1 |
************************************************************************ |
2 |
* |
3 |
* subroutine to evaluate the vector alfa (AL) |
4 |
* which minimizes CHI^2 |
5 |
* |
6 |
* - modified from mini.f in order to call differente chi^2 routine. |
7 |
* The new one includes also single clusters: in this case |
8 |
* the residual is defined as the distance between the track and the |
9 |
* segment AB associated to the single cluster. |
10 |
* |
11 |
* |
12 |
************************************************************************ |
13 |
|
14 |
|
15 |
SUBROUTINE MINI_2(ISTEP,IFAIL) |
16 |
|
17 |
IMPLICIT DOUBLE PRECISION (A-H,O-Z) |
18 |
|
19 |
include 'commontracker.f' !tracker general common |
20 |
include 'common_mini_2.f' !common for the tracking procedure |
21 |
|
22 |
c logical DEBUG |
23 |
c common/dbg/DEBUG |
24 |
|
25 |
parameter (inf=1.e8) !just a huge number... |
26 |
c------------------------------------------------------------------------ |
27 |
c variables used in the tracking procedure (mini and its subroutines) |
28 |
c |
29 |
c N.B.: in mini & C. (and in the following block of variables too) |
30 |
c the plane ordering is reversed in respect of normal |
31 |
c ordering, but they maintain their Z coordinates. so plane number 1 is |
32 |
c the first one that a particle meets, and its Z coordinate is > 0 |
33 |
c------------------------------------------------------------------------ |
34 |
DATA ZINI/23.5/ !z coordinate of the reference plane |
35 |
|
36 |
DATA XGOOD,YGOOD/nplanes*1.,nplanes*1./ !planes to be used in the tracking |
37 |
|
38 |
DATA STEPAL/5*1.d-7/ !alpha vector step |
39 |
DATA ISTEPMAX/100/ !maximum number of steps in the chi^2 minimization |
40 |
DATA TOLL/1.d-8/ !tolerance in reaching the next plane during |
41 |
* !the tracking procedure |
42 |
DATA STEPMAX/100./ !maximum number of steps in the trackin gprocess |
43 |
|
44 |
c DATA ALMAX/inf,inf,inf,inf,0.25e2/ !limits on alpha vector components |
45 |
c DATA ALMIN/-inf,-inf,-inf,-inf,-0.25e2/ !" |
46 |
DATA ALMAX/inf,inf,1.,inf,0.25e2/ !limits on alpha vector components |
47 |
DATA ALMIN/-inf,-inf,-1.,-inf,-0.25e2/ !" |
48 |
|
49 |
|
50 |
DIMENSION DAL(5) !increment of vector alfa |
51 |
|
52 |
INTEGER IFLAG |
53 |
c-------------------------------------------------------- |
54 |
c IFLAG =1 ---- chi2 derivatives computed by using |
55 |
c incremental ratios and posxyz.f |
56 |
c IFLAG =2 ---- the approximation of Golden is used |
57 |
c (see chisq.f) |
58 |
c |
59 |
c NB: the two metods gives equivalent results BUT |
60 |
c method 2 is faster!! |
61 |
c-------------------------------------------------------- |
62 |
DATA IFLAG/2/ |
63 |
|
64 |
* ---------------------------------------------------------- |
65 |
* define ALTOL(5) ---> tolerances on state vector |
66 |
* |
67 |
* ---------------------------------------------------------- |
68 |
FACT=10. !scale factor to define |
69 |
!tolerance on alfa |
70 |
ALTOL(1)=RESX(1)/FACT !al(1) = x |
71 |
ALTOL(2)=RESY(1)/FACT !al(2) = y |
72 |
ALTOL(3)=DSQRT(RESX(1)**2 !al(3)=sin(theta) |
73 |
$ +RESY(1)**2)/44.51/FACT |
74 |
ALTOL(4)=ALTOL(3) !al(4)=phi |
75 |
c deflection error (see PDG) |
76 |
DELETA1=0.01*RESX(1)/0.3/0.4/0.4451**2*SQRT(720./(6.+4.)) |
77 |
DELETA2=0.016/0.3/0.4/0.4451*SQRT(0.4451/9.36) |
78 |
* ---------------------------------------------------------- |
79 |
* |
80 |
ISTEP=0 !num. steps to minimize chi^2 |
81 |
JFAIL=0 !error flag |
82 |
CALL CHISQ(IFLAG,JFAIL) !chi^2 and its derivatives |
83 |
IF(JFAIL.NE.0) THEN |
84 |
IFAIL=1 |
85 |
if(DEBUG) |
86 |
$ PRINT *,'mini_2 ===> error on CHISQ computation !!!' |
87 |
RETURN |
88 |
ENDIF |
89 |
* |
90 |
* ----------------------- |
91 |
* START MINIMIZATION LOOP |
92 |
* ----------------------- |
93 |
10 ISTEP=ISTEP+1 !<<<<<<<<<<<<<< NEW STEP !! |
94 |
CHI2_P=CHI2 |
95 |
|
96 |
c print*,'@@@@@ ',istep,' - ',al |
97 |
|
98 |
cost=1e-7 |
99 |
DO I=1,5 |
100 |
DO J=1,5 |
101 |
CHI2DD(I,J)=CHI2DD(I,J)*COST |
102 |
ENDDO |
103 |
CHI2D(I)=CHI2D(I)*COST |
104 |
ENDDO |
105 |
*------------------------------------------------------------* |
106 |
* track fitting with FREE deflection |
107 |
*------------------------------------------------------------* |
108 |
CALL DSFACT(5,CHI2DD,5,IFA,DET,JFA) !CHI2DD matrix determinant |
109 |
IF(IFA.NE.0) THEN !not positive-defined |
110 |
if(DEBUG)then |
111 |
PRINT *, |
112 |
$ 'MINI_HOUGH ==> '// |
113 |
$ '** ERROR ** on matrix inversion (not positive-defined)!!!' |
114 |
$ ,DET |
115 |
endif |
116 |
IFAIL=1 |
117 |
RETURN |
118 |
ENDIF |
119 |
CALL DSFINV(5,CHI2DD,5) !CHI2DD matrix inversion |
120 |
* ******************************************* |
121 |
* find new value of AL-pha !* |
122 |
* !* |
123 |
DO I=1,5 !* |
124 |
DAL(I)=0. !* |
125 |
DO J=1,5 !* |
126 |
DAL(I)=DAL(I)-CHI2DD(I,J)*CHI2D(J) !* |
127 |
COV(I,J)=CHI2DD(I,J) !* |
128 |
ENDDO !* |
129 |
ENDDO !* |
130 |
DO I=1,5 !* |
131 |
AL(I)=AL(I)+DAL(I) !* |
132 |
ENDDO !* |
133 |
* ******************************************* |
134 |
* check parameter bounds: |
135 |
DO I=1,5 |
136 |
IF(AL(I).GT.ALMAX(I).OR.AL(I).LT.ALMIN(I))THEN |
137 |
if(DEBUG)then |
138 |
PRINT*,' **WARNING** ' |
139 |
PRINT*,'MINI_2 ==> AL(',I,') out of range' |
140 |
PRINT*,' value: ',AL(I), |
141 |
$ ' limits: ',ALMIN(I),ALMAX(I) |
142 |
print*,'istep ',istep |
143 |
endif |
144 |
IFAIL=1 |
145 |
RETURN |
146 |
ENDIF |
147 |
ENDDO |
148 |
* new estimate of chi^2: |
149 |
JFAIL=0 !error flag |
150 |
CALL CHISQ(IFLAG,JFAIL) !chi^2 and its derivatives |
151 |
IF(JFAIL.NE.0) THEN |
152 |
IFAIL=1 |
153 |
if(DEBUG) |
154 |
$ PRINT *,'mini_2: ===> error on CHISQ computation !!!' |
155 |
RETURN |
156 |
ENDIF |
157 |
* check number of steps: |
158 |
IF(ISTEP.gt.ISTEPMAX) then |
159 |
IFAIL=1 |
160 |
if(DEBUG) |
161 |
$ PRINT *,'mini_2: WARNING ===> ISTEP.GT.ISTEPMAX=',ISTEPMAX |
162 |
goto 11 |
163 |
endif |
164 |
* --------------------------------------------- |
165 |
* evaluate deflection tolerance on the basis of |
166 |
* estimated deflection |
167 |
* --------------------------------------------- |
168 |
ALTOL(5)=DSQRT(DELETA1**2+DELETA2**2*AL(5)**2)/FACT |
169 |
*---- check tolerances: |
170 |
DO I=1,5 |
171 |
IF(ABS(DAL(I)).GT.ALTOL(I))GOTO 10 !>>>> new step! |
172 |
ENDDO |
173 |
|
174 |
|
175 |
* ------------------------------------ |
176 |
* Number of Degree Of Freedom |
177 |
ndof=0 |
178 |
do ip=1,nplanes |
179 |
ndof=ndof |
180 |
$ +int(xgood(ip)) |
181 |
$ +int(ygood(ip)) |
182 |
enddo |
183 |
ndof=ndof-5 |
184 |
* ------------------------------------ |
185 |
* Reduced chi^2 |
186 |
CHI2 = CHI2/dble(ndof) |
187 |
|
188 |
|
189 |
11 CONTINUE |
190 |
|
191 |
101 CONTINUE |
192 |
|
193 |
c print*,'END MINI' |
194 |
|
195 |
RETURN |
196 |
END |
197 |
|
198 |
****************************************************************************** |
199 |
* |
200 |
* routine to compute chi^2 and its derivatives |
201 |
* |
202 |
* |
203 |
* (modified in respect to the previous one in order to include |
204 |
* single clusters. In this case the residual is evaluated by |
205 |
* calculating the distance between the track intersection and the |
206 |
* segment AB associated to the single cluster) |
207 |
* |
208 |
****************************************************************************** |
209 |
|
210 |
SUBROUTINE CHISQ(IFLAG,IFAIL) |
211 |
|
212 |
IMPLICIT DOUBLE PRECISION (A-H,O-Z) |
213 |
|
214 |
include 'commontracker.f' !tracker general common |
215 |
include 'common_mini_2.f' !common for the tracking procedure |
216 |
|
217 |
DIMENSION XV2(nplanes),YV2(nplanes),XV1(nplanes),YV1(nplanes) |
218 |
$ ,XV0(nplanes),YV0(nplanes) |
219 |
DIMENSION AL_P(5) |
220 |
* |
221 |
* chi^2 computation |
222 |
* |
223 |
DO I=1,5 |
224 |
AL_P(I)=AL(I) |
225 |
ENDDO |
226 |
JFAIL=0 !error flag |
227 |
CALL POSXYZ(AL_P,JFAIL) !track intersection with tracking planes |
228 |
IF(JFAIL.NE.0) THEN |
229 |
PRINT *,'CHISQ ==> error from tracking routine POSXYZ !!' |
230 |
IFAIL=1 |
231 |
RETURN |
232 |
ENDIF |
233 |
DO I=1,nplanes |
234 |
XV0(I)=XV(I) |
235 |
YV0(I)=YV(I) |
236 |
ENDDO |
237 |
* ------------------------------------------------ |
238 |
c$$$ CHI2=0. |
239 |
c$$$ DO I=1,nplanes |
240 |
c$$$ CHI2=CHI2 |
241 |
c$$$ + +(XV(I)-XM(I))**2/RESX(i)**2 *XGOOD(I)*YGOOD(I) |
242 |
c$$$ + +(YV(I)-YM(I))**2/RESY(i)**2 *YGOOD(I)*XGOOD(I) |
243 |
c$$$ ENDDO |
244 |
* --------------------------------------------------------- |
245 |
* For planes with only a X or Y-cl included, instead of |
246 |
* a X-Y couple, the residual for chi^2 calculation is |
247 |
* evaluated by finding the point x-y, along the segment AB, |
248 |
* closest to the track. |
249 |
* The X or Y coordinate, respectivelly for X and Y-cl, is |
250 |
* then assigned to XM or YM, which is then considered the |
251 |
* measured position of the cluster. |
252 |
* --------------------------------------------------------- |
253 |
CHI2=0. |
254 |
DO I=1,nplanes |
255 |
IF(XGOOD(I).EQ.1.AND.YGOOD(I).EQ.0)THEN !X-cl |
256 |
BETA = (XM_B(I)-XM_A(I))/(YM_B(I)-YM_A(I)) |
257 |
ALFA = XM_A(I) - BETA * YM_A(I) |
258 |
YM(I) = ( YV(I) + BETA*XV(I) - BETA*ALFA )/(1+BETA**2) |
259 |
if(YM(I).lt.dmin1(YM_A(I),YM_B(I))) |
260 |
$ YM(I)=dmin1(YM_A(I),YM_B(I)) |
261 |
if(YM(I).gt.dmax1(YM_A(I),YM_B(I))) |
262 |
$ YM(I)=dmax1(YM_A(I),YM_B(I)) |
263 |
XM(I) = ALFA + BETA * YM(I) !<<<< measured coordinates |
264 |
ELSEIF(XGOOD(I).EQ.0.AND.YGOOD(I).EQ.1)THEN !Y-cl |
265 |
BETA = (YM_B(I)-YM_A(I))/(XM_B(I)-XM_A(I)) |
266 |
ALFA = YM_A(I) - BETA * XM_A(I) |
267 |
XM(I) = ( XV(I) + BETA*YV(I) - BETA*ALFA )/(1+BETA**2) |
268 |
if(XM(I).lt.dmin1(XM_A(I),XM_B(I))) |
269 |
$ XM(I)=dmin1(XM_A(I),XM_B(I)) |
270 |
if(XM(I).gt.dmax1(XM_A(I),XM_B(I))) |
271 |
$ XM(I)=dmax1(XM_A(I),XM_B(I)) |
272 |
YM(I) = ALFA + BETA * XM(I) !<<<< measured coordinates |
273 |
ENDIF |
274 |
CHI2=CHI2 |
275 |
+ +(XV(I)-XM(I))**2/RESX(i)**2 *( XGOOD(I)*YGOOD(I) ) |
276 |
+ +(YV(I)-YM(I))**2/RESY(i)**2 *( YGOOD(I)*XGOOD(I) ) |
277 |
+ +((XV(I)-XM(I))**2+(YV(I)-YM(I))**2)/RESX(i)**2 |
278 |
+ *( XGOOD(I)*(1-YGOOD(I)) ) |
279 |
+ +((XV(I)-XM(I))**2+(YV(I)-YM(I))**2)/RESY(i)**2 |
280 |
+ *( (1-XGOOD(I))*YGOOD(I) ) |
281 |
ENDDO |
282 |
* ------------------------------------------------ |
283 |
* |
284 |
* calculation of derivatives (dX/dAL_fa and dY/dAL_fa) |
285 |
* |
286 |
* ////////////////////////////////////////////////// |
287 |
* METHOD 1 -- incremental ratios |
288 |
* ////////////////////////////////////////////////// |
289 |
|
290 |
IF(IFLAG.EQ.1) THEN |
291 |
|
292 |
DO J=1,5 |
293 |
DO JJ=1,5 |
294 |
AL_P(JJ)=AL(JJ) |
295 |
ENDDO |
296 |
AL_P(J)=AL_P(J)+STEPAL(J)/2. |
297 |
JFAIL=0 |
298 |
CALL POSXYZ(AL_P,JFAIL) |
299 |
IF(JFAIL.NE.0) THEN |
300 |
PRINT *,'CHISQ ==> error from tracking routine POSXYZ !!' |
301 |
IFAIL=1 |
302 |
RETURN |
303 |
ENDIF |
304 |
DO I=1,nplanes |
305 |
XV2(I)=XV(I) |
306 |
YV2(I)=YV(I) |
307 |
ENDDO |
308 |
AL_P(J)=AL_P(J)-STEPAL(J) |
309 |
JFAIL=0 |
310 |
CALL POSXYZ(AL_P,JFAIL) |
311 |
IF(JFAIL.NE.0) THEN |
312 |
PRINT *,'CHISQ ==> error from tracking routine POSXYZ !!' |
313 |
IFAIL=1 |
314 |
RETURN |
315 |
ENDIF |
316 |
DO I=1,nplanes |
317 |
XV1(I)=XV(I) |
318 |
YV1(I)=YV(I) |
319 |
ENDDO |
320 |
DO I=1,nplanes |
321 |
DXDAL(I,J)=(XV2(I)-XV1(I))/STEPAL(J) |
322 |
DYDAL(I,J)=(YV2(I)-YV1(I))/STEPAL(J) |
323 |
ENDDO |
324 |
ENDDO |
325 |
|
326 |
ENDIF |
327 |
|
328 |
* ////////////////////////////////////////////////// |
329 |
* METHOD 2 -- Bob Golden |
330 |
* ////////////////////////////////////////////////// |
331 |
|
332 |
IF(IFLAG.EQ.2) THEN |
333 |
|
334 |
DO I=1,nplanes |
335 |
DXDAL(I,1)=1. |
336 |
DYDAL(I,1)=0. |
337 |
|
338 |
DXDAL(I,2)=0. |
339 |
DYDAL(I,2)=1. |
340 |
|
341 |
COSTHE=DSQRT(1.-AL(3)**2) |
342 |
IF(COSTHE.EQ.0.) THEN |
343 |
PRINT *,'=== WARNING ===> COSTHE=0' |
344 |
STOP |
345 |
ENDIF |
346 |
|
347 |
DXDAL(I,3)=(ZINI-ZM(I))*DCOS(AL(4))/COSTHE**3 |
348 |
DYDAL(I,3)=(ZINI-ZM(I))*DSIN(AL(4))/COSTHE**3 |
349 |
|
350 |
DXDAL(I,4)=-AL(3)*(ZINI-ZM(I))*DSIN(AL(4))/COSTHE |
351 |
DYDAL(I,4)=AL(3)*(ZINI-ZM(I))*DCOS(AL(4))/COSTHE |
352 |
|
353 |
IF(AL(5).NE.0.) THEN |
354 |
DXDAL(I,5)= |
355 |
+ (XV(I)-(AL(1)+AL(3)/COSTHE*(ZINI-ZM(I)) |
356 |
+ *DCOS(AL(4))))/AL(5) |
357 |
DYDAL(I,5)= |
358 |
+ (YV(I)-(AL(2)+AL(3)/COSTHE*(ZINI-ZM(I)) |
359 |
+ *DSIN(AL(4))))/AL(5) |
360 |
ELSE |
361 |
DXDAL(I,5)=100.*( 0.25 *0.3*0.4*(0.01*(ZINI-ZM(I)))**2 ) |
362 |
DYDAL(I,5)=0. |
363 |
ENDIF |
364 |
|
365 |
ENDDO |
366 |
ENDIF |
367 |
* |
368 |
* x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x |
369 |
* >>> CHI2D evaluation |
370 |
* |
371 |
DO J=1,5 |
372 |
CHI2D(J)=0. |
373 |
DO I=1,nplanes |
374 |
CHI2D(J)=CHI2D(J) |
375 |
+ +2.*(XV0(I)-XM(I))/RESX(i)**2*DXDAL(I,J) *XGOOD(I) |
376 |
+ +2.*(YV0(I)-YM(I))/RESY(i)**2*DYDAL(I,J) *YGOOD(I) |
377 |
ENDDO |
378 |
ENDDO |
379 |
* |
380 |
* >>> CHI2DD evaluation |
381 |
* |
382 |
DO I=1,5 |
383 |
DO J=1,5 |
384 |
CHI2DD(I,J)=0. |
385 |
DO K=1,nplanes |
386 |
CHI2DD(I,J)=CHI2DD(I,J) |
387 |
+ +2.*DXDAL(K,I)*DXDAL(K,J)/RESX(k)**2 *XGOOD(K) |
388 |
+ +2.*DYDAL(K,I)*DYDAL(K,J)/RESY(k)**2 *YGOOD(K) |
389 |
ENDDO |
390 |
ENDDO |
391 |
ENDDO |
392 |
* x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x |
393 |
|
394 |
RETURN |
395 |
END |
396 |
|
397 |
|
398 |
***************************************************************** |
399 |
* |
400 |
* Routine to compute the track intersection points |
401 |
* on the tracking-system planes, given the track parameters |
402 |
* |
403 |
* The routine is based on GRKUTA, which computes the |
404 |
* trajectory of a charged particle in a magnetic field |
405 |
* by solving the equatins of motion with Runge-Kuta method. |
406 |
* |
407 |
* Variables that have to be assigned when the subroutine |
408 |
* is called are: |
409 |
* |
410 |
* ZM(1,NPLANES) ----> z coordinates of the planes |
411 |
* AL_P(1,5) ----> track-parameter vector |
412 |
* |
413 |
* ----------------------------------------------------------- |
414 |
* NB !!! |
415 |
* The routine works properly only if the |
416 |
* planes are numbered in descending order starting from the |
417 |
* reference plane (ZINI) |
418 |
* ----------------------------------------------------------- |
419 |
* |
420 |
***************************************************************** |
421 |
|
422 |
SUBROUTINE POSXYZ(AL_P,IFAIL) |
423 |
|
424 |
IMPLICIT DOUBLE PRECISION (A-H,O-Z) |
425 |
|
426 |
include 'commontracker.f' !tracker general common |
427 |
include 'common_mini_2.f' !common for the tracking procedure |
428 |
c |
429 |
DIMENSION AL_P(5) |
430 |
* |
431 |
DO I=1,nplanes |
432 |
ZV(I)=ZM(I) ! |
433 |
ENDDO |
434 |
* |
435 |
* set parameters for GRKUTA |
436 |
* |
437 |
IF(AL_P(5).NE.0) CHARGE=AL_P(5)/DABS(AL_P(5)) |
438 |
IF(AL_P(5).EQ.0) CHARGE=1. |
439 |
VOUT(1)=AL_P(1) |
440 |
VOUT(2)=AL_P(2) |
441 |
VOUT(3)=ZINI ! DBLE(Z0)-DBLE(ZSPEC) |
442 |
VOUT(4)=AL_P(3)*DCOS(AL_P(4)) |
443 |
VOUT(5)=AL_P(3)*DSIN(AL_P(4)) |
444 |
VOUT(6)=-1.*DSQRT(1.-AL_P(3)**2) |
445 |
IF(AL_P(5).NE.0.) VOUT(7)=DABS(1./AL_P(5)) |
446 |
IF(AL_P(5).EQ.0.) VOUT(7)=1.E8 |
447 |
DO I=1,nplanes |
448 |
step=vout(3)-zv(i) |
449 |
10 DO J=1,7 |
450 |
VECT(J)=VOUT(J) |
451 |
VECTINI(J)=VOUT(J) |
452 |
ENDDO |
453 |
11 continue |
454 |
CALL GRKUTA(CHARGE,STEP,VECT,VOUT) |
455 |
IF(VOUT(3).GT.VECT(3)) THEN |
456 |
IFAIL=1 |
457 |
if(WARNING) |
458 |
$ PRINT *,'posxy (grkuta): WARNING ===> backward track!!' |
459 |
if(WARNING)print*,'charge',charge |
460 |
if(WARNING)print*,'vect',vect |
461 |
if(WARNING)print*,'vout',vout |
462 |
if(WARNING)print*,'step',step |
463 |
RETURN |
464 |
ENDIF |
465 |
Z=VOUT(3) |
466 |
IF(Z.LE.ZM(I)+TOLL.AND.Z.GE.ZM(I)-TOLL) GOTO 100 |
467 |
IF(Z.GT.ZM(I)+TOLL) GOTO 10 |
468 |
IF(Z.LE.ZM(I)-TOLL) THEN |
469 |
STEP=STEP*(ZM(I)-VECT(3))/(Z-VECT(3)) |
470 |
DO J=1,7 |
471 |
VECT(J)=VECTINI(J) |
472 |
ENDDO |
473 |
GOTO 11 |
474 |
ENDIF |
475 |
|
476 |
* ----------------------------------------------- |
477 |
* evaluate track coordinates |
478 |
100 XV(I)=VOUT(1) |
479 |
YV(I)=VOUT(2) |
480 |
ZV(I)=VOUT(3) |
481 |
AXV(I)=DATAN(VOUT(4)/VOUT(6))*180./ACOS(-1.) |
482 |
AYV(I)=DATAN(VOUT(5)/VOUT(6))*180./ACOS(-1.) |
483 |
* ----------------------------------------------- |
484 |
|
485 |
ENDDO |
486 |
|
487 |
RETURN |
488 |
END |
489 |
|
490 |
|
491 |
|
492 |
|
493 |
|
494 |
* ********************************************************** |
495 |
* Some initialization routines |
496 |
* ********************************************************** |
497 |
|
498 |
* ---------------------------------------------------------- |
499 |
* Routine to initialize COMMON/TRACK/ |
500 |
* |
501 |
subroutine track_init |
502 |
|
503 |
IMPLICIT DOUBLE PRECISION (A-H,O-Z) |
504 |
|
505 |
include 'commontracker.f' !tracker general common |
506 |
include 'common_mini_2.f' !common for the tracking procedure |
507 |
include 'common_mech.f' |
508 |
|
509 |
do i=1,5 |
510 |
AL(i) = 0. |
511 |
enddo |
512 |
|
513 |
do ip=1,NPLANES |
514 |
ZM(IP) = fitz(nplanes-ip+1) !init to mech. position |
515 |
XM(IP) = -100. !0. |
516 |
YM(IP) = -100. !0. |
517 |
XM_A(IP) = -100. !0. |
518 |
YM_A(IP) = -100. !0. |
519 |
c ZM_A(IP) = 0 |
520 |
XM_B(IP) = -100. !0. |
521 |
YM_B(IP) = -100. !0. |
522 |
c ZM_B(IP) = 0 |
523 |
RESX(IP) = 1000. !3.d-4 |
524 |
RESY(IP) = 1000. !12.d-4 |
525 |
XGOOD(IP) = 0 |
526 |
YGOOD(IP) = 0 |
527 |
enddo |
528 |
|
529 |
return |
530 |
end |