| 1 |
************************************************************************ |
| 2 |
* |
| 3 |
* subroutine to evaluate the vector alfa (AL) |
| 4 |
* which minimizes CHI^2 |
| 5 |
* |
| 6 |
* - modified from mini.f in order to call differente chi^2 routine. |
| 7 |
* The new one includes also single clusters: in this case |
| 8 |
* the residual is defined as the distance between the track and the |
| 9 |
* segment AB associated to the single cluster. |
| 10 |
* |
| 11 |
* |
| 12 |
************************************************************************ |
| 13 |
|
| 14 |
|
| 15 |
SUBROUTINE MINI2(ISTEP,IFAIL,IPRINT) |
| 16 |
|
| 17 |
IMPLICIT DOUBLE PRECISION (A-H,O-Z) |
| 18 |
|
| 19 |
include 'commontracker.f' !tracker general common |
| 20 |
include 'common_mini_2.f' !common for the tracking procedure |
| 21 |
|
| 22 |
c logical DEBUG |
| 23 |
c common/dbg/DEBUG |
| 24 |
|
| 25 |
parameter (dinf=1.d15) !just a huge number... |
| 26 |
c------------------------------------------------------------------------ |
| 27 |
c variables used in the tracking procedure (mini and its subroutines) |
| 28 |
c |
| 29 |
c N.B.: in mini & C. (and in the following block of variables too) |
| 30 |
c the plane ordering is reversed in respect of normal |
| 31 |
c ordering, but they maintain their Z coordinates. so plane number 1 is |
| 32 |
c the first one that a particle meets, and its Z coordinate is > 0 |
| 33 |
c------------------------------------------------------------------------ |
| 34 |
DATA ZINI/23.5/ !!! ***PP*** to be changed !z coordinate of the reference plane |
| 35 |
|
| 36 |
c DATA XGOOD,YGOOD/nplanes*1.,nplanes*1./ !planes to be used in the tracking |
| 37 |
|
| 38 |
DATA STEPAL/5*1.d-7/ !alpha vector step |
| 39 |
DATA ISTEPMAX/100/ !maximum number of steps in the chi^2 minimization |
| 40 |
DATA TOLL/1.d-8/ !tolerance in reaching the next plane during |
| 41 |
* !the tracking procedure |
| 42 |
DATA STEPMAX/100./ !maximum number of steps in the trackin gprocess |
| 43 |
|
| 44 |
c DATA ALMAX/dinf,dinf,1.,dinf,dinf/ !limits on alpha vector components |
| 45 |
c DATA ALMIN/-dinf,-dinf,-1.,-dinf,-dinf/ !" |
| 46 |
DATA ALMAX/dinf,dinf,1.,dinf,dinf/ !limits on alpha vector components |
| 47 |
DATA ALMIN/-dinf,-dinf,-1.,-dinf,-dinf/ !" |
| 48 |
|
| 49 |
c$$$ DIMENSION DAL(5) !increment of vector alfa |
| 50 |
DIMENSION CHI2DD_R(4,4),CHI2D_R(4) !hessiano e gradiente di chi2 |
| 51 |
|
| 52 |
c elena-------- |
| 53 |
REAL*8 AVRESX,AVRESY |
| 54 |
c elena-------- |
| 55 |
|
| 56 |
INTEGER IFLAG |
| 57 |
c-------------------------------------------------------- |
| 58 |
c IFLAG =1 ---- chi2 derivatives computed by using |
| 59 |
c incremental ratios and posxyz.f |
| 60 |
c IFLAG =2 ---- the approximation of Golden is used |
| 61 |
c (see chisq.f) |
| 62 |
c |
| 63 |
c NB: the two metods gives equivalent results BUT |
| 64 |
c method 2 is faster!! |
| 65 |
c-------------------------------------------------------- |
| 66 |
DATA IFLAG/2/ |
| 67 |
|
| 68 |
c LOGICAL TRKDEBUG,TRKVERBOSE |
| 69 |
c COMMON/TRKD/TRKDEBUG,TRKVERBOSE |
| 70 |
LOGICAL TRKDEBUG,TRKVERBOSE,STUDENT,FIRSTSTEPS,FIRSTSTUDENT |
| 71 |
COMMON/TRKD/TRKDEBUG,TRKVERBOSE |
| 72 |
|
| 73 |
DIMENSION AL0(5) |
| 74 |
LOGICAL SUCCESS_NEW,SUCCESS_OLD |
| 75 |
|
| 76 |
c$$$ PRINT*,'==========' ! TEST |
| 77 |
c$$$ PRINT*,'START MINI' ! TEST |
| 78 |
c$$$ PRINT*,'==========' ! TEST |
| 79 |
|
| 80 |
* |
| 81 |
* define kind of minimization (0x=chi2+gaussian or 1x=likelihood+student) |
| 82 |
* |
| 83 |
STUDENT = .false. |
| 84 |
FIRSTSTEPS = .true. |
| 85 |
FIRSTSTUDENT = .true. |
| 86 |
IF(MOD(INT(TRACKMODE/10),10).EQ.1) STUDENT = .true. |
| 87 |
|
| 88 |
IF(IPRINT.EQ.1) THEN |
| 89 |
TRKVERBOSE = .TRUE. |
| 90 |
TRKDEBUG = .FALSE. |
| 91 |
ELSEIF(IPRINT.EQ.2)THEN |
| 92 |
TRKVERBOSE = .TRUE. |
| 93 |
TRKDEBUG = .TRUE. |
| 94 |
ELSE |
| 95 |
TRKVERBOSE = .FALSE. |
| 96 |
TRKDEBUG = .FALSE. |
| 97 |
ENDIF |
| 98 |
|
| 99 |
* ---------------------------------------------------------- |
| 100 |
* evaluate average spatial resolution |
| 101 |
* ---------------------------------------------------------- |
| 102 |
AVRESX = RESXAV |
| 103 |
AVRESY = RESYAV |
| 104 |
NX = 0.0 |
| 105 |
NY = 0.0 |
| 106 |
DO IP=1,6 |
| 107 |
IF( XGOOD(IP).EQ.1 )THEN |
| 108 |
NX=NX+1.0 |
| 109 |
AVRESX=AVRESX+RESX(IP) |
| 110 |
ENDIF |
| 111 |
IF( YGOOD(IP).EQ.1 )THEN |
| 112 |
NY=NY+1.0 |
| 113 |
AVRESY=AVRESY+RESY(IP) |
| 114 |
ENDIF |
| 115 |
ENDDO |
| 116 |
IF(NX.NE.0.0)AVRESX=AVRESX/NX |
| 117 |
IF(NY.NE.0.0)AVRESY=AVRESY/NY |
| 118 |
|
| 119 |
* ---------------------------------------------------------- |
| 120 |
* define ALTOL(5) ---> tolerances on state vector |
| 121 |
* |
| 122 |
* ---------------------------------------------------------- |
| 123 |
* changed in order to evaluate energy-dependent |
| 124 |
* tolerances on all 5 parameters |
| 125 |
cPP FACT=1.0e10 !scale factor to define tolerance on alfa |
| 126 |
c deflection error (see PDG) |
| 127 |
DELETA1 = 0.01/0.3/0.4/0.4451**2*SQRT(720./(6.+4.)) |
| 128 |
DELETA2 = 0.016/0.3/0.4/0.4451*SQRT(0.4451/9.36) |
| 129 |
c$$$ ALTOL(1) = AVRESX/FACT !al(1) = x |
| 130 |
c$$$ ALTOL(2) = AVRESY/FACT !al(2) = y |
| 131 |
c$$$ ALTOL(3) = DSQRT(AVRESX**2 !al(3)=sin(theta) |
| 132 |
c$$$ $ +AVRESY**2)/44.51/FACT |
| 133 |
c$$$ ALTOL(4) = ALTOL(3) !al(4)=phi |
| 134 |
c deflection error (see PDG) |
| 135 |
c$$$ DELETA1 = 0.01*AVRESX/0.3/0.4/0.4451**2*SQRT(720./(6.+4.)) |
| 136 |
c$$$ DELETA2 = 0.016/0.3/0.4/0.4451*SQRT(0.4451/9.36) |
| 137 |
* ---------------------------------------------------------- |
| 138 |
* |
| 139 |
ISTEP=0 !num. steps to minimize chi^2 |
| 140 |
JFAIL=0 !error flag |
| 141 |
CHI2=0 |
| 142 |
|
| 143 |
if(TRKDEBUG) print*,'guess: ',al |
| 144 |
if(TRKDEBUG) print*,'mini2: step ',istep,chi2,1./AL(5) |
| 145 |
|
| 146 |
* |
| 147 |
* ----------------------- |
| 148 |
* START MINIMIZATION LOOP |
| 149 |
* ----------------------- |
| 150 |
10 ISTEP=ISTEP+1 !<<<<<<<<<<<<<< NEW STEP !! |
| 151 |
|
| 152 |
* ------------------------------- |
| 153 |
* **** Chi2+gaussian minimization |
| 154 |
* ------------------------------- |
| 155 |
|
| 156 |
IF((.NOT.STUDENT).OR.FIRSTSTEPS) THEN |
| 157 |
|
| 158 |
IF(ISTEP.GE.3) FIRSTSTEPS = .false. |
| 159 |
|
| 160 |
CALL CHISQ(IFLAG,JFAIL) !chi^2 and its derivatives |
| 161 |
IF(JFAIL.NE.0) THEN |
| 162 |
IFAIL=1 |
| 163 |
CHI2=-9999. |
| 164 |
if(TRKVERBOSE) |
| 165 |
$ PRINT *,'*** ERROR in mini *** wrong CHISQ' |
| 166 |
RETURN |
| 167 |
ENDIF |
| 168 |
|
| 169 |
c COST=1e-5 |
| 170 |
COST=1. |
| 171 |
DO I=1,5 |
| 172 |
IF(CHI2DD(I,I).NE.0.)COST=COST/DABS(CHI2DD(I,I))**0.2 |
| 173 |
ENDDO |
| 174 |
DO I=1,5 |
| 175 |
DO J=1,5 |
| 176 |
CHI2DD(I,J)=CHI2DD(I,J)*COST |
| 177 |
ENDDO |
| 178 |
c$$$ CHI2D(I)=CHI2D(I)*COST |
| 179 |
ENDDO |
| 180 |
|
| 181 |
IF(PFIXED.EQ.0.) THEN |
| 182 |
|
| 183 |
*------------------------------------------------------------* |
| 184 |
* track fitting with FREE deflection |
| 185 |
*------------------------------------------------------------* |
| 186 |
CALL DSFACT(5,CHI2DD,5,IFA,DET,JFA) !CHI2DD matrix determinant |
| 187 |
IF(IFA.NE.0) THEN !not positive-defined |
| 188 |
if(TRKVERBOSE)then |
| 189 |
PRINT *, |
| 190 |
$ '*** ERROR in mini ***'// |
| 191 |
$ 'on matrix inversion (not pos-def)' |
| 192 |
$ ,DET |
| 193 |
endif |
| 194 |
IF(CHI2.EQ.0) CHI2=-9999. |
| 195 |
IF(CHI2.GT.0) CHI2=-CHI2 |
| 196 |
IFAIL=1 |
| 197 |
RETURN |
| 198 |
ENDIF |
| 199 |
CALL DSFINV(5,CHI2DD,5) !CHI2DD matrix inversion |
| 200 |
* ******************************************* |
| 201 |
* find new value of AL-pha |
| 202 |
* ******************************************* |
| 203 |
DO I=1,5 |
| 204 |
DAL(I)=0. |
| 205 |
DO J=1,5 |
| 206 |
DAL(I)=DAL(I)-CHI2DD(I,J)*CHI2D(J) *COST |
| 207 |
COV(I,J)=2.*COST*CHI2DD(I,J) |
| 208 |
ENDDO |
| 209 |
ENDDO |
| 210 |
DO I=1,5 |
| 211 |
AL(I)=AL(I)+DAL(I) |
| 212 |
ENDDO |
| 213 |
*------------------------------------------------------------* |
| 214 |
* track fitting with FIXED deflection |
| 215 |
*------------------------------------------------------------* |
| 216 |
ELSE |
| 217 |
AL(5)=1./PFIXED |
| 218 |
DO I=1,4 |
| 219 |
CHI2D_R(I)=CHI2D(I) |
| 220 |
DO J=1,4 |
| 221 |
CHI2DD_R(I,J)=CHI2DD(I,J) |
| 222 |
ENDDO |
| 223 |
ENDDO |
| 224 |
CALL DSFACT(4,CHI2DD_R,4,IFA,DET,JFA) |
| 225 |
IF(IFA.NE.0) THEN |
| 226 |
if(TRKVERBOSE)then |
| 227 |
PRINT *, |
| 228 |
$ '*** ERROR in mini ***'// |
| 229 |
$ 'on matrix inversion (not pos-def)' |
| 230 |
$ ,DET |
| 231 |
endif |
| 232 |
IF(CHI2.EQ.0) CHI2=-9999. |
| 233 |
IF(CHI2.GT.0) CHI2=-CHI2 |
| 234 |
IFAIL=1 |
| 235 |
RETURN |
| 236 |
ENDIF |
| 237 |
CALL DSFINV(4,CHI2DD_R,4) |
| 238 |
* ******************************************* |
| 239 |
* find new value of AL-pha |
| 240 |
* ******************************************* |
| 241 |
DO I=1,4 |
| 242 |
DAL(I)=0. |
| 243 |
DO J=1,4 |
| 244 |
DAL(I)=DAL(I)-CHI2DD_R(I,J)*CHI2D_R(J) *COST |
| 245 |
COV(I,J)=2.*COST*CHI2DD_R(I,J) |
| 246 |
ENDDO |
| 247 |
ENDDO |
| 248 |
DAL(5)=0. |
| 249 |
DO I=1,4 |
| 250 |
AL(I)=AL(I)+DAL(I) |
| 251 |
ENDDO |
| 252 |
ENDIF |
| 253 |
|
| 254 |
if(TRKDEBUG) print*,'mini2: step ',istep,chi2,1./AL(5) |
| 255 |
|
| 256 |
c$$$ PRINT*,'DAL ',(DAL(K),K=1,5) |
| 257 |
c$$$ PRINT*,'CHI2DOLD ',(CHI2DOLD(K),K=1,5) |
| 258 |
|
| 259 |
|
| 260 |
ENDIF |
| 261 |
|
| 262 |
* ------------------------------- |
| 263 |
* **** Likelihood+Student minimization |
| 264 |
* ------------------------------- |
| 265 |
|
| 266 |
IF(STUDENT.AND.(.NOT.FIRSTSTEPS)) THEN |
| 267 |
|
| 268 |
IF(FIRSTSTUDENT) THEN |
| 269 |
FIRSTSTUDENT = .false. |
| 270 |
ISTEP = 1 |
| 271 |
ENDIF |
| 272 |
|
| 273 |
CALL CHISQSTT(1,JFAIL) |
| 274 |
DO I=1,5 |
| 275 |
DAL(I)=0. |
| 276 |
DO J=1,5 |
| 277 |
DAL(I)=DAL(I)-CHI2DD(I,J)*CHI2D(J) |
| 278 |
ENDDO |
| 279 |
ENDDO |
| 280 |
|
| 281 |
DO I=1,5 |
| 282 |
DO j=1,5 |
| 283 |
COV(I,J) = 2.*CHI2DD(I,J) |
| 284 |
ENDDO |
| 285 |
ENDDO |
| 286 |
|
| 287 |
CHI2TOLL = 1.E-3 |
| 288 |
ALPHA = 3.0 |
| 289 |
BETA = -0.4 |
| 290 |
E=1. |
| 291 |
EA=1. |
| 292 |
EB=1. |
| 293 |
EC=1. |
| 294 |
FA=1. |
| 295 |
FB=1. |
| 296 |
FC=1. |
| 297 |
SUCCESS_OLD = .FALSE. |
| 298 |
SUCCESS_NEW = .FALSE. |
| 299 |
|
| 300 |
CALL CHISQSTT(0,JFAIL) |
| 301 |
c$$$ PRINT*,CHI2 |
| 302 |
CHI2_NEW = CHI2 |
| 303 |
FC = CHI2 |
| 304 |
EC = 0. |
| 305 |
|
| 306 |
ICOUNT = 0 |
| 307 |
100 CONTINUE |
| 308 |
ICOUNT = ICOUNT+1 |
| 309 |
|
| 310 |
DO I=1,5 |
| 311 |
AL0(I)=AL(I) |
| 312 |
ENDDO |
| 313 |
DO I=1,5 |
| 314 |
AL(I)=AL(I)+E*DAL(I) |
| 315 |
ENDDO |
| 316 |
CALL CHISQSTT(0,JFAIL) |
| 317 |
CHI2_OLD = CHI2_NEW |
| 318 |
CHI2_NEW = CHI2 |
| 319 |
FA = FB |
| 320 |
FB = FC |
| 321 |
FC = CHI2 |
| 322 |
EA = EB |
| 323 |
EB = EC |
| 324 |
EC = E |
| 325 |
|
| 326 |
c$$$ PRINT*,E,CHI2_NEW |
| 327 |
|
| 328 |
IF(CHI2_NEW.LE.CHI2_OLD) THEN ! success |
| 329 |
IF(DABS(CHI2_NEW-CHI2_OLD).LT.CHI2TOLL) GOTO 101 |
| 330 |
SUCCESS_OLD = SUCCESS_NEW |
| 331 |
SUCCESS_NEW = .TRUE. |
| 332 |
E = E*ALPHA |
| 333 |
ELSE ! failure |
| 334 |
SUCCESS_OLD = SUCCESS_NEW |
| 335 |
SUCCESS_NEW = .FALSE. |
| 336 |
CHI2_NEW = CHI2_OLD |
| 337 |
DO I=1,5 |
| 338 |
AL(I)=AL0(I) |
| 339 |
ENDDO |
| 340 |
IF(SUCCESS_OLD) THEN |
| 341 |
DENOM = (EB-EA)*(FB-FC) - (EB-EC)*(FB-FA) |
| 342 |
IF(DENOM.NE.0.) THEN |
| 343 |
E = EB - 0.5*( (EB-EA)**2*(FB-FC) |
| 344 |
$ - (EB-EC)**2*(FB-FA) ) / DENOM |
| 345 |
ELSE |
| 346 |
E = BETA*E |
| 347 |
ENDIF |
| 348 |
ELSE |
| 349 |
E = BETA*E |
| 350 |
ENDIF |
| 351 |
c$$$ E = BETA*E |
| 352 |
ENDIF |
| 353 |
IF(ICOUNT.GT.20) GOTO 101 |
| 354 |
GOTO 100 |
| 355 |
|
| 356 |
101 CONTINUE |
| 357 |
|
| 358 |
DO I=1,5 |
| 359 |
DAL(I)=E*DAL(I) |
| 360 |
ENDDO |
| 361 |
|
| 362 |
c$$$ print*,' ' |
| 363 |
c$$$ PRINT*,'DAL ',(DAL(K),K=1,5) |
| 364 |
c$$$ PRINT*,'CHI2DOLD ',(CHI2DOLD(K),K=1,5) |
| 365 |
c$$$ print*,'==== CHI2 ====' |
| 366 |
c$$$ print*,chi2 |
| 367 |
c$$$ print*,'==== CHI2d ====' |
| 368 |
c$$$ print*,(chi2d(i),i=1,5) |
| 369 |
c$$$ print*,'==== CHI2dd ====' |
| 370 |
c$$$ do j=1,5 |
| 371 |
c$$$ print*,(chi2dd(j,i),i=1,5) |
| 372 |
c$$$ enddo |
| 373 |
c$$$ print*,'================' |
| 374 |
c$$$ print*,' ' |
| 375 |
|
| 376 |
*========= FIN QUI ============= |
| 377 |
|
| 378 |
ENDIF |
| 379 |
|
| 380 |
|
| 381 |
|
| 382 |
|
| 383 |
|
| 384 |
*------------------------------------------------------------* |
| 385 |
* ---------------------------------------------------- * |
| 386 |
*------------------------------------------------------------* |
| 387 |
* check parameter bounds: |
| 388 |
*------------------------------------------------------------* |
| 389 |
DO I=1,5 |
| 390 |
IF(AL(I).GT.ALMAX(I).OR.AL(I).LT.ALMIN(I))THEN |
| 391 |
if(TRKVERBOSE)then |
| 392 |
PRINT*,' *** WARNING in mini *** ' |
| 393 |
PRINT*,'MINI_2 ==> AL(',I,') out of range' |
| 394 |
PRINT*,' value: ',AL(I), |
| 395 |
$ ' limits: ',ALMIN(I),ALMAX(I) |
| 396 |
print*,'istep ',istep |
| 397 |
endif |
| 398 |
IF(CHI2.EQ.0) CHI2=-9999. |
| 399 |
IF(CHI2.GT.0) CHI2=-CHI2 |
| 400 |
IFAIL=1 |
| 401 |
RETURN |
| 402 |
ENDIF |
| 403 |
ENDDO |
| 404 |
*------------------------------------------------------------* |
| 405 |
* check number of steps: |
| 406 |
*------------------------------------------------------------* |
| 407 |
IF(ISTEP.ge.ISTEPMAX) then |
| 408 |
c$$$ IFAIL=1 |
| 409 |
c$$$ if(TRKVERBOSE) |
| 410 |
c$$$ $ PRINT *,'*** WARNING in mini *** ISTEP.GT.ISTEPMAX=', |
| 411 |
c$$$ $ ISTEPMAX |
| 412 |
goto 11 |
| 413 |
endif |
| 414 |
*------------------------------------------------------------* |
| 415 |
* --------------------------------------------- |
| 416 |
* evaluate deflection tolerance on the basis of |
| 417 |
* estimated deflection |
| 418 |
* --------------------------------------------- |
| 419 |
*------------------------------------------------------------* |
| 420 |
c$$$ ALTOL(5) = DSQRT(DELETA1**2+DELETA2**2*AL(5)**2)/FACT |
| 421 |
ALTOL(5) = DSQRT((DELETA1*AVRESX)**2+DELETA2**2*AL(5)**2)/FACT |
| 422 |
ALTOL(1) = ALTOL(5)/DELETA1 |
| 423 |
ALTOL(2) = ALTOL(1) |
| 424 |
ALTOL(3) = DSQRT(ALTOL(1)**2+ALTOL(2)**2)/44.51 |
| 425 |
ALTOL(4) = ALTOL(3) |
| 426 |
|
| 427 |
c$$$ print*,' -- ',(DAL(I),ALTOL(I),' - ',i=1,5) !>>>> new step! |
| 428 |
|
| 429 |
*---- check tolerances: |
| 430 |
c$$$ DO I=1,5 |
| 431 |
c$$$ if(TRKVERBOSE)print*,i,' -- ',DAL(I),ALTOL(I) !>>>> new step! |
| 432 |
c$$$ ENDDO |
| 433 |
c$$$ print*,'chi2 -- ',DCHI2 |
| 434 |
|
| 435 |
IF(ISTEP.LT.ISTEPMIN) GOTO 10 ! ***PP*** |
| 436 |
DO I=1,5 |
| 437 |
IF(ABS(DAL(I)).GT.ALTOL(I))GOTO 10 !>>>> new step! |
| 438 |
ENDDO |
| 439 |
|
| 440 |
***************************** |
| 441 |
* final estimate of chi^2 |
| 442 |
***************************** |
| 443 |
|
| 444 |
* ------------------------------- |
| 445 |
* **** Chi2+gaussian minimization |
| 446 |
* ------------------------------- |
| 447 |
|
| 448 |
IF(.NOT.STUDENT) THEN |
| 449 |
|
| 450 |
JFAIL=0 !error flag |
| 451 |
CALL CHISQ(IFLAG,JFAIL) !chi^2 and its derivatives |
| 452 |
IF(JFAIL.NE.0) THEN |
| 453 |
IFAIL=1 |
| 454 |
if(TRKVERBOSE)THEN |
| 455 |
CHI2=-9999. |
| 456 |
if(TRKVERBOSE) |
| 457 |
$ PRINT *,'*** ERROR in mini *** wrong CHISQ' |
| 458 |
ENDIF |
| 459 |
RETURN |
| 460 |
ENDIF |
| 461 |
c COST=1e-7 |
| 462 |
COST=1. |
| 463 |
DO I=1,5 |
| 464 |
IF(CHI2DD(I,I).NE.0.)COST=COST/DABS(CHI2DD(I,I))**0.2 |
| 465 |
ENDDO |
| 466 |
DO I=1,5 |
| 467 |
DO J=1,5 |
| 468 |
CHI2DD(I,J)=CHI2DD(I,J)*COST |
| 469 |
ENDDO |
| 470 |
ENDDO |
| 471 |
IF(PFIXED.EQ.0.) THEN |
| 472 |
CALL DSFACT(5,CHI2DD,5,IFA,DET,JFA) !CHI2DD matrix determinant |
| 473 |
IF(IFA.NE.0) THEN !not positive-defined |
| 474 |
if(TRKVERBOSE)then |
| 475 |
PRINT *, |
| 476 |
$ '*** ERROR in mini ***'// |
| 477 |
$ 'on matrix inversion (not pos-def)' |
| 478 |
$ ,DET |
| 479 |
endif |
| 480 |
IF(CHI2.EQ.0) CHI2=-9999. |
| 481 |
IF(CHI2.GT.0) CHI2=-CHI2 |
| 482 |
IFAIL=1 |
| 483 |
RETURN |
| 484 |
ENDIF |
| 485 |
CALL DSFINV(5,CHI2DD,5) !CHI2DD matrix inversion |
| 486 |
DO I=1,5 |
| 487 |
c$$$ DAL(I)=0. |
| 488 |
DO J=1,5 |
| 489 |
COV(I,J)=2.*COST*CHI2DD(I,J) |
| 490 |
ENDDO |
| 491 |
ENDDO |
| 492 |
ELSE |
| 493 |
DO I=1,4 |
| 494 |
CHI2D_R(I)=CHI2D(I) |
| 495 |
DO J=1,4 |
| 496 |
CHI2DD_R(I,J)=CHI2DD(I,J) |
| 497 |
ENDDO |
| 498 |
ENDDO |
| 499 |
CALL DSFACT(4,CHI2DD_R,4,IFA,DET,JFA) |
| 500 |
IF(IFA.NE.0) THEN |
| 501 |
if(TRKVERBOSE)then |
| 502 |
PRINT *, |
| 503 |
$ '*** ERROR in mini ***'// |
| 504 |
$ 'on matrix inversion (not pos-def)' |
| 505 |
$ ,DET |
| 506 |
endif |
| 507 |
IF(CHI2.EQ.0) CHI2=-9999. |
| 508 |
IF(CHI2.GT.0) CHI2=-CHI2 |
| 509 |
IFAIL=1 |
| 510 |
RETURN |
| 511 |
ENDIF |
| 512 |
CALL DSFINV(4,CHI2DD_R,4) |
| 513 |
DO I=1,4 |
| 514 |
c$$$ DAL(I)=0. |
| 515 |
DO J=1,4 |
| 516 |
COV(I,J)=2.*COST*CHI2DD_R(I,J) |
| 517 |
ENDDO |
| 518 |
ENDDO |
| 519 |
ENDIF |
| 520 |
|
| 521 |
ENDIF |
| 522 |
|
| 523 |
* ------------------------------- |
| 524 |
* **** Likelihood+student minimization |
| 525 |
* ------------------------------- |
| 526 |
|
| 527 |
IF(STUDENT) THEN |
| 528 |
CALL CHISQSTT(1,JFAIL) |
| 529 |
DO I=1,5 |
| 530 |
DO j=1,5 |
| 531 |
COV(I,J) = 2.*CHI2DD(I,J) |
| 532 |
ENDDO |
| 533 |
ENDDO |
| 534 |
ENDIF |
| 535 |
|
| 536 |
***************************** |
| 537 |
|
| 538 |
* ------------------------------------ |
| 539 |
* Number of Degree Of Freedom |
| 540 |
ndof=0 |
| 541 |
do ip=1,nplanes |
| 542 |
ndof=ndof |
| 543 |
$ +int(xgood(ip)) |
| 544 |
$ +int(ygood(ip)) |
| 545 |
enddo |
| 546 |
if(pfixed.eq.0.) ndof=ndof-5 ! ***PP*** |
| 547 |
if(pfixed.ne.0.) ndof=ndof-4 ! ***PP*** |
| 548 |
if(ndof.le.0.) then |
| 549 |
ndof = 1 |
| 550 |
if(TRKVERBOSE) |
| 551 |
$ print*,'*** WARNING *** in mini n.dof = 0 (set to 1)' |
| 552 |
endif |
| 553 |
|
| 554 |
* ------------------------------------ |
| 555 |
* Reduced chi^2 |
| 556 |
CHI2 = CHI2/dble(ndof) |
| 557 |
|
| 558 |
c print*,'mini2: chi2 ',chi2 |
| 559 |
|
| 560 |
11 CONTINUE |
| 561 |
|
| 562 |
if(TRKDEBUG) print*,'mini2: -ok- ',istep,chi2,1./AL(5) |
| 563 |
|
| 564 |
NSTEP=ISTEP ! ***PP*** |
| 565 |
|
| 566 |
c$$$ print*,'>>>>> NSTEP = ',NSTEP |
| 567 |
|
| 568 |
RETURN |
| 569 |
END |
| 570 |
|
| 571 |
****************************************************************************** |
| 572 |
* |
| 573 |
* routine to compute chi^2 and its derivatives |
| 574 |
* |
| 575 |
* |
| 576 |
* (modified in respect to the previous one in order to include |
| 577 |
* single clusters. In this case the residual is evaluated by |
| 578 |
* calculating the distance between the track intersection and the |
| 579 |
* segment AB associated to the single cluster) |
| 580 |
* |
| 581 |
****************************************************************************** |
| 582 |
|
| 583 |
SUBROUTINE CHISQ(IFLAG,IFAIL) |
| 584 |
|
| 585 |
IMPLICIT DOUBLE PRECISION (A-H,O-Z) |
| 586 |
|
| 587 |
include 'commontracker.f' !tracker general common |
| 588 |
include 'common_mini_2.f' !common for the tracking procedure |
| 589 |
|
| 590 |
DIMENSION XV2(nplanes),YV2(nplanes),XV1(nplanes),YV1(nplanes) |
| 591 |
$ ,XV0(nplanes),YV0(nplanes) |
| 592 |
DIMENSION AL_P(5) |
| 593 |
|
| 594 |
c LOGICAL TRKVERBOSE |
| 595 |
c COMMON/TRKD/TRKVERBOSE |
| 596 |
LOGICAL TRKDEBUG,TRKVERBOSE |
| 597 |
COMMON/TRKD/TRKDEBUG,TRKVERBOSE |
| 598 |
* |
| 599 |
* chi^2 computation |
| 600 |
* |
| 601 |
DO I=1,5 |
| 602 |
AL_P(I)=AL(I) |
| 603 |
ENDDO |
| 604 |
JFAIL=0 !error flag |
| 605 |
CALL POSXYZ(AL_P,JFAIL) !track intersection with tracking planes |
| 606 |
IF(JFAIL.NE.0) THEN |
| 607 |
IF(TRKVERBOSE) |
| 608 |
$ PRINT *,'CHISQ ==> error from trk routine POSXYZ !!' |
| 609 |
IFAIL=1 |
| 610 |
RETURN |
| 611 |
ENDIF |
| 612 |
DO I=1,nplanes |
| 613 |
XV0(I)=XV(I) |
| 614 |
YV0(I)=YV(I) |
| 615 |
ENDDO |
| 616 |
* ------------------------------------------------ |
| 617 |
c$$$ CHI2=0. |
| 618 |
c$$$ DO I=1,nplanes |
| 619 |
c$$$ CHI2=CHI2 |
| 620 |
c$$$ + +(XV(I)-XM(I))**2/RESX(i)**2 *XGOOD(I)*YGOOD(I) |
| 621 |
c$$$ + +(YV(I)-YM(I))**2/RESY(i)**2 *YGOOD(I)*XGOOD(I) |
| 622 |
c$$$ ENDDO |
| 623 |
* --------------------------------------------------------- |
| 624 |
* For planes with only a X or Y-cl included, instead of |
| 625 |
* a X-Y couple, the residual for chi^2 calculation is |
| 626 |
* evaluated by finding the point x-y, along the segment AB, |
| 627 |
* closest to the track. |
| 628 |
* The X or Y coordinate, respectivelly for X and Y-cl, is |
| 629 |
* then assigned to XM or YM, which is then considered the |
| 630 |
* measured position of the cluster. |
| 631 |
* --------------------------------------------------------- |
| 632 |
CHI2=0. |
| 633 |
DO I=1,nplanes |
| 634 |
IF(XGOOD(I).EQ.1.AND.YGOOD(I).EQ.0)THEN !X-cl |
| 635 |
BETA = (XM_B(I)-XM_A(I))/(YM_B(I)-YM_A(I)) |
| 636 |
ALFA = XM_A(I) - BETA * YM_A(I) |
| 637 |
YM(I) = ( YV(I) + BETA*XV(I) - BETA*ALFA )/(1+BETA**2) |
| 638 |
if(YM(I).lt.dmin1(YM_A(I),YM_B(I))) |
| 639 |
$ YM(I)=dmin1(YM_A(I),YM_B(I)) |
| 640 |
if(YM(I).gt.dmax1(YM_A(I),YM_B(I))) |
| 641 |
$ YM(I)=dmax1(YM_A(I),YM_B(I)) |
| 642 |
XM(I) = ALFA + BETA * YM(I) !<<<< measured coordinates |
| 643 |
ELSEIF(XGOOD(I).EQ.0.AND.YGOOD(I).EQ.1)THEN !Y-cl |
| 644 |
BETA = (YM_B(I)-YM_A(I))/(XM_B(I)-XM_A(I)) |
| 645 |
ALFA = YM_A(I) - BETA * XM_A(I) |
| 646 |
XM(I) = ( XV(I) + BETA*YV(I) - BETA*ALFA )/(1+BETA**2) |
| 647 |
if(XM(I).lt.dmin1(XM_A(I),XM_B(I))) |
| 648 |
$ XM(I)=dmin1(XM_A(I),XM_B(I)) |
| 649 |
if(XM(I).gt.dmax1(XM_A(I),XM_B(I))) |
| 650 |
$ XM(I)=dmax1(XM_A(I),XM_B(I)) |
| 651 |
YM(I) = ALFA + BETA * XM(I) !<<<< measured coordinates |
| 652 |
ENDIF |
| 653 |
CHI2=CHI2 |
| 654 |
+ +(XV(I)-XM(I))**2/RESX(i)**2 *( XGOOD(I)*YGOOD(I) ) |
| 655 |
+ +(YV(I)-YM(I))**2/RESY(i)**2 *( YGOOD(I)*XGOOD(I) ) |
| 656 |
+ +((XV(I)-XM(I))**2+(YV(I)-YM(I))**2)/RESX(i)**2 |
| 657 |
+ *( XGOOD(I)*(1-YGOOD(I)) ) |
| 658 |
+ +((XV(I)-XM(I))**2+(YV(I)-YM(I))**2)/RESY(i)**2 |
| 659 |
+ *( (1-XGOOD(I))*YGOOD(I) ) |
| 660 |
c$$$ print*,(XV(I)-XM(I))**2/RESX(i)**2 *( XGOOD(I)*YGOOD(I) ) |
| 661 |
c$$$ print*,(YV(I)-YM(I))**2/RESY(i)**2 *( YGOOD(I)*XGOOD(I) ) |
| 662 |
c$$$ print*,((XV(I)-XM(I))**2+(YV(I)-YM(I))**2)/RESX(i)**2 |
| 663 |
c$$$ + *( XGOOD(I)*(1-YGOOD(I)) ) |
| 664 |
c$$$ print*,((XV(I)-XM(I))**2+(YV(I)-YM(I))**2)/RESY(i)**2 |
| 665 |
c$$$ + *( (1-XGOOD(I))*YGOOD(I) ) |
| 666 |
c$$$ print*,XV(I),XM(I),XGOOD(I) |
| 667 |
c$$$ print*,YV(I),YM(I),YGOOD(I) |
| 668 |
ENDDO |
| 669 |
c$$$ print*,'CHISQ ',chi2 |
| 670 |
* ------------------------------------------------ |
| 671 |
* |
| 672 |
* calculation of derivatives (dX/dAL_fa and dY/dAL_fa) |
| 673 |
* |
| 674 |
* ////////////////////////////////////////////////// |
| 675 |
* METHOD 1 -- incremental ratios |
| 676 |
* ////////////////////////////////////////////////// |
| 677 |
|
| 678 |
IF(IFLAG.EQ.1) THEN |
| 679 |
|
| 680 |
DO J=1,5 |
| 681 |
DO JJ=1,5 |
| 682 |
AL_P(JJ)=AL(JJ) |
| 683 |
ENDDO |
| 684 |
AL_P(J)=AL_P(J)+STEPAL(J)/2. |
| 685 |
JFAIL=0 |
| 686 |
CALL POSXYZ(AL_P,JFAIL) |
| 687 |
IF(JFAIL.NE.0) THEN |
| 688 |
IF(TRKVERBOSE) |
| 689 |
*23456789012345678901234567890123456789012345678901234567890123456789012 |
| 690 |
$ PRINT *,'CHISQ ==> error from trk routine POSXYZ' |
| 691 |
IFAIL=1 |
| 692 |
RETURN |
| 693 |
ENDIF |
| 694 |
DO I=1,nplanes |
| 695 |
XV2(I)=XV(I) |
| 696 |
YV2(I)=YV(I) |
| 697 |
ENDDO |
| 698 |
AL_P(J)=AL_P(J)-STEPAL(J) |
| 699 |
JFAIL=0 |
| 700 |
CALL POSXYZ(AL_P,JFAIL) |
| 701 |
IF(JFAIL.NE.0) THEN |
| 702 |
IF(TRKVERBOSE) |
| 703 |
$ PRINT *,'CHISQ ==> error from trk routine POSXYZ' |
| 704 |
IFAIL=1 |
| 705 |
RETURN |
| 706 |
ENDIF |
| 707 |
DO I=1,nplanes |
| 708 |
XV1(I)=XV(I) |
| 709 |
YV1(I)=YV(I) |
| 710 |
ENDDO |
| 711 |
DO I=1,nplanes |
| 712 |
DXDAL(I,J)=(XV2(I)-XV1(I))/STEPAL(J) |
| 713 |
DYDAL(I,J)=(YV2(I)-YV1(I))/STEPAL(J) |
| 714 |
ENDDO |
| 715 |
ENDDO |
| 716 |
|
| 717 |
ENDIF |
| 718 |
|
| 719 |
* ////////////////////////////////////////////////// |
| 720 |
* METHOD 2 -- Bob Golden |
| 721 |
* ////////////////////////////////////////////////// |
| 722 |
|
| 723 |
IF(IFLAG.EQ.2) THEN |
| 724 |
|
| 725 |
DO I=1,nplanes |
| 726 |
DXDAL(I,1)=1. |
| 727 |
DYDAL(I,1)=0. |
| 728 |
|
| 729 |
DXDAL(I,2)=0. |
| 730 |
DYDAL(I,2)=1. |
| 731 |
|
| 732 |
COSTHE=DSQRT(1.-AL(3)**2) |
| 733 |
IF(COSTHE.EQ.0.) THEN |
| 734 |
IF(TRKVERBOSE)PRINT *,'=== WARNING ===> COSTHE=0' |
| 735 |
IFAIL=1 |
| 736 |
RETURN |
| 737 |
ENDIF |
| 738 |
|
| 739 |
DXDAL(I,3)=(ZINI-ZM(I))*DCOS(AL(4))/COSTHE**3 |
| 740 |
DYDAL(I,3)=(ZINI-ZM(I))*DSIN(AL(4))/COSTHE**3 |
| 741 |
|
| 742 |
DXDAL(I,4)=-AL(3)*(ZINI-ZM(I))*DSIN(AL(4))/COSTHE |
| 743 |
DYDAL(I,4)=AL(3)*(ZINI-ZM(I))*DCOS(AL(4))/COSTHE |
| 744 |
|
| 745 |
IF(AL(5).NE.0.) THEN |
| 746 |
DXDAL(I,5)= |
| 747 |
+ (XV(I)-(AL(1)+AL(3)/COSTHE*(ZINI-ZM(I)) |
| 748 |
+ *DCOS(AL(4))))/AL(5) |
| 749 |
DYDAL(I,5)= |
| 750 |
+ (YV(I)-(AL(2)+AL(3)/COSTHE*(ZINI-ZM(I)) |
| 751 |
+ *DSIN(AL(4))))/AL(5) |
| 752 |
ELSE |
| 753 |
DXDAL(I,5)=100.*( 0.25 *0.3*0.4*(0.01*(ZINI-ZM(I)))**2 ) |
| 754 |
DYDAL(I,5)=0. |
| 755 |
ENDIF |
| 756 |
|
| 757 |
ENDDO |
| 758 |
ENDIF |
| 759 |
* |
| 760 |
* x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x |
| 761 |
* >>> CHI2D evaluation |
| 762 |
* |
| 763 |
DO J=1,5 |
| 764 |
CHI2D(J)=0. |
| 765 |
DO I=1,nplanes |
| 766 |
CHI2D(J)=CHI2D(J) |
| 767 |
+ +2.*(XV0(I)-XM(I))/RESX(i)**2*DXDAL(I,J) *XGOOD(I) |
| 768 |
+ +2.*(YV0(I)-YM(I))/RESY(i)**2*DYDAL(I,J) *YGOOD(I) |
| 769 |
ENDDO |
| 770 |
ENDDO |
| 771 |
* |
| 772 |
* >>> CHI2DD evaluation |
| 773 |
* |
| 774 |
DO I=1,5 |
| 775 |
DO J=1,5 |
| 776 |
CHI2DD(I,J)=0. |
| 777 |
DO K=1,nplanes |
| 778 |
CHI2DD(I,J)=CHI2DD(I,J) |
| 779 |
+ +2.*DXDAL(K,I)*DXDAL(K,J)/RESX(k)**2 *XGOOD(K) |
| 780 |
+ +2.*DYDAL(K,I)*DYDAL(K,J)/RESY(k)**2 *YGOOD(K) |
| 781 |
ENDDO |
| 782 |
ENDDO |
| 783 |
ENDDO |
| 784 |
* x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x |
| 785 |
|
| 786 |
RETURN |
| 787 |
END |
| 788 |
|
| 789 |
****************************************************************************** |
| 790 |
* |
| 791 |
* routine to compute Likelihodd+Student and its derivatives |
| 792 |
* |
| 793 |
* (modified in respect to the previous one in order to include |
| 794 |
* single clusters. In this case the residual is evaluated by |
| 795 |
* calculating the distance between the track intersection and the |
| 796 |
* segment AB associated to the single cluster) |
| 797 |
* |
| 798 |
****************************************************************************** |
| 799 |
|
| 800 |
SUBROUTINE CHISQSTT(IFLAG,JFAIL) |
| 801 |
|
| 802 |
IMPLICIT DOUBLE PRECISION (A-H,O-Z) |
| 803 |
|
| 804 |
include 'commontracker.f' !tracker general common |
| 805 |
include 'common_mini_2.f' !common for the tracking procedure |
| 806 |
|
| 807 |
LOGICAL TRKDEBUG,TRKVERBOSE |
| 808 |
COMMON/TRKD/TRKDEBUG,TRKVERBOSE |
| 809 |
|
| 810 |
DIMENSION AL_P(5) |
| 811 |
DIMENSION VECTEMP(5) |
| 812 |
c$$$ DIMENSION U(5) ! BFGS |
| 813 |
|
| 814 |
DO I=1,5 |
| 815 |
AL_P(I)=AL(I) |
| 816 |
ENDDO |
| 817 |
JFAIL=0 !error flag |
| 818 |
CALL POSXYZ(AL_P,JFAIL) !track intersection with tracking planes |
| 819 |
IF(JFAIL.NE.0) THEN |
| 820 |
IF(TRKVERBOSE) |
| 821 |
$ PRINT *,'CHISQSTT ==> error from trk routine POSXYZ !!' |
| 822 |
IFAIL=1 |
| 823 |
RETURN |
| 824 |
ENDIF |
| 825 |
|
| 826 |
DO I=1,nplanes |
| 827 |
DXDAL(I,1)=1. |
| 828 |
DYDAL(I,1)=0. |
| 829 |
DXDAL(I,2)=0. |
| 830 |
DYDAL(I,2)=1. |
| 831 |
COSTHE=DSQRT(1.-AL(3)**2) |
| 832 |
IF(COSTHE.EQ.0.) THEN |
| 833 |
IF(TRKVERBOSE)PRINT *,'=== WARNING ===> COSTHE=0' |
| 834 |
IFAIL=1 |
| 835 |
RETURN |
| 836 |
ENDIF |
| 837 |
DXDAL(I,3)=(ZINI-ZM(I))*DCOS(AL(4))/COSTHE**3 |
| 838 |
DYDAL(I,3)=(ZINI-ZM(I))*DSIN(AL(4))/COSTHE**3 |
| 839 |
DXDAL(I,4)=-AL(3)*(ZINI-ZM(I))*DSIN(AL(4))/COSTHE |
| 840 |
DYDAL(I,4)=AL(3)*(ZINI-ZM(I))*DCOS(AL(4))/COSTHE |
| 841 |
IF(AL(5).NE.0.) THEN |
| 842 |
DXDAL(I,5)= |
| 843 |
+ (XV(I)-(AL(1)+AL(3)/COSTHE*(ZINI-ZM(I)) |
| 844 |
+ *DCOS(AL(4))))/AL(5) |
| 845 |
DYDAL(I,5)= |
| 846 |
+ (YV(I)-(AL(2)+AL(3)/COSTHE*(ZINI-ZM(I)) |
| 847 |
+ *DSIN(AL(4))))/AL(5) |
| 848 |
ELSE |
| 849 |
DXDAL(I,5)=100.*( 0.25 *0.3*0.4*(0.01*(ZINI-ZM(I)))**2 ) |
| 850 |
DYDAL(I,5)=0. |
| 851 |
ENDIF |
| 852 |
ENDDO |
| 853 |
|
| 854 |
IF(IFLAG.EQ.0) THEN ! function calulation |
| 855 |
CHI2=0. |
| 856 |
DO I=1,nplanes |
| 857 |
IF(XGOOD(I).EQ.1.AND.YGOOD(I).EQ.0)THEN !X-cl |
| 858 |
BETA = (XM_B(I)-XM_A(I))/(YM_B(I)-YM_A(I)) |
| 859 |
ALFA = XM_A(I) - BETA * YM_A(I) |
| 860 |
YM(I) = ( YV(I) + BETA*XV(I) - BETA*ALFA )/(1+BETA**2) |
| 861 |
if(YM(I).lt.dmin1(YM_A(I),YM_B(I))) |
| 862 |
$ YM(I)=dmin1(YM_A(I),YM_B(I)) |
| 863 |
if(YM(I).gt.dmax1(YM_A(I),YM_B(I))) |
| 864 |
$ YM(I)=dmax1(YM_A(I),YM_B(I)) |
| 865 |
XM(I) = ALFA + BETA * YM(I) !<<<< measured coordinates |
| 866 |
ELSEIF(XGOOD(I).EQ.0.AND.YGOOD(I).EQ.1)THEN !Y-cl |
| 867 |
BETA = (YM_B(I)-YM_A(I))/(XM_B(I)-XM_A(I)) |
| 868 |
ALFA = YM_A(I) - BETA * XM_A(I) |
| 869 |
XM(I) = ( XV(I) + BETA*YV(I) - BETA*ALFA )/(1+BETA**2) |
| 870 |
if(XM(I).lt.dmin1(XM_A(I),XM_B(I))) |
| 871 |
$ XM(I)=dmin1(XM_A(I),XM_B(I)) |
| 872 |
if(XM(I).gt.dmax1(XM_A(I),XM_B(I))) |
| 873 |
$ XM(I)=dmax1(XM_A(I),XM_B(I)) |
| 874 |
YM(I) = ALFA + BETA * XM(I) !<<<< measured coordinates |
| 875 |
ENDIF |
| 876 |
TERMX = DLOG( (TAILX(I)*RESX(I)**2+(XV(I)-XM(I))**2)/ |
| 877 |
$ (TAILX(I)*RESX(I)**2) ) |
| 878 |
TERMY = DLOG( (TAILY(I)*RESY(I)**2+(YV(I)-YM(I))**2)/ |
| 879 |
$ (TAILY(I)*RESY(I)**2) ) |
| 880 |
CHI2=CHI2 |
| 881 |
$ +(TAILX(I)+1.0)*TERMX *( XGOOD(I) ) |
| 882 |
$ +(TAILY(I)+1.0)*TERMY *( YGOOD(I) ) |
| 883 |
ENDDO |
| 884 |
ENDIF |
| 885 |
|
| 886 |
IF(IFLAG.EQ.1) THEN ! derivative calulation |
| 887 |
DO I=1,5 |
| 888 |
CHI2DOLD(I)=CHI2D(I) |
| 889 |
ENDDO |
| 890 |
DO J=1,5 |
| 891 |
CHI2D(J)=0. |
| 892 |
DO I=1,nplanes |
| 893 |
CHI2D(J)=CHI2D(J) |
| 894 |
$ +2.*(TAILX(I)+1.0)*(XV(I)-XM(I))/ |
| 895 |
$ (TAILX(I)*RESX(I)**2+(XV(I)-XM(I))**2)* |
| 896 |
$ DXDAL(I,J) *XGOOD(I) |
| 897 |
$ +2.*(TAILY(I)+1.0)*(YV(I)-YM(I))/ |
| 898 |
$ (TAILY(I)*RESY(I)**2+(YV(I)-YM(I))**2)* |
| 899 |
$ DYDAL(I,J) *YGOOD(I) |
| 900 |
ENDDO |
| 901 |
ENDDO |
| 902 |
DO K=1,5 |
| 903 |
VECTEMP(K)=0. |
| 904 |
DO M=1,5 |
| 905 |
VECTEMP(K) = VECTEMP(K) + |
| 906 |
$ COV(K,M)/2.*(CHI2D(M)-CHI2DOLD(M)) |
| 907 |
ENDDO |
| 908 |
ENDDO |
| 909 |
DOWN1 = 0. |
| 910 |
DO K=1,5 |
| 911 |
DOWN1 = DOWN1 + DAL(K)*(CHI2D(K)-CHI2DOLD(K)) |
| 912 |
ENDDO |
| 913 |
IF(DOWN1.EQ.0.) THEN |
| 914 |
PRINT*,'WARNING IN MATRIX CALULATION (STUDENT), DOWN1 = 0' |
| 915 |
IFAIL=1 |
| 916 |
RETURN |
| 917 |
ENDIF |
| 918 |
DOWN2 = 0. |
| 919 |
DO K=1,5 |
| 920 |
DO M=1,5 |
| 921 |
DOWN2 = DOWN2 + (CHI2D(K)-CHI2DOLD(K))*VECTEMP(K) |
| 922 |
ENDDO |
| 923 |
ENDDO |
| 924 |
IF(DOWN2.EQ.0.) THEN |
| 925 |
PRINT*,'WARNING IN MATRIX CALULATION (STUDENT), DOWN2 = 0' |
| 926 |
IFAIL=1 |
| 927 |
RETURN |
| 928 |
ENDIF |
| 929 |
c$$$ DO K=1,5 ! BFGS |
| 930 |
c$$$ U(K) = DAL(K)/DOWN1 - VECTEMP(K)/DOWN2 |
| 931 |
c$$$ ENDDO |
| 932 |
DO I=1,5 |
| 933 |
DO J=1,5 |
| 934 |
CHI2DD(I,J) = COV(I,J)/2. |
| 935 |
$ +DAL(I)*DAL(J)/DOWN1 |
| 936 |
$ -VECTEMP(I)*VECTEMP(J)/DOWN2 |
| 937 |
c$$$ $ +DOWN2*U(I)*U(J) ! BFGS |
| 938 |
ENDDO |
| 939 |
ENDDO |
| 940 |
ENDIF |
| 941 |
|
| 942 |
RETURN |
| 943 |
END |
| 944 |
|
| 945 |
***************************************************************** |
| 946 |
* |
| 947 |
* Routine to compute the track intersection points |
| 948 |
* on the tracking-system planes, given the track parameters |
| 949 |
* |
| 950 |
* The routine is based on GRKUTA, which computes the |
| 951 |
* trajectory of a charged particle in a magnetic field |
| 952 |
* by solving the equatins of motion with Runge-Kuta method. |
| 953 |
* |
| 954 |
* Variables that have to be assigned when the subroutine |
| 955 |
* is called are: |
| 956 |
* |
| 957 |
* ZM(1,NPLANES) ----> z coordinates of the planes |
| 958 |
* AL_P(1,5) ----> track-parameter vector |
| 959 |
* |
| 960 |
* ----------------------------------------------------------- |
| 961 |
* NB !!! |
| 962 |
* The routine works properly only if the |
| 963 |
* planes are numbered in descending order starting from the |
| 964 |
* reference plane (ZINI) |
| 965 |
* ----------------------------------------------------------- |
| 966 |
* |
| 967 |
***************************************************************** |
| 968 |
|
| 969 |
SUBROUTINE POSXYZ(AL_P,IFAIL) |
| 970 |
|
| 971 |
IMPLICIT DOUBLE PRECISION (A-H,O-Z) |
| 972 |
|
| 973 |
include 'commontracker.f' !tracker general common |
| 974 |
include 'common_mini_2.f' !common for the tracking procedure |
| 975 |
|
| 976 |
c LOGICAL TRKVERBOSE |
| 977 |
c COMMON/TRKD/TRKVERBOSE |
| 978 |
LOGICAL TRKDEBUG,TRKVERBOSE |
| 979 |
COMMON/TRKD/TRKDEBUG,TRKVERBOSE |
| 980 |
c |
| 981 |
DIMENSION AL_P(5) |
| 982 |
* |
| 983 |
cpp DO I=1,nplanes |
| 984 |
cpp ZV(I)=ZM(I) ! |
| 985 |
cpp ENDDO |
| 986 |
* |
| 987 |
* set parameters for GRKUTA |
| 988 |
* |
| 989 |
IF(AL_P(5).NE.0) CHARGE=AL_P(5)/DABS(AL_P(5)) |
| 990 |
IF(AL_P(5).EQ.0) CHARGE=1. |
| 991 |
VOUT(1)=AL_P(1) |
| 992 |
VOUT(2)=AL_P(2) |
| 993 |
VOUT(3)=ZINI ! DBLE(Z0)-DBLE(ZSPEC) |
| 994 |
VOUT(4)=AL_P(3)*DCOS(AL_P(4)) |
| 995 |
VOUT(5)=AL_P(3)*DSIN(AL_P(4)) |
| 996 |
VOUT(6)=-1.*DSQRT(1.-AL_P(3)**2) |
| 997 |
IF(AL_P(5).NE.0.) VOUT(7)=DABS(1./AL_P(5)) |
| 998 |
IF(AL_P(5).EQ.0.) VOUT(7)=1.E8 |
| 999 |
|
| 1000 |
c$$$ print*,'POSXY (prima) ',vout |
| 1001 |
|
| 1002 |
DO I=1,nplanes |
| 1003 |
c$$$ ipass = 0 ! TEST |
| 1004 |
c$$$ PRINT *,'TRACKING -> START PLANE: ',I ! TEST |
| 1005 |
cPPP step=vout(3)-zm(i) |
| 1006 |
cPP step=(zm(i)-vout(3))/VOUT(6) |
| 1007 |
10 DO J=1,7 |
| 1008 |
VECT(J)=VOUT(J) |
| 1009 |
VECTINI(J)=VOUT(J) |
| 1010 |
ENDDO |
| 1011 |
cPPP step=vect(3)-zm(i) |
| 1012 |
IF(VOUT(6).GE.0.) THEN |
| 1013 |
IFAIL=1 |
| 1014 |
if(TRKVERBOSE) |
| 1015 |
$ PRINT *,'posxy (grkuta): WARNING ===> backward track!!' |
| 1016 |
RETURN |
| 1017 |
ENDIF |
| 1018 |
step=(zm(i)-vect(3))/VOUT(6) |
| 1019 |
11 continue |
| 1020 |
CALL GRKUTA(CHARGE,STEP,VECT,VOUT) |
| 1021 |
c$$$ ipass = ipass + 1 ! TEST |
| 1022 |
c$$$ PRINT *,'TRACKING -> STEP: ',ipass,' LENGHT: ', STEP ! TEST |
| 1023 |
IF(VOUT(3).GT.VECT(3)) THEN |
| 1024 |
IFAIL=1 |
| 1025 |
if(TRKVERBOSE) |
| 1026 |
$ PRINT *,'posxy (grkuta): WARNING ===> backward track!!' |
| 1027 |
c$$$ if(.TRUE.)print*,'charge',charge |
| 1028 |
c$$$ if(.TRUE.)print*,'vect',vect |
| 1029 |
c$$$ if(.TRUE.)print*,'vout',vout |
| 1030 |
c$$$ if(.TRUE.)print*,'step',step |
| 1031 |
if(TRKVERBOSE)print*,'charge',charge |
| 1032 |
if(TRKVERBOSE)print*,'vect',vect |
| 1033 |
if(TRKVERBOSE)print*,'vout',vout |
| 1034 |
if(TRKVERBOSE)print*,'step',step |
| 1035 |
RETURN |
| 1036 |
ENDIF |
| 1037 |
Z=VOUT(3) |
| 1038 |
IF(Z.LE.ZM(I)+TOLL.AND.Z.GE.ZM(I)-TOLL) GOTO 100 |
| 1039 |
IF(Z.GT.ZM(I)+TOLL) GOTO 10 |
| 1040 |
IF(Z.LE.ZM(I)-TOLL) THEN |
| 1041 |
STEP=STEP*(ZM(I)-VECT(3))/(Z-VECT(3)) |
| 1042 |
DO J=1,7 |
| 1043 |
VECT(J)=VECTINI(J) |
| 1044 |
ENDDO |
| 1045 |
GOTO 11 |
| 1046 |
ENDIF |
| 1047 |
|
| 1048 |
|
| 1049 |
* ----------------------------------------------- |
| 1050 |
* evaluate track coordinates |
| 1051 |
100 XV(I)=VOUT(1) |
| 1052 |
YV(I)=VOUT(2) |
| 1053 |
ZV(I)=VOUT(3) |
| 1054 |
AXV(I)=DATAN(VOUT(4)/VOUT(6))*180./ACOS(-1.) |
| 1055 |
AYV(I)=DATAN(VOUT(5)/VOUT(6))*180./ACOS(-1.) |
| 1056 |
* ----------------------------------------------- |
| 1057 |
|
| 1058 |
IF(TRACKMODE.EQ.1) THEN |
| 1059 |
* ----------------------------------------------- |
| 1060 |
* change of energy by bremsstrahlung for electrons |
| 1061 |
VOUT(7) = VOUT(7) * 0.997 !0.9968 |
| 1062 |
* ----------------------------------------------- |
| 1063 |
ENDIF |
| 1064 |
c$$$ PRINT *,'TRACKING -> END' ! TEST |
| 1065 |
|
| 1066 |
ENDDO |
| 1067 |
|
| 1068 |
c$$$ print*,'POSXY (dopo) ',vout |
| 1069 |
|
| 1070 |
|
| 1071 |
RETURN |
| 1072 |
END |
| 1073 |
|
| 1074 |
|
| 1075 |
|
| 1076 |
|
| 1077 |
|
| 1078 |
* ********************************************************** |
| 1079 |
* Some initialization routines |
| 1080 |
* ********************************************************** |
| 1081 |
|
| 1082 |
* ---------------------------------------------------------- |
| 1083 |
* Routine to initialize COMMON/TRACK/ |
| 1084 |
* |
| 1085 |
subroutine track_init |
| 1086 |
|
| 1087 |
IMPLICIT DOUBLE PRECISION (A-H,O-Z) |
| 1088 |
|
| 1089 |
include 'commontracker.f' !tracker general common |
| 1090 |
include 'common_mini_2.f' !common for the tracking procedure |
| 1091 |
include 'common_mech.f' |
| 1092 |
|
| 1093 |
do i=1,5 |
| 1094 |
AL(i) = 0. |
| 1095 |
enddo |
| 1096 |
|
| 1097 |
do ip=1,NPLANES |
| 1098 |
ZM(IP) = fitz(nplanes-ip+1) !init to mech. position |
| 1099 |
XM(IP) = -100. !0. |
| 1100 |
YM(IP) = -100. !0. |
| 1101 |
XM_A(IP) = -100. !0. |
| 1102 |
YM_A(IP) = -100. !0. |
| 1103 |
c ZM_A(IP) = 0 |
| 1104 |
XM_B(IP) = -100. !0. |
| 1105 |
YM_B(IP) = -100. !0. |
| 1106 |
c ZM_B(IP) = 0 |
| 1107 |
RESX(IP) = 1000. !3.d-4 |
| 1108 |
RESY(IP) = 1000. !12.d-4 |
| 1109 |
XGOOD(IP) = 0 |
| 1110 |
YGOOD(IP) = 0 |
| 1111 |
DEDXTRK_X(IP) = 0 |
| 1112 |
DEDXTRK_Y(IP) = 0 |
| 1113 |
AXV(IP) = 0 |
| 1114 |
AYV(IP) = 0 |
| 1115 |
XV(IP) = -100 |
| 1116 |
YV(IP) = -100 |
| 1117 |
enddo |
| 1118 |
|
| 1119 |
return |
| 1120 |
end |
| 1121 |
|
| 1122 |
|
| 1123 |
*************************************************** |
| 1124 |
* * |
| 1125 |
* * |
| 1126 |
* * |
| 1127 |
* * |
| 1128 |
* * |
| 1129 |
* * |
| 1130 |
************************************************** |
| 1131 |
|
| 1132 |
subroutine guess() |
| 1133 |
|
| 1134 |
c IMPLICIT DOUBLE PRECISION (A-H,O-Z) |
| 1135 |
|
| 1136 |
include 'commontracker.f' !tracker general common |
| 1137 |
include 'common_mini_2.f' !common for the tracking procedure |
| 1138 |
|
| 1139 |
REAL*4 XP(NPLANES),ZP(NPLANES),AP(NPLANES),RP(NPLANES) |
| 1140 |
REAL*4 CHI,XC,ZC,RADIUS |
| 1141 |
* ---------------------------------------- |
| 1142 |
* Y view |
| 1143 |
* ---------------------------------------- |
| 1144 |
* ---------------------------------------- |
| 1145 |
* initial guess with a straigth line |
| 1146 |
* ---------------------------------------- |
| 1147 |
SZZ=0. |
| 1148 |
SZY=0. |
| 1149 |
SSY=0. |
| 1150 |
SZ=0. |
| 1151 |
S1=0. |
| 1152 |
DO I=1,nplanes |
| 1153 |
IF(YGOOD(I).EQ.1)THEN |
| 1154 |
YY = YM(I) |
| 1155 |
IF(XGOOD(I).EQ.0)THEN |
| 1156 |
YY = (YM_A(I) + YM_B(I))/2 |
| 1157 |
ENDIF |
| 1158 |
SZZ=SZZ+ZM(I)*ZM(I) |
| 1159 |
SZY=SZY+ZM(I)*YY |
| 1160 |
SSY=SSY+YY |
| 1161 |
SZ=SZ+ZM(I) |
| 1162 |
S1=S1+1. |
| 1163 |
ENDIF |
| 1164 |
ENDDO |
| 1165 |
DET=SZZ*S1-SZ*SZ |
| 1166 |
AY=(SZY*S1-SZ*SSY)/DET |
| 1167 |
BY=(SZZ*SSY-SZY*SZ)/DET |
| 1168 |
Y0 = AY*ZINI+BY |
| 1169 |
* ---------------------------------------- |
| 1170 |
* X view |
| 1171 |
* ---------------------------------------- |
| 1172 |
* ---------------------------------------- |
| 1173 |
* 1) initial guess with a circle |
| 1174 |
* ---------------------------------------- |
| 1175 |
NP=0 |
| 1176 |
DO I=1,nplanes |
| 1177 |
IF(XGOOD(I).EQ.1)THEN |
| 1178 |
XX = XM(I) |
| 1179 |
IF(YGOOD(I).EQ.0)THEN |
| 1180 |
XX = (XM_A(I) + XM_B(I))/2 |
| 1181 |
ENDIF |
| 1182 |
NP=NP+1 |
| 1183 |
XP(NP)=XX |
| 1184 |
ZP(NP)=ZM(I) |
| 1185 |
ENDIF |
| 1186 |
ENDDO |
| 1187 |
IFLAG=0 !no debug mode |
| 1188 |
CALL TRICIRCLE(NP,XP,ZP,AP,RP,CHI,XC,ZC,RADIUS,IFLAG) |
| 1189 |
|
| 1190 |
c$$$ print*,' circle: ',XC,ZC,RADIUS,' --- ',CHI,IFLAG |
| 1191 |
c$$$ print*,' XP ',(xp(i),i=1,np) |
| 1192 |
c$$$ print*,' ZP ',(zp(i),i=1,np) |
| 1193 |
c$$$ print*,' AP ',(ap(i),i=1,np) |
| 1194 |
c$$$ print*,' XP ',(rp(i),i=1,np) |
| 1195 |
|
| 1196 |
IF(IFLAG.NE.0)GOTO 10 !straigth fit |
| 1197 |
c if(CHI.gt.100)GOTO 10 !straigth fit |
| 1198 |
ARG = RADIUS**2-(ZINI-ZC)**2 |
| 1199 |
IF(ARG.LT.0)GOTO 10 !straigth fit |
| 1200 |
DC = SQRT(ARG) |
| 1201 |
IF(XC.GT.0)DC=-DC |
| 1202 |
X0=XC+DC |
| 1203 |
AX = -(ZINI-ZC)/DC |
| 1204 |
DEF=100./(RADIUS*0.3*0.43) |
| 1205 |
IF(XC.GT.0)DEF=-DEF |
| 1206 |
|
| 1207 |
|
| 1208 |
|
| 1209 |
IF(ABS(X0).GT.30)THEN |
| 1210 |
c$$$ PRINT*,'STRANGE GUESS: XC,ZC,R ',XC,ZC,RADIUS |
| 1211 |
c$$$ $ ,' - CHI ',CHI,' - X0,AX,DEF ',X0,AX,DEF |
| 1212 |
GOTO 10 !straigth fit |
| 1213 |
ENDIF |
| 1214 |
GOTO 20 !guess is ok |
| 1215 |
|
| 1216 |
* ---------------------------------------- |
| 1217 |
* 2) initial guess with a straigth line |
| 1218 |
* - if circle does not intersect reference plane |
| 1219 |
* - if bad chi**2 |
| 1220 |
* ---------------------------------------- |
| 1221 |
10 CONTINUE |
| 1222 |
SZZ=0. |
| 1223 |
SZX=0. |
| 1224 |
SSX=0. |
| 1225 |
SZ=0. |
| 1226 |
S1=0. |
| 1227 |
DO I=1,nplanes |
| 1228 |
IF(XGOOD(I).EQ.1)THEN |
| 1229 |
XX = XM(I) |
| 1230 |
IF(YGOOD(I).EQ.0)THEN |
| 1231 |
XX = (XM_A(I) + XM_B(I))/2 |
| 1232 |
ENDIF |
| 1233 |
SZZ=SZZ+ZM(I)*ZM(I) |
| 1234 |
SZX=SZX+ZM(I)*XX |
| 1235 |
SSX=SSX+XX |
| 1236 |
SZ=SZ+ZM(I) |
| 1237 |
S1=S1+1. |
| 1238 |
ENDIF |
| 1239 |
ENDDO |
| 1240 |
DET=SZZ*S1-SZ*SZ |
| 1241 |
AX=(SZX*S1-SZ*SSX)/DET |
| 1242 |
BX=(SZZ*SSX-SZX*SZ)/DET |
| 1243 |
DEF = 0 |
| 1244 |
X0 = AX*ZINI+BX |
| 1245 |
|
| 1246 |
20 CONTINUE |
| 1247 |
* ---------------------------------------- |
| 1248 |
* guess |
| 1249 |
* ---------------------------------------- |
| 1250 |
|
| 1251 |
AL(1) = X0 |
| 1252 |
AL(2) = Y0 |
| 1253 |
tath = sqrt(AY**2+AX**2) |
| 1254 |
AL(3) = tath/sqrt(1+tath**2) |
| 1255 |
c$$$ IF(AX.NE.0)THEN |
| 1256 |
c$$$ AL(4)= atan(AY/AX) |
| 1257 |
c$$$ ELSE |
| 1258 |
c$$$ AL(4) = acos(-1.)/2 |
| 1259 |
c$$$ IF(AY.LT.0)AL(4) = AL(4)+acos(-1.) |
| 1260 |
c$$$ ENDIF |
| 1261 |
c$$$ IF(AX.LT.0)AL(4)= acos(-1.)+ AL(4) |
| 1262 |
c$$$ AL(4) = -acos(-1.) + AL(4) !from incidence direction to tracking ref.sys. |
| 1263 |
|
| 1264 |
c$$$ AL(4) = 0. |
| 1265 |
c$$$ IF(AX.NE.0.AND.AY.NE.0)THEN |
| 1266 |
c$$$ AL(4)= atan(AY/AX) |
| 1267 |
c$$$ ELSEIF(AY.EQ.0)THEN |
| 1268 |
c$$$ AL(4) = 0. |
| 1269 |
c$$$ IF(AX.LT.0)AL(4) = AL(4)+acos(-1.) |
| 1270 |
c$$$ ELSEIF(AX.EQ.0)THEN |
| 1271 |
c$$$ AL(4) = acos(-1.)/2 |
| 1272 |
c$$$ IF(AY.LT.0)AL(4) = AL(4)+acos(-1.) |
| 1273 |
c$$$ ENDIF |
| 1274 |
c$$$ IF(AX.LT.0)AL(4)= acos(-1.)+ AL(4) |
| 1275 |
c$$$ AL(4) = -acos(-1.) + AL(4) !from incidence direction to tracking ref.sys. |
| 1276 |
|
| 1277 |
c$$$ AL(4)=0. |
| 1278 |
c$$$ IF( AX.NE.0.OR.AY.NE.0. ) THEN |
| 1279 |
c$$$ AL(4) = ASIN(AY/SQRT(AX**2+AY**2)) |
| 1280 |
c$$$ IF(AX.LT.0.) AL(4) = ACOS(-1.0)-AL(4) |
| 1281 |
c$$$ ENDIF |
| 1282 |
|
| 1283 |
AL(4)=0. |
| 1284 |
IF( AX.NE.0.OR.AY.NE.0. ) THEN |
| 1285 |
AL(4) = ASIN(AY/SQRT(AX**2+AY**2)) |
| 1286 |
IF(AX.LT.0.AND.AY.GE.0) AL(4) = ACOS(-1.0)-AL(4) |
| 1287 |
IF(AX.LT.0.AND.AY.LT.0) AL(4) = -ACOS(-1.0)-AL(4) |
| 1288 |
ENDIF |
| 1289 |
IF(AY.GT.0.) AL(4) = AL(4)-ACOS(-1.0) |
| 1290 |
IF(AY.LE.0.) AL(4) = AL(4)+ACOS(-1.0) |
| 1291 |
|
| 1292 |
AL(5) = DEF |
| 1293 |
|
| 1294 |
c print*,' guess: ',(al(i),i=1,5) |
| 1295 |
|
| 1296 |
end |