
117 IF(NY.NE.0.0)AVRESY=AVRESY/NY
118
119 * ----------------------------------------------------------
120 * define ALTOL(5) ---> tolerances on state vector
121 *
122 * ----------------------------------------------------------
123 * changed in order to evaluate energy-dependent
124 * tolerances on all 5 parameters
125 cPP FACT=1.0e10 !scale factor to define tolerance on alfa
126 c deflection error (see PDG)
127 DELETA1 = 0.01/0.3/0.4/0.4451**2*SQRT(720./(6.+4.))
128 DELETA2 = 0.016/0.3/0.4/0.4451*SQRT(0.4451/9.36)
129 c$$$ ALTOL(1) = AVRESX/FACT !al(1) = x
130 c$$$ ALTOL(2) = AVRESY/FACT !al(2) = y
131 c$$$ ALTOL(3) = DSQRT(AVRESX**2 !al(3)=sin(theta)
132 c$$$ $ +AVRESY**2)/44.51/FACT
133 c$$$ ALTOL(4) = ALTOL(3) !al(4)=phi
134 c deflection error (see PDG)
135 c$$$ DELETA1 = 0.01*AVRESX/0.3/0.4/0.4451**2*SQRT(720./(6.+4.))
136 c$$$ DELETA2 = 0.016/0.3/0.4/0.4451*SQRT(0.4451/9.36)
137 * ----------------------------------------------------------
138 *
139 ISTEP=0 !num. steps to minimize chi^2
140 JFAIL=0 !error flag
141 CHI2=0
142
143 if(TRKDEBUG) print*,'guess: ',al
144 if(TRKDEBUG) print*,'mini2: step ',istep,chi2,1./AL(5)
145
146 *
147 * -----------------------
148 * START MINIMIZATION LOOP
149 * -----------------------
150 10 ISTEP=ISTEP+1 !<<<<<<<<<<<<<< NEW STEP !!
151
152 * -------------------------------
153 * **** Chi2+gaussian minimization
154 * -------------------------------
155
156 IF((.NOT.STUDENT).OR.FIRSTSTEPS) THEN
157
158 IF(ISTEP.GE.3) FIRSTSTEPS = .false.
159
160 CALL CHISQ(IFLAG,JFAIL) !chi^2 and its derivatives
161 IF(JFAIL.NE.0) THEN
162 IFAIL=1
163 CHI2=-9999.
164 if(TRKVERBOSE)
165 $ PRINT *,'*** ERROR in mini *** wrong CHISQ'
166 RETURN
167 ENDIF
168
169 c COST=1e-5
170 COST=1.
171 DO I=1,5
172 IF(CHI2DD(I,I).NE.0.)COST=COST/DABS(CHI2DD(I,I))**0.2
173 ENDDO
174 DO I=1,5
175 DO J=1,5
176 CHI2DD(I,J)=CHI2DD(I,J)*COST
177 ENDDO
178 c$$$ CHI2D(I)=CHI2D(I)*COST
179 ENDDO
180
181 IF(PFIXED.EQ.0.) THEN
182
183 *------------------------------------------------------------*
184 * track fitting with FREE deflection
185 *------------------------------------------------------------*
186 CALL DSFACT(5,CHI2DD,5,IFA,DET,JFA) !CHI2DD matrix determinant
187 IF(IFA.NE.0) THEN !not positive-defined
188 if(TRKVERBOSE)then
189 PRINT *,
190 $ '*** ERROR in mini ***'//
191 $ 'on matrix inversion (not pos-def)'
192 $ ,DET
193 endif
194 IF(CHI2.EQ.0) CHI2=-9999.
195 IF(CHI2.GT.0) CHI2=-CHI2
196 IFAIL=1
197 RETURN
198 ENDIF
199 CALL DSFINV(5,CHI2DD,5) !CHI2DD matrix inversion
200 * *******************************************
201 * find new value of AL-pha
202 * *******************************************
203 DO I=1,5
204 DAL(I)=0.
205 DO J=1,5
206 DAL(I)=DAL(I)-CHI2DD(I,J)*CHI2D(J) *COST
207 COV(I,J)=2.*COST*CHI2DD(I,J)
208 ENDDO
209 ENDDO
210 DO I=1,5
211 AL(I)=AL(I)+DAL(I)
212 ENDDO
213 *------------------------------------------------------------*
214 * track fitting with FIXED deflection
215 *------------------------------------------------------------*
216 ELSE
217 AL(5)=1./PFIXED
218 DO I=1,4
219 CHI2D_R(I)=CHI2D(I)
220 DO J=1,4
221 CHI2DD_R(I,J)=CHI2DD(I,J)
222 ENDDO
223 ENDDO
224 CALL DSFACT(4,CHI2DD_R,4,IFA,DET,JFA)
225 IF(IFA.NE.0) THEN
226 if(TRKVERBOSE)then
227 PRINT *,
228 $ '*** ERROR in mini ***'//
229 $ 'on matrix inversion (not pos-def)'
230 $ ,DET
231 endif
232 IF(CHI2.EQ.0) CHI2=-9999.
233 IF(CHI2.GT.0) CHI2=-CHI2
234 IFAIL=1
235 RETURN
236 ENDIF
237 CALL DSFINV(4,CHI2DD_R,4)
238 * *******************************************
239 * find new value of AL-pha
240 * *******************************************
241 DO I=1,4
242 DAL(I)=0.
243 DO J=1,4
244 DAL(I)=DAL(I)-CHI2DD_R(I,J)*CHI2D_R(J) *COST
245 COV(I,J)=2.*COST*CHI2DD_R(I,J)
246 ENDDO
247 ENDDO
248 DAL(5)=0.
249 DO I=1,4
250 AL(I)=AL(I)+DAL(I)
251 ENDDO
252 ENDIF
253
254 if(TRKDEBUG) print*,'mini2: step ',istep,chi2,1./AL(5)
255
256 c$$$ PRINT*,'DAL ',(DAL(K),K=1,5)
257 c$$$ PRINT*,'CHI2DOLD ',(CHI2DOLD(K),K=1,5)
258
259
260 ENDIF
261
262 * -------------------------------
263 * **** Likelihood+Student minimization
264 * -------------------------------
265
266 IF(STUDENT.AND.(.NOT.FIRSTSTEPS)) THEN
267
268 IF(FIRSTSTUDENT) THEN
269 FIRSTSTUDENT = .false.
270 ISTEP = 1
271 ENDIF
272
273 CALL CHISQSTT(1,JFAIL)
274 DO I=1,5
275 DAL(I)=0.
276 DO J=1,5
277 DAL(I)=DAL(I)-CHI2DD(I,J)*CHI2D(J)
278 ENDDO
279 ENDDO
280
281 DO I=1,5
282 DO j=1,5
283 COV(I,J) = 2.*CHI2DD(I,J)
284 ENDDO
285 ENDDO
286
287 CHI2TOLL = 1.E-3
288 ALPHA = 3.0
289 BETA = -0.4
290 E=1.
291 EA=1.
292 EB=1.
293 EC=1.
294 FA=1.
295 FB=1.
296 FC=1.
297 SUCCESS_OLD = .FALSE.
298 SUCCESS_NEW = .FALSE.
299
300 CALL CHISQSTT(0,JFAIL)
301 c$$$ PRINT*,CHI2
302 CHI2_NEW = CHI2
303 FC = CHI2
304 EC = 0.
305
306 ICOUNT = 0
307 100 CONTINUE
308 ICOUNT = ICOUNT+1
309
310 DO I=1,5
311 AL0(I)=AL(I)
312 ENDDO
313 DO I=1,5
314 AL(I)=AL(I)+E*DAL(I)
315 ENDDO
316 CALL CHISQSTT(0,JFAIL)
317 CHI2_OLD = CHI2_NEW
318 CHI2_NEW = CHI2
319 FA = FB
320 FB = FC
321 FC = CHI2
322 EA = EB
323 EB = EC
324 EC = E
325
326 c$$$ PRINT*,E,CHI2_NEW
327
328 IF(CHI2_NEW.LE.CHI2_OLD) THEN ! success
329 IF(DABS(CHI2_NEW-CHI2_OLD).LT.CHI2TOLL) GOTO 101
330 SUCCESS_OLD = SUCCESS_NEW
331 SUCCESS_NEW = .TRUE.
332 E = E*ALPHA
333 ELSE ! failure
334 SUCCESS_OLD = SUCCESS_NEW
335 SUCCESS_NEW = .FALSE.
336 CHI2_NEW = CHI2_OLD
337 DO I=1,5
338 AL(I)=AL0(I)
339 ENDDO
340 IF(SUCCESS_OLD) THEN
341 DENOM = (EB-EA)*(FB-FC) - (EB-EC)*(FB-FA)
342 IF(DENOM.NE.0.) THEN
343 E = EB - 0.5*( (EB-EA)**2*(FB-FC)
344 $ - (EB-EC)**2*(FB-FA) ) / DENOM
345 ELSE
346 E = BETA*E
347 ENDIF
348 ELSE
349 E = BETA*E
350 ENDIF
351 c$$$ E = BETA*E
352 ENDIF
353 IF(ICOUNT.GT.20) GOTO 101
354 GOTO 100
355
356 101 CONTINUE
357
358 DO I=1,5
359 DAL(I)=E*DAL(I)
360 ENDDO
361
362 c$$$ print*,' '
363 c$$$ PRINT*,'DAL ',(DAL(K),K=1,5)
364 c$$$ PRINT*,'CHI2DOLD ',(CHI2DOLD(K),K=1,5)
365 c$$$ print*,'==== CHI2 ===='
366 c$$$ print*,chi2
367 c$$$ print*,'==== CHI2d ===='
368 c$$$ print*,(chi2d(i),i=1,5)
369 c$$$ print*,'==== CHI2dd ===='
370 c$$$ do j=1,5
371 c$$$ print*,(chi2dd(j,i),i=1,5)
372 c$$$ enddo
373 c$$$ print*,'================'
374 c$$$ print*,' '
375
376 *========= FIN QUI =============
377
378 ENDIF
379
380
381
382
383
384 *------------------------------------------------------------*
385 * ---------------------------------------------------- *
386 *------------------------------------------------------------*
387 * check parameter bounds:
388 *------------------------------------------------------------*
389 DO I=1,5
390 IF(AL(I).GT.ALMAX(I).OR.AL(I).LT.ALMIN(I))THEN
391 if(TRKVERBOSE)then
392 PRINT*,' *** WARNING in mini *** '
393 PRINT*,'MINI_2 ==> AL(',I,') out of range'
394 PRINT*,' value: ',AL(I),
395 $ ' limits: ',ALMIN(I),ALMAX(I)
396 print*,'istep ',istep
397 endif
398 IF(CHI2.EQ.0) CHI2=-9999.
399 IF(CHI2.GT.0) CHI2=-CHI2
400 IFAIL=1
401 RETURN
402 ENDIF
403 ENDDO
404 *------------------------------------------------------------*
405 * check number of steps:
406 *------------------------------------------------------------*
407 IF(ISTEP.ge.ISTEPMAX) then
408 c$$$ IFAIL=1
409 c$$$ if(TRKVERBOSE)
410 c$$$ $ PRINT *,'*** WARNING in mini *** ISTEP.GT.ISTEPMAX=',
411 c$$$ $ ISTEPMAX
412 goto 11
413 endif
414 *------------------------------------------------------------*
415 * ---------------------------------------------
416 * evaluate deflection tolerance on the basis of
417 * estimated deflection
418 * ---------------------------------------------
419 *------------------------------------------------------------*
420 c$$$ ALTOL(5) = DSQRT(DELETA1**2+DELETA2**2*AL(5)**2)/FACT
421 ALTOL(5) = DSQRT((DELETA1*AVRESX)**2+DELETA2**2*AL(5)**2)/FACT
422 ALTOL(1) = ALTOL(5)/DELETA1
423 ALTOL(2) = ALTOL(1)
424 ALTOL(3) = DSQRT(ALTOL(1)**2+ALTOL(2)**2)/44.51
425 ALTOL(4) = ALTOL(3)
426
427 c$$$ print*,' -- ',(DAL(I),ALTOL(I),' - ',i=1,5) !>>>> new step!
428
429 *---- check tolerances:
430 c$$$ DO I=1,5
431 c$$$ if(TRKVERBOSE)print*,i,' -- ',DAL(I),ALTOL(I) !>>>> new step!
432 c$$$ ENDDO
433 c$$$ print*,'chi2 -- ',DCHI2
434
435 IF(ISTEP.LT.ISTEPMIN) GOTO 10 ! ***PP***
436 DO I=1,5
437 IF(ABS(DAL(I)).GT.ALTOL(I))GOTO 10 !>>>> new step!
438 ENDDO
439
440 *****************************
441 * final estimate of chi^2
442 *****************************
443
444 * -------------------------------
445 * **** Chi2+gaussian minimization
446 * -------------------------------
447
448 IF(.NOT.STUDENT) THEN
449
450 JFAIL=0 !error flag
451 CALL CHISQ(IFLAG,JFAIL) !chi^2 and its derivatives
452 IF(JFAIL.NE.0) THEN
453 IFAIL=1
454 if(TRKVERBOSE)THEN
455 CHI2=-9999.
456 if(TRKVERBOSE)
457 $ PRINT *,'*** ERROR in mini *** wrong CHISQ'
458 ENDIF
459 RETURN
460 ENDIF
461 c COST=1e-7
462 COST=1.
463 DO I=1,5
464 IF(CHI2DD(I,I).NE.0.)COST=COST/DABS(CHI2DD(I,I))**0.2
465 ENDDO
466 DO I=1,5
467 DO J=1,5
468 CHI2DD(I,J)=CHI2DD(I,J)*COST
469 ENDDO
470 ENDDO
471 IF(PFIXED.EQ.0.) THEN
472 CALL DSFACT(5,CHI2DD,5,IFA,DET,JFA) !CHI2DD matrix determinant
473 IF(IFA.NE.0) THEN !not positive-defined
474 if(TRKVERBOSE)then
475 PRINT *,
476 $ '*** ERROR in mini ***'//
477 $ 'on matrix inversion (not pos-def)'
478 $ ,DET
479 endif
480 IF(CHI2.EQ.0) CHI2=-9999.
481 IF(CHI2.GT.0) CHI2=-CHI2
482 IFAIL=1
483 RETURN
484 ENDIF
485 CALL DSFINV(5,CHI2DD,5) !CHI2DD matrix inversion
486 DO I=1,5
487 c$$$ DAL(I)=0.
488 DO J=1,5
489 COV(I,J)=2.*COST*CHI2DD(I,J)
490 ENDDO
491 ENDDO
492 ELSE
493 DO I=1,4
494 CHI2D_R(I)=CHI2D(I)
495 DO J=1,4
496 CHI2DD_R(I,J)=CHI2DD(I,J)
497 ENDDO
498 ENDDO
499 CALL DSFACT(4,CHI2DD_R,4,IFA,DET,JFA)
500 IF(IFA.NE.0) THEN
501 if(TRKVERBOSE)then
502 PRINT *,
503 $ '*** ERROR in mini ***'//
504 $ 'on matrix inversion (not pos-def)'
505 $ ,DET
506 endif
507 IF(CHI2.EQ.0) CHI2=-9999.
508 IF(CHI2.GT.0) CHI2=-CHI2
509 IFAIL=1
510 RETURN
511 ENDIF
512 CALL DSFINV(4,CHI2DD_R,4)
513 DO I=1,4
514 c$$$ DAL(I)=0.
515 DO J=1,4
516 COV(I,J)=2.*COST*CHI2DD_R(I,J)
517 ENDDO
518 ENDDO
519 ENDIF
520
521 ENDIF
522
523 * -------------------------------
524 * **** Likelihood+student minimization
525 * -------------------------------
526
527 IF(STUDENT) THEN
528 CALL CHISQSTT(1,JFAIL)
529 DO I=1,5
530 DO j=1,5
531 COV(I,J) = 2.*CHI2DD(I,J)
532 ENDDO
533 ENDDO
534 ENDIF
535
536 *****************************
537
538 * ------------------------------------
539 * Number of Degree Of Freedom
540 ndof=0
541 do ip=1,nplanes
542 ndof=ndof
543 $ +int(xgood(ip))
544 $ +int(ygood(ip))
545 enddo
546 if(pfixed.eq.0.) ndof=ndof-5 ! ***PP***
547 if(pfixed.ne.0.) ndof=ndof-4 ! ***PP***
548 if(ndof.le.0.) then
549 ndof = 1
550 if(TRKVERBOSE)
551 $ print*,'*** WARNING *** in mini n.dof = 0 (set to 1)'
552 endif
553
554 * ------------------------------------
555 * Reduced chi^2
556 CHI2 = CHI2/dble(ndof)
557
558 c print*,'mini2: chi2 ',chi2
559
560 11 CONTINUE
561
562 if(TRKDEBUG) print*,'mini2: -ok- ',istep,chi2,1./AL(5)
563
564 NSTEP=ISTEP ! ***PP***
565
566 c$$$ print*,'>>>>> NSTEP = ',NSTEP
567
568 RETURN
569 END
570
571 ******************************************************************************
572 *
573 * routine to compute chi^2 and its derivatives
574 *
575 *
576 * (modified in respect to the previous one in order to include
577 * single clusters. In this case the residual is evaluated by
578 * calculating the distance between the track intersection and the
579 * segment AB associated to the single cluster)
580 *
581 ******************************************************************************
582
583 SUBROUTINE CHISQ(IFLAG,IFAIL)
584
585 IMPLICIT DOUBLE PRECISION (A-H,O-Z)
586
587 include 'commontracker.f' !tracker general common
588 include 'common_mini_2.f' !common for the tracking procedure
589
590 DIMENSION XV2(nplanes),YV2(nplanes),XV1(nplanes),YV1(nplanes)
591 $ ,XV0(nplanes),YV0(nplanes)
592 DIMENSION AL_P(5)
593
594 c LOGICAL TRKVERBOSE
595 c COMMON/TRKD/TRKVERBOSE
596 LOGICAL TRKDEBUG,TRKVERBOSE
597 COMMON/TRKD/TRKDEBUG,TRKVERBOSE
598 *
599 * chi^2 computation
600 *
601 DO I=1,5
602 AL_P(I)=AL(I)
603 ENDDO
604 JFAIL=0 !error flag
605 CALL POSXYZ(AL_P,JFAIL) !track intersection with tracking planes
606 IF(JFAIL.NE.0) THEN
607 IF(TRKVERBOSE)
608 $ PRINT *,'CHISQ ==> error from trk routine POSXYZ !!'
609 IFAIL=1
610 RETURN
611 ENDIF
612 DO I=1,nplanes
613 XV0(I)=XV(I)
614 YV0(I)=YV(I)
615 ENDDO
616 * ------------------------------------------------
617 c$$$ CHI2=0.
618 c$$$ DO I=1,nplanes
619 c$$$ CHI2=CHI2
620 c$$$ + +(XV(I)-XM(I))**2/RESX(i)**2 *XGOOD(I)*YGOOD(I)
621 c$$$ + +(YV(I)-YM(I))**2/RESY(i)**2 *YGOOD(I)*XGOOD(I)
622 c$$$ ENDDO
623 * ---------------------------------------------------------
624 * For planes with only a X or Y-cl included, instead of
625 * a X-Y couple, the residual for chi^2 calculation is
626 * evaluated by finding the point x-y, along the segment AB,
627 * closest to the track.
628 * The X or Y coordinate, respectivelly for X and Y-cl, is
629 * then assigned to XM or YM, which is then considered the
630 * measured position of the cluster.
631 * ---------------------------------------------------------
632 CHI2=0.
633
634 DO I=1,nplanes
635 IF( XGOOD(I).NE.YGOOD(I) ) THEN ! singlet
636 IF(XGOOD(I).EQ.1) THEN
637 Z =
638 $ ( (ZM_A(I)*YM_B(I)-YM_A(I)*ZM_B(I))*(ZV_A(I)-ZV_B(I)) -
639 $ (ZV_A(I)*YV_B(I)-YV_A(I)*ZV_B(I))*(ZM_A(I)-ZM_B(I)) )/
640 $ ( (ZM_A(I)-ZM_B(I))*(YV_A(I)-YV_B(I)) -
641 $ (ZV_A(I)-ZV_B(I))*(YM_A(I)-YM_B(I)) )
642 ZM(I) = Z
643 ZV(I) = Z
644 XV(I) = XV_A(I)+(XV_B(I)-XV_A(I))*
645 $ (Z-ZV_A(I))/(ZV_B(I)-ZV_A(I))
646 Y =
647 $ ( (ZM_A(I)*YM_B(I)-YM_A(I)*ZM_B(I))*(YV_A(I)-YV_B(I)) -
648 $ (ZV_A(I)*YV_B(I)-YV_A(I)*ZV_B(I))*(YM_A(I)-YM_B(I)) )/
649 $ ( (ZM_A(I)-ZM_B(I))*(YV_A(I)-YV_B(I)) -
650 $ (ZV_A(I)-ZV_B(I))*(YM_A(I)-YM_B(I)) )
651 YM(I) = Y
652 YV(I) = Y
653 XM(I) = XM_A(I)+(XM_B(I)-XM_A(I))*
654 $ (Y-YM_A(I))/(YM_B(I)-YM_A(I))
655
656 CHI2=CHI2+(XV(I)-XM(I))**2/RESX(I)**2
657
658 ENDIF
659 IF(YGOOD(I).EQ.1) THEN
660 Z =
661 $ ( (ZM_A(I)*XM_B(I)-XM_A(I)*ZM_B(I))*(ZV_A(I)-ZV_B(I)) -
662 $ (ZV_A(I)*XV_B(I)-XV_A(I)*ZV_B(I))*(ZM_A(I)-ZM_B(I)) )/
663 $ ( (ZM_A(I)-ZM_B(I))*(XV_A(I)-XV_B(I)) -
664 $ (ZV_A(I)-ZV_B(I))*(XM_A(I)-XM_B(I)) )
665 ZM(I) = Z
666 ZV(I) = Z
667 YV(I) = YV_A(I)+(YV_B(I)-YV_A(I))*
668 $ (Z-ZV_A(I))/(ZV_B(I)-ZV_A(I))
669 X =
670 $ ( (ZM_A(I)*XM_B(I)-XM_A(I)*ZM_B(I))*(XV_A(I)-XV_B(I)) -
671 $ (ZV_A(I)*XV_B(I)-XV_A(I)*ZV_B(I))*(XM_A(I)-XM_B(I)) )/
672 $ ( (ZM_A(I)-ZM_B(I))*(XV_A(I)-XV_B(I)) -
673 $ (ZV_A(I)-ZV_B(I))*(XM_A(I)-XM_B(I)) )
674 XM(I) = X
675 XV(I) = X
676 YM(I) = YM_A(I)+(YM_B(I)-YM_A(I))*
677 $ (X-XM_A(I))/(XM_B(I)-XM_A(I))
678
679 CHI2=CHI2+(YV(I)-YM(I))**2/RESY(I)**2
680
681 ENDIF
682 ELSEIF(XGOOD(I).EQ.1.AND.YGOOD(I).EQ.1)THEN !Y-cl
683 CHI2=CHI2
684 + +(XV(I)-XM(I))**2/RESX(i)**2
685 + +(YV(I)-YM(I))**2/RESY(i)**2
686 ENDIF
687 ENDDO
688 DO I=1,nplanes
689 XV0(I)=XV(I)
690 YV0(I)=YV(I)
691 ENDDO
692
693 c$$$ DO I=1,nplanes
694 c$$$ IF(XGOOD(I).EQ.1.AND.YGOOD(I).EQ.0)THEN !X-cl
695 c$$$ BETA = (XM_B(I)-XM_A(I))/(YM_B(I)-YM_A(I))
696 c$$$ ALFA = XM_A(I) - BETA * YM_A(I)
697 c$$$ YM(I) = ( YV(I) + BETA*XV(I) - BETA*ALFA )/(1+BETA**2)
698 c$$$ if(YM(I).lt.dmin1(YM_A(I),YM_B(I)))
699 c$$$ $ YM(I)=dmin1(YM_A(I),YM_B(I))
700 c$$$ if(YM(I).gt.dmax1(YM_A(I),YM_B(I)))
701 c$$$ $ YM(I)=dmax1(YM_A(I),YM_B(I))
702 c$$$ XM(I) = ALFA + BETA * YM(I) !<<<< measured coordinates
703 c$$$ ELSEIF(XGOOD(I).EQ.0.AND.YGOOD(I).EQ.1)THEN !Y-cl
704 c$$$ BETA = (YM_B(I)-YM_A(I))/(XM_B(I)-XM_A(I))
705 c$$$ ALFA = YM_A(I) - BETA * XM_A(I)
706 c$$$ XM(I) = ( XV(I) + BETA*YV(I) - BETA*ALFA )/(1+BETA**2)
707 c$$$ if(XM(I).lt.dmin1(XM_A(I),XM_B(I)))
708 c$$$ $ XM(I)=dmin1(XM_A(I),XM_B(I))
709 c$$$ if(XM(I).gt.dmax1(XM_A(I),XM_B(I)))
710 c$$$ $ XM(I)=dmax1(XM_A(I),XM_B(I))
711 c$$$ YM(I) = ALFA + BETA * XM(I) !<<<< measured coordinates
712 c$$$ ENDIF
713 c$$$ CHI2=CHI2
714 c$$$ + +(XV(I)-XM(I))**2/RESX(i)**2 *( XGOOD(I)*YGOOD(I) )
715 c$$$ + +(YV(I)-YM(I))**2/RESY(i)**2 *( YGOOD(I)*XGOOD(I) )
716 c$$$ + +((XV(I)-XM(I))**2+(YV(I)-YM(I))**2)/RESX(i)**2
717 c$$$ + *( XGOOD(I)*(1-YGOOD(I)) )
718 c$$$ + +((XV(I)-XM(I))**2+(YV(I)-YM(I))**2)/RESY(i)**2
719 c$$$ + *( (1-XGOOD(I))*YGOOD(I) )
720 c$$$ ENDDO
721
722 c$$$ print*,'CHISQ ',chi2
723 * ------------------------------------------------
724 *
725 * calculation of derivatives (dX/dAL_fa and dY/dAL_fa)
726 *
727 * //////////////////////////////////////////////////
728 * METHOD 1 -- incremental ratios
729 * //////////////////////////////////////////////////
730
731 IF(IFLAG.EQ.1) THEN
732
733 DO J=1,5
734 DO JJ=1,5
735 AL_P(JJ)=AL(JJ)
736 ENDDO
737 AL_P(J)=AL_P(J)+STEPAL(J)/2.
738 JFAIL=0
739 CALL POSXYZ(AL_P,JFAIL)
740 IF(JFAIL.NE.0) THEN
741 IF(TRKVERBOSE)
742 *23456789012345678901234567890123456789012345678901234567890123456789012
743 $ PRINT *,'CHISQ ==> error from trk routine POSXYZ'
744 IFAIL=1
745 RETURN
746 ENDIF
747 DO I=1,nplanes
748 XV2(I)=XV(I)
749 YV2(I)=YV(I)
750 ENDDO
751 AL_P(J)=AL_P(J)-STEPAL(J)
752 JFAIL=0
753 CALL POSXYZ(AL_P,JFAIL)
754 IF(JFAIL.NE.0) THEN
755 IF(TRKVERBOSE)
756 $ PRINT *,'CHISQ ==> error from trk routine POSXYZ'
757 IFAIL=1
758 RETURN
759 ENDIF
760 DO I=1,nplanes
761 XV1(I)=XV(I)
762 YV1(I)=YV(I)
763 ENDDO
764 DO I=1,nplanes
765 DXDAL(I,J)=(XV2(I)-XV1(I))/STEPAL(J)
766 DYDAL(I,J)=(YV2(I)-YV1(I))/STEPAL(J)
767 ENDDO
768 ENDDO
769
770 ENDIF
771
772 * //////////////////////////////////////////////////
773 * METHOD 2 -- Bob Golden
774 * //////////////////////////////////////////////////
775
776 IF(IFLAG.EQ.2) THEN
777
778 DO I=1,nplanes
779 DXDAL(I,1)=1.
780 DYDAL(I,1)=0.
781
782 DXDAL(I,2)=0.
783 DYDAL(I,2)=1.
784
785 COSTHE=DSQRT(1.-AL(3)**2)
786 IF(COSTHE.EQ.0.) THEN
787 IF(TRKVERBOSE)PRINT *,'=== WARNING ===> COSTHE=0'
788 IFAIL=1
789 RETURN
790 ENDIF
791
792 DXDAL(I,3)=(ZINI-ZM(I))*DCOS(AL(4))/COSTHE**3
793 DYDAL(I,3)=(ZINI-ZM(I))*DSIN(AL(4))/COSTHE**3
794
795 DXDAL(I,4)=-AL(3)*(ZINI-ZM(I))*DSIN(AL(4))/COSTHE
796 DYDAL(I,4)=AL(3)*(ZINI-ZM(I))*DCOS(AL(4))/COSTHE
797
798 IF(AL(5).NE.0.) THEN
799 DXDAL(I,5)=
800 + (XV(I)-(AL(1)+AL(3)/COSTHE*(ZINI-ZM(I))
801 + *DCOS(AL(4))))/AL(5)
802 DYDAL(I,5)=
803 + (YV(I)-(AL(2)+AL(3)/COSTHE*(ZINI-ZM(I))
804 + *DSIN(AL(4))))/AL(5)
805 ELSE
806 DXDAL(I,5)=100.*( 0.25 *0.3*0.4*(0.01*(ZINI-ZM(I)))**2 )
807 DYDAL(I,5)=0.
808 ENDIF
809
810 ENDDO
811 ENDIF
812 *
813 * x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x
814 * >>> CHI2D evaluation
815 *
816 DO J=1,5
817 CHI2D(J)=0.
818 DO I=1,nplanes
819 CHI2D(J)=CHI2D(J)
820 + +2.*(XV0(I)-XM(I))/RESX(i)**2*DXDAL(I,J) *XGOOD(I)
821 + +2.*(YV0(I)-YM(I))/RESY(i)**2*DYDAL(I,J) *YGOOD(I)
822 ENDDO
823 ENDDO
824 *
825 * >>> CHI2DD evaluation
826 *
827 DO I=1,5
828 DO J=1,5
829 CHI2DD(I,J)=0.
830 DO K=1,nplanes
831 CHI2DD(I,J)=CHI2DD(I,J)
832 + +2.*DXDAL(K,I)*DXDAL(K,J)/RESX(k)**2 *XGOOD(K)
833 + +2.*DYDAL(K,I)*DYDAL(K,J)/RESY(k)**2 *YGOOD(K)
834 ENDDO
835 ENDDO
836 ENDDO
837 * x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x
838
839 RETURN
840 END
841
842 ******************************************************************************
843 *
844 * routine to compute Likelihodd+Student and its derivatives
845 *
846 * (modified in respect to the previous one in order to include
847 * single clusters. In this case the residual is evaluated by
848 * calculating the distance between the track intersection and the
849 * segment AB associated to the single cluster)
850 *
851 ******************************************************************************
852
853 SUBROUTINE CHISQSTT(IFLAG,JFAIL)
854
855 IMPLICIT DOUBLE PRECISION (A-H,O-Z)
856
857 include 'commontracker.f' !tracker general common
858 include 'common_mini_2.f' !common for the tracking procedure
859
860 LOGICAL TRKDEBUG,TRKVERBOSE
861 COMMON/TRKD/TRKDEBUG,TRKVERBOSE
862
863 DIMENSION AL_P(5)
864 DIMENSION VECTEMP(5)
865 c$$$ DIMENSION U(5) ! BFGS
866
867 DO I=1,5
868 AL_P(I)=AL(I)
869 ENDDO
870 JFAIL=0 !error flag
871 CALL POSXYZ(AL_P,JFAIL) !track intersection with tracking planes
872 IF(JFAIL.NE.0) THEN
873 IF(TRKVERBOSE)
874 $ PRINT *,'CHISQSTT ==> error from trk routine POSXYZ !!'
875 IFAIL=1
876 RETURN
877 ENDIF
878
879 DO I=1,nplanes
880 DXDAL(I,1)=1.
881 DYDAL(I,1)=0.
882 DXDAL(I,2)=0.
883 DYDAL(I,2)=1.
884 COSTHE=DSQRT(1.-AL(3)**2)
885 IF(COSTHE.EQ.0.) THEN
886 IF(TRKVERBOSE)PRINT *,'=== WARNING ===> COSTHE=0'
887 IFAIL=1
888 RETURN
889 ENDIF
890 DXDAL(I,3)=(ZINI-ZM(I))*DCOS(AL(4))/COSTHE**3
891 DYDAL(I,3)=(ZINI-ZM(I))*DSIN(AL(4))/COSTHE**3
892 DXDAL(I,4)=-AL(3)*(ZINI-ZM(I))*DSIN(AL(4))/COSTHE
893 DYDAL(I,4)=AL(3)*(ZINI-ZM(I))*DCOS(AL(4))/COSTHE
894 IF(AL(5).NE.0.) THEN
895 DXDAL(I,5)=
896 + (XV(I)-(AL(1)+AL(3)/COSTHE*(ZINI-ZM(I))
897 + *DCOS(AL(4))))/AL(5)
898 DYDAL(I,5)=
899 + (YV(I)-(AL(2)+AL(3)/COSTHE*(ZINI-ZM(I))
900 + *DSIN(AL(4))))/AL(5)
901 ELSE
902 DXDAL(I,5)=100.*( 0.25 *0.3*0.4*(0.01*(ZINI-ZM(I)))**2 )
903 DYDAL(I,5)=0.
904 ENDIF
905 ENDDO
906
907 IF(IFLAG.EQ.0) THEN ! function calulation
908 CHI2=0.
909 DO I=1,nplanes
910 IF(XGOOD(I).EQ.1.AND.YGOOD(I).EQ.0)THEN !X-cl
911 BETA = (XM_B(I)-XM_A(I))/(YM_B(I)-YM_A(I))
912 ALFA = XM_A(I) - BETA * YM_A(I)
913 YM(I) = ( YV(I) + BETA*XV(I) - BETA*ALFA )/(1+BETA**2)
914 if(YM(I).lt.dmin1(YM_A(I),YM_B(I)))
915 $ YM(I)=dmin1(YM_A(I),YM_B(I))
916 if(YM(I).gt.dmax1(YM_A(I),YM_B(I)))
917 $ YM(I)=dmax1(YM_A(I),YM_B(I))
918 XM(I) = ALFA + BETA * YM(I) !<<<< measured coordinates
919 ELSEIF(XGOOD(I).EQ.0.AND.YGOOD(I).EQ.1)THEN !Y-cl
920 BETA = (YM_B(I)-YM_A(I))/(XM_B(I)-XM_A(I))
921 ALFA = YM_A(I) - BETA * XM_A(I)
922 XM(I) = ( XV(I) + BETA*YV(I) - BETA*ALFA )/(1+BETA**2)
923 if(XM(I).lt.dmin1(XM_A(I),XM_B(I)))
924 $ XM(I)=dmin1(XM_A(I),XM_B(I))
925 if(XM(I).gt.dmax1(XM_A(I),XM_B(I)))
926 $ XM(I)=dmax1(XM_A(I),XM_B(I))
927 YM(I) = ALFA + BETA * XM(I) !<<<< measured coordinates
928 ENDIF
929 TERMX = DLOG( (TAILX(I)*RESX(I)**2+(XV(I)-XM(I))**2)/
930 $ (TAILX(I)*RESX(I)**2) )
931 TERMY = DLOG( (TAILY(I)*RESY(I)**2+(YV(I)-YM(I))**2)/
932 $ (TAILY(I)*RESY(I)**2) )
933 CHI2=CHI2
934 $ +(TAILX(I)+1.0)*TERMX *( XGOOD(I) )
935 $ +(TAILY(I)+1.0)*TERMY *( YGOOD(I) )
936 ENDDO
937 ENDIF
938
939 IF(IFLAG.EQ.1) THEN ! derivative calulation
940 DO I=1,5
941 CHI2DOLD(I)=CHI2D(I)
942 ENDDO
943 DO J=1,5
944 CHI2D(J)=0.
945 DO I=1,nplanes
946 CHI2D(J)=CHI2D(J)
947 $ +2.*(TAILX(I)+1.0)*(XV(I)-XM(I))/
948 $ (TAILX(I)*RESX(I)**2+(XV(I)-XM(I))**2)*
949 $ DXDAL(I,J) *XGOOD(I)
950 $ +2.*(TAILY(I)+1.0)*(YV(I)-YM(I))/
951 $ (TAILY(I)*RESY(I)**2+(YV(I)-YM(I))**2)*
952 $ DYDAL(I,J) *YGOOD(I)
953 ENDDO
954 ENDDO
955 DO K=1,5
956 VECTEMP(K)=0.
957 DO M=1,5
958 VECTEMP(K) = VECTEMP(K) +
959 $ COV(K,M)/2.*(CHI2D(M)-CHI2DOLD(M))
960 ENDDO
961 ENDDO
962 DOWN1 = 0.
963 DO K=1,5
964 DOWN1 = DOWN1 + DAL(K)*(CHI2D(K)-CHI2DOLD(K))
965 ENDDO
966 IF(DOWN1.EQ.0.) THEN
967 PRINT*,'WARNING IN MATRIX CALULATION (STUDENT), DOWN1 = 0'
968 IFAIL=1
969 RETURN
970 ENDIF
971 DOWN2 = 0.
972 DO K=1,5
973 DO M=1,5
974 DOWN2 = DOWN2 + (CHI2D(K)-CHI2DOLD(K))*VECTEMP(K)
975 ENDDO
976 ENDDO
977 IF(DOWN2.EQ.0.) THEN
978 PRINT*,'WARNING IN MATRIX CALULATION (STUDENT), DOWN2 = 0'
979 IFAIL=1
980 RETURN
981 ENDIF
982 c$$$ DO K=1,5 ! BFGS
983 c$$$ U(K) = DAL(K)/DOWN1 - VECTEMP(K)/DOWN2
984 c$$$ ENDDO
985 DO I=1,5
986 DO J=1,5
987 CHI2DD(I,J) = COV(I,J)/2.
988 $ +DAL(I)*DAL(J)/DOWN1
989 $ -VECTEMP(I)*VECTEMP(J)/DOWN2
990 c$$$ $ +DOWN2*U(I)*U(J) ! BFGS
991 ENDDO
992 ENDDO
993 ENDIF
994
995 RETURN
996 END
997
998 *****************************************************************
999 *
1000 * Routine to compute the track intersection points
1001 * on the tracking-system planes, given the track parameters
1002 *
1003 * The routine is based on GRKUTA, which computes the
1004 * trajectory of a charged particle in a magnetic field
1005 * by solving the equatins of motion with Runge-Kuta method.
1006 *
1007 * Variables that have to be assigned when the subroutine
1008 * is called are:
1009 *
1010 * ZM(1,NPLANES) ----> z coordinates of the planes
1011 * AL_P(1,5) ----> track-parameter vector
1012 *
1013 * -----------------------------------------------------------
1014 * NB !!!
1015 * The routine works properly only if the
1016 * planes are numbered in descending order starting from the
1017 * reference plane (ZINI)
1018 * -----------------------------------------------------------
1019 *
1020 *****************************************************************
1021
1022 cPPP --- new --- (with singlets in 3D)
1023 SUBROUTINE POSXYZ(AL_P,IFAIL)
1024
1025 IMPLICIT DOUBLE PRECISION (A-H,O-Z)
1026
1027 include 'commontracker.f' !tracker general common
1028 include 'common_mini_2.f' !common for the tracking procedure
1029
1030 c LOGICAL TRKVERBOSE
1031 c COMMON/TRKD/TRKVERBOSE
1032 LOGICAL TRKDEBUG,TRKVERBOSE
1033 COMMON/TRKD/TRKDEBUG,TRKVERBOSE
1034 c
1035 DIMENSION AL_P(5)
1036 LOGICAL SINGLET,SINGLET_FIRST,ZDEGENER
1037 *
1038 cpp DO I=1,nplanes
1039 cpp ZV(I)=ZM(I) !
1040 cpp ENDDO
1041 *
1042 * set parameters for GRKUTA
1043 *
1044 IF(AL_P(5).NE.0) CHARGE=AL_P(5)/DABS(AL_P(5))
1045 IF(AL_P(5).EQ.0) CHARGE=1.
1046 VOUT(1)=AL_P(1)
1047 VOUT(2)=AL_P(2)
1048 VOUT(3)=ZINI ! DBLE(Z0)-DBLE(ZSPEC)
1049 VOUT(4)=AL_P(3)*DCOS(AL_P(4))
1050 VOUT(5)=AL_P(3)*DSIN(AL_P(4))
1051 VOUT(6)=-1.*DSQRT(1.-AL_P(3)**2)
1052 IF(AL_P(5).NE.0.) VOUT(7)=DABS(1./AL_P(5))
1053 IF(AL_P(5).EQ.0.) VOUT(7)=1.E8
1054
1055 c$$$ print*,'POSXY (prima) ',vout
1056
1057 DO I=1,nplanes
1058 IF(XGOOD(I).EQ.YGOOD(I)) SINGLET = .false.
1059 IF(XGOOD(I).NE.YGOOD(I)) SINGLET = .true.
1060 ZNEXT = ZM(I)
1061 IF(SINGLET) THEN
1062 IF(ZM_A(I).GT.ZM_B(I)+TOLL) THEN
1063 ZNEXT = ZM_A(I)
1064 ZNEXT2 = ZM_B(I)
1065 SINGLET_FIRST = .true.
1066 ZDEGENER = .false.
1067 ELSEIF(ZM_B(I).GT.ZM_A(I)+TOLL) THEN
1068 ZNEXT = ZM_B(I)
1069 ZNEXT2 = ZM_A(I)
1070 SINGLET_FIRST = .true.
1071 ZDEGENER = .false.
1072 ELSE
1073 ZNEXT = 0.5*(ZM_A(I)+ZM_B(I))
1074 SINGLET_FIRST = .false.
1075 ZDEGENER = .true.
1076 ENDIF
1077 ENDIF
1078 c$$$ IF(SINGLET) PRINT*,'SINGLET!!!'
1079 10 DO J=1,7
1080 VECT(J)=VOUT(J)
1081 VECTINI(J)=VOUT(J)
1082 ENDDO
1083
1084 IF(VOUT(6).GE.0.) THEN
1085 IFAIL=1
1086 if(TRKVERBOSE)
1087 $ PRINT *,'posxy (grkuta): WARNING ===> backward track!!'
1088 RETURN
1089 ENDIF
1090 cPP step=(zm(i)-vect(3))/VOUT(6)
1091 step=(ZNEXT-vect(3))/VOUT(6)
1092 11 continue
1093 CALL GRKUTA(CHARGE,STEP,VECT,VOUT)
1094 c$$$ ipass = ipass + 1 ! TEST
1095 c$$$ PRINT *,'TRACKING -> STEP: ',ipass,' LENGHT: ', STEP ! TEST
1096 IF(VOUT(3).GT.VECT(3)) THEN
1097 IFAIL=1
1098 if(TRKVERBOSE)
1099 $ PRINT *,'posxy (grkuta): WARNING ===> backward track!!'
1100 c$$$ if(.TRUE.)print*,'charge',charge
1101 c$$$ if(.TRUE.)print*,'vect',vect
1102 c$$$ if(.TRUE.)print*,'vout',vout
1103 c$$$ if(.TRUE.)print*,'step',step
1104 if(TRKVERBOSE)print*,'charge',charge
1105 if(TRKVERBOSE)print*,'vect',vect
1106 if(TRKVERBOSE)print*,'vout',vout
1107 if(TRKVERBOSE)print*,'step',step
1108 if(TRKVERBOSE)print*,'DeltaB',DELTA0,DELTA1
1109 RETURN
1110 ENDIF
1111 Z=VOUT(3)
1112 IF(Z.LE.ZNEXT+TOLL.AND.Z.GE.ZNEXT-TOLL) GOTO 100
1113 IF(Z.GT.ZNEXT+TOLL) GOTO 10
1114 IF(Z.LE.ZNEXT-TOLL) THEN
1115 STEP=STEP*(ZNEXT-VECT(3))/(Z-VECT(3))
1116 DO J=1,7
1117 VECT(J)=VECTINI(J)
1118 ENDDO
1119 GOTO 11
1120 ENDIF
1121 c$$$ IF(Z.LE.ZM(I)+TOLL.AND.Z.GE.ZM(I)-TOLL) GOTO 100
1122 c$$$ IF(Z.GT.ZM(I)+TOLL) GOTO 10
1123 c$$$ IF(Z.LE.ZM(I)-TOLL) THEN
1124 c$$$ STEP=STEP*(ZM(I)-VECT(3))/(Z-VECT(3))
1125 c$$$ DO J=1,7
1126 c$$$ VECT(J)=VECTINI(J)
1127 c$$$ ENDDO
1128 c$$$ GOTO 11
1129 c$$$ ENDIF
1130
1131
1132 * -----------------------------------------------
1133 * evaluate track coordinates
1134
1135 100 IF(SINGLET.AND.(.NOT.ZDEGENER).AND.SINGLET_FIRST) THEN
1136 IF(ZM_A(I).GT.ZM_B(I)) THEN
1137 XV_A(I) = VOUT(1)
1138 YV_A(I) = VOUT(2)
1139 ZV_A(I) = VOUT(3)
1140 ELSE
1141 XV_B(I) = VOUT(1)
1142 YV_B(I) = VOUT(2)
1143 ZV_B(I) = VOUT(3)
1144 ENDIF
1145 AXVUP = DATAN(VOUT(4)/VOUT(6))*180./ACOS(-1.)
1146 AYVUP = DATAN(VOUT(5)/VOUT(6))*180./ACOS(-1.)
1147 ZNEXT = ZNEXT2
1148 SINGLET_FIRST = .false.
1149 GOTO 10
1150 ENDIF
1151
1152 IF(SINGLET.AND.(.NOT.ZDEGENER).AND.(.NOT.SINGLET_FIRST)) THEN
1153 IF(ZM_A(I).LT.ZM_B(I)) THEN
1154 XV_A(I) = VOUT(1)
1155 YV_A(I) = VOUT(2)
1156 ZV_A(I) = VOUT(3)
1157 ELSE
1158 XV_B(I) = VOUT(1)
1159 YV_B(I) = VOUT(2)
1160 ZV_B(I) = VOUT(3)
1161 ENDIF
1162 AXV(I)=0.5*(DATAN(VOUT(4)/VOUT(6))*180./ACOS(-1.)+AXVUP)
1163 AYV(I)=0.5*(DATAN(VOUT(5)/VOUT(6))*180./ACOS(-1.)+AYVUP)
1164 ENDIF
1165
1166 IF(SINGLET.AND.ZDEGENER) THEN
1167 XV_A(I) = VOUT(1)
1168 YV_A(I) = VOUT(2)
1169 ZV_A(I) = VOUT(3)+0.1
1170 XV_B(I) = VOUT(1)
1171 YV_B(I) = VOUT(2)
1172 ZV_B(I) = VOUT(3)-0.1
1173 AXV(I)=DATAN(VOUT(4)/VOUT(6))*180./ACOS(-1.)
1174 AYV(I)=DATAN(VOUT(5)/VOUT(6))*180./ACOS(-1.)
1175 ENDIF
1176
1177 IF(.NOT.SINGLET) THEN
1178 XV(I)=VOUT(1)
1179 YV(I)=VOUT(2)
1180 ZV(I)=VOUT(3)
1181 AXV(I)=DATAN(VOUT(4)/VOUT(6))*180./ACOS(-1.)
1182 AYV(I)=DATAN(VOUT(5)/VOUT(6))*180./ACOS(-1.)
1183 ENDIF
1184
1185 * -----------------------------------------------
1186
1187 IF(TRACKMODE.EQ.1) THEN
1188 * -----------------------------------------------
1189 * change of energy by bremsstrahlung for electrons
1190 VOUT(7) = VOUT(7) * 0.997 !0.9968
1191 * -----------------------------------------------
1192 ENDIF
1193 c$$$ PRINT *,'TRACKING -> END' ! TEST
1194
1195 ENDDO
1196
1197 c$$$ print*,'POSXY (dopo) ',vout
1198
1199
1200 RETURN
1201 END
1202
1203
1204
1205
1206
1207 * **********************************************************
1208 * Some initialization routines
1209 * **********************************************************
1210
1211 * ----------------------------------------------------------
1212 * Routine to initialize COMMON/TRACK/
1213 *
1214 subroutine track_init
1215
1216 IMPLICIT DOUBLE PRECISION (A-H,O-Z)
1217
1218 include 'commontracker.f' !tracker general common
1219 include 'common_mini_2.f' !common for the tracking procedure
1220 include 'common_mech.f'
1221
1222 do i=1,5
1223 AL(i) = 0.
1224 enddo
1225
1226 do ip=1,NPLANES
1227 ZM(IP) = fitz(nplanes-ip+1) !init to mech. position
1228 XM(IP) = -100. !0.
1229 YM(IP) = -100. !0.
1230 XM_A(IP) = -100. !0.
1231 YM_A(IP) = -100. !0.
1232 ZM_A(IP) = fitz(nplanes-ip+1) !init to mech. position
1233 XM_B(IP) = -100. !0.
1234 YM_B(IP) = -100. !0.
1235 ZM_B(IP) = fitz(nplanes-ip+1) !init to mech. position
1236 RESX(IP) = 1000. !3.d-4
1237 RESY(IP) = 1000. !12.d-4
1238 XGOOD(IP) = 0
1239 YGOOD(IP) = 0
1240 DEDXTRK_X(IP) = 0
1241 DEDXTRK_Y(IP) = 0
1242 AXV(IP) = 0
1243 AYV(IP) = 0
1244 XV(IP) = -100
1245 YV(IP) = -100
1246 enddo
1247
1248 return
1249 end
1250
1251
1252 ***************************************************
1253 * *
1254 * *
1255 * *
1256 * *
1257 * *
1258 * *
1259 **************************************************
1260
1261 subroutine guess()
1262
1263 c IMPLICIT DOUBLE PRECISION (A-H,O-Z)
1264
1265 include 'commontracker.f' !tracker general common
1266 include 'common_mini_2.f' !common for the tracking procedure
1267
1268 REAL*4 XP(NPLANES),ZP(NPLANES),AP(NPLANES),RP(NPLANES)
1269 REAL*4 CHI,XC,ZC,RADIUS
1270 * ----------------------------------------
1271 * Y view
1272 * ----------------------------------------
1273 * ----------------------------------------
1274 * initial guess with a straigth line
1275 * ----------------------------------------
1276 SZZ=0.
1277 SZY=0.
1278 SSY=0.
1279 SZ=0.
1280 S1=0.
1281 DO I=1,nplanes
1282 IF(YGOOD(I).EQ.1)THEN
1283 YY = YM(I)
1284 IF(XGOOD(I).EQ.0)THEN
1285 YY = (YM_A(I) + YM_B(I))/2
1286 ENDIF
1287 SZZ=SZZ+ZM(I)*ZM(I)
1288 SZY=SZY+ZM(I)*YY
1289 SSY=SSY+YY
1290 SZ=SZ+ZM(I)
1291 S1=S1+1.
1292 ENDIF
1293 ENDDO
1294 DET=SZZ*S1-SZ*SZ
1295 AY=(SZY*S1-SZ*SSY)/DET
1296 BY=(SZZ*SSY-SZY*SZ)/DET
1297 Y0 = AY*ZINI+BY
1298 * ----------------------------------------
1299 * X view
1300 * ----------------------------------------
1301 * ----------------------------------------
1302 * 1) initial guess with a circle
1303 * ----------------------------------------
1304 NP=0
1305 DO I=1,nplanes
1306 IF(XGOOD(I).EQ.1)THEN
1307 XX = XM(I)
1308 IF(YGOOD(I).EQ.0)THEN
1309 XX = (XM_A(I) + XM_B(I))/2
1310 ENDIF
1311 NP=NP+1
1312 XP(NP)=XX
1313 ZP(NP)=ZM(I)
1314 ENDIF
1315 ENDDO
1316 IFLAG=0 !no debug mode
1317 CALL TRICIRCLE(NP,XP,ZP,AP,RP,CHI,XC,ZC,RADIUS,IFLAG)
1318
1319 c$$$ print*,' circle: ',XC,ZC,RADIUS,' --- ',CHI,IFLAG
1320 c$$$ print*,' XP ',(xp(i),i=1,np)
1321 c$$$ print*,' ZP ',(zp(i),i=1,np)
1322 c$$$ print*,' AP ',(ap(i),i=1,np)
1323 c$$$ print*,' XP ',(rp(i),i=1,np)
1324
1325 IF(IFLAG.NE.0)GOTO 10 !straigth fit
1326 c if(CHI.gt.100)GOTO 10 !straigth fit
1327 ARG = RADIUS**2-(ZINI-ZC)**2
1328 IF(ARG.LT.0)GOTO 10 !straigth fit
1329 DC = SQRT(ARG)
1330 IF(XC.GT.0)DC=-DC
1331 X0=XC+DC
1332 AX = -(ZINI-ZC)/DC
1333 DEF=100./(RADIUS*0.3*0.43)
1334 IF(XC.GT.0)DEF=-DEF
1335
1336
1337
1338 IF(ABS(X0).GT.30)THEN
1339 c$$$ PRINT*,'STRANGE GUESS: XC,ZC,R ',XC,ZC,RADIUS
1340 c$$$ $ ,' - CHI ',CHI,' - X0,AX,DEF ',X0,AX,DEF
1341 GOTO 10 !straigth fit
1342 ENDIF
1343 GOTO 20 !guess is ok
1344
1345 * ----------------------------------------
1346 * 2) initial guess with a straigth line
1347 * - if circle does not intersect reference plane
1348 * - if bad chi**2
1349 * ----------------------------------------
1350 10 CONTINUE
1351 SZZ=0.
1352 SZX=0.
1353 SSX=0.
1354 SZ=0.
1355 S1=0.
1356 DO I=1,nplanes
1357 IF(XGOOD(I).EQ.1)THEN
1358 XX = XM(I)
1359 IF(YGOOD(I).EQ.0)THEN
1360 XX = (XM_A(I) + XM_B(I))/2
1361 ENDIF
1362 SZZ=SZZ+ZM(I)*ZM(I)
1363 SZX=SZX+ZM(I)*XX
1364 SSX=SSX+XX
1365 SZ=SZ+ZM(I)
1366 S1=S1+1.
1367 ENDIF
1368 ENDDO
1369 DET=SZZ*S1-SZ*SZ
1370 AX=(SZX*S1-SZ*SSX)/DET
1371 BX=(SZZ*SSX-SZX*SZ)/DET
1372 DEF = 0
1373 X0 = AX*ZINI+BX
1374
1375 20 CONTINUE
1376 * ----------------------------------------
1377 * guess
1378 * ----------------------------------------
1379
1380 AL(1) = X0
1381 AL(2) = Y0
1382 tath = sqrt(AY**2+AX**2)
1383 AL(3) = tath/sqrt(1+tath**2)
1384 c$$$ IF(AX.NE.0)THEN
1385 c$$$ AL(4)= atan(AY/AX)
1386 c$$$ ELSE
1387 c$$$ AL(4) = acos(-1.)/2
1388 c$$$ IF(AY.LT.0)AL(4) = AL(4)+acos(-1.)
1389 c$$$ ENDIF
1390 c$$$ IF(AX.LT.0)AL(4)= acos(-1.)+ AL(4)
1391 c$$$ AL(4) = -acos(-1.) + AL(4) !from incidence direction to tracking ref.sys.
1392
1393 c$$$ AL(4) = 0.
1394 c$$$ IF(AX.NE.0.AND.AY.NE.0)THEN
1395 c$$$ AL(4)= atan(AY/AX)
1396 c$$$ ELSEIF(AY.EQ.0)THEN
1397 c$$$ AL(4) = 0.
1398 c$$$ IF(AX.LT.0)AL(4) = AL(4)+acos(-1.)
1399 c$$$ ELSEIF(AX.EQ.0)THEN
1400 c$$$ AL(4) = acos(-1.)/2
1401 c$$$ IF(AY.LT.0)AL(4) = AL(4)+acos(-1.)
1402 c$$$ ENDIF
1403 c$$$ IF(AX.LT.0)AL(4)= acos(-1.)+ AL(4)
1404 c$$$ AL(4) = -acos(-1.) + AL(4) !from incidence direction to tracking ref.sys.
1405
1406 c$$$ AL(4)=0.
1407 c$$$ IF( AX.NE.0.OR.AY.NE.0. ) THEN
1408 c$$$ AL(4) = ASIN(AY/SQRT(AX**2+AY**2))
1409 c$$$ IF(AX.LT.0.) AL(4) = ACOS(-1.0)-AL(4)
1410 c$$$ ENDIF
1411
1412 AL(4)=0.
1413 IF( AX.NE.0.OR.AY.NE.0. ) THEN
1414 AL(4) = ASIN(AY/SQRT(AX**2+AY**2))
1415 IF(AX.LT.0.AND.AY.GE.0) AL(4) = ACOS(-1.0)-AL(4)
1416 IF(AX.LT.0.AND.AY.LT.0) AL(4) = -ACOS(-1.0)-AL(4)
1417 ENDIF
1418 IF(AY.GT.0.) AL(4) = AL(4)-ACOS(-1.0)
1419 IF(AY.LE.0.) AL(4) = AL(4)+ACOS(-1.0)
1420
1421 AL(5) = DEF
1422
1423 c print*,' guess: ',(al(i),i=1,5)
1424
1425 end

  ViewVC Help
Powered by ViewVC 1.1.23