23 |
c common/dbg/DEBUG |
c common/dbg/DEBUG |
24 |
|
|
25 |
parameter (dinf=1.d15) !just a huge number... |
parameter (dinf=1.d15) !just a huge number... |
26 |
|
parameter (dinfneg=-dinf) ! just a huge negative number... |
27 |
|
|
28 |
|
double precision NX, NY ! EM GCC4.7 |
29 |
c------------------------------------------------------------------------ |
c------------------------------------------------------------------------ |
30 |
c variables used in the tracking procedure (mini and its subroutines) |
c variables used in the tracking procedure (mini and its subroutines) |
31 |
c |
c |
47 |
c DATA ALMAX/dinf,dinf,1.,dinf,dinf/ !limits on alpha vector components |
c DATA ALMAX/dinf,dinf,1.,dinf,dinf/ !limits on alpha vector components |
48 |
c DATA ALMIN/-dinf,-dinf,-1.,-dinf,-dinf/ !" |
c DATA ALMIN/-dinf,-dinf,-1.,-dinf,-dinf/ !" |
49 |
DATA ALMAX/dinf,dinf,1.,dinf,dinf/ !limits on alpha vector components |
DATA ALMAX/dinf,dinf,1.,dinf,dinf/ !limits on alpha vector components |
50 |
DATA ALMIN/-dinf,-dinf,-1.,-dinf,-dinf/ !" |
DATA ALMIN/dinfneg,dinfneg,-1.,dinfneg,dinfneg/ !" |
51 |
|
|
52 |
c$$$ DIMENSION DAL(5) !increment of vector alfa |
c$$$ DIMENSION DAL(5) !increment of vector alfa |
53 |
DIMENSION CHI2DD_R(4,4),CHI2D_R(4) !hessiano e gradiente di chi2 |
DIMENSION CHI2DD_R(4,4),CHI2D_R(4) !hessiano e gradiente di chi2 |
144 |
CHI2=0 |
CHI2=0 |
145 |
|
|
146 |
if(TRKDEBUG) print*,'guess: ',al |
if(TRKDEBUG) print*,'guess: ',al |
147 |
if(TRKDEBUG) print*,'mini2: step ',istep,chi2,1./AL(5) |
if(TRKDEBUG) print*,'mini2: step ',istep,chi2,AL(5) |
148 |
|
|
149 |
* |
* |
150 |
* ----------------------- |
* ----------------------- |
254 |
ENDDO |
ENDDO |
255 |
ENDIF |
ENDIF |
256 |
|
|
257 |
if(TRKDEBUG) print*,'mini2: step ',istep,chi2,1./AL(5) |
if(TRKDEBUG) print*,'mini2: step ',istep,chi2,AL(5) |
258 |
|
|
259 |
c$$$ PRINT*,'DAL ',(DAL(K),K=1,5) |
c$$$ PRINT*,'DAL ',(DAL(K),K=1,5) |
260 |
c$$$ PRINT*,'CHI2DOLD ',(CHI2DOLD(K),K=1,5) |
c$$$ PRINT*,'CHI2DOLD ',(CHI2DOLD(K),K=1,5) |
421 |
* --------------------------------------------- |
* --------------------------------------------- |
422 |
*------------------------------------------------------------* |
*------------------------------------------------------------* |
423 |
c$$$ ALTOL(5) = DSQRT(DELETA1**2+DELETA2**2*AL(5)**2)/FACT |
c$$$ ALTOL(5) = DSQRT(DELETA1**2+DELETA2**2*AL(5)**2)/FACT |
424 |
|
IF(FACT.EQ.0)THEN |
425 |
|
IFAIL=1 |
426 |
|
RETURN |
427 |
|
ENDIF |
428 |
ALTOL(5) = DSQRT((DELETA1*AVRESX)**2+DELETA2**2*AL(5)**2)/FACT |
ALTOL(5) = DSQRT((DELETA1*AVRESX)**2+DELETA2**2*AL(5)**2)/FACT |
429 |
ALTOL(1) = ALTOL(5)/DELETA1 |
ALTOL(1) = ALTOL(5)/DELETA1 |
430 |
ALTOL(2) = ALTOL(1) |
ALTOL(2) = ALTOL(1) |
561 |
* ------------------------------------ |
* ------------------------------------ |
562 |
* Reduced chi^2 |
* Reduced chi^2 |
563 |
CHI2 = CHI2/dble(ndof) |
CHI2 = CHI2/dble(ndof) |
|
|
|
564 |
c print*,'mini2: chi2 ',chi2 |
c print*,'mini2: chi2 ',chi2 |
565 |
|
|
566 |
11 CONTINUE |
11 CONTINUE |
567 |
|
|
568 |
if(TRKDEBUG) print*,'mini2: -ok- ',istep,chi2,1./AL(5) |
if(TRKDEBUG) print*,'mini2: -ok- ',istep,chi2,AL(5) |
569 |
|
|
570 |
NSTEP=ISTEP ! ***PP*** |
NSTEP=ISTEP ! ***PP*** |
571 |
|
|
636 |
* measured position of the cluster. |
* measured position of the cluster. |
637 |
* --------------------------------------------------------- |
* --------------------------------------------------------- |
638 |
CHI2=0. |
CHI2=0. |
639 |
|
DO I=1,nplanes |
640 |
DO I=1,nplanes |
IF(XGOOD(I).EQ.1.AND.YGOOD(I).EQ.0)THEN !X-cl |
641 |
IF( XGOOD(I).NE.YGOOD(I) ) THEN ! singlet |
BETA = (XM_B(I)-XM_A(I))/(YM_B(I)-YM_A(I)) |
642 |
IF(XGOOD(I).EQ.1) THEN |
ALFA = XM_A(I) - BETA * YM_A(I) |
643 |
Z = |
YM(I) = ( YV(I) + BETA*XV(I) - BETA*ALFA )/(1+BETA**2) |
644 |
$ ( (ZM_A(I)*YM_B(I)-YM_A(I)*ZM_B(I))*(ZV_A(I)-ZV_B(I)) - |
if(YM(I).lt.dmin1(YM_A(I),YM_B(I))) |
645 |
$ (ZV_A(I)*YV_B(I)-YV_A(I)*ZV_B(I))*(ZM_A(I)-ZM_B(I)) )/ |
$ YM(I)=dmin1(YM_A(I),YM_B(I)) |
646 |
$ ( (ZM_A(I)-ZM_B(I))*(YV_A(I)-YV_B(I)) - |
if(YM(I).gt.dmax1(YM_A(I),YM_B(I))) |
647 |
$ (ZV_A(I)-ZV_B(I))*(YM_A(I)-YM_B(I)) ) |
$ YM(I)=dmax1(YM_A(I),YM_B(I)) |
648 |
ZM(I) = Z |
XM(I) = ALFA + BETA * YM(I) !<<<< measured coordinates |
649 |
ZV(I) = Z |
ELSEIF(XGOOD(I).EQ.0.AND.YGOOD(I).EQ.1)THEN !Y-cl |
650 |
XV(I) = XV_A(I)+(XV_B(I)-XV_A(I))* |
BETA = (YM_B(I)-YM_A(I))/(XM_B(I)-XM_A(I)) |
651 |
$ (Z-ZV_A(I))/(ZV_B(I)-ZV_A(I)) |
ALFA = YM_A(I) - BETA * XM_A(I) |
652 |
Y = |
XM(I) = ( XV(I) + BETA*YV(I) - BETA*ALFA )/(1+BETA**2) |
653 |
$ ( (ZM_A(I)*YM_B(I)-YM_A(I)*ZM_B(I))*(YV_A(I)-YV_B(I)) - |
if(XM(I).lt.dmin1(XM_A(I),XM_B(I))) |
654 |
$ (ZV_A(I)*YV_B(I)-YV_A(I)*ZV_B(I))*(YM_A(I)-YM_B(I)) )/ |
$ XM(I)=dmin1(XM_A(I),XM_B(I)) |
655 |
$ ( (ZM_A(I)-ZM_B(I))*(YV_A(I)-YV_B(I)) - |
if(XM(I).gt.dmax1(XM_A(I),XM_B(I))) |
656 |
$ (ZV_A(I)-ZV_B(I))*(YM_A(I)-YM_B(I)) ) |
$ XM(I)=dmax1(XM_A(I),XM_B(I)) |
657 |
YM(I) = Y |
YM(I) = ALFA + BETA * XM(I) !<<<< measured coordinates |
658 |
YV(I) = Y |
ENDIF |
659 |
XM(I) = XM_A(I)+(XM_B(I)-XM_A(I))* |
CHI2=CHI2 |
660 |
$ (Y-YM_A(I))/(YM_B(I)-YM_A(I)) |
+ +(XV(I)-XM(I))**2/RESX(i)**2 *( XGOOD(I)*YGOOD(I) ) |
661 |
|
+ +(YV(I)-YM(I))**2/RESY(i)**2 *( YGOOD(I)*XGOOD(I) ) |
662 |
CHI2=CHI2+(XV(I)-XM(I))**2/RESX(I)**2 |
+ +((XV(I)-XM(I))**2+(YV(I)-YM(I))**2)/RESX(i)**2 |
663 |
|
+ *( XGOOD(I)*(1-YGOOD(I)) ) |
664 |
ENDIF |
+ +((XV(I)-XM(I))**2+(YV(I)-YM(I))**2)/RESY(i)**2 |
665 |
IF(YGOOD(I).EQ.1) THEN |
+ *( (1-XGOOD(I))*YGOOD(I) ) |
666 |
Z = |
c$$$ print*,(XV(I)-XM(I))**2/RESX(i)**2 *( XGOOD(I)*YGOOD(I) ) |
667 |
$ ( (ZM_A(I)*XM_B(I)-XM_A(I)*ZM_B(I))*(ZV_A(I)-ZV_B(I)) - |
c$$$ print*,(YV(I)-YM(I))**2/RESY(i)**2 *( YGOOD(I)*XGOOD(I) ) |
668 |
$ (ZV_A(I)*XV_B(I)-XV_A(I)*ZV_B(I))*(ZM_A(I)-ZM_B(I)) )/ |
c$$$ print*,((XV(I)-XM(I))**2+(YV(I)-YM(I))**2)/RESX(i)**2 |
669 |
$ ( (ZM_A(I)-ZM_B(I))*(XV_A(I)-XV_B(I)) - |
c$$$ + *( XGOOD(I)*(1-YGOOD(I)) ) |
670 |
$ (ZV_A(I)-ZV_B(I))*(XM_A(I)-XM_B(I)) ) |
c$$$ print*,((XV(I)-XM(I))**2+(YV(I)-YM(I))**2)/RESY(i)**2 |
671 |
ZM(I) = Z |
c$$$ + *( (1-XGOOD(I))*YGOOD(I) ) |
672 |
ZV(I) = Z |
c$$$ print*,XV(I),XM(I),XGOOD(I) |
673 |
YV(I) = YV_A(I)+(YV_B(I)-YV_A(I))* |
c$$$ print*,YV(I),YM(I),YGOOD(I) |
|
$ (Z-ZV_A(I))/(ZV_B(I)-ZV_A(I)) |
|
|
X = |
|
|
$ ( (ZM_A(I)*XM_B(I)-XM_A(I)*ZM_B(I))*(XV_A(I)-XV_B(I)) - |
|
|
$ (ZV_A(I)*XV_B(I)-XV_A(I)*ZV_B(I))*(XM_A(I)-XM_B(I)) )/ |
|
|
$ ( (ZM_A(I)-ZM_B(I))*(XV_A(I)-XV_B(I)) - |
|
|
$ (ZV_A(I)-ZV_B(I))*(XM_A(I)-XM_B(I)) ) |
|
|
XM(I) = X |
|
|
XV(I) = X |
|
|
YM(I) = YM_A(I)+(YM_B(I)-YM_A(I))* |
|
|
$ (X-XM_A(I))/(XM_B(I)-XM_A(I)) |
|
|
|
|
|
CHI2=CHI2+(YV(I)-YM(I))**2/RESY(I)**2 |
|
|
|
|
|
ENDIF |
|
|
ELSEIF(XGOOD(I).EQ.1.AND.YGOOD(I).EQ.1)THEN !Y-cl |
|
|
CHI2=CHI2 |
|
|
+ +(XV(I)-XM(I))**2/RESX(i)**2 |
|
|
+ +(YV(I)-YM(I))**2/RESY(i)**2 |
|
|
ENDIF |
|
674 |
ENDDO |
ENDDO |
|
DO I=1,nplanes |
|
|
XV0(I)=XV(I) |
|
|
YV0(I)=YV(I) |
|
|
ENDDO |
|
|
|
|
|
c$$$ DO I=1,nplanes |
|
|
c$$$ IF(XGOOD(I).EQ.1.AND.YGOOD(I).EQ.0)THEN !X-cl |
|
|
c$$$ BETA = (XM_B(I)-XM_A(I))/(YM_B(I)-YM_A(I)) |
|
|
c$$$ ALFA = XM_A(I) - BETA * YM_A(I) |
|
|
c$$$ YM(I) = ( YV(I) + BETA*XV(I) - BETA*ALFA )/(1+BETA**2) |
|
|
c$$$ if(YM(I).lt.dmin1(YM_A(I),YM_B(I))) |
|
|
c$$$ $ YM(I)=dmin1(YM_A(I),YM_B(I)) |
|
|
c$$$ if(YM(I).gt.dmax1(YM_A(I),YM_B(I))) |
|
|
c$$$ $ YM(I)=dmax1(YM_A(I),YM_B(I)) |
|
|
c$$$ XM(I) = ALFA + BETA * YM(I) !<<<< measured coordinates |
|
|
c$$$ ELSEIF(XGOOD(I).EQ.0.AND.YGOOD(I).EQ.1)THEN !Y-cl |
|
|
c$$$ BETA = (YM_B(I)-YM_A(I))/(XM_B(I)-XM_A(I)) |
|
|
c$$$ ALFA = YM_A(I) - BETA * XM_A(I) |
|
|
c$$$ XM(I) = ( XV(I) + BETA*YV(I) - BETA*ALFA )/(1+BETA**2) |
|
|
c$$$ if(XM(I).lt.dmin1(XM_A(I),XM_B(I))) |
|
|
c$$$ $ XM(I)=dmin1(XM_A(I),XM_B(I)) |
|
|
c$$$ if(XM(I).gt.dmax1(XM_A(I),XM_B(I))) |
|
|
c$$$ $ XM(I)=dmax1(XM_A(I),XM_B(I)) |
|
|
c$$$ YM(I) = ALFA + BETA * XM(I) !<<<< measured coordinates |
|
|
c$$$ ENDIF |
|
|
c$$$ CHI2=CHI2 |
|
|
c$$$ + +(XV(I)-XM(I))**2/RESX(i)**2 *( XGOOD(I)*YGOOD(I) ) |
|
|
c$$$ + +(YV(I)-YM(I))**2/RESY(i)**2 *( YGOOD(I)*XGOOD(I) ) |
|
|
c$$$ + +((XV(I)-XM(I))**2+(YV(I)-YM(I))**2)/RESX(i)**2 |
|
|
c$$$ + *( XGOOD(I)*(1-YGOOD(I)) ) |
|
|
c$$$ + +((XV(I)-XM(I))**2+(YV(I)-YM(I))**2)/RESY(i)**2 |
|
|
c$$$ + *( (1-XGOOD(I))*YGOOD(I) ) |
|
|
c$$$ ENDDO |
|
|
|
|
675 |
c$$$ print*,'CHISQ ',chi2 |
c$$$ print*,'CHISQ ',chi2 |
676 |
* ------------------------------------------------ |
* ------------------------------------------------ |
677 |
* |
* |
972 |
* |
* |
973 |
***************************************************************** |
***************************************************************** |
974 |
|
|
|
cPPP --- new --- (with singlets in 3D) |
|
975 |
SUBROUTINE POSXYZ(AL_P,IFAIL) |
SUBROUTINE POSXYZ(AL_P,IFAIL) |
976 |
|
|
977 |
IMPLICIT DOUBLE PRECISION (A-H,O-Z) |
IMPLICIT DOUBLE PRECISION (A-H,O-Z) |
985 |
COMMON/TRKD/TRKDEBUG,TRKVERBOSE |
COMMON/TRKD/TRKDEBUG,TRKVERBOSE |
986 |
c |
c |
987 |
DIMENSION AL_P(5) |
DIMENSION AL_P(5) |
|
LOGICAL SINGLET,SINGLET_FIRST,ZDEGENER |
|
988 |
* |
* |
989 |
cpp DO I=1,nplanes |
cpp DO I=1,nplanes |
990 |
cpp ZV(I)=ZM(I) ! |
cpp ZV(I)=ZM(I) ! |
1006 |
c$$$ print*,'POSXY (prima) ',vout |
c$$$ print*,'POSXY (prima) ',vout |
1007 |
|
|
1008 |
DO I=1,nplanes |
DO I=1,nplanes |
1009 |
IF(XGOOD(I).EQ.YGOOD(I)) SINGLET = .false. |
c$$$ ipass = 0 ! TEST |
1010 |
IF(XGOOD(I).NE.YGOOD(I)) SINGLET = .true. |
c$$$ PRINT *,'TRACKING -> START PLANE: ',I ! TEST |
1011 |
ZNEXT = ZM(I) |
cPPP step=vout(3)-zm(i) |
1012 |
IF(SINGLET) THEN |
cPP step=(zm(i)-vout(3))/VOUT(6) |
|
IF(ZM_A(I).GT.ZM_B(I)+TOLL) THEN |
|
|
ZNEXT = ZM_A(I) |
|
|
ZNEXT2 = ZM_B(I) |
|
|
SINGLET_FIRST = .true. |
|
|
ZDEGENER = .false. |
|
|
ELSEIF(ZM_B(I).GT.ZM_A(I)+TOLL) THEN |
|
|
ZNEXT = ZM_B(I) |
|
|
ZNEXT2 = ZM_A(I) |
|
|
SINGLET_FIRST = .true. |
|
|
ZDEGENER = .false. |
|
|
ELSE |
|
|
ZNEXT = 0.5*(ZM_A(I)+ZM_B(I)) |
|
|
SINGLET_FIRST = .false. |
|
|
ZDEGENER = .true. |
|
|
ENDIF |
|
|
ENDIF |
|
|
c$$$ IF(SINGLET) PRINT*,'SINGLET!!!' |
|
1013 |
10 DO J=1,7 |
10 DO J=1,7 |
1014 |
VECT(J)=VOUT(J) |
VECT(J)=VOUT(J) |
1015 |
VECTINI(J)=VOUT(J) |
VECTINI(J)=VOUT(J) |
1016 |
ENDDO |
ENDDO |
1017 |
|
cPPP step=vect(3)-zm(i) |
1018 |
IF(VOUT(6).GE.0.) THEN |
IF(VOUT(6).GE.0.) THEN |
1019 |
IFAIL=1 |
IFAIL=1 |
1020 |
if(TRKVERBOSE) |
if(TRKVERBOSE) |
1021 |
$ PRINT *,'posxy (grkuta): WARNING ===> backward track!!' |
$ PRINT *,'posxy (grkuta): WARNING ===> backward track!!' |
1022 |
RETURN |
RETURN |
1023 |
ENDIF |
ENDIF |
1024 |
cPP step=(zm(i)-vect(3))/VOUT(6) |
step=(zm(i)-vect(3))/VOUT(6) |
|
step=(ZNEXT-vect(3))/VOUT(6) |
|
1025 |
11 continue |
11 continue |
1026 |
CALL GRKUTA(CHARGE,STEP,VECT,VOUT) |
CALL GRKUTA(CHARGE,STEP,VECT,VOUT) |
1027 |
c$$$ ipass = ipass + 1 ! TEST |
c$$$ ipass = ipass + 1 ! TEST |
1038 |
if(TRKVERBOSE)print*,'vect',vect |
if(TRKVERBOSE)print*,'vect',vect |
1039 |
if(TRKVERBOSE)print*,'vout',vout |
if(TRKVERBOSE)print*,'vout',vout |
1040 |
if(TRKVERBOSE)print*,'step',step |
if(TRKVERBOSE)print*,'step',step |
|
if(TRKVERBOSE)print*,'DeltaB',DELTA0,DELTA1 |
|
1041 |
RETURN |
RETURN |
1042 |
ENDIF |
ENDIF |
1043 |
Z=VOUT(3) |
Z=VOUT(3) |
1044 |
IF(Z.LE.ZNEXT+TOLL.AND.Z.GE.ZNEXT-TOLL) GOTO 100 |
IF(Z.LE.ZM(I)+TOLL.AND.Z.GE.ZM(I)-TOLL) GOTO 100 |
1045 |
IF(Z.GT.ZNEXT+TOLL) GOTO 10 |
IF(Z.GT.ZM(I)+TOLL) GOTO 10 |
1046 |
IF(Z.LE.ZNEXT-TOLL) THEN |
IF(Z.LE.ZM(I)-TOLL) THEN |
1047 |
STEP=STEP*(ZNEXT-VECT(3))/(Z-VECT(3)) |
STEP=STEP*(ZM(I)-VECT(3))/(Z-VECT(3)) |
1048 |
DO J=1,7 |
DO J=1,7 |
1049 |
VECT(J)=VECTINI(J) |
VECT(J)=VECTINI(J) |
1050 |
ENDDO |
ENDDO |
1051 |
GOTO 11 |
GOTO 11 |
1052 |
ENDIF |
ENDIF |
|
c$$$ IF(Z.LE.ZM(I)+TOLL.AND.Z.GE.ZM(I)-TOLL) GOTO 100 |
|
|
c$$$ IF(Z.GT.ZM(I)+TOLL) GOTO 10 |
|
|
c$$$ IF(Z.LE.ZM(I)-TOLL) THEN |
|
|
c$$$ STEP=STEP*(ZM(I)-VECT(3))/(Z-VECT(3)) |
|
|
c$$$ DO J=1,7 |
|
|
c$$$ VECT(J)=VECTINI(J) |
|
|
c$$$ ENDDO |
|
|
c$$$ GOTO 11 |
|
|
c$$$ ENDIF |
|
1053 |
|
|
1054 |
|
|
1055 |
* ----------------------------------------------- |
* ----------------------------------------------- |
1056 |
* evaluate track coordinates |
* evaluate track coordinates |
1057 |
|
100 XV(I)=VOUT(1) |
1058 |
100 IF(SINGLET.AND.(.NOT.ZDEGENER).AND.SINGLET_FIRST) THEN |
YV(I)=VOUT(2) |
1059 |
IF(ZM_A(I).GT.ZM_B(I)) THEN |
ZV(I)=VOUT(3) |
1060 |
XV_A(I) = VOUT(1) |
AXV(I)=DATAN(VOUT(4)/VOUT(6))*180./ACOS(-1.) |
1061 |
YV_A(I) = VOUT(2) |
AYV(I)=DATAN(VOUT(5)/VOUT(6))*180./ACOS(-1.) |
|
ZV_A(I) = VOUT(3) |
|
|
ELSE |
|
|
XV_B(I) = VOUT(1) |
|
|
YV_B(I) = VOUT(2) |
|
|
ZV_B(I) = VOUT(3) |
|
|
ENDIF |
|
|
AXVUP = DATAN(VOUT(4)/VOUT(6))*180./ACOS(-1.) |
|
|
AYVUP = DATAN(VOUT(5)/VOUT(6))*180./ACOS(-1.) |
|
|
ZNEXT = ZNEXT2 |
|
|
SINGLET_FIRST = .false. |
|
|
GOTO 10 |
|
|
ENDIF |
|
|
|
|
|
IF(SINGLET.AND.(.NOT.ZDEGENER).AND.(.NOT.SINGLET_FIRST)) THEN |
|
|
IF(ZM_A(I).LT.ZM_B(I)) THEN |
|
|
XV_A(I) = VOUT(1) |
|
|
YV_A(I) = VOUT(2) |
|
|
ZV_A(I) = VOUT(3) |
|
|
ELSE |
|
|
XV_B(I) = VOUT(1) |
|
|
YV_B(I) = VOUT(2) |
|
|
ZV_B(I) = VOUT(3) |
|
|
ENDIF |
|
|
AXV(I)=0.5*(DATAN(VOUT(4)/VOUT(6))*180./ACOS(-1.)+AXVUP) |
|
|
AYV(I)=0.5*(DATAN(VOUT(5)/VOUT(6))*180./ACOS(-1.)+AYVUP) |
|
|
ENDIF |
|
|
|
|
|
IF(SINGLET.AND.ZDEGENER) THEN |
|
|
XV_A(I) = VOUT(1) |
|
|
YV_A(I) = VOUT(2) |
|
|
ZV_A(I) = VOUT(3)+0.1 |
|
|
XV_B(I) = VOUT(1) |
|
|
YV_B(I) = VOUT(2) |
|
|
ZV_B(I) = VOUT(3)-0.1 |
|
|
AXV(I)=DATAN(VOUT(4)/VOUT(6))*180./ACOS(-1.) |
|
|
AYV(I)=DATAN(VOUT(5)/VOUT(6))*180./ACOS(-1.) |
|
|
ENDIF |
|
|
|
|
|
IF(.NOT.SINGLET) THEN |
|
|
XV(I)=VOUT(1) |
|
|
YV(I)=VOUT(2) |
|
|
ZV(I)=VOUT(3) |
|
|
AXV(I)=DATAN(VOUT(4)/VOUT(6))*180./ACOS(-1.) |
|
|
AYV(I)=DATAN(VOUT(5)/VOUT(6))*180./ACOS(-1.) |
|
|
ENDIF |
|
|
|
|
1062 |
* ----------------------------------------------- |
* ----------------------------------------------- |
1063 |
|
|
1064 |
IF(TRACKMODE.EQ.1) THEN |
IF(TRACKMODE.EQ.1) THEN |
1065 |
* ----------------------------------------------- |
* ----------------------------------------------- |
1066 |
* change of energy by bremsstrahlung for electrons |
* change of energy by bremsstrahlung for electrons |
1137 |
|
|
1138 |
subroutine guess() |
subroutine guess() |
1139 |
|
|
1140 |
c IMPLICIT DOUBLE PRECISION (A-H,O-Z) |
IMPLICIT DOUBLE PRECISION (A-H,O-Z) ! EM GCC4.7 |
1141 |
|
|
1142 |
include 'commontracker.f' !tracker general common |
include 'commontracker.f' !tracker general common |
1143 |
include 'common_mini_2.f' !common for the tracking procedure |
include 'common_mini_2.f' !common for the tracking procedure |
1144 |
|
|
1145 |
REAL*4 XP(NPLANES),ZP(NPLANES),AP(NPLANES),RP(NPLANES) |
REAL*8 XP(NPLANES),ZP(NPLANES),AP(NPLANES),RP(NPLANES) ! EM GCC4.7 |
1146 |
REAL*4 CHI,XC,ZC,RADIUS |
REAL*4 CHI,XC,ZC,RADIUS |
1147 |
* ---------------------------------------- |
* ---------------------------------------- |
1148 |
* Y view |
* Y view |
1258 |
AL(2) = Y0 |
AL(2) = Y0 |
1259 |
tath = sqrt(AY**2+AX**2) |
tath = sqrt(AY**2+AX**2) |
1260 |
AL(3) = tath/sqrt(1+tath**2) |
AL(3) = tath/sqrt(1+tath**2) |
|
c$$$ IF(AX.NE.0)THEN |
|
|
c$$$ AL(4)= atan(AY/AX) |
|
|
c$$$ ELSE |
|
|
c$$$ AL(4) = acos(-1.)/2 |
|
|
c$$$ IF(AY.LT.0)AL(4) = AL(4)+acos(-1.) |
|
|
c$$$ ENDIF |
|
|
c$$$ IF(AX.LT.0)AL(4)= acos(-1.)+ AL(4) |
|
|
c$$$ AL(4) = -acos(-1.) + AL(4) !from incidence direction to tracking ref.sys. |
|
|
|
|
|
c$$$ AL(4) = 0. |
|
|
c$$$ IF(AX.NE.0.AND.AY.NE.0)THEN |
|
|
c$$$ AL(4)= atan(AY/AX) |
|
|
c$$$ ELSEIF(AY.EQ.0)THEN |
|
|
c$$$ AL(4) = 0. |
|
|
c$$$ IF(AX.LT.0)AL(4) = AL(4)+acos(-1.) |
|
|
c$$$ ELSEIF(AX.EQ.0)THEN |
|
|
c$$$ AL(4) = acos(-1.)/2 |
|
|
c$$$ IF(AY.LT.0)AL(4) = AL(4)+acos(-1.) |
|
|
c$$$ ENDIF |
|
|
c$$$ IF(AX.LT.0)AL(4)= acos(-1.)+ AL(4) |
|
|
c$$$ AL(4) = -acos(-1.) + AL(4) !from incidence direction to tracking ref.sys. |
|
|
|
|
|
c$$$ AL(4)=0. |
|
|
c$$$ IF( AX.NE.0.OR.AY.NE.0. ) THEN |
|
|
c$$$ AL(4) = ASIN(AY/SQRT(AX**2+AY**2)) |
|
|
c$$$ IF(AX.LT.0.) AL(4) = ACOS(-1.0)-AL(4) |
|
|
c$$$ ENDIF |
|
1261 |
|
|
1262 |
AL(4)=0. |
AL(4)=0. |
1263 |
IF( AX.NE.0.OR.AY.NE.0. ) THEN |
IF( AX.NE.0.OR.AY.NE.0. ) THEN |