| 41 |
* !the tracking procedure |
* !the tracking procedure |
| 42 |
DATA STEPMAX/100./ !maximum number of steps in the trackin gprocess |
DATA STEPMAX/100./ !maximum number of steps in the trackin gprocess |
| 43 |
|
|
| 44 |
|
c DATA ALMAX/dinf,dinf,1.,dinf,dinf/ !limits on alpha vector components |
| 45 |
|
c DATA ALMIN/-dinf,-dinf,-1.,-dinf,-dinf/ !" |
| 46 |
DATA ALMAX/dinf,dinf,1.,dinf,dinf/ !limits on alpha vector components |
DATA ALMAX/dinf,dinf,1.,dinf,dinf/ !limits on alpha vector components |
| 47 |
DATA ALMIN/-dinf,-dinf,-1.,-dinf,-dinf/ !" |
DATA ALMIN/-dinf,-dinf,-1.,-dinf,-dinf/ !" |
| 48 |
|
|
| 49 |
DIMENSION DAL(5) !increment of vector alfa |
c$$$ DIMENSION DAL(5) !increment of vector alfa |
| 50 |
DIMENSION CHI2DD_R(4,4),CHI2D_R(4) !hessiano e gradiente di chi2 |
DIMENSION CHI2DD_R(4,4),CHI2D_R(4) !hessiano e gradiente di chi2 |
| 51 |
|
|
| 52 |
c elena-------- |
c elena-------- |
| 67 |
|
|
| 68 |
c LOGICAL TRKDEBUG,TRKVERBOSE |
c LOGICAL TRKDEBUG,TRKVERBOSE |
| 69 |
c COMMON/TRKD/TRKDEBUG,TRKVERBOSE |
c COMMON/TRKD/TRKDEBUG,TRKVERBOSE |
| 70 |
LOGICAL TRKDEBUG,TRKVERBOSE |
LOGICAL TRKDEBUG,TRKVERBOSE,STUDENT,FIRSTSTEPS,FIRSTSTUDENT |
| 71 |
COMMON/TRKD/TRKDEBUG,TRKVERBOSE |
COMMON/TRKD/TRKDEBUG,TRKVERBOSE |
| 72 |
|
|
| 73 |
|
DIMENSION AL0(5) |
| 74 |
|
LOGICAL SUCCESS_NEW,SUCCESS_OLD |
| 75 |
|
|
| 76 |
|
c$$$ PRINT*,'==========' ! TEST |
| 77 |
|
c$$$ PRINT*,'START MINI' ! TEST |
| 78 |
|
c$$$ PRINT*,'==========' ! TEST |
| 79 |
|
|
| 80 |
|
* |
| 81 |
|
* define kind of minimization (0x=chi2+gaussian or 1x=likelihood+student) |
| 82 |
|
* |
| 83 |
|
STUDENT = .false. |
| 84 |
|
FIRSTSTEPS = .true. |
| 85 |
|
FIRSTSTUDENT = .true. |
| 86 |
|
IF(MOD(INT(TRACKMODE/10),10).EQ.1) STUDENT = .true. |
| 87 |
|
|
| 88 |
IF(IPRINT.EQ.1) THEN |
IF(IPRINT.EQ.1) THEN |
| 89 |
TRKVERBOSE = .TRUE. |
TRKVERBOSE = .TRUE. |
| 90 |
TRKDEBUG = .FALSE. |
TRKDEBUG = .FALSE. |
| 101 |
* ---------------------------------------------------------- |
* ---------------------------------------------------------- |
| 102 |
AVRESX = RESXAV |
AVRESX = RESXAV |
| 103 |
AVRESY = RESYAV |
AVRESY = RESYAV |
| 104 |
|
NX = 0.0 |
| 105 |
|
NY = 0.0 |
| 106 |
DO IP=1,6 |
DO IP=1,6 |
| 107 |
IF( XGOOD(IP).EQ.1 )THEN |
IF( XGOOD(IP).EQ.1 )THEN |
| 108 |
NX=NX+1 |
NX=NX+1.0 |
| 109 |
AVRESX=AVRESX+RESX(IP) |
AVRESX=AVRESX+RESX(IP) |
| 110 |
ENDIF |
ENDIF |
|
IF(NX.NE.0)AVRESX=AVRESX/NX |
|
| 111 |
IF( YGOOD(IP).EQ.1 )THEN |
IF( YGOOD(IP).EQ.1 )THEN |
| 112 |
NY=NY+1 |
NY=NY+1.0 |
| 113 |
AVRESY=AVRESY+RESY(IP) |
AVRESY=AVRESY+RESY(IP) |
| 114 |
ENDIF |
ENDIF |
|
IF(NX.NE.0)AVRESY=AVRESY/NY |
|
| 115 |
ENDDO |
ENDDO |
| 116 |
|
IF(NX.NE.0.0)AVRESX=AVRESX/NX |
| 117 |
|
IF(NY.NE.0.0)AVRESY=AVRESY/NY |
| 118 |
|
|
| 119 |
* ---------------------------------------------------------- |
* ---------------------------------------------------------- |
| 120 |
* define ALTOL(5) ---> tolerances on state vector |
* define ALTOL(5) ---> tolerances on state vector |
| 122 |
* ---------------------------------------------------------- |
* ---------------------------------------------------------- |
| 123 |
* changed in order to evaluate energy-dependent |
* changed in order to evaluate energy-dependent |
| 124 |
* tolerances on all 5 parameters |
* tolerances on all 5 parameters |
| 125 |
FACT=100. !scale factor to define tolerance on alfa |
cPP FACT=1.0e10 !scale factor to define tolerance on alfa |
| 126 |
c deflection error (see PDG) |
c deflection error (see PDG) |
| 127 |
DELETA1 = 0.01/0.3/0.4/0.4451**2*SQRT(720./(6.+4.)) |
DELETA1 = 0.01/0.3/0.4/0.4451**2*SQRT(720./(6.+4.)) |
| 128 |
DELETA2 = 0.016/0.3/0.4/0.4451*SQRT(0.4451/9.36) |
DELETA2 = 0.016/0.3/0.4/0.4451*SQRT(0.4451/9.36) |
| 138 |
* |
* |
| 139 |
ISTEP=0 !num. steps to minimize chi^2 |
ISTEP=0 !num. steps to minimize chi^2 |
| 140 |
JFAIL=0 !error flag |
JFAIL=0 !error flag |
| 141 |
|
CHI2=0 |
| 142 |
|
|
| 143 |
if(TRKDEBUG) print*,'guess: ',al |
if(TRKDEBUG) print*,'guess: ',al |
| 144 |
if(TRKDEBUG) print*,'mini2: step ',istep,chi2,1./AL(5) |
if(TRKDEBUG) print*,'mini2: step ',istep,chi2,1./AL(5) |
| 149 |
* ----------------------- |
* ----------------------- |
| 150 |
10 ISTEP=ISTEP+1 !<<<<<<<<<<<<<< NEW STEP !! |
10 ISTEP=ISTEP+1 !<<<<<<<<<<<<<< NEW STEP !! |
| 151 |
|
|
| 152 |
CALL CHISQ(IFLAG,JFAIL) !chi^2 and its derivatives |
* ------------------------------- |
| 153 |
IF(JFAIL.NE.0) THEN |
* **** Chi2+gaussian minimization |
| 154 |
IFAIL=1 |
* ------------------------------- |
| 155 |
CHI2=-9999. |
|
| 156 |
if(TRKVERBOSE) |
IF((.NOT.STUDENT).OR.FIRSTSTEPS) THEN |
| 157 |
$ PRINT *,'*** ERROR in mini *** wrong CHISQ' |
|
| 158 |
RETURN |
IF(ISTEP.GE.3) FIRSTSTEPS = .false. |
| 159 |
ENDIF |
|
| 160 |
|
CALL CHISQ(IFLAG,JFAIL) !chi^2 and its derivatives |
| 161 |
COST=1e-7 |
IF(JFAIL.NE.0) THEN |
| 162 |
DO I=1,5 |
IFAIL=1 |
| 163 |
DO J=1,5 |
CHI2=-9999. |
| 164 |
CHI2DD(I,J)=CHI2DD(I,J)*COST |
if(TRKVERBOSE) |
| 165 |
|
$ PRINT *,'*** ERROR in mini *** wrong CHISQ' |
| 166 |
|
RETURN |
| 167 |
|
ENDIF |
| 168 |
|
|
| 169 |
|
c COST=1e-5 |
| 170 |
|
COST=1. |
| 171 |
|
DO I=1,5 |
| 172 |
|
IF(CHI2DD(I,I).NE.0.)COST=COST/DABS(CHI2DD(I,I))**0.2 |
| 173 |
|
ENDDO |
| 174 |
|
DO I=1,5 |
| 175 |
|
DO J=1,5 |
| 176 |
|
CHI2DD(I,J)=CHI2DD(I,J)*COST |
| 177 |
|
ENDDO |
| 178 |
|
c$$$ CHI2D(I)=CHI2D(I)*COST |
| 179 |
ENDDO |
ENDDO |
|
CHI2D(I)=CHI2D(I)*COST |
|
|
ENDDO |
|
| 180 |
|
|
| 181 |
IF(PFIXED.EQ.0.) THEN |
IF(PFIXED.EQ.0.) THEN |
| 182 |
|
|
| 183 |
*------------------------------------------------------------* |
*------------------------------------------------------------* |
| 184 |
* track fitting with FREE deflection |
* track fitting with FREE deflection |
| 185 |
*------------------------------------------------------------* |
*------------------------------------------------------------* |
| 186 |
CALL DSFACT(5,CHI2DD,5,IFA,DET,JFA) !CHI2DD matrix determinant |
CALL DSFACT(5,CHI2DD,5,IFA,DET,JFA) !CHI2DD matrix determinant |
| 187 |
IF(IFA.NE.0) THEN !not positive-defined |
IF(IFA.NE.0) THEN !not positive-defined |
| 188 |
if(TRKVERBOSE)then |
if(TRKVERBOSE)then |
| 189 |
PRINT *, |
PRINT *, |
| 190 |
$ '*** ERROR in mini ***'// |
$ '*** ERROR in mini ***'// |
| 191 |
$ 'on matrix inversion (not pos-def)' |
$ 'on matrix inversion (not pos-def)' |
| 192 |
$ ,DET |
$ ,DET |
| 193 |
endif |
endif |
| 194 |
IF(CHI2.EQ.0) CHI2=-9999. |
IF(CHI2.EQ.0) CHI2=-9999. |
| 195 |
IF(CHI2.GT.0) CHI2=-CHI2 |
IF(CHI2.GT.0) CHI2=-CHI2 |
| 196 |
IFAIL=1 |
IFAIL=1 |
| 197 |
RETURN |
RETURN |
| 198 |
ENDIF |
ENDIF |
| 199 |
CALL DSFINV(5,CHI2DD,5) !CHI2DD matrix inversion |
CALL DSFINV(5,CHI2DD,5) !CHI2DD matrix inversion |
| 200 |
* ******************************************* |
* ******************************************* |
| 201 |
* find new value of AL-pha |
* find new value of AL-pha |
| 202 |
* ******************************************* |
* ******************************************* |
| 203 |
DO I=1,5 |
DO I=1,5 |
| 204 |
DAL(I)=0. |
DAL(I)=0. |
| 205 |
DO J=1,5 |
DO J=1,5 |
| 206 |
DAL(I)=DAL(I)-CHI2DD(I,J)*CHI2D(J) |
DAL(I)=DAL(I)-CHI2DD(I,J)*CHI2D(J) *COST |
| 207 |
COV(I,J)=2.*COST*CHI2DD(I,J) |
COV(I,J)=2.*COST*CHI2DD(I,J) |
| 208 |
ENDDO |
ENDDO |
| 209 |
ENDDO |
ENDDO |
| 210 |
DO I=1,5 |
DO I=1,5 |
| 211 |
AL(I)=AL(I)+DAL(I) |
AL(I)=AL(I)+DAL(I) |
| 212 |
ENDDO |
ENDDO |
| 213 |
*------------------------------------------------------------* |
*------------------------------------------------------------* |
| 214 |
* track fitting with FIXED deflection |
* track fitting with FIXED deflection |
| 215 |
*------------------------------------------------------------* |
*------------------------------------------------------------* |
| 216 |
ELSE |
ELSE |
| 217 |
AL(5)=1./PFIXED |
AL(5)=1./PFIXED |
| 218 |
DO I=1,4 |
DO I=1,4 |
| 219 |
CHI2D_R(I)=CHI2D(I) |
CHI2D_R(I)=CHI2D(I) |
| 220 |
DO J=1,4 |
DO J=1,4 |
| 221 |
CHI2DD_R(I,J)=CHI2DD(I,J) |
CHI2DD_R(I,J)=CHI2DD(I,J) |
| 222 |
|
ENDDO |
| 223 |
ENDDO |
ENDDO |
| 224 |
ENDDO |
CALL DSFACT(4,CHI2DD_R,4,IFA,DET,JFA) |
| 225 |
CALL DSFACT(4,CHI2DD_R,4,IFA,DET,JFA) |
IF(IFA.NE.0) THEN |
| 226 |
IF(IFA.NE.0) THEN |
if(TRKVERBOSE)then |
| 227 |
if(TRKVERBOSE)then |
PRINT *, |
| 228 |
PRINT *, |
$ '*** ERROR in mini ***'// |
| 229 |
$ '*** ERROR in mini ***'// |
$ 'on matrix inversion (not pos-def)' |
| 230 |
$ 'on matrix inversion (not pos-def)' |
$ ,DET |
| 231 |
$ ,DET |
endif |
| 232 |
endif |
IF(CHI2.EQ.0) CHI2=-9999. |
| 233 |
IF(CHI2.EQ.0) CHI2=-9999. |
IF(CHI2.GT.0) CHI2=-CHI2 |
| 234 |
IF(CHI2.GT.0) CHI2=-CHI2 |
IFAIL=1 |
| 235 |
IFAIL=1 |
RETURN |
| 236 |
RETURN |
ENDIF |
| 237 |
ENDIF |
CALL DSFINV(4,CHI2DD_R,4) |
|
CALL DSFINV(4,CHI2DD_R,4) |
|
| 238 |
* ******************************************* |
* ******************************************* |
| 239 |
* find new value of AL-pha |
* find new value of AL-pha |
| 240 |
* ******************************************* |
* ******************************************* |
| 241 |
DO I=1,4 |
DO I=1,4 |
| 242 |
DAL(I)=0. |
DAL(I)=0. |
| 243 |
DO J=1,4 |
DO J=1,4 |
| 244 |
DAL(I)=DAL(I)-CHI2DD_R(I,J)*CHI2D_R(J) |
DAL(I)=DAL(I)-CHI2DD_R(I,J)*CHI2D_R(J) *COST |
| 245 |
COV(I,J)=2.*COST*CHI2DD_R(I,J) |
COV(I,J)=2.*COST*CHI2DD_R(I,J) |
| 246 |
|
ENDDO |
| 247 |
|
ENDDO |
| 248 |
|
DAL(5)=0. |
| 249 |
|
DO I=1,4 |
| 250 |
|
AL(I)=AL(I)+DAL(I) |
| 251 |
ENDDO |
ENDDO |
| 252 |
|
ENDIF |
| 253 |
|
|
| 254 |
|
if(TRKDEBUG) print*,'mini2: step ',istep,chi2,1./AL(5) |
| 255 |
|
|
| 256 |
|
c$$$ PRINT*,'DAL ',(DAL(K),K=1,5) |
| 257 |
|
c$$$ PRINT*,'CHI2DOLD ',(CHI2DOLD(K),K=1,5) |
| 258 |
|
|
| 259 |
|
|
| 260 |
|
ENDIF |
| 261 |
|
|
| 262 |
|
* ------------------------------- |
| 263 |
|
* **** Likelihood+Student minimization |
| 264 |
|
* ------------------------------- |
| 265 |
|
|
| 266 |
|
IF(STUDENT.AND.(.NOT.FIRSTSTEPS)) THEN |
| 267 |
|
|
| 268 |
|
IF(FIRSTSTUDENT) THEN |
| 269 |
|
FIRSTSTUDENT = .false. |
| 270 |
|
ISTEP = 1 |
| 271 |
|
ENDIF |
| 272 |
|
|
| 273 |
|
CALL CHISQSTT(1,JFAIL) |
| 274 |
|
DO I=1,5 |
| 275 |
|
DAL(I)=0. |
| 276 |
|
DO J=1,5 |
| 277 |
|
DAL(I)=DAL(I)-CHI2DD(I,J)*CHI2D(J) |
| 278 |
|
ENDDO |
| 279 |
|
ENDDO |
| 280 |
|
|
| 281 |
|
DO I=1,5 |
| 282 |
|
DO j=1,5 |
| 283 |
|
COV(I,J) = 2.*CHI2DD(I,J) |
| 284 |
|
ENDDO |
| 285 |
|
ENDDO |
| 286 |
|
|
| 287 |
|
CHI2TOLL = 1.E-3 |
| 288 |
|
ALPHA = 3.0 |
| 289 |
|
BETA = -0.4 |
| 290 |
|
E=1. |
| 291 |
|
EA=1. |
| 292 |
|
EB=1. |
| 293 |
|
EC=1. |
| 294 |
|
FA=1. |
| 295 |
|
FB=1. |
| 296 |
|
FC=1. |
| 297 |
|
SUCCESS_OLD = .FALSE. |
| 298 |
|
SUCCESS_NEW = .FALSE. |
| 299 |
|
|
| 300 |
|
CALL CHISQSTT(0,JFAIL) |
| 301 |
|
c$$$ PRINT*,CHI2 |
| 302 |
|
CHI2_NEW = CHI2 |
| 303 |
|
FC = CHI2 |
| 304 |
|
EC = 0. |
| 305 |
|
|
| 306 |
|
ICOUNT = 0 |
| 307 |
|
100 CONTINUE |
| 308 |
|
ICOUNT = ICOUNT+1 |
| 309 |
|
|
| 310 |
|
DO I=1,5 |
| 311 |
|
AL0(I)=AL(I) |
| 312 |
ENDDO |
ENDDO |
| 313 |
DAL(5)=0. |
DO I=1,5 |
| 314 |
DO I=1,4 |
AL(I)=AL(I)+E*DAL(I) |
| 315 |
AL(I)=AL(I)+DAL(I) |
ENDDO |
| 316 |
|
CALL CHISQSTT(0,JFAIL) |
| 317 |
|
CHI2_OLD = CHI2_NEW |
| 318 |
|
CHI2_NEW = CHI2 |
| 319 |
|
FA = FB |
| 320 |
|
FB = FC |
| 321 |
|
FC = CHI2 |
| 322 |
|
EA = EB |
| 323 |
|
EB = EC |
| 324 |
|
EC = E |
| 325 |
|
|
| 326 |
|
c$$$ PRINT*,E,CHI2_NEW |
| 327 |
|
|
| 328 |
|
IF(CHI2_NEW.LE.CHI2_OLD) THEN ! success |
| 329 |
|
IF(DABS(CHI2_NEW-CHI2_OLD).LT.CHI2TOLL) GOTO 101 |
| 330 |
|
SUCCESS_OLD = SUCCESS_NEW |
| 331 |
|
SUCCESS_NEW = .TRUE. |
| 332 |
|
E = E*ALPHA |
| 333 |
|
ELSE ! failure |
| 334 |
|
SUCCESS_OLD = SUCCESS_NEW |
| 335 |
|
SUCCESS_NEW = .FALSE. |
| 336 |
|
CHI2_NEW = CHI2_OLD |
| 337 |
|
DO I=1,5 |
| 338 |
|
AL(I)=AL0(I) |
| 339 |
|
ENDDO |
| 340 |
|
IF(SUCCESS_OLD) THEN |
| 341 |
|
DENOM = (EB-EA)*(FB-FC) - (EB-EC)*(FB-FA) |
| 342 |
|
IF(DENOM.NE.0.) THEN |
| 343 |
|
E = EB - 0.5*( (EB-EA)**2*(FB-FC) |
| 344 |
|
$ - (EB-EC)**2*(FB-FA) ) / DENOM |
| 345 |
|
ELSE |
| 346 |
|
E = BETA*E |
| 347 |
|
ENDIF |
| 348 |
|
ELSE |
| 349 |
|
E = BETA*E |
| 350 |
|
ENDIF |
| 351 |
|
c$$$ E = BETA*E |
| 352 |
|
ENDIF |
| 353 |
|
IF(ICOUNT.GT.20) GOTO 101 |
| 354 |
|
GOTO 100 |
| 355 |
|
|
| 356 |
|
101 CONTINUE |
| 357 |
|
|
| 358 |
|
DO I=1,5 |
| 359 |
|
DAL(I)=E*DAL(I) |
| 360 |
ENDDO |
ENDDO |
| 361 |
|
|
| 362 |
|
c$$$ print*,' ' |
| 363 |
|
c$$$ PRINT*,'DAL ',(DAL(K),K=1,5) |
| 364 |
|
c$$$ PRINT*,'CHI2DOLD ',(CHI2DOLD(K),K=1,5) |
| 365 |
|
c$$$ print*,'==== CHI2 ====' |
| 366 |
|
c$$$ print*,chi2 |
| 367 |
|
c$$$ print*,'==== CHI2d ====' |
| 368 |
|
c$$$ print*,(chi2d(i),i=1,5) |
| 369 |
|
c$$$ print*,'==== CHI2dd ====' |
| 370 |
|
c$$$ do j=1,5 |
| 371 |
|
c$$$ print*,(chi2dd(j,i),i=1,5) |
| 372 |
|
c$$$ enddo |
| 373 |
|
c$$$ print*,'================' |
| 374 |
|
c$$$ print*,' ' |
| 375 |
|
|
| 376 |
|
*========= FIN QUI ============= |
| 377 |
|
|
| 378 |
ENDIF |
ENDIF |
| 379 |
|
|
| 380 |
if(TRKDEBUG) print*,'mini2: step ',istep,chi2,1./AL(5) |
|
| 381 |
|
|
| 382 |
|
|
| 383 |
|
|
| 384 |
*------------------------------------------------------------* |
*------------------------------------------------------------* |
| 385 |
* ---------------------------------------------------- * |
* ---------------------------------------------------- * |
| 424 |
ALTOL(3) = DSQRT(ALTOL(1)**2+ALTOL(2)**2)/44.51 |
ALTOL(3) = DSQRT(ALTOL(1)**2+ALTOL(2)**2)/44.51 |
| 425 |
ALTOL(4) = ALTOL(3) |
ALTOL(4) = ALTOL(3) |
| 426 |
|
|
| 427 |
|
c$$$ print*,' -- ',(DAL(I),ALTOL(I),' - ',i=1,5) !>>>> new step! |
| 428 |
|
|
| 429 |
*---- check tolerances: |
*---- check tolerances: |
| 430 |
c$$$ DO I=1,5 |
c$$$ DO I=1,5 |
| 431 |
c$$$ if(TRKVERBOSE)print*,i,' -- ',DAL(I),ALTOL(I) !>>>> new step! |
c$$$ if(TRKVERBOSE)print*,i,' -- ',DAL(I),ALTOL(I) !>>>> new step! |
| 432 |
c$$$ ENDDO |
c$$$ ENDDO |
| 433 |
c$$$ print*,'chi2 -- ',DCHI2 |
c$$$ print*,'chi2 -- ',DCHI2 |
| 434 |
|
|
| 435 |
|
IF(ISTEP.LT.ISTEPMIN) GOTO 10 ! ***PP*** |
| 436 |
DO I=1,5 |
DO I=1,5 |
| 437 |
IF(ABS(DAL(I)).GT.ALTOL(I))GOTO 10 !>>>> new step! |
IF(ABS(DAL(I)).GT.ALTOL(I))GOTO 10 !>>>> new step! |
| 438 |
ENDDO |
ENDDO |
| 439 |
|
|
| 440 |
* new estimate of chi^2: |
***************************** |
| 441 |
JFAIL=0 !error flag |
* final estimate of chi^2 |
| 442 |
CALL CHISQ(IFLAG,JFAIL) !chi^2 and its derivatives |
***************************** |
| 443 |
IF(JFAIL.NE.0) THEN |
|
| 444 |
IFAIL=1 |
* ------------------------------- |
| 445 |
if(TRKVERBOSE)THEN |
* **** Chi2+gaussian minimization |
| 446 |
CHI2=-9999. |
* ------------------------------- |
| 447 |
if(TRKVERBOSE) |
|
| 448 |
$ PRINT *,'*** ERROR in mini *** wrong CHISQ' |
IF(.NOT.STUDENT) THEN |
| 449 |
ENDIF |
|
| 450 |
RETURN |
JFAIL=0 !error flag |
| 451 |
ENDIF |
CALL CHISQ(IFLAG,JFAIL) !chi^2 and its derivatives |
| 452 |
COST=1e-7 |
IF(JFAIL.NE.0) THEN |
|
DO I=1,5 |
|
|
DO J=1,5 |
|
|
CHI2DD(I,J)=CHI2DD(I,J)*COST |
|
|
ENDDO |
|
|
CHI2D(I)=CHI2D(I)*COST |
|
|
ENDDO |
|
|
IF(PFIXED.EQ.0.) THEN |
|
|
CALL DSFACT(5,CHI2DD,5,IFA,DET,JFA) !CHI2DD matrix determinant |
|
|
IF(IFA.NE.0) THEN !not positive-defined |
|
|
if(TRKVERBOSE)then |
|
|
PRINT *, |
|
|
$ '*** ERROR in mini ***'// |
|
|
$ 'on matrix inversion (not pos-def)' |
|
|
$ ,DET |
|
|
endif |
|
|
IF(CHI2.EQ.0) CHI2=-9999. |
|
|
IF(CHI2.GT.0) CHI2=-CHI2 |
|
| 453 |
IFAIL=1 |
IFAIL=1 |
| 454 |
RETURN |
if(TRKVERBOSE)THEN |
| 455 |
|
CHI2=-9999. |
| 456 |
|
if(TRKVERBOSE) |
| 457 |
|
$ PRINT *,'*** ERROR in mini *** wrong CHISQ' |
| 458 |
|
ENDIF |
| 459 |
|
RETURN |
| 460 |
ENDIF |
ENDIF |
| 461 |
CALL DSFINV(5,CHI2DD,5) !CHI2DD matrix inversion |
c COST=1e-7 |
| 462 |
DO I=1,5 |
COST=1. |
| 463 |
DAL(I)=0. |
DO I=1,5 |
| 464 |
DO J=1,5 |
IF(CHI2DD(I,I).NE.0.)COST=COST/DABS(CHI2DD(I,I))**0.2 |
| 465 |
COV(I,J)=2.*COST*CHI2DD(I,J) |
ENDDO |
| 466 |
ENDDO |
DO I=1,5 |
| 467 |
ENDDO |
DO J=1,5 |
| 468 |
ELSE |
CHI2DD(I,J)=CHI2DD(I,J)*COST |
|
DO I=1,4 |
|
|
CHI2D_R(I)=CHI2D(I) |
|
|
DO J=1,4 |
|
|
CHI2DD_R(I,J)=CHI2DD(I,J) |
|
| 469 |
ENDDO |
ENDDO |
| 470 |
ENDDO |
ENDDO |
| 471 |
CALL DSFACT(4,CHI2DD_R,4,IFA,DET,JFA) |
IF(PFIXED.EQ.0.) THEN |
| 472 |
IF(IFA.NE.0) THEN |
CALL DSFACT(5,CHI2DD,5,IFA,DET,JFA) !CHI2DD matrix determinant |
| 473 |
if(TRKVERBOSE)then |
IF(IFA.NE.0) THEN !not positive-defined |
| 474 |
PRINT *, |
if(TRKVERBOSE)then |
| 475 |
$ '*** ERROR in mini ***'// |
PRINT *, |
| 476 |
$ 'on matrix inversion (not pos-def)' |
$ '*** ERROR in mini ***'// |
| 477 |
$ ,DET |
$ 'on matrix inversion (not pos-def)' |
| 478 |
endif |
$ ,DET |
| 479 |
IF(CHI2.EQ.0) CHI2=-9999. |
endif |
| 480 |
IF(CHI2.GT.0) CHI2=-CHI2 |
IF(CHI2.EQ.0) CHI2=-9999. |
| 481 |
IFAIL=1 |
IF(CHI2.GT.0) CHI2=-CHI2 |
| 482 |
RETURN |
IFAIL=1 |
| 483 |
|
RETURN |
| 484 |
|
ENDIF |
| 485 |
|
CALL DSFINV(5,CHI2DD,5) !CHI2DD matrix inversion |
| 486 |
|
DO I=1,5 |
| 487 |
|
c$$$ DAL(I)=0. |
| 488 |
|
DO J=1,5 |
| 489 |
|
COV(I,J)=2.*COST*CHI2DD(I,J) |
| 490 |
|
ENDDO |
| 491 |
|
ENDDO |
| 492 |
|
ELSE |
| 493 |
|
DO I=1,4 |
| 494 |
|
CHI2D_R(I)=CHI2D(I) |
| 495 |
|
DO J=1,4 |
| 496 |
|
CHI2DD_R(I,J)=CHI2DD(I,J) |
| 497 |
|
ENDDO |
| 498 |
|
ENDDO |
| 499 |
|
CALL DSFACT(4,CHI2DD_R,4,IFA,DET,JFA) |
| 500 |
|
IF(IFA.NE.0) THEN |
| 501 |
|
if(TRKVERBOSE)then |
| 502 |
|
PRINT *, |
| 503 |
|
$ '*** ERROR in mini ***'// |
| 504 |
|
$ 'on matrix inversion (not pos-def)' |
| 505 |
|
$ ,DET |
| 506 |
|
endif |
| 507 |
|
IF(CHI2.EQ.0) CHI2=-9999. |
| 508 |
|
IF(CHI2.GT.0) CHI2=-CHI2 |
| 509 |
|
IFAIL=1 |
| 510 |
|
RETURN |
| 511 |
|
ENDIF |
| 512 |
|
CALL DSFINV(4,CHI2DD_R,4) |
| 513 |
|
DO I=1,4 |
| 514 |
|
c$$$ DAL(I)=0. |
| 515 |
|
DO J=1,4 |
| 516 |
|
COV(I,J)=2.*COST*CHI2DD_R(I,J) |
| 517 |
|
ENDDO |
| 518 |
|
ENDDO |
| 519 |
ENDIF |
ENDIF |
| 520 |
CALL DSFINV(4,CHI2DD_R,4) |
|
| 521 |
DO I=1,4 |
ENDIF |
| 522 |
DAL(I)=0. |
|
| 523 |
DO J=1,4 |
* ------------------------------- |
| 524 |
COV(I,J)=2.*COST*CHI2DD_R(I,J) |
* **** Likelihood+student minimization |
| 525 |
|
* ------------------------------- |
| 526 |
|
|
| 527 |
|
IF(STUDENT) THEN |
| 528 |
|
CALL CHISQSTT(1,JFAIL) |
| 529 |
|
DO I=1,5 |
| 530 |
|
DO j=1,5 |
| 531 |
|
COV(I,J) = 2.*CHI2DD(I,J) |
| 532 |
ENDDO |
ENDDO |
| 533 |
ENDDO |
ENDDO |
| 534 |
ENDIF |
ENDIF |
| 535 |
|
|
| 536 |
***************************** |
***************************** |
| 537 |
|
|
| 538 |
* ------------------------------------ |
* ------------------------------------ |
| 551 |
$ print*,'*** WARNING *** in mini n.dof = 0 (set to 1)' |
$ print*,'*** WARNING *** in mini n.dof = 0 (set to 1)' |
| 552 |
endif |
endif |
| 553 |
|
|
|
if(TRKDEBUG) print*,'mini2: -ok- ',istep,chi2,1./AL(5) |
|
|
|
|
| 554 |
* ------------------------------------ |
* ------------------------------------ |
| 555 |
* Reduced chi^2 |
* Reduced chi^2 |
| 556 |
CHI2 = CHI2/dble(ndof) |
CHI2 = CHI2/dble(ndof) |
| 559 |
|
|
| 560 |
11 CONTINUE |
11 CONTINUE |
| 561 |
|
|
| 562 |
|
if(TRKDEBUG) print*,'mini2: -ok- ',istep,chi2,1./AL(5) |
| 563 |
|
|
| 564 |
NSTEP=ISTEP ! ***PP*** |
NSTEP=ISTEP ! ***PP*** |
| 565 |
|
|
| 566 |
|
c$$$ print*,'>>>>> NSTEP = ',NSTEP |
| 567 |
|
|
| 568 |
RETURN |
RETURN |
| 569 |
END |
END |
| 570 |
|
|
| 630 |
* measured position of the cluster. |
* measured position of the cluster. |
| 631 |
* --------------------------------------------------------- |
* --------------------------------------------------------- |
| 632 |
CHI2=0. |
CHI2=0. |
| 633 |
|
|
| 634 |
|
DO I=1,nplanes |
| 635 |
|
IF( XGOOD(I).NE.YGOOD(I) ) THEN ! singlet |
| 636 |
|
IF(XGOOD(I).EQ.1) THEN |
| 637 |
|
Z = |
| 638 |
|
$ ( (ZM_A(I)*YM_B(I)-YM_A(I)*ZM_B(I))*(ZV_A(I)-ZV_B(I)) - |
| 639 |
|
$ (ZV_A(I)*YV_B(I)-YV_A(I)*ZV_B(I))*(ZM_A(I)-ZM_B(I)) )/ |
| 640 |
|
$ ( (ZM_A(I)-ZM_B(I))*(YV_A(I)-YV_B(I)) - |
| 641 |
|
$ (ZV_A(I)-ZV_B(I))*(YM_A(I)-YM_B(I)) ) |
| 642 |
|
ZM(I) = Z |
| 643 |
|
ZV(I) = Z |
| 644 |
|
XV(I) = XV_A(I)+(XV_B(I)-XV_A(I))* |
| 645 |
|
$ (Z-ZV_A(I))/(ZV_B(I)-ZV_A(I)) |
| 646 |
|
Y = |
| 647 |
|
$ ( (ZM_A(I)*YM_B(I)-YM_A(I)*ZM_B(I))*(YV_A(I)-YV_B(I)) - |
| 648 |
|
$ (ZV_A(I)*YV_B(I)-YV_A(I)*ZV_B(I))*(YM_A(I)-YM_B(I)) )/ |
| 649 |
|
$ ( (ZM_A(I)-ZM_B(I))*(YV_A(I)-YV_B(I)) - |
| 650 |
|
$ (ZV_A(I)-ZV_B(I))*(YM_A(I)-YM_B(I)) ) |
| 651 |
|
YM(I) = Y |
| 652 |
|
YV(I) = Y |
| 653 |
|
XM(I) = XM_A(I)+(XM_B(I)-XM_A(I))* |
| 654 |
|
$ (Y-YM_A(I))/(YM_B(I)-YM_A(I)) |
| 655 |
|
|
| 656 |
|
CHI2=CHI2+(XV(I)-XM(I))**2/RESX(I)**2 |
| 657 |
|
|
| 658 |
|
ENDIF |
| 659 |
|
IF(YGOOD(I).EQ.1) THEN |
| 660 |
|
Z = |
| 661 |
|
$ ( (ZM_A(I)*XM_B(I)-XM_A(I)*ZM_B(I))*(ZV_A(I)-ZV_B(I)) - |
| 662 |
|
$ (ZV_A(I)*XV_B(I)-XV_A(I)*ZV_B(I))*(ZM_A(I)-ZM_B(I)) )/ |
| 663 |
|
$ ( (ZM_A(I)-ZM_B(I))*(XV_A(I)-XV_B(I)) - |
| 664 |
|
$ (ZV_A(I)-ZV_B(I))*(XM_A(I)-XM_B(I)) ) |
| 665 |
|
ZM(I) = Z |
| 666 |
|
ZV(I) = Z |
| 667 |
|
YV(I) = YV_A(I)+(YV_B(I)-YV_A(I))* |
| 668 |
|
$ (Z-ZV_A(I))/(ZV_B(I)-ZV_A(I)) |
| 669 |
|
X = |
| 670 |
|
$ ( (ZM_A(I)*XM_B(I)-XM_A(I)*ZM_B(I))*(XV_A(I)-XV_B(I)) - |
| 671 |
|
$ (ZV_A(I)*XV_B(I)-XV_A(I)*ZV_B(I))*(XM_A(I)-XM_B(I)) )/ |
| 672 |
|
$ ( (ZM_A(I)-ZM_B(I))*(XV_A(I)-XV_B(I)) - |
| 673 |
|
$ (ZV_A(I)-ZV_B(I))*(XM_A(I)-XM_B(I)) ) |
| 674 |
|
XM(I) = X |
| 675 |
|
XV(I) = X |
| 676 |
|
YM(I) = YM_A(I)+(YM_B(I)-YM_A(I))* |
| 677 |
|
$ (X-XM_A(I))/(XM_B(I)-XM_A(I)) |
| 678 |
|
|
| 679 |
|
CHI2=CHI2+(YV(I)-YM(I))**2/RESY(I)**2 |
| 680 |
|
|
| 681 |
|
ENDIF |
| 682 |
|
ELSEIF(XGOOD(I).EQ.1.AND.YGOOD(I).EQ.1)THEN !Y-cl |
| 683 |
|
CHI2=CHI2 |
| 684 |
|
+ +(XV(I)-XM(I))**2/RESX(i)**2 |
| 685 |
|
+ +(YV(I)-YM(I))**2/RESY(i)**2 |
| 686 |
|
ENDIF |
| 687 |
|
ENDDO |
| 688 |
DO I=1,nplanes |
DO I=1,nplanes |
| 689 |
IF(XGOOD(I).EQ.1.AND.YGOOD(I).EQ.0)THEN !X-cl |
XV0(I)=XV(I) |
| 690 |
BETA = (XM_B(I)-XM_A(I))/(YM_B(I)-YM_A(I)) |
YV0(I)=YV(I) |
|
ALFA = XM_A(I) - BETA * YM_A(I) |
|
|
YM(I) = ( YV(I) + BETA*XV(I) - BETA*ALFA )/(1+BETA**2) |
|
|
if(YM(I).lt.dmin1(YM_A(I),YM_B(I))) |
|
|
$ YM(I)=dmin1(YM_A(I),YM_B(I)) |
|
|
if(YM(I).gt.dmax1(YM_A(I),YM_B(I))) |
|
|
$ YM(I)=dmax1(YM_A(I),YM_B(I)) |
|
|
XM(I) = ALFA + BETA * YM(I) !<<<< measured coordinates |
|
|
ELSEIF(XGOOD(I).EQ.0.AND.YGOOD(I).EQ.1)THEN !Y-cl |
|
|
BETA = (YM_B(I)-YM_A(I))/(XM_B(I)-XM_A(I)) |
|
|
ALFA = YM_A(I) - BETA * XM_A(I) |
|
|
XM(I) = ( XV(I) + BETA*YV(I) - BETA*ALFA )/(1+BETA**2) |
|
|
if(XM(I).lt.dmin1(XM_A(I),XM_B(I))) |
|
|
$ XM(I)=dmin1(XM_A(I),XM_B(I)) |
|
|
if(XM(I).gt.dmax1(XM_A(I),XM_B(I))) |
|
|
$ XM(I)=dmax1(XM_A(I),XM_B(I)) |
|
|
YM(I) = ALFA + BETA * XM(I) !<<<< measured coordinates |
|
|
ENDIF |
|
|
CHI2=CHI2 |
|
|
+ +(XV(I)-XM(I))**2/RESX(i)**2 *( XGOOD(I)*YGOOD(I) ) |
|
|
+ +(YV(I)-YM(I))**2/RESY(i)**2 *( YGOOD(I)*XGOOD(I) ) |
|
|
+ +((XV(I)-XM(I))**2+(YV(I)-YM(I))**2)/RESX(i)**2 |
|
|
+ *( XGOOD(I)*(1-YGOOD(I)) ) |
|
|
+ +((XV(I)-XM(I))**2+(YV(I)-YM(I))**2)/RESY(i)**2 |
|
|
+ *( (1-XGOOD(I))*YGOOD(I) ) |
|
| 691 |
ENDDO |
ENDDO |
| 692 |
c print*,'CHISQ ',chi2 |
|
| 693 |
|
c$$$ DO I=1,nplanes |
| 694 |
|
c$$$ IF(XGOOD(I).EQ.1.AND.YGOOD(I).EQ.0)THEN !X-cl |
| 695 |
|
c$$$ BETA = (XM_B(I)-XM_A(I))/(YM_B(I)-YM_A(I)) |
| 696 |
|
c$$$ ALFA = XM_A(I) - BETA * YM_A(I) |
| 697 |
|
c$$$ YM(I) = ( YV(I) + BETA*XV(I) - BETA*ALFA )/(1+BETA**2) |
| 698 |
|
c$$$ if(YM(I).lt.dmin1(YM_A(I),YM_B(I))) |
| 699 |
|
c$$$ $ YM(I)=dmin1(YM_A(I),YM_B(I)) |
| 700 |
|
c$$$ if(YM(I).gt.dmax1(YM_A(I),YM_B(I))) |
| 701 |
|
c$$$ $ YM(I)=dmax1(YM_A(I),YM_B(I)) |
| 702 |
|
c$$$ XM(I) = ALFA + BETA * YM(I) !<<<< measured coordinates |
| 703 |
|
c$$$ ELSEIF(XGOOD(I).EQ.0.AND.YGOOD(I).EQ.1)THEN !Y-cl |
| 704 |
|
c$$$ BETA = (YM_B(I)-YM_A(I))/(XM_B(I)-XM_A(I)) |
| 705 |
|
c$$$ ALFA = YM_A(I) - BETA * XM_A(I) |
| 706 |
|
c$$$ XM(I) = ( XV(I) + BETA*YV(I) - BETA*ALFA )/(1+BETA**2) |
| 707 |
|
c$$$ if(XM(I).lt.dmin1(XM_A(I),XM_B(I))) |
| 708 |
|
c$$$ $ XM(I)=dmin1(XM_A(I),XM_B(I)) |
| 709 |
|
c$$$ if(XM(I).gt.dmax1(XM_A(I),XM_B(I))) |
| 710 |
|
c$$$ $ XM(I)=dmax1(XM_A(I),XM_B(I)) |
| 711 |
|
c$$$ YM(I) = ALFA + BETA * XM(I) !<<<< measured coordinates |
| 712 |
|
c$$$ ENDIF |
| 713 |
|
c$$$ CHI2=CHI2 |
| 714 |
|
c$$$ + +(XV(I)-XM(I))**2/RESX(i)**2 *( XGOOD(I)*YGOOD(I) ) |
| 715 |
|
c$$$ + +(YV(I)-YM(I))**2/RESY(i)**2 *( YGOOD(I)*XGOOD(I) ) |
| 716 |
|
c$$$ + +((XV(I)-XM(I))**2+(YV(I)-YM(I))**2)/RESX(i)**2 |
| 717 |
|
c$$$ + *( XGOOD(I)*(1-YGOOD(I)) ) |
| 718 |
|
c$$$ + +((XV(I)-XM(I))**2+(YV(I)-YM(I))**2)/RESY(i)**2 |
| 719 |
|
c$$$ + *( (1-XGOOD(I))*YGOOD(I) ) |
| 720 |
|
c$$$ ENDDO |
| 721 |
|
|
| 722 |
|
c$$$ print*,'CHISQ ',chi2 |
| 723 |
* ------------------------------------------------ |
* ------------------------------------------------ |
| 724 |
* |
* |
| 725 |
* calculation of derivatives (dX/dAL_fa and dY/dAL_fa) |
* calculation of derivatives (dX/dAL_fa and dY/dAL_fa) |
| 839 |
RETURN |
RETURN |
| 840 |
END |
END |
| 841 |
|
|
| 842 |
|
****************************************************************************** |
| 843 |
|
* |
| 844 |
|
* routine to compute Likelihodd+Student and its derivatives |
| 845 |
|
* |
| 846 |
|
* (modified in respect to the previous one in order to include |
| 847 |
|
* single clusters. In this case the residual is evaluated by |
| 848 |
|
* calculating the distance between the track intersection and the |
| 849 |
|
* segment AB associated to the single cluster) |
| 850 |
|
* |
| 851 |
|
****************************************************************************** |
| 852 |
|
|
| 853 |
|
SUBROUTINE CHISQSTT(IFLAG,JFAIL) |
| 854 |
|
|
| 855 |
|
IMPLICIT DOUBLE PRECISION (A-H,O-Z) |
| 856 |
|
|
| 857 |
|
include 'commontracker.f' !tracker general common |
| 858 |
|
include 'common_mini_2.f' !common for the tracking procedure |
| 859 |
|
|
| 860 |
|
LOGICAL TRKDEBUG,TRKVERBOSE |
| 861 |
|
COMMON/TRKD/TRKDEBUG,TRKVERBOSE |
| 862 |
|
|
| 863 |
|
DIMENSION AL_P(5) |
| 864 |
|
DIMENSION VECTEMP(5) |
| 865 |
|
c$$$ DIMENSION U(5) ! BFGS |
| 866 |
|
|
| 867 |
|
DO I=1,5 |
| 868 |
|
AL_P(I)=AL(I) |
| 869 |
|
ENDDO |
| 870 |
|
JFAIL=0 !error flag |
| 871 |
|
CALL POSXYZ(AL_P,JFAIL) !track intersection with tracking planes |
| 872 |
|
IF(JFAIL.NE.0) THEN |
| 873 |
|
IF(TRKVERBOSE) |
| 874 |
|
$ PRINT *,'CHISQSTT ==> error from trk routine POSXYZ !!' |
| 875 |
|
IFAIL=1 |
| 876 |
|
RETURN |
| 877 |
|
ENDIF |
| 878 |
|
|
| 879 |
|
DO I=1,nplanes |
| 880 |
|
DXDAL(I,1)=1. |
| 881 |
|
DYDAL(I,1)=0. |
| 882 |
|
DXDAL(I,2)=0. |
| 883 |
|
DYDAL(I,2)=1. |
| 884 |
|
COSTHE=DSQRT(1.-AL(3)**2) |
| 885 |
|
IF(COSTHE.EQ.0.) THEN |
| 886 |
|
IF(TRKVERBOSE)PRINT *,'=== WARNING ===> COSTHE=0' |
| 887 |
|
IFAIL=1 |
| 888 |
|
RETURN |
| 889 |
|
ENDIF |
| 890 |
|
DXDAL(I,3)=(ZINI-ZM(I))*DCOS(AL(4))/COSTHE**3 |
| 891 |
|
DYDAL(I,3)=(ZINI-ZM(I))*DSIN(AL(4))/COSTHE**3 |
| 892 |
|
DXDAL(I,4)=-AL(3)*(ZINI-ZM(I))*DSIN(AL(4))/COSTHE |
| 893 |
|
DYDAL(I,4)=AL(3)*(ZINI-ZM(I))*DCOS(AL(4))/COSTHE |
| 894 |
|
IF(AL(5).NE.0.) THEN |
| 895 |
|
DXDAL(I,5)= |
| 896 |
|
+ (XV(I)-(AL(1)+AL(3)/COSTHE*(ZINI-ZM(I)) |
| 897 |
|
+ *DCOS(AL(4))))/AL(5) |
| 898 |
|
DYDAL(I,5)= |
| 899 |
|
+ (YV(I)-(AL(2)+AL(3)/COSTHE*(ZINI-ZM(I)) |
| 900 |
|
+ *DSIN(AL(4))))/AL(5) |
| 901 |
|
ELSE |
| 902 |
|
DXDAL(I,5)=100.*( 0.25 *0.3*0.4*(0.01*(ZINI-ZM(I)))**2 ) |
| 903 |
|
DYDAL(I,5)=0. |
| 904 |
|
ENDIF |
| 905 |
|
ENDDO |
| 906 |
|
|
| 907 |
|
IF(IFLAG.EQ.0) THEN ! function calulation |
| 908 |
|
CHI2=0. |
| 909 |
|
DO I=1,nplanes |
| 910 |
|
IF(XGOOD(I).EQ.1.AND.YGOOD(I).EQ.0)THEN !X-cl |
| 911 |
|
BETA = (XM_B(I)-XM_A(I))/(YM_B(I)-YM_A(I)) |
| 912 |
|
ALFA = XM_A(I) - BETA * YM_A(I) |
| 913 |
|
YM(I) = ( YV(I) + BETA*XV(I) - BETA*ALFA )/(1+BETA**2) |
| 914 |
|
if(YM(I).lt.dmin1(YM_A(I),YM_B(I))) |
| 915 |
|
$ YM(I)=dmin1(YM_A(I),YM_B(I)) |
| 916 |
|
if(YM(I).gt.dmax1(YM_A(I),YM_B(I))) |
| 917 |
|
$ YM(I)=dmax1(YM_A(I),YM_B(I)) |
| 918 |
|
XM(I) = ALFA + BETA * YM(I) !<<<< measured coordinates |
| 919 |
|
ELSEIF(XGOOD(I).EQ.0.AND.YGOOD(I).EQ.1)THEN !Y-cl |
| 920 |
|
BETA = (YM_B(I)-YM_A(I))/(XM_B(I)-XM_A(I)) |
| 921 |
|
ALFA = YM_A(I) - BETA * XM_A(I) |
| 922 |
|
XM(I) = ( XV(I) + BETA*YV(I) - BETA*ALFA )/(1+BETA**2) |
| 923 |
|
if(XM(I).lt.dmin1(XM_A(I),XM_B(I))) |
| 924 |
|
$ XM(I)=dmin1(XM_A(I),XM_B(I)) |
| 925 |
|
if(XM(I).gt.dmax1(XM_A(I),XM_B(I))) |
| 926 |
|
$ XM(I)=dmax1(XM_A(I),XM_B(I)) |
| 927 |
|
YM(I) = ALFA + BETA * XM(I) !<<<< measured coordinates |
| 928 |
|
ENDIF |
| 929 |
|
TERMX = DLOG( (TAILX(I)*RESX(I)**2+(XV(I)-XM(I))**2)/ |
| 930 |
|
$ (TAILX(I)*RESX(I)**2) ) |
| 931 |
|
TERMY = DLOG( (TAILY(I)*RESY(I)**2+(YV(I)-YM(I))**2)/ |
| 932 |
|
$ (TAILY(I)*RESY(I)**2) ) |
| 933 |
|
CHI2=CHI2 |
| 934 |
|
$ +(TAILX(I)+1.0)*TERMX *( XGOOD(I) ) |
| 935 |
|
$ +(TAILY(I)+1.0)*TERMY *( YGOOD(I) ) |
| 936 |
|
ENDDO |
| 937 |
|
ENDIF |
| 938 |
|
|
| 939 |
|
IF(IFLAG.EQ.1) THEN ! derivative calulation |
| 940 |
|
DO I=1,5 |
| 941 |
|
CHI2DOLD(I)=CHI2D(I) |
| 942 |
|
ENDDO |
| 943 |
|
DO J=1,5 |
| 944 |
|
CHI2D(J)=0. |
| 945 |
|
DO I=1,nplanes |
| 946 |
|
CHI2D(J)=CHI2D(J) |
| 947 |
|
$ +2.*(TAILX(I)+1.0)*(XV(I)-XM(I))/ |
| 948 |
|
$ (TAILX(I)*RESX(I)**2+(XV(I)-XM(I))**2)* |
| 949 |
|
$ DXDAL(I,J) *XGOOD(I) |
| 950 |
|
$ +2.*(TAILY(I)+1.0)*(YV(I)-YM(I))/ |
| 951 |
|
$ (TAILY(I)*RESY(I)**2+(YV(I)-YM(I))**2)* |
| 952 |
|
$ DYDAL(I,J) *YGOOD(I) |
| 953 |
|
ENDDO |
| 954 |
|
ENDDO |
| 955 |
|
DO K=1,5 |
| 956 |
|
VECTEMP(K)=0. |
| 957 |
|
DO M=1,5 |
| 958 |
|
VECTEMP(K) = VECTEMP(K) + |
| 959 |
|
$ COV(K,M)/2.*(CHI2D(M)-CHI2DOLD(M)) |
| 960 |
|
ENDDO |
| 961 |
|
ENDDO |
| 962 |
|
DOWN1 = 0. |
| 963 |
|
DO K=1,5 |
| 964 |
|
DOWN1 = DOWN1 + DAL(K)*(CHI2D(K)-CHI2DOLD(K)) |
| 965 |
|
ENDDO |
| 966 |
|
IF(DOWN1.EQ.0.) THEN |
| 967 |
|
PRINT*,'WARNING IN MATRIX CALULATION (STUDENT), DOWN1 = 0' |
| 968 |
|
IFAIL=1 |
| 969 |
|
RETURN |
| 970 |
|
ENDIF |
| 971 |
|
DOWN2 = 0. |
| 972 |
|
DO K=1,5 |
| 973 |
|
DO M=1,5 |
| 974 |
|
DOWN2 = DOWN2 + (CHI2D(K)-CHI2DOLD(K))*VECTEMP(K) |
| 975 |
|
ENDDO |
| 976 |
|
ENDDO |
| 977 |
|
IF(DOWN2.EQ.0.) THEN |
| 978 |
|
PRINT*,'WARNING IN MATRIX CALULATION (STUDENT), DOWN2 = 0' |
| 979 |
|
IFAIL=1 |
| 980 |
|
RETURN |
| 981 |
|
ENDIF |
| 982 |
|
c$$$ DO K=1,5 ! BFGS |
| 983 |
|
c$$$ U(K) = DAL(K)/DOWN1 - VECTEMP(K)/DOWN2 |
| 984 |
|
c$$$ ENDDO |
| 985 |
|
DO I=1,5 |
| 986 |
|
DO J=1,5 |
| 987 |
|
CHI2DD(I,J) = COV(I,J)/2. |
| 988 |
|
$ +DAL(I)*DAL(J)/DOWN1 |
| 989 |
|
$ -VECTEMP(I)*VECTEMP(J)/DOWN2 |
| 990 |
|
c$$$ $ +DOWN2*U(I)*U(J) ! BFGS |
| 991 |
|
ENDDO |
| 992 |
|
ENDDO |
| 993 |
|
ENDIF |
| 994 |
|
|
| 995 |
|
RETURN |
| 996 |
|
END |
| 997 |
|
|
| 998 |
***************************************************************** |
***************************************************************** |
| 999 |
* |
* |
| 1000 |
* Routine to compute the track intersection points |
* Routine to compute the track intersection points |
| 1019 |
* |
* |
| 1020 |
***************************************************************** |
***************************************************************** |
| 1021 |
|
|
| 1022 |
|
cPPP --- new --- (with singlets in 3D) |
| 1023 |
SUBROUTINE POSXYZ(AL_P,IFAIL) |
SUBROUTINE POSXYZ(AL_P,IFAIL) |
| 1024 |
|
|
| 1025 |
IMPLICIT DOUBLE PRECISION (A-H,O-Z) |
IMPLICIT DOUBLE PRECISION (A-H,O-Z) |
| 1033 |
COMMON/TRKD/TRKDEBUG,TRKVERBOSE |
COMMON/TRKD/TRKDEBUG,TRKVERBOSE |
| 1034 |
c |
c |
| 1035 |
DIMENSION AL_P(5) |
DIMENSION AL_P(5) |
| 1036 |
|
LOGICAL SINGLET,SINGLET_FIRST,ZDEGENER |
| 1037 |
* |
* |
| 1038 |
DO I=1,nplanes |
cpp DO I=1,nplanes |
| 1039 |
ZV(I)=ZM(I) ! |
cpp ZV(I)=ZM(I) ! |
| 1040 |
ENDDO |
cpp ENDDO |
| 1041 |
* |
* |
| 1042 |
* set parameters for GRKUTA |
* set parameters for GRKUTA |
| 1043 |
* |
* |
| 1052 |
IF(AL_P(5).NE.0.) VOUT(7)=DABS(1./AL_P(5)) |
IF(AL_P(5).NE.0.) VOUT(7)=DABS(1./AL_P(5)) |
| 1053 |
IF(AL_P(5).EQ.0.) VOUT(7)=1.E8 |
IF(AL_P(5).EQ.0.) VOUT(7)=1.E8 |
| 1054 |
|
|
| 1055 |
c$$$ print*,'POSXY ',vout |
c$$$ print*,'POSXY (prima) ',vout |
| 1056 |
|
|
| 1057 |
DO I=1,nplanes |
DO I=1,nplanes |
| 1058 |
step=vout(3)-zv(i) |
IF(XGOOD(I).EQ.YGOOD(I)) SINGLET = .false. |
| 1059 |
|
IF(XGOOD(I).NE.YGOOD(I)) SINGLET = .true. |
| 1060 |
|
ZNEXT = ZM(I) |
| 1061 |
|
IF(SINGLET) THEN |
| 1062 |
|
IF(ZM_A(I).GT.ZM_B(I)+TOLL) THEN |
| 1063 |
|
ZNEXT = ZM_A(I) |
| 1064 |
|
ZNEXT2 = ZM_B(I) |
| 1065 |
|
SINGLET_FIRST = .true. |
| 1066 |
|
ZDEGENER = .false. |
| 1067 |
|
ELSEIF(ZM_B(I).GT.ZM_A(I)+TOLL) THEN |
| 1068 |
|
ZNEXT = ZM_B(I) |
| 1069 |
|
ZNEXT2 = ZM_A(I) |
| 1070 |
|
SINGLET_FIRST = .true. |
| 1071 |
|
ZDEGENER = .false. |
| 1072 |
|
ELSE |
| 1073 |
|
ZNEXT = 0.5*(ZM_A(I)+ZM_B(I)) |
| 1074 |
|
SINGLET_FIRST = .false. |
| 1075 |
|
ZDEGENER = .true. |
| 1076 |
|
ENDIF |
| 1077 |
|
ENDIF |
| 1078 |
|
c$$$ IF(SINGLET) PRINT*,'SINGLET!!!' |
| 1079 |
10 DO J=1,7 |
10 DO J=1,7 |
| 1080 |
VECT(J)=VOUT(J) |
VECT(J)=VOUT(J) |
| 1081 |
VECTINI(J)=VOUT(J) |
VECTINI(J)=VOUT(J) |
| 1082 |
ENDDO |
ENDDO |
| 1083 |
|
|
| 1084 |
|
IF(VOUT(6).GE.0.) THEN |
| 1085 |
|
IFAIL=1 |
| 1086 |
|
if(TRKVERBOSE) |
| 1087 |
|
$ PRINT *,'posxy (grkuta): WARNING ===> backward track!!' |
| 1088 |
|
RETURN |
| 1089 |
|
ENDIF |
| 1090 |
|
cPP step=(zm(i)-vect(3))/VOUT(6) |
| 1091 |
|
step=(ZNEXT-vect(3))/VOUT(6) |
| 1092 |
11 continue |
11 continue |
| 1093 |
CALL GRKUTA(CHARGE,STEP,VECT,VOUT) |
CALL GRKUTA(CHARGE,STEP,VECT,VOUT) |
| 1094 |
|
c$$$ ipass = ipass + 1 ! TEST |
| 1095 |
|
c$$$ PRINT *,'TRACKING -> STEP: ',ipass,' LENGHT: ', STEP ! TEST |
| 1096 |
IF(VOUT(3).GT.VECT(3)) THEN |
IF(VOUT(3).GT.VECT(3)) THEN |
| 1097 |
IFAIL=1 |
IFAIL=1 |
| 1098 |
if(TRKVERBOSE) |
if(TRKVERBOSE) |
| 1105 |
if(TRKVERBOSE)print*,'vect',vect |
if(TRKVERBOSE)print*,'vect',vect |
| 1106 |
if(TRKVERBOSE)print*,'vout',vout |
if(TRKVERBOSE)print*,'vout',vout |
| 1107 |
if(TRKVERBOSE)print*,'step',step |
if(TRKVERBOSE)print*,'step',step |
| 1108 |
|
if(TRKVERBOSE)print*,'DeltaB',DELTA0,DELTA1 |
| 1109 |
RETURN |
RETURN |
| 1110 |
ENDIF |
ENDIF |
| 1111 |
Z=VOUT(3) |
Z=VOUT(3) |
| 1112 |
IF(Z.LE.ZM(I)+TOLL.AND.Z.GE.ZM(I)-TOLL) GOTO 100 |
IF(Z.LE.ZNEXT+TOLL.AND.Z.GE.ZNEXT-TOLL) GOTO 100 |
| 1113 |
IF(Z.GT.ZM(I)+TOLL) GOTO 10 |
IF(Z.GT.ZNEXT+TOLL) GOTO 10 |
| 1114 |
IF(Z.LE.ZM(I)-TOLL) THEN |
IF(Z.LE.ZNEXT-TOLL) THEN |
| 1115 |
STEP=STEP*(ZM(I)-VECT(3))/(Z-VECT(3)) |
STEP=STEP*(ZNEXT-VECT(3))/(Z-VECT(3)) |
| 1116 |
DO J=1,7 |
DO J=1,7 |
| 1117 |
VECT(J)=VECTINI(J) |
VECT(J)=VECTINI(J) |
| 1118 |
ENDDO |
ENDDO |
| 1119 |
GOTO 11 |
GOTO 11 |
| 1120 |
ENDIF |
ENDIF |
| 1121 |
|
c$$$ IF(Z.LE.ZM(I)+TOLL.AND.Z.GE.ZM(I)-TOLL) GOTO 100 |
| 1122 |
|
c$$$ IF(Z.GT.ZM(I)+TOLL) GOTO 10 |
| 1123 |
|
c$$$ IF(Z.LE.ZM(I)-TOLL) THEN |
| 1124 |
|
c$$$ STEP=STEP*(ZM(I)-VECT(3))/(Z-VECT(3)) |
| 1125 |
|
c$$$ DO J=1,7 |
| 1126 |
|
c$$$ VECT(J)=VECTINI(J) |
| 1127 |
|
c$$$ ENDDO |
| 1128 |
|
c$$$ GOTO 11 |
| 1129 |
|
c$$$ ENDIF |
| 1130 |
|
|
| 1131 |
|
|
| 1132 |
* ----------------------------------------------- |
* ----------------------------------------------- |
| 1133 |
* evaluate track coordinates |
* evaluate track coordinates |
| 1134 |
100 XV(I)=VOUT(1) |
|
| 1135 |
YV(I)=VOUT(2) |
100 IF(SINGLET.AND.(.NOT.ZDEGENER).AND.SINGLET_FIRST) THEN |
| 1136 |
ZV(I)=VOUT(3) |
IF(ZM_A(I).GT.ZM_B(I)) THEN |
| 1137 |
AXV(I)=DATAN(VOUT(4)/VOUT(6))*180./ACOS(-1.) |
XV_A(I) = VOUT(1) |
| 1138 |
AYV(I)=DATAN(VOUT(5)/VOUT(6))*180./ACOS(-1.) |
YV_A(I) = VOUT(2) |
| 1139 |
|
ZV_A(I) = VOUT(3) |
| 1140 |
|
ELSE |
| 1141 |
|
XV_B(I) = VOUT(1) |
| 1142 |
|
YV_B(I) = VOUT(2) |
| 1143 |
|
ZV_B(I) = VOUT(3) |
| 1144 |
|
ENDIF |
| 1145 |
|
AXVUP = DATAN(VOUT(4)/VOUT(6))*180./ACOS(-1.) |
| 1146 |
|
AYVUP = DATAN(VOUT(5)/VOUT(6))*180./ACOS(-1.) |
| 1147 |
|
ZNEXT = ZNEXT2 |
| 1148 |
|
SINGLET_FIRST = .false. |
| 1149 |
|
GOTO 10 |
| 1150 |
|
ENDIF |
| 1151 |
|
|
| 1152 |
|
IF(SINGLET.AND.(.NOT.ZDEGENER).AND.(.NOT.SINGLET_FIRST)) THEN |
| 1153 |
|
IF(ZM_A(I).LT.ZM_B(I)) THEN |
| 1154 |
|
XV_A(I) = VOUT(1) |
| 1155 |
|
YV_A(I) = VOUT(2) |
| 1156 |
|
ZV_A(I) = VOUT(3) |
| 1157 |
|
ELSE |
| 1158 |
|
XV_B(I) = VOUT(1) |
| 1159 |
|
YV_B(I) = VOUT(2) |
| 1160 |
|
ZV_B(I) = VOUT(3) |
| 1161 |
|
ENDIF |
| 1162 |
|
AXV(I)=0.5*(DATAN(VOUT(4)/VOUT(6))*180./ACOS(-1.)+AXVUP) |
| 1163 |
|
AYV(I)=0.5*(DATAN(VOUT(5)/VOUT(6))*180./ACOS(-1.)+AYVUP) |
| 1164 |
|
ENDIF |
| 1165 |
|
|
| 1166 |
|
IF(SINGLET.AND.ZDEGENER) THEN |
| 1167 |
|
XV_A(I) = VOUT(1) |
| 1168 |
|
YV_A(I) = VOUT(2) |
| 1169 |
|
ZV_A(I) = VOUT(3)+0.1 |
| 1170 |
|
XV_B(I) = VOUT(1) |
| 1171 |
|
YV_B(I) = VOUT(2) |
| 1172 |
|
ZV_B(I) = VOUT(3)-0.1 |
| 1173 |
|
AXV(I)=DATAN(VOUT(4)/VOUT(6))*180./ACOS(-1.) |
| 1174 |
|
AYV(I)=DATAN(VOUT(5)/VOUT(6))*180./ACOS(-1.) |
| 1175 |
|
ENDIF |
| 1176 |
|
|
| 1177 |
|
IF(.NOT.SINGLET) THEN |
| 1178 |
|
XV(I)=VOUT(1) |
| 1179 |
|
YV(I)=VOUT(2) |
| 1180 |
|
ZV(I)=VOUT(3) |
| 1181 |
|
AXV(I)=DATAN(VOUT(4)/VOUT(6))*180./ACOS(-1.) |
| 1182 |
|
AYV(I)=DATAN(VOUT(5)/VOUT(6))*180./ACOS(-1.) |
| 1183 |
|
ENDIF |
| 1184 |
|
|
| 1185 |
|
* ----------------------------------------------- |
| 1186 |
|
|
| 1187 |
|
IF(TRACKMODE.EQ.1) THEN |
| 1188 |
|
* ----------------------------------------------- |
| 1189 |
|
* change of energy by bremsstrahlung for electrons |
| 1190 |
|
VOUT(7) = VOUT(7) * 0.997 !0.9968 |
| 1191 |
* ----------------------------------------------- |
* ----------------------------------------------- |
| 1192 |
|
ENDIF |
| 1193 |
|
c$$$ PRINT *,'TRACKING -> END' ! TEST |
| 1194 |
|
|
| 1195 |
ENDDO |
ENDDO |
| 1196 |
|
|
| 1197 |
|
c$$$ print*,'POSXY (dopo) ',vout |
| 1198 |
|
|
| 1199 |
|
|
| 1200 |
RETURN |
RETURN |
| 1201 |
END |
END |
| 1202 |
|
|
| 1229 |
YM(IP) = -100. !0. |
YM(IP) = -100. !0. |
| 1230 |
XM_A(IP) = -100. !0. |
XM_A(IP) = -100. !0. |
| 1231 |
YM_A(IP) = -100. !0. |
YM_A(IP) = -100. !0. |
| 1232 |
c ZM_A(IP) = 0 |
ZM_A(IP) = fitz(nplanes-ip+1) !init to mech. position |
| 1233 |
XM_B(IP) = -100. !0. |
XM_B(IP) = -100. !0. |
| 1234 |
YM_B(IP) = -100. !0. |
YM_B(IP) = -100. !0. |
| 1235 |
c ZM_B(IP) = 0 |
ZM_B(IP) = fitz(nplanes-ip+1) !init to mech. position |
| 1236 |
RESX(IP) = 1000. !3.d-4 |
RESX(IP) = 1000. !3.d-4 |
| 1237 |
RESY(IP) = 1000. !12.d-4 |
RESY(IP) = 1000. !12.d-4 |
| 1238 |
XGOOD(IP) = 0 |
XGOOD(IP) = 0 |
| 1239 |
YGOOD(IP) = 0 |
YGOOD(IP) = 0 |
| 1240 |
|
DEDXTRK_X(IP) = 0 |
| 1241 |
|
DEDXTRK_Y(IP) = 0 |
| 1242 |
|
AXV(IP) = 0 |
| 1243 |
|
AYV(IP) = 0 |
| 1244 |
|
XV(IP) = -100 |
| 1245 |
|
YV(IP) = -100 |
| 1246 |
enddo |
enddo |
| 1247 |
|
|
| 1248 |
return |
return |
| 1313 |
ZP(NP)=ZM(I) |
ZP(NP)=ZM(I) |
| 1314 |
ENDIF |
ENDIF |
| 1315 |
ENDDO |
ENDDO |
| 1316 |
|
IFLAG=0 !no debug mode |
| 1317 |
CALL TRICIRCLE(NP,XP,ZP,AP,RP,CHI,XC,ZC,RADIUS,IFLAG) |
CALL TRICIRCLE(NP,XP,ZP,AP,RP,CHI,XC,ZC,RADIUS,IFLAG) |
| 1318 |
c print*,' circle: ',XC,ZC,RADIUS,' --- ',CHI |
|
| 1319 |
|
c$$$ print*,' circle: ',XC,ZC,RADIUS,' --- ',CHI,IFLAG |
| 1320 |
|
c$$$ print*,' XP ',(xp(i),i=1,np) |
| 1321 |
|
c$$$ print*,' ZP ',(zp(i),i=1,np) |
| 1322 |
|
c$$$ print*,' AP ',(ap(i),i=1,np) |
| 1323 |
|
c$$$ print*,' XP ',(rp(i),i=1,np) |
| 1324 |
|
|
| 1325 |
IF(IFLAG.NE.0)GOTO 10 !straigth fit |
IF(IFLAG.NE.0)GOTO 10 !straigth fit |
| 1326 |
|
c if(CHI.gt.100)GOTO 10 !straigth fit |
| 1327 |
ARG = RADIUS**2-(ZINI-ZC)**2 |
ARG = RADIUS**2-(ZINI-ZC)**2 |
| 1328 |
IF(ARG.LT.0)GOTO 10 !straigth fit |
IF(ARG.LT.0)GOTO 10 !straigth fit |
| 1329 |
DC = SQRT(ARG) |
DC = SQRT(ARG) |
| 1332 |
AX = -(ZINI-ZC)/DC |
AX = -(ZINI-ZC)/DC |
| 1333 |
DEF=100./(RADIUS*0.3*0.43) |
DEF=100./(RADIUS*0.3*0.43) |
| 1334 |
IF(XC.GT.0)DEF=-DEF |
IF(XC.GT.0)DEF=-DEF |
| 1335 |
|
|
| 1336 |
|
|
| 1337 |
|
|
| 1338 |
|
IF(ABS(X0).GT.30)THEN |
| 1339 |
|
c$$$ PRINT*,'STRANGE GUESS: XC,ZC,R ',XC,ZC,RADIUS |
| 1340 |
|
c$$$ $ ,' - CHI ',CHI,' - X0,AX,DEF ',X0,AX,DEF |
| 1341 |
|
GOTO 10 !straigth fit |
| 1342 |
|
ENDIF |
| 1343 |
GOTO 20 !guess is ok |
GOTO 20 !guess is ok |
| 1344 |
|
|
| 1345 |
* ---------------------------------------- |
* ---------------------------------------- |
| 1381 |
AL(2) = Y0 |
AL(2) = Y0 |
| 1382 |
tath = sqrt(AY**2+AX**2) |
tath = sqrt(AY**2+AX**2) |
| 1383 |
AL(3) = tath/sqrt(1+tath**2) |
AL(3) = tath/sqrt(1+tath**2) |
| 1384 |
IF(AX.NE.0)THEN |
c$$$ IF(AX.NE.0)THEN |
| 1385 |
AL(4)= atan(AY/AX) |
c$$$ AL(4)= atan(AY/AX) |
| 1386 |
ELSE |
c$$$ ELSE |
| 1387 |
AL(4) = acos(-1.)/2 |
c$$$ AL(4) = acos(-1.)/2 |
| 1388 |
IF(AY.LT.0)AL(4) = AL(4)+acos(-1.) |
c$$$ IF(AY.LT.0)AL(4) = AL(4)+acos(-1.) |
| 1389 |
|
c$$$ ENDIF |
| 1390 |
|
c$$$ IF(AX.LT.0)AL(4)= acos(-1.)+ AL(4) |
| 1391 |
|
c$$$ AL(4) = -acos(-1.) + AL(4) !from incidence direction to tracking ref.sys. |
| 1392 |
|
|
| 1393 |
|
c$$$ AL(4) = 0. |
| 1394 |
|
c$$$ IF(AX.NE.0.AND.AY.NE.0)THEN |
| 1395 |
|
c$$$ AL(4)= atan(AY/AX) |
| 1396 |
|
c$$$ ELSEIF(AY.EQ.0)THEN |
| 1397 |
|
c$$$ AL(4) = 0. |
| 1398 |
|
c$$$ IF(AX.LT.0)AL(4) = AL(4)+acos(-1.) |
| 1399 |
|
c$$$ ELSEIF(AX.EQ.0)THEN |
| 1400 |
|
c$$$ AL(4) = acos(-1.)/2 |
| 1401 |
|
c$$$ IF(AY.LT.0)AL(4) = AL(4)+acos(-1.) |
| 1402 |
|
c$$$ ENDIF |
| 1403 |
|
c$$$ IF(AX.LT.0)AL(4)= acos(-1.)+ AL(4) |
| 1404 |
|
c$$$ AL(4) = -acos(-1.) + AL(4) !from incidence direction to tracking ref.sys. |
| 1405 |
|
|
| 1406 |
|
c$$$ AL(4)=0. |
| 1407 |
|
c$$$ IF( AX.NE.0.OR.AY.NE.0. ) THEN |
| 1408 |
|
c$$$ AL(4) = ASIN(AY/SQRT(AX**2+AY**2)) |
| 1409 |
|
c$$$ IF(AX.LT.0.) AL(4) = ACOS(-1.0)-AL(4) |
| 1410 |
|
c$$$ ENDIF |
| 1411 |
|
|
| 1412 |
|
AL(4)=0. |
| 1413 |
|
IF( AX.NE.0.OR.AY.NE.0. ) THEN |
| 1414 |
|
AL(4) = ASIN(AY/SQRT(AX**2+AY**2)) |
| 1415 |
|
IF(AX.LT.0.AND.AY.GE.0) AL(4) = ACOS(-1.0)-AL(4) |
| 1416 |
|
IF(AX.LT.0.AND.AY.LT.0) AL(4) = -ACOS(-1.0)-AL(4) |
| 1417 |
ENDIF |
ENDIF |
| 1418 |
IF(AX.LT.0)AL(4)= acos(-1.)+ AL(4) |
IF(AY.GT.0.) AL(4) = AL(4)-ACOS(-1.0) |
| 1419 |
AL(4) = -acos(-1.) + AL(4) !from incidence direction to tracking rs |
IF(AY.LE.0.) AL(4) = AL(4)+ACOS(-1.0) |
| 1420 |
|
|
| 1421 |
AL(5) = DEF |
AL(5) = DEF |
| 1422 |
|
|
| 1423 |
c print*,' guess: ',(al(i),i=1,5) |
c print*,' guess: ',(al(i),i=1,5) |