| 1 |
************************************************************************ |
| 2 |
* |
| 3 |
* subroutine to evaluate the vector alfa (AL) |
| 4 |
* which minimizes CHI^2 |
| 5 |
* |
| 6 |
* - modified from mini.f in order to call differente chi^2 routine. |
| 7 |
* The new one includes also single clusters: in this case |
| 8 |
* the residual is defined as the distance between the track and the |
| 9 |
* segment AB associated to the single cluster. |
| 10 |
* |
| 11 |
* |
| 12 |
************************************************************************ |
| 13 |
|
| 14 |
|
| 15 |
SUBROUTINE MINI2(ISTEP,IFAIL,IPRINT) |
| 16 |
|
| 17 |
IMPLICIT DOUBLE PRECISION (A-H,O-Z) |
| 18 |
|
| 19 |
include 'commontracker.f' !tracker general common |
| 20 |
include 'common_mini_2.f' !common for the tracking procedure |
| 21 |
|
| 22 |
c logical DEBUG |
| 23 |
c common/dbg/DEBUG |
| 24 |
|
| 25 |
parameter (dinf=1.d15) !just a huge number... |
| 26 |
c------------------------------------------------------------------------ |
| 27 |
c variables used in the tracking procedure (mini and its subroutines) |
| 28 |
c |
| 29 |
c N.B.: in mini & C. (and in the following block of variables too) |
| 30 |
c the plane ordering is reversed in respect of normal |
| 31 |
c ordering, but they maintain their Z coordinates. so plane number 1 is |
| 32 |
c the first one that a particle meets, and its Z coordinate is > 0 |
| 33 |
c------------------------------------------------------------------------ |
| 34 |
DATA ZINI/23.5/ !!! ***PP*** to be changed !z coordinate of the reference plane |
| 35 |
|
| 36 |
c DATA XGOOD,YGOOD/nplanes*1.,nplanes*1./ !planes to be used in the tracking |
| 37 |
|
| 38 |
DATA STEPAL/5*1.d-7/ !alpha vector step |
| 39 |
DATA ISTEPMAX/100/ !maximum number of steps in the chi^2 minimization |
| 40 |
DATA TOLL/1.d-8/ !tolerance in reaching the next plane during |
| 41 |
* !the tracking procedure |
| 42 |
DATA STEPMAX/100./ !maximum number of steps in the trackin gprocess |
| 43 |
|
| 44 |
c DATA ALMAX/dinf,dinf,1.,dinf,dinf/ !limits on alpha vector components |
| 45 |
c DATA ALMIN/-dinf,-dinf,-1.,-dinf,-dinf/ !" |
| 46 |
DATA ALMAX/dinf,dinf,1.,dinf,dinf/ !limits on alpha vector components |
| 47 |
DATA ALMIN/-dinf,-dinf,-1.,-dinf,-dinf/ !" |
| 48 |
|
| 49 |
DIMENSION DAL(5) !increment of vector alfa |
| 50 |
DIMENSION CHI2DD_R(4,4),CHI2D_R(4) !hessiano e gradiente di chi2 |
| 51 |
|
| 52 |
c elena-------- |
| 53 |
REAL*8 AVRESX,AVRESY |
| 54 |
c elena-------- |
| 55 |
|
| 56 |
INTEGER IFLAG |
| 57 |
c-------------------------------------------------------- |
| 58 |
c IFLAG =1 ---- chi2 derivatives computed by using |
| 59 |
c incremental ratios and posxyz.f |
| 60 |
c IFLAG =2 ---- the approximation of Golden is used |
| 61 |
c (see chisq.f) |
| 62 |
c |
| 63 |
c NB: the two metods gives equivalent results BUT |
| 64 |
c method 2 is faster!! |
| 65 |
c-------------------------------------------------------- |
| 66 |
DATA IFLAG/2/ |
| 67 |
|
| 68 |
c LOGICAL TRKDEBUG,TRKVERBOSE |
| 69 |
c COMMON/TRKD/TRKDEBUG,TRKVERBOSE |
| 70 |
LOGICAL TRKDEBUG,TRKVERBOSE |
| 71 |
COMMON/TRKD/TRKDEBUG,TRKVERBOSE |
| 72 |
|
| 73 |
IF(IPRINT.EQ.1) THEN |
| 74 |
TRKVERBOSE = .TRUE. |
| 75 |
TRKDEBUG = .FALSE. |
| 76 |
ELSEIF(IPRINT.EQ.2)THEN |
| 77 |
TRKVERBOSE = .TRUE. |
| 78 |
TRKDEBUG = .TRUE. |
| 79 |
ELSE |
| 80 |
TRKVERBOSE = .FALSE. |
| 81 |
TRKDEBUG = .FALSE. |
| 82 |
ENDIF |
| 83 |
|
| 84 |
* ---------------------------------------------------------- |
| 85 |
* evaluate average spatial resolution |
| 86 |
* ---------------------------------------------------------- |
| 87 |
AVRESX = RESXAV |
| 88 |
AVRESY = RESYAV |
| 89 |
DO IP=1,6 |
| 90 |
IF( XGOOD(IP).EQ.1 )THEN |
| 91 |
NX=NX+1 |
| 92 |
AVRESX=AVRESX+RESX(IP) |
| 93 |
ENDIF |
| 94 |
IF(NX.NE.0)AVRESX=AVRESX/NX |
| 95 |
IF( YGOOD(IP).EQ.1 )THEN |
| 96 |
NY=NY+1 |
| 97 |
AVRESY=AVRESY+RESY(IP) |
| 98 |
ENDIF |
| 99 |
IF(NX.NE.0)AVRESY=AVRESY/NY |
| 100 |
ENDDO |
| 101 |
|
| 102 |
* ---------------------------------------------------------- |
| 103 |
* define ALTOL(5) ---> tolerances on state vector |
| 104 |
* |
| 105 |
* ---------------------------------------------------------- |
| 106 |
* changed in order to evaluate energy-dependent |
| 107 |
* tolerances on all 5 parameters |
| 108 |
FACT=100. !scale factor to define tolerance on alfa |
| 109 |
c deflection error (see PDG) |
| 110 |
DELETA1 = 0.01/0.3/0.4/0.4451**2*SQRT(720./(6.+4.)) |
| 111 |
DELETA2 = 0.016/0.3/0.4/0.4451*SQRT(0.4451/9.36) |
| 112 |
c$$$ ALTOL(1) = AVRESX/FACT !al(1) = x |
| 113 |
c$$$ ALTOL(2) = AVRESY/FACT !al(2) = y |
| 114 |
c$$$ ALTOL(3) = DSQRT(AVRESX**2 !al(3)=sin(theta) |
| 115 |
c$$$ $ +AVRESY**2)/44.51/FACT |
| 116 |
c$$$ ALTOL(4) = ALTOL(3) !al(4)=phi |
| 117 |
c deflection error (see PDG) |
| 118 |
c$$$ DELETA1 = 0.01*AVRESX/0.3/0.4/0.4451**2*SQRT(720./(6.+4.)) |
| 119 |
c$$$ DELETA2 = 0.016/0.3/0.4/0.4451*SQRT(0.4451/9.36) |
| 120 |
* ---------------------------------------------------------- |
| 121 |
* |
| 122 |
ISTEP=0 !num. steps to minimize chi^2 |
| 123 |
JFAIL=0 !error flag |
| 124 |
CHI2=0 |
| 125 |
|
| 126 |
if(TRKDEBUG) print*,'guess: ',al |
| 127 |
if(TRKDEBUG) print*,'mini2: step ',istep,chi2,1./AL(5) |
| 128 |
|
| 129 |
* |
| 130 |
* ----------------------- |
| 131 |
* START MINIMIZATION LOOP |
| 132 |
* ----------------------- |
| 133 |
10 ISTEP=ISTEP+1 !<<<<<<<<<<<<<< NEW STEP !! |
| 134 |
|
| 135 |
CALL CHISQ(IFLAG,JFAIL) !chi^2 and its derivatives |
| 136 |
IF(JFAIL.NE.0) THEN |
| 137 |
IFAIL=1 |
| 138 |
CHI2=-9999. |
| 139 |
if(TRKVERBOSE) |
| 140 |
$ PRINT *,'*** ERROR in mini *** wrong CHISQ' |
| 141 |
RETURN |
| 142 |
ENDIF |
| 143 |
|
| 144 |
COST=1e-5 |
| 145 |
DO I=1,5 |
| 146 |
DO J=1,5 |
| 147 |
CHI2DD(I,J)=CHI2DD(I,J)*COST |
| 148 |
ENDDO |
| 149 |
CHI2D(I)=CHI2D(I)*COST |
| 150 |
ENDDO |
| 151 |
|
| 152 |
IF(PFIXED.EQ.0.) THEN |
| 153 |
|
| 154 |
*------------------------------------------------------------* |
| 155 |
* track fitting with FREE deflection |
| 156 |
*------------------------------------------------------------* |
| 157 |
CALL DSFACT(5,CHI2DD,5,IFA,DET,JFA) !CHI2DD matrix determinant |
| 158 |
IF(IFA.NE.0) THEN !not positive-defined |
| 159 |
if(TRKVERBOSE)then |
| 160 |
PRINT *, |
| 161 |
$ '*** ERROR in mini ***'// |
| 162 |
$ 'on matrix inversion (not pos-def)' |
| 163 |
$ ,DET |
| 164 |
endif |
| 165 |
IF(CHI2.EQ.0) CHI2=-9999. |
| 166 |
IF(CHI2.GT.0) CHI2=-CHI2 |
| 167 |
IFAIL=1 |
| 168 |
RETURN |
| 169 |
ENDIF |
| 170 |
CALL DSFINV(5,CHI2DD,5) !CHI2DD matrix inversion |
| 171 |
* ******************************************* |
| 172 |
* find new value of AL-pha |
| 173 |
* ******************************************* |
| 174 |
DO I=1,5 |
| 175 |
DAL(I)=0. |
| 176 |
DO J=1,5 |
| 177 |
DAL(I)=DAL(I)-CHI2DD(I,J)*CHI2D(J) |
| 178 |
COV(I,J)=2.*COST*CHI2DD(I,J) |
| 179 |
ENDDO |
| 180 |
ENDDO |
| 181 |
DO I=1,5 |
| 182 |
AL(I)=AL(I)+DAL(I) |
| 183 |
ENDDO |
| 184 |
*------------------------------------------------------------* |
| 185 |
* track fitting with FIXED deflection |
| 186 |
*------------------------------------------------------------* |
| 187 |
ELSE |
| 188 |
AL(5)=1./PFIXED |
| 189 |
DO I=1,4 |
| 190 |
CHI2D_R(I)=CHI2D(I) |
| 191 |
DO J=1,4 |
| 192 |
CHI2DD_R(I,J)=CHI2DD(I,J) |
| 193 |
ENDDO |
| 194 |
ENDDO |
| 195 |
CALL DSFACT(4,CHI2DD_R,4,IFA,DET,JFA) |
| 196 |
IF(IFA.NE.0) THEN |
| 197 |
if(TRKVERBOSE)then |
| 198 |
PRINT *, |
| 199 |
$ '*** ERROR in mini ***'// |
| 200 |
$ 'on matrix inversion (not pos-def)' |
| 201 |
$ ,DET |
| 202 |
endif |
| 203 |
IF(CHI2.EQ.0) CHI2=-9999. |
| 204 |
IF(CHI2.GT.0) CHI2=-CHI2 |
| 205 |
IFAIL=1 |
| 206 |
RETURN |
| 207 |
ENDIF |
| 208 |
CALL DSFINV(4,CHI2DD_R,4) |
| 209 |
* ******************************************* |
| 210 |
* find new value of AL-pha |
| 211 |
* ******************************************* |
| 212 |
DO I=1,4 |
| 213 |
DAL(I)=0. |
| 214 |
DO J=1,4 |
| 215 |
DAL(I)=DAL(I)-CHI2DD_R(I,J)*CHI2D_R(J) |
| 216 |
COV(I,J)=2.*COST*CHI2DD_R(I,J) |
| 217 |
ENDDO |
| 218 |
ENDDO |
| 219 |
DAL(5)=0. |
| 220 |
DO I=1,4 |
| 221 |
AL(I)=AL(I)+DAL(I) |
| 222 |
ENDDO |
| 223 |
ENDIF |
| 224 |
|
| 225 |
if(TRKDEBUG) print*,'mini2: step ',istep,chi2,1./AL(5) |
| 226 |
|
| 227 |
*------------------------------------------------------------* |
| 228 |
* ---------------------------------------------------- * |
| 229 |
*------------------------------------------------------------* |
| 230 |
* check parameter bounds: |
| 231 |
*------------------------------------------------------------* |
| 232 |
DO I=1,5 |
| 233 |
IF(AL(I).GT.ALMAX(I).OR.AL(I).LT.ALMIN(I))THEN |
| 234 |
if(TRKVERBOSE)then |
| 235 |
PRINT*,' *** WARNING in mini *** ' |
| 236 |
PRINT*,'MINI_2 ==> AL(',I,') out of range' |
| 237 |
PRINT*,' value: ',AL(I), |
| 238 |
$ ' limits: ',ALMIN(I),ALMAX(I) |
| 239 |
print*,'istep ',istep |
| 240 |
endif |
| 241 |
IF(CHI2.EQ.0) CHI2=-9999. |
| 242 |
IF(CHI2.GT.0) CHI2=-CHI2 |
| 243 |
IFAIL=1 |
| 244 |
RETURN |
| 245 |
ENDIF |
| 246 |
ENDDO |
| 247 |
*------------------------------------------------------------* |
| 248 |
* check number of steps: |
| 249 |
*------------------------------------------------------------* |
| 250 |
IF(ISTEP.ge.ISTEPMAX) then |
| 251 |
c$$$ IFAIL=1 |
| 252 |
c$$$ if(TRKVERBOSE) |
| 253 |
c$$$ $ PRINT *,'*** WARNING in mini *** ISTEP.GT.ISTEPMAX=', |
| 254 |
c$$$ $ ISTEPMAX |
| 255 |
goto 11 |
| 256 |
endif |
| 257 |
*------------------------------------------------------------* |
| 258 |
* --------------------------------------------- |
| 259 |
* evaluate deflection tolerance on the basis of |
| 260 |
* estimated deflection |
| 261 |
* --------------------------------------------- |
| 262 |
*------------------------------------------------------------* |
| 263 |
c$$$ ALTOL(5) = DSQRT(DELETA1**2+DELETA2**2*AL(5)**2)/FACT |
| 264 |
ALTOL(5) = DSQRT((DELETA1*AVRESX)**2+DELETA2**2*AL(5)**2)/FACT |
| 265 |
ALTOL(1) = ALTOL(5)/DELETA1 |
| 266 |
ALTOL(2) = ALTOL(1) |
| 267 |
ALTOL(3) = DSQRT(ALTOL(1)**2+ALTOL(2)**2)/44.51 |
| 268 |
ALTOL(4) = ALTOL(3) |
| 269 |
|
| 270 |
*---- check tolerances: |
| 271 |
c$$$ DO I=1,5 |
| 272 |
c$$$ if(TRKVERBOSE)print*,i,' -- ',DAL(I),ALTOL(I) !>>>> new step! |
| 273 |
c$$$ ENDDO |
| 274 |
c$$$ print*,'chi2 -- ',DCHI2 |
| 275 |
|
| 276 |
IF(ISTEP.LT.3) GOTO 10 ! ***PP*** |
| 277 |
DO I=1,5 |
| 278 |
IF(ABS(DAL(I)).GT.ALTOL(I))GOTO 10 !>>>> new step! |
| 279 |
ENDDO |
| 280 |
|
| 281 |
* new estimate of chi^2: |
| 282 |
JFAIL=0 !error flag |
| 283 |
CALL CHISQ(IFLAG,JFAIL) !chi^2 and its derivatives |
| 284 |
IF(JFAIL.NE.0) THEN |
| 285 |
IFAIL=1 |
| 286 |
if(TRKVERBOSE)THEN |
| 287 |
CHI2=-9999. |
| 288 |
if(TRKVERBOSE) |
| 289 |
$ PRINT *,'*** ERROR in mini *** wrong CHISQ' |
| 290 |
ENDIF |
| 291 |
RETURN |
| 292 |
ENDIF |
| 293 |
COST=1e-7 |
| 294 |
DO I=1,5 |
| 295 |
DO J=1,5 |
| 296 |
CHI2DD(I,J)=CHI2DD(I,J)*COST |
| 297 |
ENDDO |
| 298 |
CHI2D(I)=CHI2D(I)*COST |
| 299 |
ENDDO |
| 300 |
IF(PFIXED.EQ.0.) THEN |
| 301 |
CALL DSFACT(5,CHI2DD,5,IFA,DET,JFA) !CHI2DD matrix determinant |
| 302 |
IF(IFA.NE.0) THEN !not positive-defined |
| 303 |
if(TRKVERBOSE)then |
| 304 |
PRINT *, |
| 305 |
$ '*** ERROR in mini ***'// |
| 306 |
$ 'on matrix inversion (not pos-def)' |
| 307 |
$ ,DET |
| 308 |
endif |
| 309 |
IF(CHI2.EQ.0) CHI2=-9999. |
| 310 |
IF(CHI2.GT.0) CHI2=-CHI2 |
| 311 |
IFAIL=1 |
| 312 |
RETURN |
| 313 |
ENDIF |
| 314 |
CALL DSFINV(5,CHI2DD,5) !CHI2DD matrix inversion |
| 315 |
DO I=1,5 |
| 316 |
DAL(I)=0. |
| 317 |
DO J=1,5 |
| 318 |
COV(I,J)=2.*COST*CHI2DD(I,J) |
| 319 |
ENDDO |
| 320 |
ENDDO |
| 321 |
ELSE |
| 322 |
DO I=1,4 |
| 323 |
CHI2D_R(I)=CHI2D(I) |
| 324 |
DO J=1,4 |
| 325 |
CHI2DD_R(I,J)=CHI2DD(I,J) |
| 326 |
ENDDO |
| 327 |
ENDDO |
| 328 |
CALL DSFACT(4,CHI2DD_R,4,IFA,DET,JFA) |
| 329 |
IF(IFA.NE.0) THEN |
| 330 |
if(TRKVERBOSE)then |
| 331 |
PRINT *, |
| 332 |
$ '*** ERROR in mini ***'// |
| 333 |
$ 'on matrix inversion (not pos-def)' |
| 334 |
$ ,DET |
| 335 |
endif |
| 336 |
IF(CHI2.EQ.0) CHI2=-9999. |
| 337 |
IF(CHI2.GT.0) CHI2=-CHI2 |
| 338 |
IFAIL=1 |
| 339 |
RETURN |
| 340 |
ENDIF |
| 341 |
CALL DSFINV(4,CHI2DD_R,4) |
| 342 |
DO I=1,4 |
| 343 |
DAL(I)=0. |
| 344 |
DO J=1,4 |
| 345 |
COV(I,J)=2.*COST*CHI2DD_R(I,J) |
| 346 |
ENDDO |
| 347 |
ENDDO |
| 348 |
ENDIF |
| 349 |
***************************** |
| 350 |
|
| 351 |
* ------------------------------------ |
| 352 |
* Number of Degree Of Freedom |
| 353 |
ndof=0 |
| 354 |
do ip=1,nplanes |
| 355 |
ndof=ndof |
| 356 |
$ +int(xgood(ip)) |
| 357 |
$ +int(ygood(ip)) |
| 358 |
enddo |
| 359 |
if(pfixed.eq.0.) ndof=ndof-5 ! ***PP*** |
| 360 |
if(pfixed.ne.0.) ndof=ndof-4 ! ***PP*** |
| 361 |
if(ndof.le.0.) then |
| 362 |
ndof = 1 |
| 363 |
if(TRKVERBOSE) |
| 364 |
$ print*,'*** WARNING *** in mini n.dof = 0 (set to 1)' |
| 365 |
endif |
| 366 |
|
| 367 |
if(TRKDEBUG) print*,'mini2: -ok- ',istep,chi2,1./AL(5) |
| 368 |
|
| 369 |
* ------------------------------------ |
| 370 |
* Reduced chi^2 |
| 371 |
CHI2 = CHI2/dble(ndof) |
| 372 |
|
| 373 |
c print*,'mini2: chi2 ',chi2 |
| 374 |
|
| 375 |
11 CONTINUE |
| 376 |
|
| 377 |
NSTEP=ISTEP ! ***PP*** |
| 378 |
|
| 379 |
RETURN |
| 380 |
END |
| 381 |
|
| 382 |
****************************************************************************** |
| 383 |
* |
| 384 |
* routine to compute chi^2 and its derivatives |
| 385 |
* |
| 386 |
* |
| 387 |
* (modified in respect to the previous one in order to include |
| 388 |
* single clusters. In this case the residual is evaluated by |
| 389 |
* calculating the distance between the track intersection and the |
| 390 |
* segment AB associated to the single cluster) |
| 391 |
* |
| 392 |
****************************************************************************** |
| 393 |
|
| 394 |
SUBROUTINE CHISQ(IFLAG,IFAIL) |
| 395 |
|
| 396 |
IMPLICIT DOUBLE PRECISION (A-H,O-Z) |
| 397 |
|
| 398 |
include 'commontracker.f' !tracker general common |
| 399 |
include 'common_mini_2.f' !common for the tracking procedure |
| 400 |
|
| 401 |
DIMENSION XV2(nplanes),YV2(nplanes),XV1(nplanes),YV1(nplanes) |
| 402 |
$ ,XV0(nplanes),YV0(nplanes) |
| 403 |
DIMENSION AL_P(5) |
| 404 |
|
| 405 |
c LOGICAL TRKVERBOSE |
| 406 |
c COMMON/TRKD/TRKVERBOSE |
| 407 |
LOGICAL TRKDEBUG,TRKVERBOSE |
| 408 |
COMMON/TRKD/TRKDEBUG,TRKVERBOSE |
| 409 |
* |
| 410 |
* chi^2 computation |
| 411 |
* |
| 412 |
DO I=1,5 |
| 413 |
AL_P(I)=AL(I) |
| 414 |
ENDDO |
| 415 |
JFAIL=0 !error flag |
| 416 |
CALL POSXYZ(AL_P,JFAIL) !track intersection with tracking planes |
| 417 |
IF(JFAIL.NE.0) THEN |
| 418 |
IF(TRKVERBOSE) |
| 419 |
$ PRINT *,'CHISQ ==> error from trk routine POSXYZ !!' |
| 420 |
IFAIL=1 |
| 421 |
RETURN |
| 422 |
ENDIF |
| 423 |
DO I=1,nplanes |
| 424 |
XV0(I)=XV(I) |
| 425 |
YV0(I)=YV(I) |
| 426 |
ENDDO |
| 427 |
* ------------------------------------------------ |
| 428 |
c$$$ CHI2=0. |
| 429 |
c$$$ DO I=1,nplanes |
| 430 |
c$$$ CHI2=CHI2 |
| 431 |
c$$$ + +(XV(I)-XM(I))**2/RESX(i)**2 *XGOOD(I)*YGOOD(I) |
| 432 |
c$$$ + +(YV(I)-YM(I))**2/RESY(i)**2 *YGOOD(I)*XGOOD(I) |
| 433 |
c$$$ ENDDO |
| 434 |
* --------------------------------------------------------- |
| 435 |
* For planes with only a X or Y-cl included, instead of |
| 436 |
* a X-Y couple, the residual for chi^2 calculation is |
| 437 |
* evaluated by finding the point x-y, along the segment AB, |
| 438 |
* closest to the track. |
| 439 |
* The X or Y coordinate, respectivelly for X and Y-cl, is |
| 440 |
* then assigned to XM or YM, which is then considered the |
| 441 |
* measured position of the cluster. |
| 442 |
* --------------------------------------------------------- |
| 443 |
CHI2=0. |
| 444 |
DO I=1,nplanes |
| 445 |
IF(XGOOD(I).EQ.1.AND.YGOOD(I).EQ.0)THEN !X-cl |
| 446 |
BETA = (XM_B(I)-XM_A(I))/(YM_B(I)-YM_A(I)) |
| 447 |
ALFA = XM_A(I) - BETA * YM_A(I) |
| 448 |
YM(I) = ( YV(I) + BETA*XV(I) - BETA*ALFA )/(1+BETA**2) |
| 449 |
if(YM(I).lt.dmin1(YM_A(I),YM_B(I))) |
| 450 |
$ YM(I)=dmin1(YM_A(I),YM_B(I)) |
| 451 |
if(YM(I).gt.dmax1(YM_A(I),YM_B(I))) |
| 452 |
$ YM(I)=dmax1(YM_A(I),YM_B(I)) |
| 453 |
XM(I) = ALFA + BETA * YM(I) !<<<< measured coordinates |
| 454 |
ELSEIF(XGOOD(I).EQ.0.AND.YGOOD(I).EQ.1)THEN !Y-cl |
| 455 |
BETA = (YM_B(I)-YM_A(I))/(XM_B(I)-XM_A(I)) |
| 456 |
ALFA = YM_A(I) - BETA * XM_A(I) |
| 457 |
XM(I) = ( XV(I) + BETA*YV(I) - BETA*ALFA )/(1+BETA**2) |
| 458 |
if(XM(I).lt.dmin1(XM_A(I),XM_B(I))) |
| 459 |
$ XM(I)=dmin1(XM_A(I),XM_B(I)) |
| 460 |
if(XM(I).gt.dmax1(XM_A(I),XM_B(I))) |
| 461 |
$ XM(I)=dmax1(XM_A(I),XM_B(I)) |
| 462 |
YM(I) = ALFA + BETA * XM(I) !<<<< measured coordinates |
| 463 |
ENDIF |
| 464 |
CHI2=CHI2 |
| 465 |
+ +(XV(I)-XM(I))**2/RESX(i)**2 *( XGOOD(I)*YGOOD(I) ) |
| 466 |
+ +(YV(I)-YM(I))**2/RESY(i)**2 *( YGOOD(I)*XGOOD(I) ) |
| 467 |
+ +((XV(I)-XM(I))**2+(YV(I)-YM(I))**2)/RESX(i)**2 |
| 468 |
+ *( XGOOD(I)*(1-YGOOD(I)) ) |
| 469 |
+ +((XV(I)-XM(I))**2+(YV(I)-YM(I))**2)/RESY(i)**2 |
| 470 |
+ *( (1-XGOOD(I))*YGOOD(I) ) |
| 471 |
c$$$ print*,(XV(I)-XM(I))**2/RESX(i)**2 *( XGOOD(I)*YGOOD(I) ) |
| 472 |
c$$$ print*,(YV(I)-YM(I))**2/RESY(i)**2 *( YGOOD(I)*XGOOD(I) ) |
| 473 |
c$$$ print*,((XV(I)-XM(I))**2+(YV(I)-YM(I))**2)/RESX(i)**2 |
| 474 |
c$$$ + *( XGOOD(I)*(1-YGOOD(I)) ) |
| 475 |
c$$$ print*,((XV(I)-XM(I))**2+(YV(I)-YM(I))**2)/RESY(i)**2 |
| 476 |
c$$$ + *( (1-XGOOD(I))*YGOOD(I) ) |
| 477 |
c$$$ print*,XV(I),XM(I),XGOOD(I) |
| 478 |
c$$$ print*,YV(I),YM(I),YGOOD(I) |
| 479 |
ENDDO |
| 480 |
c$$$ print*,'CHISQ ',chi2 |
| 481 |
* ------------------------------------------------ |
| 482 |
* |
| 483 |
* calculation of derivatives (dX/dAL_fa and dY/dAL_fa) |
| 484 |
* |
| 485 |
* ////////////////////////////////////////////////// |
| 486 |
* METHOD 1 -- incremental ratios |
| 487 |
* ////////////////////////////////////////////////// |
| 488 |
|
| 489 |
IF(IFLAG.EQ.1) THEN |
| 490 |
|
| 491 |
DO J=1,5 |
| 492 |
DO JJ=1,5 |
| 493 |
AL_P(JJ)=AL(JJ) |
| 494 |
ENDDO |
| 495 |
AL_P(J)=AL_P(J)+STEPAL(J)/2. |
| 496 |
JFAIL=0 |
| 497 |
CALL POSXYZ(AL_P,JFAIL) |
| 498 |
IF(JFAIL.NE.0) THEN |
| 499 |
IF(TRKVERBOSE) |
| 500 |
*23456789012345678901234567890123456789012345678901234567890123456789012 |
| 501 |
$ PRINT *,'CHISQ ==> error from trk routine POSXYZ' |
| 502 |
IFAIL=1 |
| 503 |
RETURN |
| 504 |
ENDIF |
| 505 |
DO I=1,nplanes |
| 506 |
XV2(I)=XV(I) |
| 507 |
YV2(I)=YV(I) |
| 508 |
ENDDO |
| 509 |
AL_P(J)=AL_P(J)-STEPAL(J) |
| 510 |
JFAIL=0 |
| 511 |
CALL POSXYZ(AL_P,JFAIL) |
| 512 |
IF(JFAIL.NE.0) THEN |
| 513 |
IF(TRKVERBOSE) |
| 514 |
$ PRINT *,'CHISQ ==> error from trk routine POSXYZ' |
| 515 |
IFAIL=1 |
| 516 |
RETURN |
| 517 |
ENDIF |
| 518 |
DO I=1,nplanes |
| 519 |
XV1(I)=XV(I) |
| 520 |
YV1(I)=YV(I) |
| 521 |
ENDDO |
| 522 |
DO I=1,nplanes |
| 523 |
DXDAL(I,J)=(XV2(I)-XV1(I))/STEPAL(J) |
| 524 |
DYDAL(I,J)=(YV2(I)-YV1(I))/STEPAL(J) |
| 525 |
ENDDO |
| 526 |
ENDDO |
| 527 |
|
| 528 |
ENDIF |
| 529 |
|
| 530 |
* ////////////////////////////////////////////////// |
| 531 |
* METHOD 2 -- Bob Golden |
| 532 |
* ////////////////////////////////////////////////// |
| 533 |
|
| 534 |
IF(IFLAG.EQ.2) THEN |
| 535 |
|
| 536 |
DO I=1,nplanes |
| 537 |
DXDAL(I,1)=1. |
| 538 |
DYDAL(I,1)=0. |
| 539 |
|
| 540 |
DXDAL(I,2)=0. |
| 541 |
DYDAL(I,2)=1. |
| 542 |
|
| 543 |
COSTHE=DSQRT(1.-AL(3)**2) |
| 544 |
IF(COSTHE.EQ.0.) THEN |
| 545 |
IF(TRKVERBOSE)PRINT *,'=== WARNING ===> COSTHE=0' |
| 546 |
IFAIL=1 |
| 547 |
RETURN |
| 548 |
ENDIF |
| 549 |
|
| 550 |
DXDAL(I,3)=(ZINI-ZM(I))*DCOS(AL(4))/COSTHE**3 |
| 551 |
DYDAL(I,3)=(ZINI-ZM(I))*DSIN(AL(4))/COSTHE**3 |
| 552 |
|
| 553 |
DXDAL(I,4)=-AL(3)*(ZINI-ZM(I))*DSIN(AL(4))/COSTHE |
| 554 |
DYDAL(I,4)=AL(3)*(ZINI-ZM(I))*DCOS(AL(4))/COSTHE |
| 555 |
|
| 556 |
IF(AL(5).NE.0.) THEN |
| 557 |
DXDAL(I,5)= |
| 558 |
+ (XV(I)-(AL(1)+AL(3)/COSTHE*(ZINI-ZM(I)) |
| 559 |
+ *DCOS(AL(4))))/AL(5) |
| 560 |
DYDAL(I,5)= |
| 561 |
+ (YV(I)-(AL(2)+AL(3)/COSTHE*(ZINI-ZM(I)) |
| 562 |
+ *DSIN(AL(4))))/AL(5) |
| 563 |
ELSE |
| 564 |
DXDAL(I,5)=100.*( 0.25 *0.3*0.4*(0.01*(ZINI-ZM(I)))**2 ) |
| 565 |
DYDAL(I,5)=0. |
| 566 |
ENDIF |
| 567 |
|
| 568 |
ENDDO |
| 569 |
ENDIF |
| 570 |
* |
| 571 |
* x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x |
| 572 |
* >>> CHI2D evaluation |
| 573 |
* |
| 574 |
DO J=1,5 |
| 575 |
CHI2D(J)=0. |
| 576 |
DO I=1,nplanes |
| 577 |
CHI2D(J)=CHI2D(J) |
| 578 |
+ +2.*(XV0(I)-XM(I))/RESX(i)**2*DXDAL(I,J) *XGOOD(I) |
| 579 |
+ +2.*(YV0(I)-YM(I))/RESY(i)**2*DYDAL(I,J) *YGOOD(I) |
| 580 |
ENDDO |
| 581 |
ENDDO |
| 582 |
* |
| 583 |
* >>> CHI2DD evaluation |
| 584 |
* |
| 585 |
DO I=1,5 |
| 586 |
DO J=1,5 |
| 587 |
CHI2DD(I,J)=0. |
| 588 |
DO K=1,nplanes |
| 589 |
CHI2DD(I,J)=CHI2DD(I,J) |
| 590 |
+ +2.*DXDAL(K,I)*DXDAL(K,J)/RESX(k)**2 *XGOOD(K) |
| 591 |
+ +2.*DYDAL(K,I)*DYDAL(K,J)/RESY(k)**2 *YGOOD(K) |
| 592 |
ENDDO |
| 593 |
ENDDO |
| 594 |
ENDDO |
| 595 |
* x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x |
| 596 |
|
| 597 |
RETURN |
| 598 |
END |
| 599 |
|
| 600 |
|
| 601 |
***************************************************************** |
| 602 |
* |
| 603 |
* Routine to compute the track intersection points |
| 604 |
* on the tracking-system planes, given the track parameters |
| 605 |
* |
| 606 |
* The routine is based on GRKUTA, which computes the |
| 607 |
* trajectory of a charged particle in a magnetic field |
| 608 |
* by solving the equatins of motion with Runge-Kuta method. |
| 609 |
* |
| 610 |
* Variables that have to be assigned when the subroutine |
| 611 |
* is called are: |
| 612 |
* |
| 613 |
* ZM(1,NPLANES) ----> z coordinates of the planes |
| 614 |
* AL_P(1,5) ----> track-parameter vector |
| 615 |
* |
| 616 |
* ----------------------------------------------------------- |
| 617 |
* NB !!! |
| 618 |
* The routine works properly only if the |
| 619 |
* planes are numbered in descending order starting from the |
| 620 |
* reference plane (ZINI) |
| 621 |
* ----------------------------------------------------------- |
| 622 |
* |
| 623 |
***************************************************************** |
| 624 |
|
| 625 |
SUBROUTINE POSXYZ(AL_P,IFAIL) |
| 626 |
|
| 627 |
IMPLICIT DOUBLE PRECISION (A-H,O-Z) |
| 628 |
|
| 629 |
include 'commontracker.f' !tracker general common |
| 630 |
include 'common_mini_2.f' !common for the tracking procedure |
| 631 |
|
| 632 |
c LOGICAL TRKVERBOSE |
| 633 |
c COMMON/TRKD/TRKVERBOSE |
| 634 |
LOGICAL TRKDEBUG,TRKVERBOSE |
| 635 |
COMMON/TRKD/TRKDEBUG,TRKVERBOSE |
| 636 |
c |
| 637 |
DIMENSION AL_P(5) |
| 638 |
* |
| 639 |
DO I=1,nplanes |
| 640 |
ZV(I)=ZM(I) ! |
| 641 |
ENDDO |
| 642 |
* |
| 643 |
* set parameters for GRKUTA |
| 644 |
* |
| 645 |
IF(AL_P(5).NE.0) CHARGE=AL_P(5)/DABS(AL_P(5)) |
| 646 |
IF(AL_P(5).EQ.0) CHARGE=1. |
| 647 |
VOUT(1)=AL_P(1) |
| 648 |
VOUT(2)=AL_P(2) |
| 649 |
VOUT(3)=ZINI ! DBLE(Z0)-DBLE(ZSPEC) |
| 650 |
VOUT(4)=AL_P(3)*DCOS(AL_P(4)) |
| 651 |
VOUT(5)=AL_P(3)*DSIN(AL_P(4)) |
| 652 |
VOUT(6)=-1.*DSQRT(1.-AL_P(3)**2) |
| 653 |
IF(AL_P(5).NE.0.) VOUT(7)=DABS(1./AL_P(5)) |
| 654 |
IF(AL_P(5).EQ.0.) VOUT(7)=1.E8 |
| 655 |
|
| 656 |
c$$$ print*,'POSXY (prima) ',vout |
| 657 |
|
| 658 |
DO I=1,nplanes |
| 659 |
step=vout(3)-zv(i) |
| 660 |
10 DO J=1,7 |
| 661 |
VECT(J)=VOUT(J) |
| 662 |
VECTINI(J)=VOUT(J) |
| 663 |
ENDDO |
| 664 |
11 continue |
| 665 |
CALL GRKUTA(CHARGE,STEP,VECT,VOUT) |
| 666 |
IF(VOUT(3).GT.VECT(3)) THEN |
| 667 |
IFAIL=1 |
| 668 |
if(TRKVERBOSE) |
| 669 |
$ PRINT *,'posxy (grkuta): WARNING ===> backward track!!' |
| 670 |
c$$$ if(.TRUE.)print*,'charge',charge |
| 671 |
c$$$ if(.TRUE.)print*,'vect',vect |
| 672 |
c$$$ if(.TRUE.)print*,'vout',vout |
| 673 |
c$$$ if(.TRUE.)print*,'step',step |
| 674 |
if(TRKVERBOSE)print*,'charge',charge |
| 675 |
if(TRKVERBOSE)print*,'vect',vect |
| 676 |
if(TRKVERBOSE)print*,'vout',vout |
| 677 |
if(TRKVERBOSE)print*,'step',step |
| 678 |
RETURN |
| 679 |
ENDIF |
| 680 |
Z=VOUT(3) |
| 681 |
IF(Z.LE.ZM(I)+TOLL.AND.Z.GE.ZM(I)-TOLL) GOTO 100 |
| 682 |
IF(Z.GT.ZM(I)+TOLL) GOTO 10 |
| 683 |
IF(Z.LE.ZM(I)-TOLL) THEN |
| 684 |
STEP=STEP*(ZM(I)-VECT(3))/(Z-VECT(3)) |
| 685 |
DO J=1,7 |
| 686 |
VECT(J)=VECTINI(J) |
| 687 |
ENDDO |
| 688 |
GOTO 11 |
| 689 |
ENDIF |
| 690 |
|
| 691 |
|
| 692 |
* ----------------------------------------------- |
| 693 |
* evaluate track coordinates |
| 694 |
100 XV(I)=VOUT(1) |
| 695 |
YV(I)=VOUT(2) |
| 696 |
ZV(I)=VOUT(3) |
| 697 |
AXV(I)=DATAN(VOUT(4)/VOUT(6))*180./ACOS(-1.) |
| 698 |
AYV(I)=DATAN(VOUT(5)/VOUT(6))*180./ACOS(-1.) |
| 699 |
* ----------------------------------------------- |
| 700 |
|
| 701 |
ENDDO |
| 702 |
|
| 703 |
c$$$ print*,'POSXY (dopo) ',vout |
| 704 |
|
| 705 |
|
| 706 |
RETURN |
| 707 |
END |
| 708 |
|
| 709 |
|
| 710 |
|
| 711 |
|
| 712 |
|
| 713 |
* ********************************************************** |
| 714 |
* Some initialization routines |
| 715 |
* ********************************************************** |
| 716 |
|
| 717 |
* ---------------------------------------------------------- |
| 718 |
* Routine to initialize COMMON/TRACK/ |
| 719 |
* |
| 720 |
subroutine track_init |
| 721 |
|
| 722 |
IMPLICIT DOUBLE PRECISION (A-H,O-Z) |
| 723 |
|
| 724 |
include 'commontracker.f' !tracker general common |
| 725 |
include 'common_mini_2.f' !common for the tracking procedure |
| 726 |
include 'common_mech.f' |
| 727 |
|
| 728 |
do i=1,5 |
| 729 |
AL(i) = 0. |
| 730 |
enddo |
| 731 |
|
| 732 |
do ip=1,NPLANES |
| 733 |
ZM(IP) = fitz(nplanes-ip+1) !init to mech. position |
| 734 |
XM(IP) = -100. !0. |
| 735 |
YM(IP) = -100. !0. |
| 736 |
XM_A(IP) = -100. !0. |
| 737 |
YM_A(IP) = -100. !0. |
| 738 |
c ZM_A(IP) = 0 |
| 739 |
XM_B(IP) = -100. !0. |
| 740 |
YM_B(IP) = -100. !0. |
| 741 |
c ZM_B(IP) = 0 |
| 742 |
RESX(IP) = 1000. !3.d-4 |
| 743 |
RESY(IP) = 1000. !12.d-4 |
| 744 |
XGOOD(IP) = 0 |
| 745 |
YGOOD(IP) = 0 |
| 746 |
enddo |
| 747 |
|
| 748 |
return |
| 749 |
end |
| 750 |
|
| 751 |
|
| 752 |
*************************************************** |
| 753 |
* * |
| 754 |
* * |
| 755 |
* * |
| 756 |
* * |
| 757 |
* * |
| 758 |
* * |
| 759 |
************************************************** |
| 760 |
|
| 761 |
subroutine guess() |
| 762 |
|
| 763 |
c IMPLICIT DOUBLE PRECISION (A-H,O-Z) |
| 764 |
|
| 765 |
include 'commontracker.f' !tracker general common |
| 766 |
include 'common_mini_2.f' !common for the tracking procedure |
| 767 |
|
| 768 |
REAL*4 XP(NPLANES),ZP(NPLANES),AP(NPLANES),RP(NPLANES) |
| 769 |
REAL*4 CHI,XC,ZC,RADIUS |
| 770 |
* ---------------------------------------- |
| 771 |
* Y view |
| 772 |
* ---------------------------------------- |
| 773 |
* ---------------------------------------- |
| 774 |
* initial guess with a straigth line |
| 775 |
* ---------------------------------------- |
| 776 |
SZZ=0. |
| 777 |
SZY=0. |
| 778 |
SSY=0. |
| 779 |
SZ=0. |
| 780 |
S1=0. |
| 781 |
DO I=1,nplanes |
| 782 |
IF(YGOOD(I).EQ.1)THEN |
| 783 |
YY = YM(I) |
| 784 |
IF(XGOOD(I).EQ.0)THEN |
| 785 |
YY = (YM_A(I) + YM_B(I))/2 |
| 786 |
ENDIF |
| 787 |
SZZ=SZZ+ZM(I)*ZM(I) |
| 788 |
SZY=SZY+ZM(I)*YY |
| 789 |
SSY=SSY+YY |
| 790 |
SZ=SZ+ZM(I) |
| 791 |
S1=S1+1. |
| 792 |
ENDIF |
| 793 |
ENDDO |
| 794 |
DET=SZZ*S1-SZ*SZ |
| 795 |
AY=(SZY*S1-SZ*SSY)/DET |
| 796 |
BY=(SZZ*SSY-SZY*SZ)/DET |
| 797 |
Y0 = AY*ZINI+BY |
| 798 |
* ---------------------------------------- |
| 799 |
* X view |
| 800 |
* ---------------------------------------- |
| 801 |
* ---------------------------------------- |
| 802 |
* 1) initial guess with a circle |
| 803 |
* ---------------------------------------- |
| 804 |
NP=0 |
| 805 |
DO I=1,nplanes |
| 806 |
IF(XGOOD(I).EQ.1)THEN |
| 807 |
XX = XM(I) |
| 808 |
IF(YGOOD(I).EQ.0)THEN |
| 809 |
XX = (XM_A(I) + XM_B(I))/2 |
| 810 |
ENDIF |
| 811 |
NP=NP+1 |
| 812 |
XP(NP)=XX |
| 813 |
ZP(NP)=ZM(I) |
| 814 |
ENDIF |
| 815 |
ENDDO |
| 816 |
IFLAG=0 !no debug mode |
| 817 |
CALL TRICIRCLE(NP,XP,ZP,AP,RP,CHI,XC,ZC,RADIUS,IFLAG) |
| 818 |
c print*,' circle: ',XC,ZC,RADIUS,' --- ',CHI,IFLAG |
| 819 |
IF(IFLAG.NE.0)GOTO 10 !straigth fit |
| 820 |
if(CHI.gt.100)GOTO 10 !straigth fit |
| 821 |
ARG = RADIUS**2-(ZINI-ZC)**2 |
| 822 |
IF(ARG.LT.0)GOTO 10 !straigth fit |
| 823 |
DC = SQRT(ARG) |
| 824 |
IF(XC.GT.0)DC=-DC |
| 825 |
X0=XC+DC |
| 826 |
AX = -(ZINI-ZC)/DC |
| 827 |
DEF=100./(RADIUS*0.3*0.43) |
| 828 |
IF(XC.GT.0)DEF=-DEF |
| 829 |
|
| 830 |
IF(ABS(X0).GT.30)THEN |
| 831 |
c$$$ PRINT*,'STRANGE GUESS: XC,ZC,R ',XC,ZC,RADIUS |
| 832 |
c$$$ $ ,' - CHI ',CHI,' - X0,AX,DEF ',X0,AX,DEF |
| 833 |
GOTO 10 !straigth fit |
| 834 |
ENDIF |
| 835 |
GOTO 20 !guess is ok |
| 836 |
|
| 837 |
* ---------------------------------------- |
| 838 |
* 2) initial guess with a straigth line |
| 839 |
* - if circle does not intersect reference plane |
| 840 |
* - if bad chi**2 |
| 841 |
* ---------------------------------------- |
| 842 |
10 CONTINUE |
| 843 |
SZZ=0. |
| 844 |
SZX=0. |
| 845 |
SSX=0. |
| 846 |
SZ=0. |
| 847 |
S1=0. |
| 848 |
DO I=1,nplanes |
| 849 |
IF(XGOOD(I).EQ.1)THEN |
| 850 |
XX = XM(I) |
| 851 |
IF(YGOOD(I).EQ.0)THEN |
| 852 |
XX = (XM_A(I) + XM_B(I))/2 |
| 853 |
ENDIF |
| 854 |
SZZ=SZZ+ZM(I)*ZM(I) |
| 855 |
SZX=SZX+ZM(I)*XX |
| 856 |
SSX=SSX+XX |
| 857 |
SZ=SZ+ZM(I) |
| 858 |
S1=S1+1. |
| 859 |
ENDIF |
| 860 |
ENDDO |
| 861 |
DET=SZZ*S1-SZ*SZ |
| 862 |
AX=(SZX*S1-SZ*SSX)/DET |
| 863 |
BX=(SZZ*SSX-SZX*SZ)/DET |
| 864 |
DEF = 0 |
| 865 |
X0 = AX*ZINI+BX |
| 866 |
|
| 867 |
20 CONTINUE |
| 868 |
* ---------------------------------------- |
| 869 |
* guess |
| 870 |
* ---------------------------------------- |
| 871 |
|
| 872 |
AL(1) = X0 |
| 873 |
AL(2) = Y0 |
| 874 |
tath = sqrt(AY**2+AX**2) |
| 875 |
AL(3) = tath/sqrt(1+tath**2) |
| 876 |
c$$$ IF(AX.NE.0)THEN |
| 877 |
c$$$ AL(4)= atan(AY/AX) |
| 878 |
c$$$ ELSE |
| 879 |
c$$$ AL(4) = acos(-1.)/2 |
| 880 |
c$$$ IF(AY.LT.0)AL(4) = AL(4)+acos(-1.) |
| 881 |
c$$$ ENDIF |
| 882 |
c$$$ IF(AX.LT.0)AL(4)= acos(-1.)+ AL(4) |
| 883 |
c$$$ AL(4) = -acos(-1.) + AL(4) !from incidence direction to tracking ref.sys. |
| 884 |
|
| 885 |
c$$$ AL(4) = 0. |
| 886 |
c$$$ IF(AX.NE.0.AND.AY.NE.0)THEN |
| 887 |
c$$$ AL(4)= atan(AY/AX) |
| 888 |
c$$$ ELSEIF(AY.EQ.0)THEN |
| 889 |
c$$$ AL(4) = 0. |
| 890 |
c$$$ IF(AX.LT.0)AL(4) = AL(4)+acos(-1.) |
| 891 |
c$$$ ELSEIF(AX.EQ.0)THEN |
| 892 |
c$$$ AL(4) = acos(-1.)/2 |
| 893 |
c$$$ IF(AY.LT.0)AL(4) = AL(4)+acos(-1.) |
| 894 |
c$$$ ENDIF |
| 895 |
c$$$ IF(AX.LT.0)AL(4)= acos(-1.)+ AL(4) |
| 896 |
c$$$ AL(4) = -acos(-1.) + AL(4) !from incidence direction to tracking ref.sys. |
| 897 |
|
| 898 |
c$$$ AL(4)=0. |
| 899 |
c$$$ IF( AX.NE.0.OR.AY.NE.0. ) THEN |
| 900 |
c$$$ AL(4) = ASIN(AY/SQRT(AX**2+AY**2)) |
| 901 |
c$$$ IF(AX.LT.0.) AL(4) = ACOS(-1.0)-AL(4) |
| 902 |
c$$$ ENDIF |
| 903 |
|
| 904 |
AL(4)=0. |
| 905 |
IF( AX.NE.0.OR.AY.NE.0. ) THEN |
| 906 |
AL(4) = ASIN(AY/SQRT(AX**2+AY**2)) |
| 907 |
IF(AX.LT.0.AND.AY.GE.0) AL(4) = ACOS(-1.0)-AL(4) |
| 908 |
IF(AX.LT.0.AND.AY.LT.0) AL(4) = -ACOS(-1.0)-AL(4) |
| 909 |
ENDIF |
| 910 |
IF(AY.GT.0.) AL(4) = AL(4)-ACOS(-1.0) |
| 911 |
IF(AY.LE.0.) AL(4) = AL(4)+ACOS(-1.0) |
| 912 |
|
| 913 |
AL(5) = DEF |
| 914 |
|
| 915 |
c print*,' guess: ',(al(i),i=1,5) |
| 916 |
|
| 917 |
end |