/[PAMELA software]/DarthVader/TrackerLevel2/src/F77/mini.f
ViewVC logotype

Contents of /DarthVader/TrackerLevel2/src/F77/mini.f

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1.18 - (show annotations) (download)
Fri Jun 1 15:01:19 2007 UTC (17 years, 8 months ago) by pam-fi
Branch: MAIN
Changes since 1.17: +13 -3 lines
*** empty log message ***

1 ************************************************************************
2 *
3 * subroutine to evaluate the vector alfa (AL)
4 * which minimizes CHI^2
5 *
6 * - modified from mini.f in order to call differente chi^2 routine.
7 * The new one includes also single clusters: in this case
8 * the residual is defined as the distance between the track and the
9 * segment AB associated to the single cluster.
10 *
11 *
12 ************************************************************************
13
14
15 SUBROUTINE MINI2(ISTEP,IFAIL,IPRINT)
16
17 IMPLICIT DOUBLE PRECISION (A-H,O-Z)
18
19 include 'commontracker.f' !tracker general common
20 include 'common_mini_2.f' !common for the tracking procedure
21
22 c logical DEBUG
23 c common/dbg/DEBUG
24
25 parameter (dinf=1.d15) !just a huge number...
26 c------------------------------------------------------------------------
27 c variables used in the tracking procedure (mini and its subroutines)
28 c
29 c N.B.: in mini & C. (and in the following block of variables too)
30 c the plane ordering is reversed in respect of normal
31 c ordering, but they maintain their Z coordinates. so plane number 1 is
32 c the first one that a particle meets, and its Z coordinate is > 0
33 c------------------------------------------------------------------------
34 DATA ZINI/23.5/ !!! ***PP*** to be changed !z coordinate of the reference plane
35
36 c DATA XGOOD,YGOOD/nplanes*1.,nplanes*1./ !planes to be used in the tracking
37
38 DATA STEPAL/5*1.d-7/ !alpha vector step
39 DATA ISTEPMAX/100/ !maximum number of steps in the chi^2 minimization
40 DATA TOLL/1.d-8/ !tolerance in reaching the next plane during
41 * !the tracking procedure
42 DATA STEPMAX/100./ !maximum number of steps in the trackin gprocess
43
44 c DATA ALMAX/dinf,dinf,1.,dinf,dinf/ !limits on alpha vector components
45 c DATA ALMIN/-dinf,-dinf,-1.,-dinf,-dinf/ !"
46 DATA ALMAX/dinf,dinf,1.,dinf,dinf/ !limits on alpha vector components
47 DATA ALMIN/-dinf,-dinf,-1.,-dinf,-dinf/ !"
48
49 c$$$ DIMENSION DAL(5) !increment of vector alfa
50 DIMENSION CHI2DD_R(4,4),CHI2D_R(4) !hessiano e gradiente di chi2
51
52 c elena--------
53 REAL*8 AVRESX,AVRESY
54 c elena--------
55
56 INTEGER IFLAG
57 c--------------------------------------------------------
58 c IFLAG =1 ---- chi2 derivatives computed by using
59 c incremental ratios and posxyz.f
60 c IFLAG =2 ---- the approximation of Golden is used
61 c (see chisq.f)
62 c
63 c NB: the two metods gives equivalent results BUT
64 c method 2 is faster!!
65 c--------------------------------------------------------
66 DATA IFLAG/2/
67
68 c LOGICAL TRKDEBUG,TRKVERBOSE
69 c COMMON/TRKD/TRKDEBUG,TRKVERBOSE
70 LOGICAL TRKDEBUG,TRKVERBOSE,STUDENT,FIRSTSTEPS,FIRSTSTUDENT
71 COMMON/TRKD/TRKDEBUG,TRKVERBOSE
72
73 DIMENSION AL0(5)
74 LOGICAL SUCCESS_NEW,SUCCESS_OLD
75 *
76 * define kind of minimization (0x=chi2+gaussian or 1x=likelihood+student)
77 *
78 STUDENT = .false.
79 FIRSTSTEPS = .true.
80 FIRSTSTUDENT = .true.
81 IF(MOD(INT(TRACKMODE/10),10).EQ.1) STUDENT = .true.
82
83 IF(IPRINT.EQ.1) THEN
84 TRKVERBOSE = .TRUE.
85 TRKDEBUG = .FALSE.
86 ELSEIF(IPRINT.EQ.2)THEN
87 TRKVERBOSE = .TRUE.
88 TRKDEBUG = .TRUE.
89 ELSE
90 TRKVERBOSE = .FALSE.
91 TRKDEBUG = .FALSE.
92 ENDIF
93
94 * ----------------------------------------------------------
95 * evaluate average spatial resolution
96 * ----------------------------------------------------------
97 AVRESX = RESXAV
98 AVRESY = RESYAV
99 DO IP=1,6
100 IF( XGOOD(IP).EQ.1 )THEN
101 NX=NX+1
102 AVRESX=AVRESX+RESX(IP)
103 ENDIF
104 IF(NX.NE.0)AVRESX=AVRESX/NX
105 IF( YGOOD(IP).EQ.1 )THEN
106 NY=NY+1
107 AVRESY=AVRESY+RESY(IP)
108 ENDIF
109 IF(NX.NE.0)AVRESY=AVRESY/NY
110 ENDDO
111
112 * ----------------------------------------------------------
113 * define ALTOL(5) ---> tolerances on state vector
114 *
115 * ----------------------------------------------------------
116 * changed in order to evaluate energy-dependent
117 * tolerances on all 5 parameters
118 cPP FACT=1.0e10 !scale factor to define tolerance on alfa
119 c deflection error (see PDG)
120 DELETA1 = 0.01/0.3/0.4/0.4451**2*SQRT(720./(6.+4.))
121 DELETA2 = 0.016/0.3/0.4/0.4451*SQRT(0.4451/9.36)
122 c$$$ ALTOL(1) = AVRESX/FACT !al(1) = x
123 c$$$ ALTOL(2) = AVRESY/FACT !al(2) = y
124 c$$$ ALTOL(3) = DSQRT(AVRESX**2 !al(3)=sin(theta)
125 c$$$ $ +AVRESY**2)/44.51/FACT
126 c$$$ ALTOL(4) = ALTOL(3) !al(4)=phi
127 c deflection error (see PDG)
128 c$$$ DELETA1 = 0.01*AVRESX/0.3/0.4/0.4451**2*SQRT(720./(6.+4.))
129 c$$$ DELETA2 = 0.016/0.3/0.4/0.4451*SQRT(0.4451/9.36)
130 * ----------------------------------------------------------
131 *
132 ISTEP=0 !num. steps to minimize chi^2
133 JFAIL=0 !error flag
134 CHI2=0
135
136 if(TRKDEBUG) print*,'guess: ',al
137 if(TRKDEBUG) print*,'mini2: step ',istep,chi2,1./AL(5)
138
139 *
140 * -----------------------
141 * START MINIMIZATION LOOP
142 * -----------------------
143 10 ISTEP=ISTEP+1 !<<<<<<<<<<<<<< NEW STEP !!
144
145 * -------------------------------
146 * **** Chi2+gaussian minimization
147 * -------------------------------
148
149 IF(.NOT.STUDENT.OR.FIRSTSTEPS) THEN
150
151 IF(ISTEP.GE.3) FIRSTSTEPS = .false.
152
153 CALL CHISQ(IFLAG,JFAIL) !chi^2 and its derivatives
154 IF(JFAIL.NE.0) THEN
155 IFAIL=1
156 CHI2=-9999.
157 if(TRKVERBOSE)
158 $ PRINT *,'*** ERROR in mini *** wrong CHISQ'
159 RETURN
160 ENDIF
161
162 c COST=1e-5
163 COST=1.
164 DO I=1,5
165 IF(CHI2DD(I,I).NE.0.)COST=COST/DABS(CHI2DD(I,I))**0.2
166 ENDDO
167 DO I=1,5
168 DO J=1,5
169 CHI2DD(I,J)=CHI2DD(I,J)*COST
170 ENDDO
171 c$$$ CHI2D(I)=CHI2D(I)*COST
172 ENDDO
173
174 IF(PFIXED.EQ.0.) THEN
175
176 *------------------------------------------------------------*
177 * track fitting with FREE deflection
178 *------------------------------------------------------------*
179 CALL DSFACT(5,CHI2DD,5,IFA,DET,JFA) !CHI2DD matrix determinant
180 IF(IFA.NE.0) THEN !not positive-defined
181 if(TRKVERBOSE)then
182 PRINT *,
183 $ '*** ERROR in mini ***'//
184 $ 'on matrix inversion (not pos-def)'
185 $ ,DET
186 endif
187 IF(CHI2.EQ.0) CHI2=-9999.
188 IF(CHI2.GT.0) CHI2=-CHI2
189 IFAIL=1
190 RETURN
191 ENDIF
192 CALL DSFINV(5,CHI2DD,5) !CHI2DD matrix inversion
193 * *******************************************
194 * find new value of AL-pha
195 * *******************************************
196 DO I=1,5
197 DAL(I)=0.
198 DO J=1,5
199 DAL(I)=DAL(I)-CHI2DD(I,J)*CHI2D(J) *COST
200 COV(I,J)=2.*COST*CHI2DD(I,J)
201 ENDDO
202 ENDDO
203 DO I=1,5
204 AL(I)=AL(I)+DAL(I)
205 ENDDO
206 *------------------------------------------------------------*
207 * track fitting with FIXED deflection
208 *------------------------------------------------------------*
209 ELSE
210 AL(5)=1./PFIXED
211 DO I=1,4
212 CHI2D_R(I)=CHI2D(I)
213 DO J=1,4
214 CHI2DD_R(I,J)=CHI2DD(I,J)
215 ENDDO
216 ENDDO
217 CALL DSFACT(4,CHI2DD_R,4,IFA,DET,JFA)
218 IF(IFA.NE.0) THEN
219 if(TRKVERBOSE)then
220 PRINT *,
221 $ '*** ERROR in mini ***'//
222 $ 'on matrix inversion (not pos-def)'
223 $ ,DET
224 endif
225 IF(CHI2.EQ.0) CHI2=-9999.
226 IF(CHI2.GT.0) CHI2=-CHI2
227 IFAIL=1
228 RETURN
229 ENDIF
230 CALL DSFINV(4,CHI2DD_R,4)
231 * *******************************************
232 * find new value of AL-pha
233 * *******************************************
234 DO I=1,4
235 DAL(I)=0.
236 DO J=1,4
237 DAL(I)=DAL(I)-CHI2DD_R(I,J)*CHI2D_R(J) *COST
238 COV(I,J)=2.*COST*CHI2DD_R(I,J)
239 ENDDO
240 ENDDO
241 DAL(5)=0.
242 DO I=1,4
243 AL(I)=AL(I)+DAL(I)
244 ENDDO
245 ENDIF
246
247 if(TRKDEBUG) print*,'mini2: step ',istep,chi2,1./AL(5)
248
249 c$$$ PRINT*,'DAL ',(DAL(K),K=1,5)
250 c$$$ PRINT*,'CHI2DOLD ',(CHI2DOLD(K),K=1,5)
251
252
253 ENDIF
254
255 * -------------------------------
256 * **** Likelihood+Student minimization
257 * -------------------------------
258
259 IF(STUDENT.AND.(.NOT.FIRSTSTEPS)) THEN
260
261 IF(FIRSTSTUDENT) THEN
262 FIRSTSTUDENT = .false.
263 ISTEP = 1
264 ENDIF
265
266 CALL CHISQSTT(1,JFAIL)
267 DO I=1,5
268 DAL(I)=0.
269 DO J=1,5
270 DAL(I)=DAL(I)-CHI2DD(I,J)*CHI2D(J)
271 ENDDO
272 ENDDO
273
274 DO I=1,5
275 DO j=1,5
276 COV(I,J) = 2.*CHI2DD(I,J)
277 ENDDO
278 ENDDO
279
280 CHI2TOLL = 1.E-3
281 ALPHA = 3.0
282 BETA = -0.4
283 E=1.
284 EA=1.
285 EB=1.
286 EC=1.
287 FA=1.
288 FB=1.
289 FC=1.
290 SUCCESS_OLD = .FALSE.
291 SUCCESS_NEW = .FALSE.
292
293 CALL CHISQSTT(0,JFAIL)
294 c$$$ PRINT*,CHI2
295 CHI2_NEW = CHI2
296 FC = CHI2
297 EC = 0.
298
299 100 CONTINUE
300 DO I=1,5
301 AL0(I)=AL(I)
302 ENDDO
303 DO I=1,5
304 AL(I)=AL(I)+E*DAL(I)
305 ENDDO
306 CALL CHISQSTT(0,JFAIL)
307 CHI2_OLD = CHI2_NEW
308 CHI2_NEW = CHI2
309 FA = FB
310 FB = FC
311 FC = CHI2
312 EA = EB
313 EB = EC
314 EC = E
315
316 c$$$ PRINT*,E,CHI2_NEW
317
318 IF(CHI2_NEW.LE.CHI2_OLD) THEN ! success
319 IF(DABS(CHI2_NEW-CHI2_OLD).LT.CHI2TOLL) GOTO 101
320 SUCCESS_OLD = SUCCESS_NEW
321 SUCCESS_NEW = .TRUE.
322 E = E*ALPHA
323 ELSE ! failure
324 SUCCESS_OLD = SUCCESS_NEW
325 SUCCESS_NEW = .FALSE.
326 CHI2_NEW = CHI2_OLD
327 DO I=1,5
328 AL(I)=AL0(I)
329 ENDDO
330 IF(SUCCESS_OLD) THEN
331 DENOM = (EB-EA)*(FB-FC) - (EB-EC)*(FB-FA)
332 IF(DENOM.NE.0.) THEN
333 E = EB - 0.5*( (EB-EA)**2*(FB-FC)
334 $ - (EB-EC)**2*(FB-FA) ) / DENOM
335 ELSE
336 E = BETA*E
337 ENDIF
338 ELSE
339 E = BETA*E
340 ENDIF
341 c$$$ E = BETA*E
342 ENDIF
343 GOTO 100
344
345 101 CONTINUE
346
347 DO I=1,5
348 DAL(I)=E*DAL(I)
349 ENDDO
350
351 c$$$ print*,' '
352 c$$$ PRINT*,'DAL ',(DAL(K),K=1,5)
353 c$$$ PRINT*,'CHI2DOLD ',(CHI2DOLD(K),K=1,5)
354 c$$$ print*,'==== CHI2 ===='
355 c$$$ print*,chi2
356 c$$$ print*,'==== CHI2d ===='
357 c$$$ print*,(chi2d(i),i=1,5)
358 c$$$ print*,'==== CHI2dd ===='
359 c$$$ do j=1,5
360 c$$$ print*,(chi2dd(j,i),i=1,5)
361 c$$$ enddo
362 c$$$ print*,'================'
363 c$$$ print*,' '
364
365 *========= FIN QUI =============
366
367 ENDIF
368
369
370
371
372
373 *------------------------------------------------------------*
374 * ---------------------------------------------------- *
375 *------------------------------------------------------------*
376 * check parameter bounds:
377 *------------------------------------------------------------*
378 DO I=1,5
379 IF(AL(I).GT.ALMAX(I).OR.AL(I).LT.ALMIN(I))THEN
380 if(TRKVERBOSE)then
381 PRINT*,' *** WARNING in mini *** '
382 PRINT*,'MINI_2 ==> AL(',I,') out of range'
383 PRINT*,' value: ',AL(I),
384 $ ' limits: ',ALMIN(I),ALMAX(I)
385 print*,'istep ',istep
386 endif
387 IF(CHI2.EQ.0) CHI2=-9999.
388 IF(CHI2.GT.0) CHI2=-CHI2
389 IFAIL=1
390 RETURN
391 ENDIF
392 ENDDO
393 *------------------------------------------------------------*
394 * check number of steps:
395 *------------------------------------------------------------*
396 IF(ISTEP.ge.ISTEPMAX) then
397 c$$$ IFAIL=1
398 c$$$ if(TRKVERBOSE)
399 c$$$ $ PRINT *,'*** WARNING in mini *** ISTEP.GT.ISTEPMAX=',
400 c$$$ $ ISTEPMAX
401 goto 11
402 endif
403 *------------------------------------------------------------*
404 * ---------------------------------------------
405 * evaluate deflection tolerance on the basis of
406 * estimated deflection
407 * ---------------------------------------------
408 *------------------------------------------------------------*
409 c$$$ ALTOL(5) = DSQRT(DELETA1**2+DELETA2**2*AL(5)**2)/FACT
410 ALTOL(5) = DSQRT((DELETA1*AVRESX)**2+DELETA2**2*AL(5)**2)/FACT
411 ALTOL(1) = ALTOL(5)/DELETA1
412 ALTOL(2) = ALTOL(1)
413 ALTOL(3) = DSQRT(ALTOL(1)**2+ALTOL(2)**2)/44.51
414 ALTOL(4) = ALTOL(3)
415
416 c$$$ print*,' -- ',(DAL(I),ALTOL(I),' - ',i=1,5) !>>>> new step!
417
418 *---- check tolerances:
419 c$$$ DO I=1,5
420 c$$$ if(TRKVERBOSE)print*,i,' -- ',DAL(I),ALTOL(I) !>>>> new step!
421 c$$$ ENDDO
422 c$$$ print*,'chi2 -- ',DCHI2
423
424 IF(ISTEP.LT.ISTEPMIN) GOTO 10 ! ***PP***
425 DO I=1,5
426 IF(ABS(DAL(I)).GT.ALTOL(I))GOTO 10 !>>>> new step!
427 ENDDO
428
429 *****************************
430 * final estimate of chi^2
431 *****************************
432
433 * -------------------------------
434 * **** Chi2+gaussian minimization
435 * -------------------------------
436
437 IF(.NOT.STUDENT) THEN
438
439 JFAIL=0 !error flag
440 CALL CHISQ(IFLAG,JFAIL) !chi^2 and its derivatives
441 IF(JFAIL.NE.0) THEN
442 IFAIL=1
443 if(TRKVERBOSE)THEN
444 CHI2=-9999.
445 if(TRKVERBOSE)
446 $ PRINT *,'*** ERROR in mini *** wrong CHISQ'
447 ENDIF
448 RETURN
449 ENDIF
450 c COST=1e-7
451 COST=1.
452 DO I=1,5
453 IF(CHI2DD(I,I).NE.0.)COST=COST/DABS(CHI2DD(I,I))**0.2
454 ENDDO
455 DO I=1,5
456 DO J=1,5
457 CHI2DD(I,J)=CHI2DD(I,J)*COST
458 ENDDO
459 ENDDO
460 IF(PFIXED.EQ.0.) THEN
461 CALL DSFACT(5,CHI2DD,5,IFA,DET,JFA) !CHI2DD matrix determinant
462 IF(IFA.NE.0) THEN !not positive-defined
463 if(TRKVERBOSE)then
464 PRINT *,
465 $ '*** ERROR in mini ***'//
466 $ 'on matrix inversion (not pos-def)'
467 $ ,DET
468 endif
469 IF(CHI2.EQ.0) CHI2=-9999.
470 IF(CHI2.GT.0) CHI2=-CHI2
471 IFAIL=1
472 RETURN
473 ENDIF
474 CALL DSFINV(5,CHI2DD,5) !CHI2DD matrix inversion
475 DO I=1,5
476 c$$$ DAL(I)=0.
477 DO J=1,5
478 COV(I,J)=2.*COST*CHI2DD(I,J)
479 ENDDO
480 ENDDO
481 ELSE
482 DO I=1,4
483 CHI2D_R(I)=CHI2D(I)
484 DO J=1,4
485 CHI2DD_R(I,J)=CHI2DD(I,J)
486 ENDDO
487 ENDDO
488 CALL DSFACT(4,CHI2DD_R,4,IFA,DET,JFA)
489 IF(IFA.NE.0) THEN
490 if(TRKVERBOSE)then
491 PRINT *,
492 $ '*** ERROR in mini ***'//
493 $ 'on matrix inversion (not pos-def)'
494 $ ,DET
495 endif
496 IF(CHI2.EQ.0) CHI2=-9999.
497 IF(CHI2.GT.0) CHI2=-CHI2
498 IFAIL=1
499 RETURN
500 ENDIF
501 CALL DSFINV(4,CHI2DD_R,4)
502 DO I=1,4
503 c$$$ DAL(I)=0.
504 DO J=1,4
505 COV(I,J)=2.*COST*CHI2DD_R(I,J)
506 ENDDO
507 ENDDO
508 ENDIF
509
510 ENDIF
511
512 * -------------------------------
513 * **** Likelihood+student minimization
514 * -------------------------------
515
516 IF(STUDENT) THEN
517 CALL CHISQSTT(1,JFAIL)
518 DO I=1,5
519 DO j=1,5
520 COV(I,J) = 2.*CHI2DD(I,J)
521 ENDDO
522 ENDDO
523 ENDIF
524
525 *****************************
526
527 * ------------------------------------
528 * Number of Degree Of Freedom
529 ndof=0
530 do ip=1,nplanes
531 ndof=ndof
532 $ +int(xgood(ip))
533 $ +int(ygood(ip))
534 enddo
535 if(pfixed.eq.0.) ndof=ndof-5 ! ***PP***
536 if(pfixed.ne.0.) ndof=ndof-4 ! ***PP***
537 if(ndof.le.0.) then
538 ndof = 1
539 if(TRKVERBOSE)
540 $ print*,'*** WARNING *** in mini n.dof = 0 (set to 1)'
541 endif
542
543 * ------------------------------------
544 * Reduced chi^2
545 CHI2 = CHI2/dble(ndof)
546
547 c print*,'mini2: chi2 ',chi2
548
549 11 CONTINUE
550
551 if(TRKDEBUG) print*,'mini2: -ok- ',istep,chi2,1./AL(5)
552
553 NSTEP=ISTEP ! ***PP***
554
555 c$$$ print*,'>>>>> NSTEP = ',NSTEP
556
557 RETURN
558 END
559
560 ******************************************************************************
561 *
562 * routine to compute chi^2 and its derivatives
563 *
564 *
565 * (modified in respect to the previous one in order to include
566 * single clusters. In this case the residual is evaluated by
567 * calculating the distance between the track intersection and the
568 * segment AB associated to the single cluster)
569 *
570 ******************************************************************************
571
572 SUBROUTINE CHISQ(IFLAG,IFAIL)
573
574 IMPLICIT DOUBLE PRECISION (A-H,O-Z)
575
576 include 'commontracker.f' !tracker general common
577 include 'common_mini_2.f' !common for the tracking procedure
578
579 DIMENSION XV2(nplanes),YV2(nplanes),XV1(nplanes),YV1(nplanes)
580 $ ,XV0(nplanes),YV0(nplanes)
581 DIMENSION AL_P(5)
582
583 c LOGICAL TRKVERBOSE
584 c COMMON/TRKD/TRKVERBOSE
585 LOGICAL TRKDEBUG,TRKVERBOSE
586 COMMON/TRKD/TRKDEBUG,TRKVERBOSE
587 *
588 * chi^2 computation
589 *
590 DO I=1,5
591 AL_P(I)=AL(I)
592 ENDDO
593 JFAIL=0 !error flag
594 CALL POSXYZ(AL_P,JFAIL) !track intersection with tracking planes
595 IF(JFAIL.NE.0) THEN
596 IF(TRKVERBOSE)
597 $ PRINT *,'CHISQ ==> error from trk routine POSXYZ !!'
598 IFAIL=1
599 RETURN
600 ENDIF
601 DO I=1,nplanes
602 XV0(I)=XV(I)
603 YV0(I)=YV(I)
604 ENDDO
605 * ------------------------------------------------
606 c$$$ CHI2=0.
607 c$$$ DO I=1,nplanes
608 c$$$ CHI2=CHI2
609 c$$$ + +(XV(I)-XM(I))**2/RESX(i)**2 *XGOOD(I)*YGOOD(I)
610 c$$$ + +(YV(I)-YM(I))**2/RESY(i)**2 *YGOOD(I)*XGOOD(I)
611 c$$$ ENDDO
612 * ---------------------------------------------------------
613 * For planes with only a X or Y-cl included, instead of
614 * a X-Y couple, the residual for chi^2 calculation is
615 * evaluated by finding the point x-y, along the segment AB,
616 * closest to the track.
617 * The X or Y coordinate, respectivelly for X and Y-cl, is
618 * then assigned to XM or YM, which is then considered the
619 * measured position of the cluster.
620 * ---------------------------------------------------------
621 CHI2=0.
622 DO I=1,nplanes
623 IF(XGOOD(I).EQ.1.AND.YGOOD(I).EQ.0)THEN !X-cl
624 BETA = (XM_B(I)-XM_A(I))/(YM_B(I)-YM_A(I))
625 ALFA = XM_A(I) - BETA * YM_A(I)
626 YM(I) = ( YV(I) + BETA*XV(I) - BETA*ALFA )/(1+BETA**2)
627 if(YM(I).lt.dmin1(YM_A(I),YM_B(I)))
628 $ YM(I)=dmin1(YM_A(I),YM_B(I))
629 if(YM(I).gt.dmax1(YM_A(I),YM_B(I)))
630 $ YM(I)=dmax1(YM_A(I),YM_B(I))
631 XM(I) = ALFA + BETA * YM(I) !<<<< measured coordinates
632 ELSEIF(XGOOD(I).EQ.0.AND.YGOOD(I).EQ.1)THEN !Y-cl
633 BETA = (YM_B(I)-YM_A(I))/(XM_B(I)-XM_A(I))
634 ALFA = YM_A(I) - BETA * XM_A(I)
635 XM(I) = ( XV(I) + BETA*YV(I) - BETA*ALFA )/(1+BETA**2)
636 if(XM(I).lt.dmin1(XM_A(I),XM_B(I)))
637 $ XM(I)=dmin1(XM_A(I),XM_B(I))
638 if(XM(I).gt.dmax1(XM_A(I),XM_B(I)))
639 $ XM(I)=dmax1(XM_A(I),XM_B(I))
640 YM(I) = ALFA + BETA * XM(I) !<<<< measured coordinates
641 ENDIF
642 CHI2=CHI2
643 + +(XV(I)-XM(I))**2/RESX(i)**2 *( XGOOD(I)*YGOOD(I) )
644 + +(YV(I)-YM(I))**2/RESY(i)**2 *( YGOOD(I)*XGOOD(I) )
645 + +((XV(I)-XM(I))**2+(YV(I)-YM(I))**2)/RESX(i)**2
646 + *( XGOOD(I)*(1-YGOOD(I)) )
647 + +((XV(I)-XM(I))**2+(YV(I)-YM(I))**2)/RESY(i)**2
648 + *( (1-XGOOD(I))*YGOOD(I) )
649 c$$$ print*,(XV(I)-XM(I))**2/RESX(i)**2 *( XGOOD(I)*YGOOD(I) )
650 c$$$ print*,(YV(I)-YM(I))**2/RESY(i)**2 *( YGOOD(I)*XGOOD(I) )
651 c$$$ print*,((XV(I)-XM(I))**2+(YV(I)-YM(I))**2)/RESX(i)**2
652 c$$$ + *( XGOOD(I)*(1-YGOOD(I)) )
653 c$$$ print*,((XV(I)-XM(I))**2+(YV(I)-YM(I))**2)/RESY(i)**2
654 c$$$ + *( (1-XGOOD(I))*YGOOD(I) )
655 c$$$ print*,XV(I),XM(I),XGOOD(I)
656 c$$$ print*,YV(I),YM(I),YGOOD(I)
657 ENDDO
658 c$$$ print*,'CHISQ ',chi2
659 * ------------------------------------------------
660 *
661 * calculation of derivatives (dX/dAL_fa and dY/dAL_fa)
662 *
663 * //////////////////////////////////////////////////
664 * METHOD 1 -- incremental ratios
665 * //////////////////////////////////////////////////
666
667 IF(IFLAG.EQ.1) THEN
668
669 DO J=1,5
670 DO JJ=1,5
671 AL_P(JJ)=AL(JJ)
672 ENDDO
673 AL_P(J)=AL_P(J)+STEPAL(J)/2.
674 JFAIL=0
675 CALL POSXYZ(AL_P,JFAIL)
676 IF(JFAIL.NE.0) THEN
677 IF(TRKVERBOSE)
678 *23456789012345678901234567890123456789012345678901234567890123456789012
679 $ PRINT *,'CHISQ ==> error from trk routine POSXYZ'
680 IFAIL=1
681 RETURN
682 ENDIF
683 DO I=1,nplanes
684 XV2(I)=XV(I)
685 YV2(I)=YV(I)
686 ENDDO
687 AL_P(J)=AL_P(J)-STEPAL(J)
688 JFAIL=0
689 CALL POSXYZ(AL_P,JFAIL)
690 IF(JFAIL.NE.0) THEN
691 IF(TRKVERBOSE)
692 $ PRINT *,'CHISQ ==> error from trk routine POSXYZ'
693 IFAIL=1
694 RETURN
695 ENDIF
696 DO I=1,nplanes
697 XV1(I)=XV(I)
698 YV1(I)=YV(I)
699 ENDDO
700 DO I=1,nplanes
701 DXDAL(I,J)=(XV2(I)-XV1(I))/STEPAL(J)
702 DYDAL(I,J)=(YV2(I)-YV1(I))/STEPAL(J)
703 ENDDO
704 ENDDO
705
706 ENDIF
707
708 * //////////////////////////////////////////////////
709 * METHOD 2 -- Bob Golden
710 * //////////////////////////////////////////////////
711
712 IF(IFLAG.EQ.2) THEN
713
714 DO I=1,nplanes
715 DXDAL(I,1)=1.
716 DYDAL(I,1)=0.
717
718 DXDAL(I,2)=0.
719 DYDAL(I,2)=1.
720
721 COSTHE=DSQRT(1.-AL(3)**2)
722 IF(COSTHE.EQ.0.) THEN
723 IF(TRKVERBOSE)PRINT *,'=== WARNING ===> COSTHE=0'
724 IFAIL=1
725 RETURN
726 ENDIF
727
728 DXDAL(I,3)=(ZINI-ZM(I))*DCOS(AL(4))/COSTHE**3
729 DYDAL(I,3)=(ZINI-ZM(I))*DSIN(AL(4))/COSTHE**3
730
731 DXDAL(I,4)=-AL(3)*(ZINI-ZM(I))*DSIN(AL(4))/COSTHE
732 DYDAL(I,4)=AL(3)*(ZINI-ZM(I))*DCOS(AL(4))/COSTHE
733
734 IF(AL(5).NE.0.) THEN
735 DXDAL(I,5)=
736 + (XV(I)-(AL(1)+AL(3)/COSTHE*(ZINI-ZM(I))
737 + *DCOS(AL(4))))/AL(5)
738 DYDAL(I,5)=
739 + (YV(I)-(AL(2)+AL(3)/COSTHE*(ZINI-ZM(I))
740 + *DSIN(AL(4))))/AL(5)
741 ELSE
742 DXDAL(I,5)=100.*( 0.25 *0.3*0.4*(0.01*(ZINI-ZM(I)))**2 )
743 DYDAL(I,5)=0.
744 ENDIF
745
746 ENDDO
747 ENDIF
748 *
749 * x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x
750 * >>> CHI2D evaluation
751 *
752 DO J=1,5
753 CHI2D(J)=0.
754 DO I=1,nplanes
755 CHI2D(J)=CHI2D(J)
756 + +2.*(XV0(I)-XM(I))/RESX(i)**2*DXDAL(I,J) *XGOOD(I)
757 + +2.*(YV0(I)-YM(I))/RESY(i)**2*DYDAL(I,J) *YGOOD(I)
758 ENDDO
759 ENDDO
760 *
761 * >>> CHI2DD evaluation
762 *
763 DO I=1,5
764 DO J=1,5
765 CHI2DD(I,J)=0.
766 DO K=1,nplanes
767 CHI2DD(I,J)=CHI2DD(I,J)
768 + +2.*DXDAL(K,I)*DXDAL(K,J)/RESX(k)**2 *XGOOD(K)
769 + +2.*DYDAL(K,I)*DYDAL(K,J)/RESY(k)**2 *YGOOD(K)
770 ENDDO
771 ENDDO
772 ENDDO
773 * x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x
774
775 RETURN
776 END
777
778 ******************************************************************************
779 *
780 * routine to compute Likelihodd+Student and its derivatives
781 *
782 * (modified in respect to the previous one in order to include
783 * single clusters. In this case the residual is evaluated by
784 * calculating the distance between the track intersection and the
785 * segment AB associated to the single cluster)
786 *
787 ******************************************************************************
788
789 SUBROUTINE CHISQSTT(IFLAG,JFAIL)
790
791 IMPLICIT DOUBLE PRECISION (A-H,O-Z)
792
793 include 'commontracker.f' !tracker general common
794 include 'common_mini_2.f' !common for the tracking procedure
795
796 LOGICAL TRKDEBUG,TRKVERBOSE
797 COMMON/TRKD/TRKDEBUG,TRKVERBOSE
798
799 DIMENSION AL_P(5)
800 DIMENSION VECTEMP(5)
801 c$$$ DIMENSION U(5) ! BFGS
802
803 DO I=1,5
804 AL_P(I)=AL(I)
805 ENDDO
806 JFAIL=0 !error flag
807 CALL POSXYZ(AL_P,JFAIL) !track intersection with tracking planes
808 IF(JFAIL.NE.0) THEN
809 IF(TRKVERBOSE)
810 $ PRINT *,'CHISQSTT ==> error from trk routine POSXYZ !!'
811 IFAIL=1
812 RETURN
813 ENDIF
814
815 DO I=1,nplanes
816 DXDAL(I,1)=1.
817 DYDAL(I,1)=0.
818 DXDAL(I,2)=0.
819 DYDAL(I,2)=1.
820 COSTHE=DSQRT(1.-AL(3)**2)
821 IF(COSTHE.EQ.0.) THEN
822 IF(TRKVERBOSE)PRINT *,'=== WARNING ===> COSTHE=0'
823 IFAIL=1
824 RETURN
825 ENDIF
826 DXDAL(I,3)=(ZINI-ZM(I))*DCOS(AL(4))/COSTHE**3
827 DYDAL(I,3)=(ZINI-ZM(I))*DSIN(AL(4))/COSTHE**3
828 DXDAL(I,4)=-AL(3)*(ZINI-ZM(I))*DSIN(AL(4))/COSTHE
829 DYDAL(I,4)=AL(3)*(ZINI-ZM(I))*DCOS(AL(4))/COSTHE
830 IF(AL(5).NE.0.) THEN
831 DXDAL(I,5)=
832 + (XV(I)-(AL(1)+AL(3)/COSTHE*(ZINI-ZM(I))
833 + *DCOS(AL(4))))/AL(5)
834 DYDAL(I,5)=
835 + (YV(I)-(AL(2)+AL(3)/COSTHE*(ZINI-ZM(I))
836 + *DSIN(AL(4))))/AL(5)
837 ELSE
838 DXDAL(I,5)=100.*( 0.25 *0.3*0.4*(0.01*(ZINI-ZM(I)))**2 )
839 DYDAL(I,5)=0.
840 ENDIF
841 ENDDO
842
843 IF(IFLAG.EQ.0) THEN ! function calulation
844 CHI2=0.
845 DO I=1,nplanes
846 IF(XGOOD(I).EQ.1.AND.YGOOD(I).EQ.0)THEN !X-cl
847 BETA = (XM_B(I)-XM_A(I))/(YM_B(I)-YM_A(I))
848 ALFA = XM_A(I) - BETA * YM_A(I)
849 YM(I) = ( YV(I) + BETA*XV(I) - BETA*ALFA )/(1+BETA**2)
850 if(YM(I).lt.dmin1(YM_A(I),YM_B(I)))
851 $ YM(I)=dmin1(YM_A(I),YM_B(I))
852 if(YM(I).gt.dmax1(YM_A(I),YM_B(I)))
853 $ YM(I)=dmax1(YM_A(I),YM_B(I))
854 XM(I) = ALFA + BETA * YM(I) !<<<< measured coordinates
855 ELSEIF(XGOOD(I).EQ.0.AND.YGOOD(I).EQ.1)THEN !Y-cl
856 BETA = (YM_B(I)-YM_A(I))/(XM_B(I)-XM_A(I))
857 ALFA = YM_A(I) - BETA * XM_A(I)
858 XM(I) = ( XV(I) + BETA*YV(I) - BETA*ALFA )/(1+BETA**2)
859 if(XM(I).lt.dmin1(XM_A(I),XM_B(I)))
860 $ XM(I)=dmin1(XM_A(I),XM_B(I))
861 if(XM(I).gt.dmax1(XM_A(I),XM_B(I)))
862 $ XM(I)=dmax1(XM_A(I),XM_B(I))
863 YM(I) = ALFA + BETA * XM(I) !<<<< measured coordinates
864 ENDIF
865 TERMX = DLOG( (TAILX(I)*RESX(I)**2+(XV(I)-XM(I))**2)/
866 $ (TAILX(I)*RESX(I)**2) )
867 TERMY = DLOG( (TAILY(I)*RESY(I)**2+(YV(I)-YM(I))**2)/
868 $ (TAILY(I)*RESY(I)**2) )
869 CHI2=CHI2
870 $ +(TAILX(I)+1.0)*TERMX *( XGOOD(I) )
871 $ +(TAILY(I)+1.0)*TERMY *( YGOOD(I) )
872 ENDDO
873 ENDIF
874
875 IF(IFLAG.EQ.1) THEN ! derivative calulation
876 DO I=1,5
877 CHI2DOLD(I)=CHI2D(I)
878 ENDDO
879 DO J=1,5
880 CHI2D(J)=0.
881 DO I=1,nplanes
882 CHI2D(J)=CHI2D(J)
883 $ +2.*(TAILX(I)+1.0)*(XV(I)-XM(I))/
884 $ (TAILX(I)*RESX(I)**2+(XV(I)-XM(I))**2)*
885 $ DXDAL(I,J) *XGOOD(I)
886 $ +2.*(TAILY(I)+1.0)*(YV(I)-YM(I))/
887 $ (TAILY(I)*RESY(I)**2+(YV(I)-YM(I))**2)*
888 $ DYDAL(I,J) *YGOOD(I)
889 ENDDO
890 ENDDO
891 DO K=1,5
892 VECTEMP(K)=0.
893 DO M=1,5
894 VECTEMP(K) = VECTEMP(K) +
895 $ COV(K,M)/2.*(CHI2D(M)-CHI2DOLD(M))
896 ENDDO
897 ENDDO
898 DOWN1 = 0.
899 DO K=1,5
900 DOWN1 = DOWN1 + DAL(K)*(CHI2D(K)-CHI2DOLD(K))
901 ENDDO
902 IF(DOWN1.EQ.0.) THEN
903 PRINT*,'WARNING IN MATRIX CALULATION (STUDENT), DOWN1 = 0'
904 IFAIL=1
905 RETURN
906 ENDIF
907 DOWN2 = 0.
908 DO K=1,5
909 DO M=1,5
910 DOWN2 = DOWN2 + (CHI2D(K)-CHI2DOLD(K))*VECTEMP(K)
911 ENDDO
912 ENDDO
913 IF(DOWN2.EQ.0.) THEN
914 PRINT*,'WARNING IN MATRIX CALULATION (STUDENT), DOWN2 = 0'
915 IFAIL=1
916 RETURN
917 ENDIF
918 c$$$ DO K=1,5 ! BFGS
919 c$$$ U(K) = DAL(K)/DOWN1 - VECTEMP(K)/DOWN2
920 c$$$ ENDDO
921 DO I=1,5
922 DO J=1,5
923 CHI2DD(I,J) = COV(I,J)/2.
924 $ +DAL(I)*DAL(J)/DOWN1
925 $ -VECTEMP(I)*VECTEMP(J)/DOWN2
926 c$$$ $ +DOWN2*U(I)*U(J) ! BFGS
927 ENDDO
928 ENDDO
929 ENDIF
930
931 RETURN
932 END
933
934 *****************************************************************
935 *
936 * Routine to compute the track intersection points
937 * on the tracking-system planes, given the track parameters
938 *
939 * The routine is based on GRKUTA, which computes the
940 * trajectory of a charged particle in a magnetic field
941 * by solving the equatins of motion with Runge-Kuta method.
942 *
943 * Variables that have to be assigned when the subroutine
944 * is called are:
945 *
946 * ZM(1,NPLANES) ----> z coordinates of the planes
947 * AL_P(1,5) ----> track-parameter vector
948 *
949 * -----------------------------------------------------------
950 * NB !!!
951 * The routine works properly only if the
952 * planes are numbered in descending order starting from the
953 * reference plane (ZINI)
954 * -----------------------------------------------------------
955 *
956 *****************************************************************
957
958 SUBROUTINE POSXYZ(AL_P,IFAIL)
959
960 IMPLICIT DOUBLE PRECISION (A-H,O-Z)
961
962 include 'commontracker.f' !tracker general common
963 include 'common_mini_2.f' !common for the tracking procedure
964
965 c LOGICAL TRKVERBOSE
966 c COMMON/TRKD/TRKVERBOSE
967 LOGICAL TRKDEBUG,TRKVERBOSE
968 COMMON/TRKD/TRKDEBUG,TRKVERBOSE
969 c
970 DIMENSION AL_P(5)
971 *
972 cpp DO I=1,nplanes
973 cpp ZV(I)=ZM(I) !
974 cpp ENDDO
975 *
976 * set parameters for GRKUTA
977 *
978 IF(AL_P(5).NE.0) CHARGE=AL_P(5)/DABS(AL_P(5))
979 IF(AL_P(5).EQ.0) CHARGE=1.
980 VOUT(1)=AL_P(1)
981 VOUT(2)=AL_P(2)
982 VOUT(3)=ZINI ! DBLE(Z0)-DBLE(ZSPEC)
983 VOUT(4)=AL_P(3)*DCOS(AL_P(4))
984 VOUT(5)=AL_P(3)*DSIN(AL_P(4))
985 VOUT(6)=-1.*DSQRT(1.-AL_P(3)**2)
986 IF(AL_P(5).NE.0.) VOUT(7)=DABS(1./AL_P(5))
987 IF(AL_P(5).EQ.0.) VOUT(7)=1.E8
988
989 c$$$ print*,'POSXY (prima) ',vout
990
991 DO I=1,nplanes
992 cpp step=vout(3)-zv(i)
993 step=vout(3)-zm(i)
994 10 DO J=1,7
995 VECT(J)=VOUT(J)
996 VECTINI(J)=VOUT(J)
997 ENDDO
998 11 continue
999 CALL GRKUTA(CHARGE,STEP,VECT,VOUT)
1000 IF(VOUT(3).GT.VECT(3)) THEN
1001 IFAIL=1
1002 if(TRKVERBOSE)
1003 $ PRINT *,'posxy (grkuta): WARNING ===> backward track!!'
1004 c$$$ if(.TRUE.)print*,'charge',charge
1005 c$$$ if(.TRUE.)print*,'vect',vect
1006 c$$$ if(.TRUE.)print*,'vout',vout
1007 c$$$ if(.TRUE.)print*,'step',step
1008 if(TRKVERBOSE)print*,'charge',charge
1009 if(TRKVERBOSE)print*,'vect',vect
1010 if(TRKVERBOSE)print*,'vout',vout
1011 if(TRKVERBOSE)print*,'step',step
1012 RETURN
1013 ENDIF
1014 Z=VOUT(3)
1015 IF(Z.LE.ZM(I)+TOLL.AND.Z.GE.ZM(I)-TOLL) GOTO 100
1016 IF(Z.GT.ZM(I)+TOLL) GOTO 10
1017 IF(Z.LE.ZM(I)-TOLL) THEN
1018 STEP=STEP*(ZM(I)-VECT(3))/(Z-VECT(3))
1019 DO J=1,7
1020 VECT(J)=VECTINI(J)
1021 ENDDO
1022 GOTO 11
1023 ENDIF
1024
1025
1026 * -----------------------------------------------
1027 * evaluate track coordinates
1028 100 XV(I)=VOUT(1)
1029 YV(I)=VOUT(2)
1030 ZV(I)=VOUT(3)
1031 AXV(I)=DATAN(VOUT(4)/VOUT(6))*180./ACOS(-1.)
1032 AYV(I)=DATAN(VOUT(5)/VOUT(6))*180./ACOS(-1.)
1033 * -----------------------------------------------
1034
1035 IF(TRACKMODE.EQ.1) THEN
1036 * -----------------------------------------------
1037 * change of energy by bremsstrahlung for electrons
1038 VOUT(7) = VOUT(7) * 0.997 !0.9968
1039 * -----------------------------------------------
1040 ENDIF
1041
1042 ENDDO
1043
1044 c$$$ print*,'POSXY (dopo) ',vout
1045
1046
1047 RETURN
1048 END
1049
1050
1051
1052
1053
1054 * **********************************************************
1055 * Some initialization routines
1056 * **********************************************************
1057
1058 * ----------------------------------------------------------
1059 * Routine to initialize COMMON/TRACK/
1060 *
1061 subroutine track_init
1062
1063 IMPLICIT DOUBLE PRECISION (A-H,O-Z)
1064
1065 include 'commontracker.f' !tracker general common
1066 include 'common_mini_2.f' !common for the tracking procedure
1067 include 'common_mech.f'
1068
1069 do i=1,5
1070 AL(i) = 0.
1071 enddo
1072
1073 do ip=1,NPLANES
1074 ZM(IP) = fitz(nplanes-ip+1) !init to mech. position
1075 XM(IP) = -100. !0.
1076 YM(IP) = -100. !0.
1077 XM_A(IP) = -100. !0.
1078 YM_A(IP) = -100. !0.
1079 c ZM_A(IP) = 0
1080 XM_B(IP) = -100. !0.
1081 YM_B(IP) = -100. !0.
1082 c ZM_B(IP) = 0
1083 RESX(IP) = 1000. !3.d-4
1084 RESY(IP) = 1000. !12.d-4
1085 XGOOD(IP) = 0
1086 YGOOD(IP) = 0
1087 DEDXTRK_X(IP) = 0
1088 DEDXTRK_Y(IP) = 0
1089 AXV(IP) = 0
1090 AYV(IP) = 0
1091 XV(IP) = -100
1092 YV(IP) = -100
1093 enddo
1094
1095 return
1096 end
1097
1098
1099 ***************************************************
1100 * *
1101 * *
1102 * *
1103 * *
1104 * *
1105 * *
1106 **************************************************
1107
1108 subroutine guess()
1109
1110 c IMPLICIT DOUBLE PRECISION (A-H,O-Z)
1111
1112 include 'commontracker.f' !tracker general common
1113 include 'common_mini_2.f' !common for the tracking procedure
1114
1115 REAL*4 XP(NPLANES),ZP(NPLANES),AP(NPLANES),RP(NPLANES)
1116 REAL*4 CHI,XC,ZC,RADIUS
1117 * ----------------------------------------
1118 * Y view
1119 * ----------------------------------------
1120 * ----------------------------------------
1121 * initial guess with a straigth line
1122 * ----------------------------------------
1123 SZZ=0.
1124 SZY=0.
1125 SSY=0.
1126 SZ=0.
1127 S1=0.
1128 DO I=1,nplanes
1129 IF(YGOOD(I).EQ.1)THEN
1130 YY = YM(I)
1131 IF(XGOOD(I).EQ.0)THEN
1132 YY = (YM_A(I) + YM_B(I))/2
1133 ENDIF
1134 SZZ=SZZ+ZM(I)*ZM(I)
1135 SZY=SZY+ZM(I)*YY
1136 SSY=SSY+YY
1137 SZ=SZ+ZM(I)
1138 S1=S1+1.
1139 ENDIF
1140 ENDDO
1141 DET=SZZ*S1-SZ*SZ
1142 AY=(SZY*S1-SZ*SSY)/DET
1143 BY=(SZZ*SSY-SZY*SZ)/DET
1144 Y0 = AY*ZINI+BY
1145 * ----------------------------------------
1146 * X view
1147 * ----------------------------------------
1148 * ----------------------------------------
1149 * 1) initial guess with a circle
1150 * ----------------------------------------
1151 NP=0
1152 DO I=1,nplanes
1153 IF(XGOOD(I).EQ.1)THEN
1154 XX = XM(I)
1155 IF(YGOOD(I).EQ.0)THEN
1156 XX = (XM_A(I) + XM_B(I))/2
1157 ENDIF
1158 NP=NP+1
1159 XP(NP)=XX
1160 ZP(NP)=ZM(I)
1161 ENDIF
1162 ENDDO
1163 IFLAG=0 !no debug mode
1164 CALL TRICIRCLE(NP,XP,ZP,AP,RP,CHI,XC,ZC,RADIUS,IFLAG)
1165
1166 c$$$ print*,' circle: ',XC,ZC,RADIUS,' --- ',CHI,IFLAG
1167 c$$$ print*,' XP ',(xp(i),i=1,np)
1168 c$$$ print*,' ZP ',(zp(i),i=1,np)
1169 c$$$ print*,' AP ',(ap(i),i=1,np)
1170 c$$$ print*,' XP ',(rp(i),i=1,np)
1171
1172 IF(IFLAG.NE.0)GOTO 10 !straigth fit
1173 c if(CHI.gt.100)GOTO 10 !straigth fit
1174 ARG = RADIUS**2-(ZINI-ZC)**2
1175 IF(ARG.LT.0)GOTO 10 !straigth fit
1176 DC = SQRT(ARG)
1177 IF(XC.GT.0)DC=-DC
1178 X0=XC+DC
1179 AX = -(ZINI-ZC)/DC
1180 DEF=100./(RADIUS*0.3*0.43)
1181 IF(XC.GT.0)DEF=-DEF
1182
1183
1184
1185 IF(ABS(X0).GT.30)THEN
1186 c$$$ PRINT*,'STRANGE GUESS: XC,ZC,R ',XC,ZC,RADIUS
1187 c$$$ $ ,' - CHI ',CHI,' - X0,AX,DEF ',X0,AX,DEF
1188 GOTO 10 !straigth fit
1189 ENDIF
1190 GOTO 20 !guess is ok
1191
1192 * ----------------------------------------
1193 * 2) initial guess with a straigth line
1194 * - if circle does not intersect reference plane
1195 * - if bad chi**2
1196 * ----------------------------------------
1197 10 CONTINUE
1198 SZZ=0.
1199 SZX=0.
1200 SSX=0.
1201 SZ=0.
1202 S1=0.
1203 DO I=1,nplanes
1204 IF(XGOOD(I).EQ.1)THEN
1205 XX = XM(I)
1206 IF(YGOOD(I).EQ.0)THEN
1207 XX = (XM_A(I) + XM_B(I))/2
1208 ENDIF
1209 SZZ=SZZ+ZM(I)*ZM(I)
1210 SZX=SZX+ZM(I)*XX
1211 SSX=SSX+XX
1212 SZ=SZ+ZM(I)
1213 S1=S1+1.
1214 ENDIF
1215 ENDDO
1216 DET=SZZ*S1-SZ*SZ
1217 AX=(SZX*S1-SZ*SSX)/DET
1218 BX=(SZZ*SSX-SZX*SZ)/DET
1219 DEF = 0
1220 X0 = AX*ZINI+BX
1221
1222 20 CONTINUE
1223 * ----------------------------------------
1224 * guess
1225 * ----------------------------------------
1226
1227 AL(1) = X0
1228 AL(2) = Y0
1229 tath = sqrt(AY**2+AX**2)
1230 AL(3) = tath/sqrt(1+tath**2)
1231 c$$$ IF(AX.NE.0)THEN
1232 c$$$ AL(4)= atan(AY/AX)
1233 c$$$ ELSE
1234 c$$$ AL(4) = acos(-1.)/2
1235 c$$$ IF(AY.LT.0)AL(4) = AL(4)+acos(-1.)
1236 c$$$ ENDIF
1237 c$$$ IF(AX.LT.0)AL(4)= acos(-1.)+ AL(4)
1238 c$$$ AL(4) = -acos(-1.) + AL(4) !from incidence direction to tracking ref.sys.
1239
1240 c$$$ AL(4) = 0.
1241 c$$$ IF(AX.NE.0.AND.AY.NE.0)THEN
1242 c$$$ AL(4)= atan(AY/AX)
1243 c$$$ ELSEIF(AY.EQ.0)THEN
1244 c$$$ AL(4) = 0.
1245 c$$$ IF(AX.LT.0)AL(4) = AL(4)+acos(-1.)
1246 c$$$ ELSEIF(AX.EQ.0)THEN
1247 c$$$ AL(4) = acos(-1.)/2
1248 c$$$ IF(AY.LT.0)AL(4) = AL(4)+acos(-1.)
1249 c$$$ ENDIF
1250 c$$$ IF(AX.LT.0)AL(4)= acos(-1.)+ AL(4)
1251 c$$$ AL(4) = -acos(-1.) + AL(4) !from incidence direction to tracking ref.sys.
1252
1253 c$$$ AL(4)=0.
1254 c$$$ IF( AX.NE.0.OR.AY.NE.0. ) THEN
1255 c$$$ AL(4) = ASIN(AY/SQRT(AX**2+AY**2))
1256 c$$$ IF(AX.LT.0.) AL(4) = ACOS(-1.0)-AL(4)
1257 c$$$ ENDIF
1258
1259 AL(4)=0.
1260 IF( AX.NE.0.OR.AY.NE.0. ) THEN
1261 AL(4) = ASIN(AY/SQRT(AX**2+AY**2))
1262 IF(AX.LT.0.AND.AY.GE.0) AL(4) = ACOS(-1.0)-AL(4)
1263 IF(AX.LT.0.AND.AY.LT.0) AL(4) = -ACOS(-1.0)-AL(4)
1264 ENDIF
1265 IF(AY.GT.0.) AL(4) = AL(4)-ACOS(-1.0)
1266 IF(AY.LE.0.) AL(4) = AL(4)+ACOS(-1.0)
1267
1268 AL(5) = DEF
1269
1270 c print*,' guess: ',(al(i),i=1,5)
1271
1272 end

  ViewVC Help
Powered by ViewVC 1.1.23