/[PAMELA software]/DarthVader/TrackerLevel2/src/F77/mini.f
ViewVC logotype

Contents of /DarthVader/TrackerLevel2/src/F77/mini.f

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1.28 - (show annotations) (download)
Wed Jun 4 07:57:04 2014 UTC (10 years, 6 months ago) by pam-ts
Branch: MAIN
CVS Tags: v10RED, v10REDr01, HEAD
Changes since 1.27: +13 -4 lines
Error occurred while calculating annotation data.
New tracking algorythm implementation (extended to up to 2 calorimeter planes and with level1 cleaning for nuclei)

1 ************************************************************************
2 *
3 * subroutine to evaluate the vector alfa (AL)
4 * which minimizes CHI^2
5 *
6 * - modified from mini.f in order to call differente chi^2 routine.
7 * The new one includes also single clusters: in this case
8 * the residual is defined as the distance between the track and the
9 * segment AB associated to the single cluster.
10 *
11 *
12 ************************************************************************
13
14
15 SUBROUTINE MINI2(ISTEP,IFAIL,IPRINT)
16
17 IMPLICIT DOUBLE PRECISION (A-H,O-Z)
18
19 include 'commontracker.f' !tracker general common
20 include 'common_mini_2.f' !common for the tracking procedure
21
22 c logical DEBUG
23 c common/dbg/DEBUG
24
25 parameter (dinf=1.d15) !just a huge number...
26 parameter (dinfneg=-dinf) ! just a huge negative number...
27 c------------------------------------------------------------------------
28 c variables used in the tracking procedure (mini and its subroutines)
29 c
30 c N.B.: in mini & C. (and in the following block of variables too)
31 c the plane ordering is reversed in respect of normal
32 c ordering, but they maintain their Z coordinates. so plane number 1 is
33 c the first one that a particle meets, and its Z coordinate is > 0
34 c------------------------------------------------------------------------
35 DATA ZINI/23.5/ !!! ***PP*** to be changed !z coordinate of the reference plane
36
37 c DATA XGOOD,YGOOD/nplanes*1.,nplanes*1./ !planes to be used in the tracking
38
39 DATA STEPAL/5*1.d-7/ !alpha vector step
40 DATA ISTEPMAX/100/ !maximum number of steps in the chi^2 minimization
41 DATA TOLL/1.d-8/ !tolerance in reaching the next plane during
42 * !the tracking procedure
43 DATA STEPMAX/100./ !maximum number of steps in the trackin gprocess
44
45 c DATA ALMAX/dinf,dinf,1.,dinf,dinf/ !limits on alpha vector components
46 c DATA ALMIN/-dinf,-dinf,-1.,-dinf,-dinf/ !"
47 DATA ALMAX/dinf,dinf,1.,dinf,dinf/ !limits on alpha vector components
48 DATA ALMIN/dinfneg,dinfneg,-1.,dinfneg,dinfneg/ !"
49
50 c$$$ DIMENSION DAL(5) !increment of vector alfa
51 DIMENSION CHI2DD_R(4,4),CHI2D_R(4) !hessiano e gradiente di chi2
52
53 c elena--------
54 REAL*8 AVRESX,AVRESY
55 c elena--------
56
57 INTEGER IFLAG
58 c--------------------------------------------------------
59 c IFLAG =1 ---- chi2 derivatives computed by using
60 c incremental ratios and posxyz.f
61 c IFLAG =2 ---- the approximation of Golden is used
62 c (see chisq.f)
63 c
64 c NB: the two metods gives equivalent results BUT
65 c method 2 is faster!!
66 c--------------------------------------------------------
67 DATA IFLAG/2/
68
69 c LOGICAL TRKDEBUG,TRKVERBOSE
70 c COMMON/TRKD/TRKDEBUG,TRKVERBOSE
71 LOGICAL TRKDEBUG,TRKVERBOSE,STUDENT,FIRSTSTEPS,FIRSTSTUDENT
72 COMMON/TRKD/TRKDEBUG,TRKVERBOSE
73
74 DIMENSION AL0(5)
75 LOGICAL SUCCESS_NEW,SUCCESS_OLD
76
77 c$$$ PRINT*,'==========' ! TEST
78 c$$$ PRINT*,'START MINI' ! TEST
79 c$$$ PRINT*,'==========' ! TEST
80
81 *
82 * define kind of minimization (0x=chi2+gaussian or 1x=likelihood+student)
83 *
84 STUDENT = .false.
85 FIRSTSTEPS = .true.
86 FIRSTSTUDENT = .true.
87 IF(MOD(INT(TRACKMODE/10),10).EQ.1) STUDENT = .true.
88
89 IF(IPRINT.EQ.1) THEN
90 TRKVERBOSE = .TRUE.
91 TRKDEBUG = .FALSE.
92 ELSEIF(IPRINT.EQ.2)THEN
93 TRKVERBOSE = .TRUE.
94 TRKDEBUG = .TRUE.
95 ELSE
96 TRKVERBOSE = .FALSE.
97 TRKDEBUG = .FALSE.
98 ENDIF
99
100 * ----------------------------------------------------------
101 * evaluate average spatial resolution
102 * ----------------------------------------------------------
103 AVRESX = RESXAV
104 AVRESY = RESYAV
105 NX = 0 !EM GCC4.7
106 NY = 0 !EM GCC4.7
107 DO IP=1,6
108 IF( XGOOD(IP).EQ.1 )THEN
109 NX=NX+1!EM GCC4.7
110 AVRESX=AVRESX+RESX(IP)
111 ENDIF
112 IF( YGOOD(IP).EQ.1 )THEN
113 NY=NY+1!EM GCC4.7
114 AVRESY=AVRESY+RESY(IP)
115 ENDIF
116 ENDDO
117 IF(NX.NE.0.0)AVRESX=AVRESX/NX
118 IF(NY.NE.0.0)AVRESY=AVRESY/NY
119
120 * ----------------------------------------------------------
121 * define ALTOL(5) ---> tolerances on state vector
122 *
123 * ----------------------------------------------------------
124 * changed in order to evaluate energy-dependent
125 * tolerances on all 5 parameters
126 cPP FACT=1.0e10 !scale factor to define tolerance on alfa
127 c deflection error (see PDG)
128 DELETA1 = 0.01/0.3/0.4/0.4451**2*SQRT(720./(6.+4.))
129 DELETA2 = 0.016/0.3/0.4/0.4451*SQRT(0.4451/9.36)
130 c$$$ ALTOL(1) = AVRESX/FACT !al(1) = x
131 c$$$ ALTOL(2) = AVRESY/FACT !al(2) = y
132 c$$$ ALTOL(3) = DSQRT(AVRESX**2 !al(3)=sin(theta)
133 c$$$ $ +AVRESY**2)/44.51/FACT
134 c$$$ ALTOL(4) = ALTOL(3) !al(4)=phi
135 c deflection error (see PDG)
136 c$$$ DELETA1 = 0.01*AVRESX/0.3/0.4/0.4451**2*SQRT(720./(6.+4.))
137 c$$$ DELETA2 = 0.016/0.3/0.4/0.4451*SQRT(0.4451/9.36)
138 * ----------------------------------------------------------
139 *
140 ISTEP=0 !num. steps to minimize chi^2
141 JFAIL=0 !error flag
142 CHI2=0
143
144 if(TRKDEBUG) print*,'mini : guess ',al
145 if(TRKDEBUG) print*,'mini : step ',istep,chi2,AL(5)
146
147 *
148 * -----------------------
149 * START MINIMIZATION LOOP
150 * -----------------------
151 10 ISTEP=ISTEP+1 !<<<<<<<<<<<<<< NEW STEP !!
152
153 * -------------------------------
154 * **** Chi2+gaussian minimization
155 * -------------------------------
156
157 IF((.NOT.STUDENT).OR.FIRSTSTEPS) THEN
158
159 IF(ISTEP.GE.3) FIRSTSTEPS = .false.
160
161 CALL CHISQ(IFLAG,JFAIL) !chi^2 and its derivatives
162 IF(JFAIL.NE.0) THEN
163 IFAIL=1
164 CHI2=-9999.
165 if(TRKVERBOSE)
166 $ PRINT *,'*** ERROR in mini *** wrong CHISQ'
167 RETURN
168 ENDIF
169
170 c COST=1e-5
171 COST=1.
172 DO I=1,5
173 IF(CHI2DD(I,I).NE.0.)COST=COST/DABS(CHI2DD(I,I))**0.2
174 ENDDO
175 DO I=1,5
176 DO J=1,5
177 CHI2DD(I,J)=CHI2DD(I,J)*COST
178 ENDDO
179 c$$$ CHI2D(I)=CHI2D(I)*COST
180 ENDDO
181
182 IF(PFIXED.EQ.0.) THEN
183
184 *------------------------------------------------------------*
185 * track fitting with FREE deflection
186 *------------------------------------------------------------*
187 CALL DSFACT(5,CHI2DD,5,IFA,DET,JFA) !CHI2DD matrix determinant
188 IF(IFA.NE.0) THEN !not positive-defined
189 if(TRKVERBOSE)then
190 PRINT *,
191 $ '*** ERROR in mini ***'//
192 $ 'on matrix inversion (not pos-def)'
193 $ ,DET
194 endif
195 IF(CHI2.EQ.0) CHI2=-9999.
196 IF(CHI2.GT.0) CHI2=-CHI2
197 IFAIL=1
198 RETURN
199 ENDIF
200 CALL DSFINV(5,CHI2DD,5) !CHI2DD matrix inversion
201 * *******************************************
202 * find new value of AL-pha
203 * *******************************************
204 DO I=1,5
205 DAL(I)=0.
206 DO J=1,5
207 DAL(I)=DAL(I)-CHI2DD(I,J)*CHI2D(J) *COST
208 COV(I,J)=2.*COST*CHI2DD(I,J)
209 ENDDO
210 ENDDO
211 DO I=1,5
212 AL(I)=AL(I)+DAL(I)
213 ENDDO
214 *------------------------------------------------------------*
215 * track fitting with FIXED deflection
216 *------------------------------------------------------------*
217 ELSE
218 AL(5)=1./PFIXED
219 DO I=1,4
220 CHI2D_R(I)=CHI2D(I)
221 DO J=1,4
222 CHI2DD_R(I,J)=CHI2DD(I,J)
223 ENDDO
224 ENDDO
225 CALL DSFACT(4,CHI2DD_R,4,IFA,DET,JFA)
226 IF(IFA.NE.0) THEN
227 if(TRKVERBOSE)then
228 PRINT *,
229 $ '*** ERROR in mini ***'//
230 $ 'on matrix inversion (not pos-def)'
231 $ ,DET
232 endif
233 IF(CHI2.EQ.0) CHI2=-9999.
234 IF(CHI2.GT.0) CHI2=-CHI2
235 IFAIL=1
236 RETURN
237 ENDIF
238 CALL DSFINV(4,CHI2DD_R,4)
239 * *******************************************
240 * find new value of AL-pha
241 * *******************************************
242 DO I=1,4
243 DAL(I)=0.
244 DO J=1,4
245 DAL(I)=DAL(I)-CHI2DD_R(I,J)*CHI2D_R(J) *COST
246 COV(I,J)=2.*COST*CHI2DD_R(I,J)
247 ENDDO
248 ENDDO
249 DAL(5)=0.
250 DO I=1,4
251 AL(I)=AL(I)+DAL(I)
252 ENDDO
253 ENDIF
254
255 if(TRKDEBUG) print*,'mini : step ',istep,chi2,AL(5)
256
257 c$$$ PRINT*,'DAL ',(DAL(K),K=1,5)
258 c$$$ PRINT*,'CHI2DOLD ',(CHI2DOLD(K),K=1,5)
259
260
261 ENDIF
262
263 * -------------------------------
264 * **** Likelihood+Student minimization
265 * -------------------------------
266
267 IF(STUDENT.AND.(.NOT.FIRSTSTEPS)) THEN
268
269 IF(FIRSTSTUDENT) THEN
270 FIRSTSTUDENT = .false.
271 ISTEP = 1
272 ENDIF
273
274 CALL CHISQSTT(1,JFAIL)
275 DO I=1,5
276 DAL(I)=0.
277 DO J=1,5
278 DAL(I)=DAL(I)-CHI2DD(I,J)*CHI2D(J)
279 ENDDO
280 ENDDO
281
282 DO I=1,5
283 DO j=1,5
284 COV(I,J) = 2.*CHI2DD(I,J)
285 ENDDO
286 ENDDO
287
288 CHI2TOLL = 1.E-3
289 ALPHA = 3.0
290 BETA = -0.4
291 E=1.
292 EA=1.
293 EB=1.
294 EC=1.
295 FA=1.
296 FB=1.
297 FC=1.
298 SUCCESS_OLD = .FALSE.
299 SUCCESS_NEW = .FALSE.
300
301 CALL CHISQSTT(0,JFAIL)
302 c$$$ PRINT*,CHI2
303 CHI2_NEW = CHI2
304 FC = CHI2
305 EC = 0.
306
307 ICOUNT = 0
308 100 CONTINUE
309 ICOUNT = ICOUNT+1
310
311 DO I=1,5
312 AL0(I)=AL(I)
313 ENDDO
314 DO I=1,5
315 AL(I)=AL(I)+E*DAL(I)
316 ENDDO
317 CALL CHISQSTT(0,JFAIL)
318 CHI2_OLD = CHI2_NEW
319 CHI2_NEW = CHI2
320 FA = FB
321 FB = FC
322 FC = CHI2
323 EA = EB
324 EB = EC
325 EC = E
326
327 c$$$ PRINT*,E,CHI2_NEW
328
329 IF(CHI2_NEW.LE.CHI2_OLD) THEN ! success
330 IF(DABS(CHI2_NEW-CHI2_OLD).LT.CHI2TOLL) GOTO 101
331 SUCCESS_OLD = SUCCESS_NEW
332 SUCCESS_NEW = .TRUE.
333 E = E*ALPHA
334 ELSE ! failure
335 SUCCESS_OLD = SUCCESS_NEW
336 SUCCESS_NEW = .FALSE.
337 CHI2_NEW = CHI2_OLD
338 DO I=1,5
339 AL(I)=AL0(I)
340 ENDDO
341 IF(SUCCESS_OLD) THEN
342 DENOM = (EB-EA)*(FB-FC) - (EB-EC)*(FB-FA)
343 IF(DENOM.NE.0.) THEN
344 E = EB - 0.5*( (EB-EA)**2*(FB-FC)
345 $ - (EB-EC)**2*(FB-FA) ) / DENOM
346 ELSE
347 E = BETA*E
348 ENDIF
349 ELSE
350 E = BETA*E
351 ENDIF
352 c$$$ E = BETA*E
353 ENDIF
354 IF(ICOUNT.GT.20) GOTO 101
355 GOTO 100
356
357 101 CONTINUE
358
359 DO I=1,5
360 DAL(I)=E*DAL(I)
361 ENDDO
362
363 c$$$ print*,' '
364 c$$$ PRINT*,'DAL ',(DAL(K),K=1,5)
365 c$$$ PRINT*,'CHI2DOLD ',(CHI2DOLD(K),K=1,5)
366 c$$$ print*,'==== CHI2 ===='
367 c$$$ print*,chi2
368 c$$$ print*,'==== CHI2d ===='
369 c$$$ print*,(chi2d(i),i=1,5)
370 c$$$ print*,'==== CHI2dd ===='
371 c$$$ do j=1,5
372 c$$$ print*,(chi2dd(j,i),i=1,5)
373 c$$$ enddo
374 c$$$ print*,'================'
375 c$$$ print*,' '
376
377 *========= FIN QUI =============
378
379 ENDIF
380
381
382
383
384
385 *------------------------------------------------------------*
386 * ---------------------------------------------------- *
387 *------------------------------------------------------------*
388 * check parameter bounds:
389 *------------------------------------------------------------*
390 DO I=1,5
391 IF(AL(I).GT.ALMAX(I).OR.AL(I).LT.ALMIN(I))THEN
392 if(TRKVERBOSE)then
393 PRINT*,' *** WARNING in mini *** '
394 PRINT*,'MINI_2 ==> AL(',I,') out of range'
395 PRINT*,' value: ',AL(I),
396 $ ' limits: ',ALMIN(I),ALMAX(I)
397 print*,'istep ',istep
398 endif
399 IF(CHI2.EQ.0) CHI2=-9999.
400 IF(CHI2.GT.0) CHI2=-CHI2
401 IFAIL=1
402 RETURN
403 ENDIF
404 ENDDO
405 *------------------------------------------------------------*
406 * check number of steps:
407 *------------------------------------------------------------*
408 IF(ISTEP.ge.ISTEPMAX) then
409 c$$$ IFAIL=1
410 c$$$ if(TRKVERBOSE)
411 c$$$ $ PRINT *,'*** WARNING in mini *** ISTEP.GT.ISTEPMAX=',
412 c$$$ $ ISTEPMAX
413 goto 11
414 endif
415 *------------------------------------------------------------*
416 * ---------------------------------------------
417 * evaluate deflection tolerance on the basis of
418 * estimated deflection
419 * ---------------------------------------------
420 *------------------------------------------------------------*
421 c$$$ ALTOL(5) = DSQRT(DELETA1**2+DELETA2**2*AL(5)**2)/FACT
422 IF(FACT.EQ.0)THEN
423 IFAIL=1
424 RETURN
425 ENDIF
426 ALTOL(5) = DSQRT((DELETA1*AVRESX)**2+DELETA2**2*AL(5)**2)/FACT
427 ALTOL(1) = ALTOL(5)/DELETA1
428 ALTOL(2) = ALTOL(1)
429 ALTOL(3) = DSQRT(ALTOL(1)**2+ALTOL(2)**2)/44.51
430 ALTOL(4) = ALTOL(3)
431
432 c$$$ print*,' -- ',(DAL(I),ALTOL(I),' - ',i=1,5) !>>>> new step!
433
434 *---- check tolerances:
435 c$$$ DO I=1,5
436 c$$$ if(TRKVERBOSE)print*,i,' -- ',DAL(I),ALTOL(I) !>>>> new step!
437 c$$$ ENDDO
438 c$$$ print*,'chi2 -- ',DCHI2
439
440 IF(ISTEP.LT.ISTEPMIN) GOTO 10 ! ***PP***
441 DO I=1,5
442 IF(ABS(DAL(I)).GT.ALTOL(I))GOTO 10 !>>>> new step!
443 ENDDO
444
445 *****************************
446 * final estimate of chi^2
447 *****************************
448
449 * -------------------------------
450 * **** Chi2+gaussian minimization
451 * -------------------------------
452
453 IF(.NOT.STUDENT) THEN
454
455 JFAIL=0 !error flag
456 CALL CHISQ(IFLAG,JFAIL) !chi^2 and its derivatives
457 IF(JFAIL.NE.0) THEN
458 IFAIL=1
459 if(TRKVERBOSE)THEN
460 CHI2=-9999.
461 if(TRKVERBOSE)
462 $ PRINT *,'*** ERROR in mini *** wrong CHISQ'
463 ENDIF
464 RETURN
465 ENDIF
466 c COST=1e-7
467 COST=1.
468 DO I=1,5
469 IF(CHI2DD(I,I).NE.0.)COST=COST/DABS(CHI2DD(I,I))**0.2
470 ENDDO
471 DO I=1,5
472 DO J=1,5
473 CHI2DD(I,J)=CHI2DD(I,J)*COST
474 ENDDO
475 ENDDO
476 IF(PFIXED.EQ.0.) THEN
477 CALL DSFACT(5,CHI2DD,5,IFA,DET,JFA) !CHI2DD matrix determinant
478 IF(IFA.NE.0) THEN !not positive-defined
479 if(TRKVERBOSE)then
480 PRINT *,
481 $ '*** ERROR in mini ***'//
482 $ 'on matrix inversion (not pos-def)'
483 $ ,DET
484 endif
485 IF(CHI2.EQ.0) CHI2=-9999.
486 IF(CHI2.GT.0) CHI2=-CHI2
487 IFAIL=1
488 RETURN
489 ENDIF
490 CALL DSFINV(5,CHI2DD,5) !CHI2DD matrix inversion
491 DO I=1,5
492 c$$$ DAL(I)=0.
493 DO J=1,5
494 COV(I,J)=2.*COST*CHI2DD(I,J)
495 ENDDO
496 ENDDO
497 ELSE
498 DO I=1,4
499 CHI2D_R(I)=CHI2D(I)
500 DO J=1,4
501 CHI2DD_R(I,J)=CHI2DD(I,J)
502 ENDDO
503 ENDDO
504 CALL DSFACT(4,CHI2DD_R,4,IFA,DET,JFA)
505 IF(IFA.NE.0) THEN
506 if(TRKVERBOSE)then
507 PRINT *,
508 $ '*** ERROR in mini ***'//
509 $ 'on matrix inversion (not pos-def)'
510 $ ,DET
511 endif
512 IF(CHI2.EQ.0) CHI2=-9999.
513 IF(CHI2.GT.0) CHI2=-CHI2
514 IFAIL=1
515 RETURN
516 ENDIF
517 CALL DSFINV(4,CHI2DD_R,4)
518 DO I=1,4
519 c$$$ DAL(I)=0.
520 DO J=1,4
521 COV(I,J)=2.*COST*CHI2DD_R(I,J)
522 ENDDO
523 ENDDO
524 ENDIF
525
526 ENDIF
527
528 * -------------------------------
529 * **** Likelihood+student minimization
530 * -------------------------------
531
532 IF(STUDENT) THEN
533 CALL CHISQSTT(1,JFAIL)
534 DO I=1,5
535 DO j=1,5
536 COV(I,J) = 2.*CHI2DD(I,J)
537 ENDDO
538 ENDDO
539 ENDIF
540
541 *****************************
542
543 * ------------------------------------
544 * Number of Degree Of Freedom
545 ndof=0
546 do ip=1,nplanes
547 ndof=ndof
548 $ +int(xgood(ip))
549 $ +int(ygood(ip))
550 enddo
551 if(pfixed.eq.0.) ndof=ndof-5 ! ***PP***
552 if(pfixed.ne.0.) ndof=ndof-4 ! ***PP***
553 if(ndof.le.0.) then
554 ndof = 1
555 if(TRKVERBOSE)
556 $ print*,'*** WARNING *** in mini n.dof = 0 (set to 1)'
557 endif
558
559 * ------------------------------------
560 * Reduced chi^2
561 CHI2 = CHI2/dble(ndof)
562 c print*,'mini2: chi2 ',chi2
563
564 11 CONTINUE
565
566 if(TRKDEBUG) print*,'mini : -ok- ',istep,chi2,AL(5)
567
568 NSTEP=ISTEP ! ***PP***
569
570 c$$$ print*,'>>>>> NSTEP = ',NSTEP
571
572 RETURN
573 END
574
575 ******************************************************************************
576 *
577 * routine to compute chi^2 and its derivatives
578 *
579 *
580 * (modified in respect to the previous one in order to include
581 * single clusters. In this case the residual is evaluated by
582 * calculating the distance between the track intersection and the
583 * segment AB associated to the single cluster)
584 *
585 ******************************************************************************
586
587 SUBROUTINE CHISQ(IFLAG,IFAIL)
588
589 IMPLICIT DOUBLE PRECISION (A-H,O-Z)
590
591 include 'commontracker.f' !tracker general common
592 include 'common_mini_2.f' !common for the tracking procedure
593
594 DIMENSION XV2(nplanes),YV2(nplanes),XV1(nplanes),YV1(nplanes)
595 $ ,XV0(nplanes),YV0(nplanes)
596 DIMENSION AL_P(5)
597
598 c LOGICAL TRKVERBOSE
599 c COMMON/TRKD/TRKVERBOSE
600 LOGICAL TRKDEBUG,TRKVERBOSE
601 COMMON/TRKD/TRKDEBUG,TRKVERBOSE
602 *
603 * chi^2 computation
604 *
605 DO I=1,5
606 AL_P(I)=AL(I)
607 ENDDO
608 JFAIL=0 !error flag
609 CALL POSXYZ(AL_P,JFAIL) !track intersection with tracking planes
610 IF(JFAIL.NE.0) THEN
611 IF(TRKVERBOSE)
612 $ PRINT *,'CHISQ ==> error from trk routine POSXYZ !!'
613 IFAIL=1
614 RETURN
615 ENDIF
616 DO I=1,nplanes
617 XV0(I)=XV(I)
618 YV0(I)=YV(I)
619 ENDDO
620 * ------------------------------------------------
621 c$$$ CHI2=0.
622 c$$$ DO I=1,nplanes
623 c$$$ CHI2=CHI2
624 c$$$ + +(XV(I)-XM(I))**2/RESX(i)**2 *XGOOD(I)*YGOOD(I)
625 c$$$ + +(YV(I)-YM(I))**2/RESY(i)**2 *YGOOD(I)*XGOOD(I)
626 c$$$ ENDDO
627 * ---------------------------------------------------------
628 * For planes with only a X or Y-cl included, instead of
629 * a X-Y couple, the residual for chi^2 calculation is
630 * evaluated by finding the point x-y, along the segment AB,
631 * closest to the track.
632 * The X or Y coordinate, respectivelly for X and Y-cl, is
633 * then assigned to XM or YM, which is then considered the
634 * measured position of the cluster.
635 * ---------------------------------------------------------
636 CHI2=0.
637 DO I=1,nplanes
638 IF(XGOOD(I).EQ.1.AND.YGOOD(I).EQ.0)THEN !X-cl
639 BETA = (XM_B(I)-XM_A(I))/(YM_B(I)-YM_A(I))
640 ALFA = XM_A(I) - BETA * YM_A(I)
641 YM(I) = ( YV(I) + BETA*XV(I) - BETA*ALFA )/(1+BETA**2)
642 if(YM(I).lt.dmin1(YM_A(I),YM_B(I)))
643 $ YM(I)=dmin1(YM_A(I),YM_B(I))
644 if(YM(I).gt.dmax1(YM_A(I),YM_B(I)))
645 $ YM(I)=dmax1(YM_A(I),YM_B(I))
646 XM(I) = ALFA + BETA * YM(I) !<<<< measured coordinates
647 ELSEIF(XGOOD(I).EQ.0.AND.YGOOD(I).EQ.1)THEN !Y-cl
648 BETA = (YM_B(I)-YM_A(I))/(XM_B(I)-XM_A(I))
649 ALFA = YM_A(I) - BETA * XM_A(I)
650 XM(I) = ( XV(I) + BETA*YV(I) - BETA*ALFA )/(1+BETA**2)
651 if(XM(I).lt.dmin1(XM_A(I),XM_B(I)))
652 $ XM(I)=dmin1(XM_A(I),XM_B(I))
653 if(XM(I).gt.dmax1(XM_A(I),XM_B(I)))
654 $ XM(I)=dmax1(XM_A(I),XM_B(I))
655 YM(I) = ALFA + BETA * XM(I) !<<<< measured coordinates
656 ENDIF
657 CHI2=CHI2
658 + +(XV(I)-XM(I))**2/RESX(i)**2 *( XGOOD(I)*YGOOD(I) )
659 + +(YV(I)-YM(I))**2/RESY(i)**2 *( YGOOD(I)*XGOOD(I) )
660 + +((XV(I)-XM(I))**2+(YV(I)-YM(I))**2)/RESX(i)**2
661 + *( XGOOD(I)*(1-YGOOD(I)) )
662 + +((XV(I)-XM(I))**2+(YV(I)-YM(I))**2)/RESY(i)**2
663 + *( (1-XGOOD(I))*YGOOD(I) )
664 c$$$ print*,(XV(I)-XM(I))**2/RESX(i)**2 *( XGOOD(I)*YGOOD(I) )
665 c$$$ print*,(YV(I)-YM(I))**2/RESY(i)**2 *( YGOOD(I)*XGOOD(I) )
666 c$$$ print*,((XV(I)-XM(I))**2+(YV(I)-YM(I))**2)/RESX(i)**2
667 c$$$ + *( XGOOD(I)*(1-YGOOD(I)) )
668 c$$$ print*,((XV(I)-XM(I))**2+(YV(I)-YM(I))**2)/RESY(i)**2
669 c$$$ + *( (1-XGOOD(I))*YGOOD(I) )
670 c$$$ print*,XV(I),XM(I),XGOOD(I)
671 c$$$ print*,YV(I),YM(I),YGOOD(I)
672 ENDDO
673 c$$$ print*,'CHISQ ',chi2
674 * ------------------------------------------------
675 *
676 * calculation of derivatives (dX/dAL_fa and dY/dAL_fa)
677 *
678 * //////////////////////////////////////////////////
679 * METHOD 1 -- incremental ratios
680 * //////////////////////////////////////////////////
681
682 IF(IFLAG.EQ.1) THEN
683
684 DO J=1,5
685 DO JJ=1,5
686 AL_P(JJ)=AL(JJ)
687 ENDDO
688 AL_P(J)=AL_P(J)+STEPAL(J)/2.
689 JFAIL=0
690 CALL POSXYZ(AL_P,JFAIL)
691 IF(JFAIL.NE.0) THEN
692 IF(TRKVERBOSE)
693 *23456789012345678901234567890123456789012345678901234567890123456789012
694 $ PRINT *,'CHISQ ==> error from trk routine POSXYZ'
695 IFAIL=1
696 RETURN
697 ENDIF
698 DO I=1,nplanes
699 XV2(I)=XV(I)
700 YV2(I)=YV(I)
701 ENDDO
702 AL_P(J)=AL_P(J)-STEPAL(J)
703 JFAIL=0
704 CALL POSXYZ(AL_P,JFAIL)
705 IF(JFAIL.NE.0) THEN
706 IF(TRKVERBOSE)
707 $ PRINT *,'CHISQ ==> error from trk routine POSXYZ'
708 IFAIL=1
709 RETURN
710 ENDIF
711 DO I=1,nplanes
712 XV1(I)=XV(I)
713 YV1(I)=YV(I)
714 ENDDO
715 DO I=1,nplanes
716 DXDAL(I,J)=(XV2(I)-XV1(I))/STEPAL(J)
717 DYDAL(I,J)=(YV2(I)-YV1(I))/STEPAL(J)
718 ENDDO
719 ENDDO
720
721 ENDIF
722
723 * //////////////////////////////////////////////////
724 * METHOD 2 -- Bob Golden
725 * //////////////////////////////////////////////////
726
727 IF(IFLAG.EQ.2) THEN
728
729 DO I=1,nplanes
730 DXDAL(I,1)=1.
731 DYDAL(I,1)=0.
732
733 DXDAL(I,2)=0.
734 DYDAL(I,2)=1.
735
736 COSTHE=DSQRT(1.-AL(3)**2)
737 IF(COSTHE.EQ.0.) THEN
738 IF(TRKVERBOSE)PRINT *,'=== WARNING ===> COSTHE=0'
739 IFAIL=1
740 RETURN
741 ENDIF
742
743 DXDAL(I,3)=(ZINI-ZM(I))*DCOS(AL(4))/COSTHE**3
744 DYDAL(I,3)=(ZINI-ZM(I))*DSIN(AL(4))/COSTHE**3
745
746 DXDAL(I,4)=-AL(3)*(ZINI-ZM(I))*DSIN(AL(4))/COSTHE
747 DYDAL(I,4)=AL(3)*(ZINI-ZM(I))*DCOS(AL(4))/COSTHE
748
749 IF(AL(5).NE.0.) THEN
750 DXDAL(I,5)=
751 + (XV(I)-(AL(1)+AL(3)/COSTHE*(ZINI-ZM(I))
752 + *DCOS(AL(4))))/AL(5)
753 DYDAL(I,5)=
754 + (YV(I)-(AL(2)+AL(3)/COSTHE*(ZINI-ZM(I))
755 + *DSIN(AL(4))))/AL(5)
756 ELSE
757 DXDAL(I,5)=100.*( 0.25 *0.3*0.4*(0.01*(ZINI-ZM(I)))**2 )
758 DYDAL(I,5)=0.
759 ENDIF
760
761 ENDDO
762 ENDIF
763 *
764 * x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x
765 * >>> CHI2D evaluation
766 *
767 DO J=1,5
768 CHI2D(J)=0.
769 DO I=1,nplanes
770 CHI2D(J)=CHI2D(J)
771 + +2.*(XV0(I)-XM(I))/RESX(i)**2*DXDAL(I,J) *XGOOD(I)
772 + +2.*(YV0(I)-YM(I))/RESY(i)**2*DYDAL(I,J) *YGOOD(I)
773 ENDDO
774 ENDDO
775 *
776 * >>> CHI2DD evaluation
777 *
778 DO I=1,5
779 DO J=1,5
780 CHI2DD(I,J)=0.
781 DO K=1,nplanes
782 CHI2DD(I,J)=CHI2DD(I,J)
783 + +2.*DXDAL(K,I)*DXDAL(K,J)/RESX(k)**2 *XGOOD(K)
784 + +2.*DYDAL(K,I)*DYDAL(K,J)/RESY(k)**2 *YGOOD(K)
785 ENDDO
786 ENDDO
787 ENDDO
788 * x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x
789
790 RETURN
791 END
792
793 ******************************************************************************
794 *
795 * routine to compute Likelihodd+Student and its derivatives
796 *
797 * (modified in respect to the previous one in order to include
798 * single clusters. In this case the residual is evaluated by
799 * calculating the distance between the track intersection and the
800 * segment AB associated to the single cluster)
801 *
802 ******************************************************************************
803
804 SUBROUTINE CHISQSTT(IFLAG,JFAIL)
805
806 IMPLICIT DOUBLE PRECISION (A-H,O-Z)
807
808 include 'commontracker.f' !tracker general common
809 include 'common_mini_2.f' !common for the tracking procedure
810
811 LOGICAL TRKDEBUG,TRKVERBOSE
812 COMMON/TRKD/TRKDEBUG,TRKVERBOSE
813
814 DIMENSION AL_P(5)
815 DIMENSION VECTEMP(5)
816 c$$$ DIMENSION U(5) ! BFGS
817
818 DO I=1,5
819 AL_P(I)=AL(I)
820 ENDDO
821 JFAIL=0 !error flag
822 CALL POSXYZ(AL_P,JFAIL) !track intersection with tracking planes
823 IF(JFAIL.NE.0) THEN
824 IF(TRKVERBOSE)
825 $ PRINT *,'CHISQSTT ==> error from trk routine POSXYZ !!'
826 IFAIL=1
827 RETURN
828 ENDIF
829
830 DO I=1,nplanes
831 DXDAL(I,1)=1.
832 DYDAL(I,1)=0.
833 DXDAL(I,2)=0.
834 DYDAL(I,2)=1.
835 COSTHE=DSQRT(1.-AL(3)**2)
836 IF(COSTHE.EQ.0.) THEN
837 IF(TRKVERBOSE)PRINT *,'=== WARNING ===> COSTHE=0'
838 IFAIL=1
839 RETURN
840 ENDIF
841 DXDAL(I,3)=(ZINI-ZM(I))*DCOS(AL(4))/COSTHE**3
842 DYDAL(I,3)=(ZINI-ZM(I))*DSIN(AL(4))/COSTHE**3
843 DXDAL(I,4)=-AL(3)*(ZINI-ZM(I))*DSIN(AL(4))/COSTHE
844 DYDAL(I,4)=AL(3)*(ZINI-ZM(I))*DCOS(AL(4))/COSTHE
845 IF(AL(5).NE.0.) THEN
846 DXDAL(I,5)=
847 + (XV(I)-(AL(1)+AL(3)/COSTHE*(ZINI-ZM(I))
848 + *DCOS(AL(4))))/AL(5)
849 DYDAL(I,5)=
850 + (YV(I)-(AL(2)+AL(3)/COSTHE*(ZINI-ZM(I))
851 + *DSIN(AL(4))))/AL(5)
852 ELSE
853 DXDAL(I,5)=100.*( 0.25 *0.3*0.4*(0.01*(ZINI-ZM(I)))**2 )
854 DYDAL(I,5)=0.
855 ENDIF
856 ENDDO
857
858 IF(IFLAG.EQ.0) THEN ! function calulation
859 CHI2=0.
860 DO I=1,nplanes
861 IF(XGOOD(I).EQ.1.AND.YGOOD(I).EQ.0)THEN !X-cl
862 BETA = (XM_B(I)-XM_A(I))/(YM_B(I)-YM_A(I))
863 ALFA = XM_A(I) - BETA * YM_A(I)
864 YM(I) = ( YV(I) + BETA*XV(I) - BETA*ALFA )/(1+BETA**2)
865 if(YM(I).lt.dmin1(YM_A(I),YM_B(I)))
866 $ YM(I)=dmin1(YM_A(I),YM_B(I))
867 if(YM(I).gt.dmax1(YM_A(I),YM_B(I)))
868 $ YM(I)=dmax1(YM_A(I),YM_B(I))
869 XM(I) = ALFA + BETA * YM(I) !<<<< measured coordinates
870 ELSEIF(XGOOD(I).EQ.0.AND.YGOOD(I).EQ.1)THEN !Y-cl
871 BETA = (YM_B(I)-YM_A(I))/(XM_B(I)-XM_A(I))
872 ALFA = YM_A(I) - BETA * XM_A(I)
873 XM(I) = ( XV(I) + BETA*YV(I) - BETA*ALFA )/(1+BETA**2)
874 if(XM(I).lt.dmin1(XM_A(I),XM_B(I)))
875 $ XM(I)=dmin1(XM_A(I),XM_B(I))
876 if(XM(I).gt.dmax1(XM_A(I),XM_B(I)))
877 $ XM(I)=dmax1(XM_A(I),XM_B(I))
878 YM(I) = ALFA + BETA * XM(I) !<<<< measured coordinates
879 ENDIF
880 TERMX = DLOG( (TAILX(I)*RESX(I)**2+(XV(I)-XM(I))**2)/
881 $ (TAILX(I)*RESX(I)**2) )
882 TERMY = DLOG( (TAILY(I)*RESY(I)**2+(YV(I)-YM(I))**2)/
883 $ (TAILY(I)*RESY(I)**2) )
884 CHI2=CHI2
885 $ +(TAILX(I)+1.0)*TERMX *( XGOOD(I) )
886 $ +(TAILY(I)+1.0)*TERMY *( YGOOD(I) )
887 ENDDO
888 ENDIF
889
890 IF(IFLAG.EQ.1) THEN ! derivative calulation
891 DO I=1,5
892 CHI2DOLD(I)=CHI2D(I)
893 ENDDO
894 DO J=1,5
895 CHI2D(J)=0.
896 DO I=1,nplanes
897 CHI2D(J)=CHI2D(J)
898 $ +2.*(TAILX(I)+1.0)*(XV(I)-XM(I))/
899 $ (TAILX(I)*RESX(I)**2+(XV(I)-XM(I))**2)*
900 $ DXDAL(I,J) *XGOOD(I)
901 $ +2.*(TAILY(I)+1.0)*(YV(I)-YM(I))/
902 $ (TAILY(I)*RESY(I)**2+(YV(I)-YM(I))**2)*
903 $ DYDAL(I,J) *YGOOD(I)
904 ENDDO
905 ENDDO
906 DO K=1,5
907 VECTEMP(K)=0.
908 DO M=1,5
909 VECTEMP(K) = VECTEMP(K) +
910 $ COV(K,M)/2.*(CHI2D(M)-CHI2DOLD(M))
911 ENDDO
912 ENDDO
913 DOWN1 = 0.
914 DO K=1,5
915 DOWN1 = DOWN1 + DAL(K)*(CHI2D(K)-CHI2DOLD(K))
916 ENDDO
917 IF(DOWN1.EQ.0.) THEN
918 PRINT*,'WARNING IN MATRIX CALULATION (STUDENT), DOWN1 = 0'
919 IFAIL=1
920 RETURN
921 ENDIF
922 DOWN2 = 0.
923 DO K=1,5
924 DO M=1,5
925 DOWN2 = DOWN2 + (CHI2D(K)-CHI2DOLD(K))*VECTEMP(K)
926 ENDDO
927 ENDDO
928 IF(DOWN2.EQ.0.) THEN
929 PRINT*,'WARNING IN MATRIX CALULATION (STUDENT), DOWN2 = 0'
930 IFAIL=1
931 RETURN
932 ENDIF
933 c$$$ DO K=1,5 ! BFGS
934 c$$$ U(K) = DAL(K)/DOWN1 - VECTEMP(K)/DOWN2
935 c$$$ ENDDO
936 DO I=1,5
937 DO J=1,5
938 CHI2DD(I,J) = COV(I,J)/2.
939 $ +DAL(I)*DAL(J)/DOWN1
940 $ -VECTEMP(I)*VECTEMP(J)/DOWN2
941 c$$$ $ +DOWN2*U(I)*U(J) ! BFGS
942 ENDDO
943 ENDDO
944 ENDIF
945
946 RETURN
947 END
948
949 *****************************************************************
950 *
951 * Routine to compute the track intersection points
952 * on the tracking-system planes, given the track parameters
953 *
954 * The routine is based on GRKUTA, which computes the
955 * trajectory of a charged particle in a magnetic field
956 * by solving the equatins of motion with Runge-Kuta method.
957 *
958 * Variables that have to be assigned when the subroutine
959 * is called are:
960 *
961 * ZM(1,NPLANES) ----> z coordinates of the planes
962 * AL_P(1,5) ----> track-parameter vector
963 *
964 * -----------------------------------------------------------
965 * NB !!!
966 * The routine works properly only if the
967 * planes are numbered in descending order starting from the
968 * reference plane (ZINI)
969 * -----------------------------------------------------------
970 *
971 *****************************************************************
972
973 SUBROUTINE POSXYZ(AL_P,IFAIL)
974
975 IMPLICIT DOUBLE PRECISION (A-H,O-Z)
976
977 include 'commontracker.f' !tracker general common
978 include 'common_mini_2.f' !common for the tracking procedure
979
980 c LOGICAL TRKVERBOSE
981 c COMMON/TRKD/TRKVERBOSE
982 LOGICAL TRKDEBUG,TRKVERBOSE
983 COMMON/TRKD/TRKDEBUG,TRKVERBOSE
984 c
985 DIMENSION AL_P(5)
986 *
987 cpp DO I=1,nplanes
988 cpp ZV(I)=ZM(I) !
989 cpp ENDDO
990 *
991 * set parameters for GRKUTA
992 *
993 IF(AL_P(5).NE.0) CHARGE=AL_P(5)/DABS(AL_P(5))
994 IF(AL_P(5).EQ.0) CHARGE=1.
995 VOUT(1)=AL_P(1)
996 VOUT(2)=AL_P(2)
997 VOUT(3)=ZINI ! DBLE(Z0)-DBLE(ZSPEC)
998 VOUT(4)=AL_P(3)*DCOS(AL_P(4))
999 VOUT(5)=AL_P(3)*DSIN(AL_P(4))
1000 VOUT(6)=-1.*DSQRT(1.-AL_P(3)**2)
1001 IF(AL_P(5).NE.0.) VOUT(7)=DABS(1./AL_P(5))
1002 IF(AL_P(5).EQ.0.) VOUT(7)=1.E8
1003
1004 c$$$ print*,'POSXY (prima) ',vout
1005
1006 DO I=1,nplanes
1007 c$$$ ipass = 0 ! TEST
1008 c$$$ PRINT *,'TRACKING -> START PLANE: ',I ! TEST
1009 cPPP step=vout(3)-zm(i)
1010 cPP step=(zm(i)-vout(3))/VOUT(6)
1011 10 DO J=1,7
1012 VECT(J)=VOUT(J)
1013 VECTINI(J)=VOUT(J)
1014 ENDDO
1015 cPPP step=vect(3)-zm(i)
1016 IF(VOUT(6).GE.0.) THEN
1017 IFAIL=1
1018 if(TRKVERBOSE)
1019 $ PRINT *,'posxy (grkuta): WARNING ===> backward track!!'
1020 RETURN
1021 ENDIF
1022 step=(zm(i)-vect(3))/VOUT(6)
1023 11 continue
1024 CALL GRKUTA(CHARGE,STEP,VECT,VOUT)
1025 c$$$ ipass = ipass + 1 ! TEST
1026 c$$$ PRINT *,'TRACKING -> STEP: ',ipass,' LENGHT: ', STEP ! TEST
1027 IF(VOUT(3).GT.VECT(3)) THEN
1028 IFAIL=1
1029 if(TRKVERBOSE)
1030 $ PRINT *,'posxy (grkuta): WARNING ===> backward track!!'
1031 c$$$ if(.TRUE.)print*,'charge',charge
1032 c$$$ if(.TRUE.)print*,'vect',vect
1033 c$$$ if(.TRUE.)print*,'vout',vout
1034 c$$$ if(.TRUE.)print*,'step',step
1035 if(TRKVERBOSE)print*,'charge',charge
1036 if(TRKVERBOSE)print*,'vect',vect
1037 if(TRKVERBOSE)print*,'vout',vout
1038 if(TRKVERBOSE)print*,'step',step
1039 RETURN
1040 ENDIF
1041 Z=VOUT(3)
1042 IF(Z.LE.ZM(I)+TOLL.AND.Z.GE.ZM(I)-TOLL) GOTO 100
1043 IF(Z.GT.ZM(I)+TOLL) GOTO 10
1044 IF(Z.LE.ZM(I)-TOLL) THEN
1045 STEP=STEP*(ZM(I)-VECT(3))/(Z-VECT(3))
1046 DO J=1,7
1047 VECT(J)=VECTINI(J)
1048 ENDDO
1049 GOTO 11
1050 ENDIF
1051
1052
1053 * -----------------------------------------------
1054 * evaluate track coordinates
1055 100 XV(I)=VOUT(1)
1056 YV(I)=VOUT(2)
1057 ZV(I)=VOUT(3)
1058 AXV(I)=DATAN(VOUT(4)/VOUT(6))*180./ACOS(-1.)
1059 AYV(I)=DATAN(VOUT(5)/VOUT(6))*180./ACOS(-1.)
1060 * -----------------------------------------------
1061
1062 IF(TRACKMODE.EQ.1) THEN
1063 * -----------------------------------------------
1064 * change of energy by bremsstrahlung for electrons
1065 VOUT(7) = VOUT(7) * 0.997 !0.9968
1066 * -----------------------------------------------
1067 ENDIF
1068 c$$$ PRINT *,'TRACKING -> END' ! TEST
1069
1070 ENDDO
1071
1072 c$$$ print*,'POSXY (dopo) ',vout
1073
1074
1075 RETURN
1076 END
1077
1078
1079
1080
1081
1082 * **********************************************************
1083 * Some initialization routines
1084 * **********************************************************
1085
1086 * ----------------------------------------------------------
1087 * Routine to initialize COMMON/TRACK/
1088 *
1089 subroutine track_init
1090
1091 IMPLICIT DOUBLE PRECISION (A-H,O-Z)
1092
1093 include 'commontracker.f' !tracker general common
1094 include 'common_mini_2.f' !common for the tracking procedure
1095 include 'common_mech.f'
1096
1097 do i=1,5
1098 AL(i) = 0.
1099 enddo
1100
1101 do ip=1,NPLANES
1102 ZM(IP) = fitz(nplanes-ip+1) !init to mech. position
1103 XM(IP) = -100. !0.
1104 YM(IP) = -100. !0.
1105 XM_A(IP) = -100. !0.
1106 YM_A(IP) = -100. !0.
1107 ZM_A(IP) = fitz(nplanes-ip+1) !init to mech. position
1108 XM_B(IP) = -100. !0.
1109 YM_B(IP) = -100. !0.
1110 ZM_B(IP) = fitz(nplanes-ip+1) !init to mech. position
1111 RESX(IP) = 1000. !3.d-4
1112 RESY(IP) = 1000. !12.d-4
1113 XGOOD(IP) = 0
1114 YGOOD(IP) = 0
1115 DEDXTRK_X(IP) = 0
1116 DEDXTRK_Y(IP) = 0
1117 AXV(IP) = 0
1118 AYV(IP) = 0
1119 XV(IP) = -100
1120 YV(IP) = -100
1121 enddo
1122
1123 return
1124 end
1125
1126
1127 ***************************************************
1128 * *
1129 * *
1130 * *
1131 * *
1132 * *
1133 * *
1134 **************************************************
1135
1136 subroutine guess()
1137
1138 c IMPLICIT DOUBLE PRECISION (A-H,O-Z)
1139
1140 include 'commontracker.f' !tracker general common
1141 include 'common_mini_2.f' !common for the tracking procedure
1142
1143 REAL*4 XP(NPLANES),ZP(NPLANES),AP(NPLANES),RP(NPLANES)
1144 REAL*4 CHI,XC,ZC,RADIUS
1145
1146 c$$$ DO I=1,nplanes
1147 c$$$ print *,i,' - ',XGOOD(I),YGOOD(I)
1148 c$$$ print *,i,' - ',xm(i),ym(i),zm(i)
1149 c$$$ print *,i,' A ',xm_a(i),ym_a(i),zm_a(i)
1150 c$$$ print *,i,' B ',xm_b(i),ym_b(i),zm_b(i)
1151 c$$$ enddo
1152
1153
1154 * ----------------------------------------
1155 * Y view
1156 * ----------------------------------------
1157 * ----------------------------------------
1158 * initial guess with a straigth line
1159 * ----------------------------------------
1160 SZZ=0.
1161 SZY=0.
1162 SSY=0.
1163 SZ=0.
1164 S1=0.
1165 DO I=1,nplanes
1166 IF(YGOOD(I).EQ.1)THEN
1167 YY = REAL(YM(I))!EM GCC4.7
1168 IF(XGOOD(I).EQ.0)THEN
1169 YY = REAL((YM_A(I) + YM_B(I))/2.)!EM GCC4.7
1170 ENDIF
1171 SZZ=SZZ+REAL(ZM(I)*ZM(I))!EM GCC4.7
1172 SZY=SZY+REAL(ZM(I)*YY)!EM GCC4.7
1173 SSY=SSY+YY
1174 SZ=SZ+REAL(ZM(I))!EM GCC4.7
1175 S1=S1+1.
1176 ENDIF
1177 ENDDO
1178 DET=SZZ*S1-SZ*SZ
1179 AY=(SZY*S1-SZ*SSY)/DET
1180 BY=(SZZ*SSY-SZY*SZ)/DET
1181 Y0 = REAL(AY*ZINI+BY)!EM GCC4.7
1182 * ----------------------------------------
1183 * X view
1184 * ----------------------------------------
1185 * ----------------------------------------
1186 * 1) initial guess with a circle
1187 * ----------------------------------------
1188 NP=0
1189 DO I=1,nplanes
1190 IF(XGOOD(I).EQ.1)THEN
1191 XX = REAL(XM(I))!EM GCC4.7
1192 IF(YGOOD(I).EQ.0)THEN
1193 XX = REAL((XM_A(I) + XM_B(I))/2.)!EM GCC4.7
1194 ENDIF
1195 NP=NP+1
1196 XP(NP)=XX
1197 ZP(NP)=REAL(ZM(I))!EM GCC4.7
1198 ENDIF
1199 ENDDO
1200 IFLAG=0 !no debug mode
1201 CALL TRICIRCLE(NP,XP,ZP,AP,RP,CHI,XC,ZC,RADIUS,IFLAG)
1202
1203 c$$$ print*,' circle: ',XC,ZC,RADIUS,' --- ',CHI,IFLAG
1204 c$$$ print*,' XP ',(xp(i),i=1,np)
1205 c$$$ print*,' ZP ',(zp(i),i=1,np)
1206 c$$$ print*,' AP ',(ap(i),i=1,np)
1207 c$$$ print*,' XP ',(rp(i),i=1,np)
1208
1209 IF(IFLAG.NE.0)GOTO 10 !straigth fit
1210 c if(CHI.gt.100)GOTO 10 !straigth fit
1211 ARG = REAL(RADIUS**2-(ZINI-ZC)**2)!EM GCC4.7
1212 IF(ARG.LT.0)GOTO 10 !straigth fit
1213 DC = SQRT(ARG)
1214 IF(XC.GT.0)DC=-DC
1215 X0=XC+DC
1216 AX = REAL(-(ZINI-ZC)/DC)!EM GCC4.7
1217 DEF=100./(RADIUS*0.3*0.43)
1218 IF(XC.GT.0)DEF=-DEF
1219
1220
1221
1222 IF(ABS(X0).GT.30)THEN
1223 c$$$ PRINT*,'STRANGE GUESS: XC,ZC,R ',XC,ZC,RADIUS
1224 c$$$ $ ,' - CHI ',CHI,' - X0,AX,DEF ',X0,AX,DEF
1225 GOTO 10 !straigth fit
1226 ENDIF
1227 GOTO 20 !guess is ok
1228
1229 * ----------------------------------------
1230 * 2) initial guess with a straigth line
1231 * - if circle does not intersect reference plane
1232 * - if bad chi**2
1233 * ----------------------------------------
1234 10 CONTINUE
1235 SZZ=0.
1236 SZX=0.
1237 SSX=0.
1238 SZ=0.
1239 S1=0.
1240 DO I=1,nplanes
1241 IF(XGOOD(I).EQ.1)THEN
1242 XX = REAL(XM(I))!EM GCC4.7
1243 IF(YGOOD(I).EQ.0)THEN
1244 XX = REAL((XM_A(I) + XM_B(I))/2.)!EM GCC4.7
1245 ENDIF
1246 SZZ=SZZ+REAL(ZM(I)*ZM(I))!EM GCC4.7
1247 SZX=SZX+REAL(ZM(I)*XX)!EM GCC4.7
1248 SSX=SSX+XX
1249 SZ=SZ+REAL(ZM(I))!EM GCC4.7
1250 S1=S1+1.
1251 ENDIF
1252 ENDDO
1253 DET=SZZ*S1-SZ*SZ
1254 AX=(SZX*S1-SZ*SSX)/DET
1255 BX=(SZZ*SSX-SZX*SZ)/DET
1256 DEF = 0
1257 X0 = REAL(AX*ZINI+BX)!EM GCC4.7
1258
1259 20 CONTINUE
1260 * ----------------------------------------
1261 * guess
1262 * ----------------------------------------
1263
1264 AL(1) = X0
1265 AL(2) = Y0
1266 tath = sqrt(AY**2+AX**2)
1267 AL(3) = tath/sqrt(1+tath**2)
1268
1269 AL(4)=0.
1270 IF( AX.NE.0.OR.AY.NE.0. ) THEN
1271 AL(4) = ASIN(AY/SQRT(AX**2+AY**2))
1272 IF(AX.LT.0.AND.AY.GE.0) AL(4) = ACOS(-1.0)-AL(4)
1273 IF(AX.LT.0.AND.AY.LT.0) AL(4) = -ACOS(-1.0)-AL(4)
1274 ENDIF
1275 IF(AY.GT.0.) AL(4) = AL(4)-ACOS(-1.0)
1276 IF(AY.LE.0.) AL(4) = AL(4)+ACOS(-1.0)
1277
1278 AL(5) = DEF
1279
1280 c print*,' guess: ',(al(i),i=1,5)
1281
1282 end

  ViewVC Help
Powered by ViewVC 1.1.23