1 |
mocchiut |
1.1 |
************************************************************************ |
2 |
|
|
* |
3 |
|
|
* subroutine to evaluate the vector alfa (AL) |
4 |
|
|
* which minimizes CHI^2 |
5 |
|
|
* |
6 |
|
|
* - modified from mini.f in order to call differente chi^2 routine. |
7 |
|
|
* The new one includes also single clusters: in this case |
8 |
|
|
* the residual is defined as the distance between the track and the |
9 |
|
|
* segment AB associated to the single cluster. |
10 |
|
|
* |
11 |
|
|
* |
12 |
|
|
************************************************************************ |
13 |
|
|
|
14 |
|
|
|
15 |
pam-fi |
1.3 |
SUBROUTINE MINI2(ISTEP,IFAIL,IPRINT) |
16 |
mocchiut |
1.1 |
|
17 |
|
|
IMPLICIT DOUBLE PRECISION (A-H,O-Z) |
18 |
|
|
|
19 |
|
|
include 'commontracker.f' !tracker general common |
20 |
|
|
include 'common_mini_2.f' !common for the tracking procedure |
21 |
|
|
|
22 |
pam-fi |
1.2 |
c logical DEBUG |
23 |
|
|
c common/dbg/DEBUG |
24 |
mocchiut |
1.1 |
|
25 |
pam-fi |
1.4 |
parameter (dinf=1.d15) !just a huge number... |
26 |
mocchiut |
1.1 |
c------------------------------------------------------------------------ |
27 |
|
|
c variables used in the tracking procedure (mini and its subroutines) |
28 |
|
|
c |
29 |
|
|
c N.B.: in mini & C. (and in the following block of variables too) |
30 |
|
|
c the plane ordering is reversed in respect of normal |
31 |
|
|
c ordering, but they maintain their Z coordinates. so plane number 1 is |
32 |
|
|
c the first one that a particle meets, and its Z coordinate is > 0 |
33 |
|
|
c------------------------------------------------------------------------ |
34 |
pam-fi |
1.3 |
DATA ZINI/23.5/ !!! ***PP*** to be changed !z coordinate of the reference plane |
35 |
mocchiut |
1.1 |
|
36 |
pam-fi |
1.3 |
c DATA XGOOD,YGOOD/nplanes*1.,nplanes*1./ !planes to be used in the tracking |
37 |
mocchiut |
1.1 |
|
38 |
|
|
DATA STEPAL/5*1.d-7/ !alpha vector step |
39 |
pam-fi |
1.7 |
DATA ISTEPMAX/100/ !maximum number of steps in the chi^2 minimization |
40 |
mocchiut |
1.1 |
DATA TOLL/1.d-8/ !tolerance in reaching the next plane during |
41 |
|
|
* !the tracking procedure |
42 |
|
|
DATA STEPMAX/100./ !maximum number of steps in the trackin gprocess |
43 |
|
|
|
44 |
pam-fi |
1.8 |
c DATA ALMAX/dinf,dinf,1.,dinf,dinf/ !limits on alpha vector components |
45 |
|
|
c DATA ALMIN/-dinf,-dinf,-1.,-dinf,-dinf/ !" |
46 |
pam-fi |
1.10 |
DATA ALMAX/dinf,dinf,1.,dinf,dinf/ !limits on alpha vector components |
47 |
|
|
DATA ALMIN/-dinf,-dinf,-1.,-dinf,-dinf/ !" |
48 |
mocchiut |
1.1 |
|
49 |
|
|
DIMENSION DAL(5) !increment of vector alfa |
50 |
pam-fi |
1.3 |
DIMENSION CHI2DD_R(4,4),CHI2D_R(4) !hessiano e gradiente di chi2 |
51 |
pam-fi |
1.4 |
|
52 |
|
|
c elena-------- |
53 |
|
|
REAL*8 AVRESX,AVRESY |
54 |
|
|
c elena-------- |
55 |
|
|
|
56 |
mocchiut |
1.1 |
INTEGER IFLAG |
57 |
|
|
c-------------------------------------------------------- |
58 |
|
|
c IFLAG =1 ---- chi2 derivatives computed by using |
59 |
|
|
c incremental ratios and posxyz.f |
60 |
|
|
c IFLAG =2 ---- the approximation of Golden is used |
61 |
|
|
c (see chisq.f) |
62 |
|
|
c |
63 |
|
|
c NB: the two metods gives equivalent results BUT |
64 |
|
|
c method 2 is faster!! |
65 |
|
|
c-------------------------------------------------------- |
66 |
pam-fi |
1.3 |
DATA IFLAG/2/ |
67 |
|
|
|
68 |
pam-fi |
1.4 |
c LOGICAL TRKDEBUG,TRKVERBOSE |
69 |
|
|
c COMMON/TRKD/TRKDEBUG,TRKVERBOSE |
70 |
|
|
LOGICAL TRKDEBUG,TRKVERBOSE |
71 |
|
|
COMMON/TRKD/TRKDEBUG,TRKVERBOSE |
72 |
pam-fi |
1.3 |
|
73 |
|
|
IF(IPRINT.EQ.1) THEN |
74 |
pam-fi |
1.4 |
TRKVERBOSE = .TRUE. |
75 |
|
|
TRKDEBUG = .FALSE. |
76 |
|
|
ELSEIF(IPRINT.EQ.2)THEN |
77 |
|
|
TRKVERBOSE = .TRUE. |
78 |
|
|
TRKDEBUG = .TRUE. |
79 |
pam-fi |
1.3 |
ELSE |
80 |
pam-fi |
1.4 |
TRKVERBOSE = .FALSE. |
81 |
|
|
TRKDEBUG = .FALSE. |
82 |
pam-fi |
1.3 |
ENDIF |
83 |
mocchiut |
1.1 |
|
84 |
|
|
* ---------------------------------------------------------- |
85 |
pam-fi |
1.4 |
* evaluate average spatial resolution |
86 |
|
|
* ---------------------------------------------------------- |
87 |
|
|
AVRESX = RESXAV |
88 |
|
|
AVRESY = RESYAV |
89 |
|
|
DO IP=1,6 |
90 |
|
|
IF( XGOOD(IP).EQ.1 )THEN |
91 |
|
|
NX=NX+1 |
92 |
|
|
AVRESX=AVRESX+RESX(IP) |
93 |
|
|
ENDIF |
94 |
|
|
IF(NX.NE.0)AVRESX=AVRESX/NX |
95 |
|
|
IF( YGOOD(IP).EQ.1 )THEN |
96 |
|
|
NY=NY+1 |
97 |
|
|
AVRESY=AVRESY+RESY(IP) |
98 |
|
|
ENDIF |
99 |
|
|
IF(NX.NE.0)AVRESY=AVRESY/NY |
100 |
|
|
ENDDO |
101 |
|
|
|
102 |
|
|
* ---------------------------------------------------------- |
103 |
mocchiut |
1.1 |
* define ALTOL(5) ---> tolerances on state vector |
104 |
|
|
* |
105 |
|
|
* ---------------------------------------------------------- |
106 |
pam-fi |
1.4 |
* changed in order to evaluate energy-dependent |
107 |
|
|
* tolerances on all 5 parameters |
108 |
|
|
FACT=100. !scale factor to define tolerance on alfa |
109 |
mocchiut |
1.1 |
c deflection error (see PDG) |
110 |
pam-fi |
1.4 |
DELETA1 = 0.01/0.3/0.4/0.4451**2*SQRT(720./(6.+4.)) |
111 |
|
|
DELETA2 = 0.016/0.3/0.4/0.4451*SQRT(0.4451/9.36) |
112 |
|
|
c$$$ ALTOL(1) = AVRESX/FACT !al(1) = x |
113 |
|
|
c$$$ ALTOL(2) = AVRESY/FACT !al(2) = y |
114 |
|
|
c$$$ ALTOL(3) = DSQRT(AVRESX**2 !al(3)=sin(theta) |
115 |
|
|
c$$$ $ +AVRESY**2)/44.51/FACT |
116 |
|
|
c$$$ ALTOL(4) = ALTOL(3) !al(4)=phi |
117 |
|
|
c deflection error (see PDG) |
118 |
|
|
c$$$ DELETA1 = 0.01*AVRESX/0.3/0.4/0.4451**2*SQRT(720./(6.+4.)) |
119 |
|
|
c$$$ DELETA2 = 0.016/0.3/0.4/0.4451*SQRT(0.4451/9.36) |
120 |
mocchiut |
1.1 |
* ---------------------------------------------------------- |
121 |
|
|
* |
122 |
|
|
ISTEP=0 !num. steps to minimize chi^2 |
123 |
|
|
JFAIL=0 !error flag |
124 |
pam-fi |
1.12 |
CHI2=0 |
125 |
pam-fi |
1.4 |
|
126 |
pam-fi |
1.5 |
if(TRKDEBUG) print*,'guess: ',al |
127 |
pam-fi |
1.4 |
if(TRKDEBUG) print*,'mini2: step ',istep,chi2,1./AL(5) |
128 |
|
|
|
129 |
pam-fi |
1.3 |
* |
130 |
|
|
* ----------------------- |
131 |
|
|
* START MINIMIZATION LOOP |
132 |
|
|
* ----------------------- |
133 |
|
|
10 ISTEP=ISTEP+1 !<<<<<<<<<<<<<< NEW STEP !! |
134 |
|
|
|
135 |
mocchiut |
1.1 |
CALL CHISQ(IFLAG,JFAIL) !chi^2 and its derivatives |
136 |
|
|
IF(JFAIL.NE.0) THEN |
137 |
|
|
IFAIL=1 |
138 |
pam-fi |
1.3 |
CHI2=-9999. |
139 |
pam-fi |
1.4 |
if(TRKVERBOSE) |
140 |
pam-fi |
1.3 |
$ PRINT *,'*** ERROR in mini *** wrong CHISQ' |
141 |
mocchiut |
1.1 |
RETURN |
142 |
|
|
ENDIF |
143 |
pam-fi |
1.3 |
|
144 |
pam-fi |
1.10 |
COST=1e-5 |
145 |
mocchiut |
1.1 |
DO I=1,5 |
146 |
|
|
DO J=1,5 |
147 |
|
|
CHI2DD(I,J)=CHI2DD(I,J)*COST |
148 |
|
|
ENDDO |
149 |
|
|
CHI2D(I)=CHI2D(I)*COST |
150 |
|
|
ENDDO |
151 |
pam-fi |
1.3 |
|
152 |
|
|
IF(PFIXED.EQ.0.) THEN |
153 |
|
|
|
154 |
mocchiut |
1.1 |
*------------------------------------------------------------* |
155 |
|
|
* track fitting with FREE deflection |
156 |
|
|
*------------------------------------------------------------* |
157 |
pam-fi |
1.3 |
CALL DSFACT(5,CHI2DD,5,IFA,DET,JFA) !CHI2DD matrix determinant |
158 |
pam-fi |
1.7 |
IF(IFA.NE.0) THEN !not positive-defined |
159 |
|
|
if(TRKVERBOSE)then |
160 |
pam-fi |
1.3 |
PRINT *, |
161 |
|
|
$ '*** ERROR in mini ***'// |
162 |
|
|
$ 'on matrix inversion (not pos-def)' |
163 |
|
|
$ ,DET |
164 |
pam-fi |
1.7 |
endif |
165 |
|
|
IF(CHI2.EQ.0) CHI2=-9999. |
166 |
|
|
IF(CHI2.GT.0) CHI2=-CHI2 |
167 |
|
|
IFAIL=1 |
168 |
|
|
RETURN |
169 |
pam-fi |
1.3 |
ENDIF |
170 |
|
|
CALL DSFINV(5,CHI2DD,5) !CHI2DD matrix inversion |
171 |
|
|
* ******************************************* |
172 |
|
|
* find new value of AL-pha |
173 |
pam-fi |
1.4 |
* ******************************************* |
174 |
pam-fi |
1.3 |
DO I=1,5 |
175 |
|
|
DAL(I)=0. |
176 |
|
|
DO J=1,5 |
177 |
|
|
DAL(I)=DAL(I)-CHI2DD(I,J)*CHI2D(J) |
178 |
|
|
COV(I,J)=2.*COST*CHI2DD(I,J) |
179 |
|
|
ENDDO |
180 |
|
|
ENDDO |
181 |
|
|
DO I=1,5 |
182 |
|
|
AL(I)=AL(I)+DAL(I) |
183 |
|
|
ENDDO |
184 |
|
|
*------------------------------------------------------------* |
185 |
|
|
* track fitting with FIXED deflection |
186 |
|
|
*------------------------------------------------------------* |
187 |
|
|
ELSE |
188 |
|
|
AL(5)=1./PFIXED |
189 |
|
|
DO I=1,4 |
190 |
|
|
CHI2D_R(I)=CHI2D(I) |
191 |
|
|
DO J=1,4 |
192 |
|
|
CHI2DD_R(I,J)=CHI2DD(I,J) |
193 |
|
|
ENDDO |
194 |
|
|
ENDDO |
195 |
|
|
CALL DSFACT(4,CHI2DD_R,4,IFA,DET,JFA) |
196 |
|
|
IF(IFA.NE.0) THEN |
197 |
pam-fi |
1.4 |
if(TRKVERBOSE)then |
198 |
pam-fi |
1.3 |
PRINT *, |
199 |
|
|
$ '*** ERROR in mini ***'// |
200 |
|
|
$ 'on matrix inversion (not pos-def)' |
201 |
|
|
$ ,DET |
202 |
|
|
endif |
203 |
|
|
IF(CHI2.EQ.0) CHI2=-9999. |
204 |
|
|
IF(CHI2.GT.0) CHI2=-CHI2 |
205 |
|
|
IFAIL=1 |
206 |
|
|
RETURN |
207 |
|
|
ENDIF |
208 |
|
|
CALL DSFINV(4,CHI2DD_R,4) |
209 |
pam-fi |
1.4 |
* ******************************************* |
210 |
|
|
* find new value of AL-pha |
211 |
|
|
* ******************************************* |
212 |
pam-fi |
1.3 |
DO I=1,4 |
213 |
|
|
DAL(I)=0. |
214 |
|
|
DO J=1,4 |
215 |
|
|
DAL(I)=DAL(I)-CHI2DD_R(I,J)*CHI2D_R(J) |
216 |
|
|
COV(I,J)=2.*COST*CHI2DD_R(I,J) |
217 |
|
|
ENDDO |
218 |
|
|
ENDDO |
219 |
|
|
DAL(5)=0. |
220 |
|
|
DO I=1,4 |
221 |
|
|
AL(I)=AL(I)+DAL(I) |
222 |
|
|
ENDDO |
223 |
mocchiut |
1.1 |
ENDIF |
224 |
pam-fi |
1.4 |
|
225 |
|
|
if(TRKDEBUG) print*,'mini2: step ',istep,chi2,1./AL(5) |
226 |
|
|
|
227 |
pam-fi |
1.3 |
*------------------------------------------------------------* |
228 |
|
|
* ---------------------------------------------------- * |
229 |
|
|
*------------------------------------------------------------* |
230 |
mocchiut |
1.1 |
* check parameter bounds: |
231 |
pam-fi |
1.4 |
*------------------------------------------------------------* |
232 |
mocchiut |
1.1 |
DO I=1,5 |
233 |
|
|
IF(AL(I).GT.ALMAX(I).OR.AL(I).LT.ALMIN(I))THEN |
234 |
pam-fi |
1.4 |
if(TRKVERBOSE)then |
235 |
pam-fi |
1.3 |
PRINT*,' *** WARNING in mini *** ' |
236 |
mocchiut |
1.1 |
PRINT*,'MINI_2 ==> AL(',I,') out of range' |
237 |
|
|
PRINT*,' value: ',AL(I), |
238 |
|
|
$ ' limits: ',ALMIN(I),ALMAX(I) |
239 |
|
|
print*,'istep ',istep |
240 |
|
|
endif |
241 |
pam-fi |
1.3 |
IF(CHI2.EQ.0) CHI2=-9999. |
242 |
|
|
IF(CHI2.GT.0) CHI2=-CHI2 |
243 |
mocchiut |
1.1 |
IFAIL=1 |
244 |
|
|
RETURN |
245 |
|
|
ENDIF |
246 |
|
|
ENDDO |
247 |
pam-fi |
1.4 |
*------------------------------------------------------------* |
248 |
mocchiut |
1.1 |
* check number of steps: |
249 |
pam-fi |
1.4 |
*------------------------------------------------------------* |
250 |
|
|
IF(ISTEP.ge.ISTEPMAX) then |
251 |
pam-fi |
1.7 |
c$$$ IFAIL=1 |
252 |
|
|
c$$$ if(TRKVERBOSE) |
253 |
|
|
c$$$ $ PRINT *,'*** WARNING in mini *** ISTEP.GT.ISTEPMAX=', |
254 |
|
|
c$$$ $ ISTEPMAX |
255 |
mocchiut |
1.1 |
goto 11 |
256 |
|
|
endif |
257 |
pam-fi |
1.4 |
*------------------------------------------------------------* |
258 |
mocchiut |
1.1 |
* --------------------------------------------- |
259 |
|
|
* evaluate deflection tolerance on the basis of |
260 |
|
|
* estimated deflection |
261 |
|
|
* --------------------------------------------- |
262 |
pam-fi |
1.4 |
*------------------------------------------------------------* |
263 |
|
|
c$$$ ALTOL(5) = DSQRT(DELETA1**2+DELETA2**2*AL(5)**2)/FACT |
264 |
|
|
ALTOL(5) = DSQRT((DELETA1*AVRESX)**2+DELETA2**2*AL(5)**2)/FACT |
265 |
|
|
ALTOL(1) = ALTOL(5)/DELETA1 |
266 |
|
|
ALTOL(2) = ALTOL(1) |
267 |
|
|
ALTOL(3) = DSQRT(ALTOL(1)**2+ALTOL(2)**2)/44.51 |
268 |
|
|
ALTOL(4) = ALTOL(3) |
269 |
|
|
|
270 |
mocchiut |
1.1 |
*---- check tolerances: |
271 |
pam-fi |
1.4 |
c$$$ DO I=1,5 |
272 |
|
|
c$$$ if(TRKVERBOSE)print*,i,' -- ',DAL(I),ALTOL(I) !>>>> new step! |
273 |
|
|
c$$$ ENDDO |
274 |
|
|
c$$$ print*,'chi2 -- ',DCHI2 |
275 |
|
|
|
276 |
pam-fi |
1.11 |
IF(ISTEP.LT.3) GOTO 10 ! ***PP*** |
277 |
mocchiut |
1.1 |
DO I=1,5 |
278 |
|
|
IF(ABS(DAL(I)).GT.ALTOL(I))GOTO 10 !>>>> new step! |
279 |
|
|
ENDDO |
280 |
|
|
|
281 |
pam-fi |
1.3 |
* new estimate of chi^2: |
282 |
|
|
JFAIL=0 !error flag |
283 |
|
|
CALL CHISQ(IFLAG,JFAIL) !chi^2 and its derivatives |
284 |
|
|
IF(JFAIL.NE.0) THEN |
285 |
|
|
IFAIL=1 |
286 |
pam-fi |
1.4 |
if(TRKVERBOSE)THEN |
287 |
pam-fi |
1.3 |
CHI2=-9999. |
288 |
pam-fi |
1.4 |
if(TRKVERBOSE) |
289 |
pam-fi |
1.3 |
$ PRINT *,'*** ERROR in mini *** wrong CHISQ' |
290 |
|
|
ENDIF |
291 |
|
|
RETURN |
292 |
|
|
ENDIF |
293 |
|
|
COST=1e-7 |
294 |
|
|
DO I=1,5 |
295 |
|
|
DO J=1,5 |
296 |
|
|
CHI2DD(I,J)=CHI2DD(I,J)*COST |
297 |
|
|
ENDDO |
298 |
|
|
CHI2D(I)=CHI2D(I)*COST |
299 |
|
|
ENDDO |
300 |
|
|
IF(PFIXED.EQ.0.) THEN |
301 |
|
|
CALL DSFACT(5,CHI2DD,5,IFA,DET,JFA) !CHI2DD matrix determinant |
302 |
|
|
IF(IFA.NE.0) THEN !not positive-defined |
303 |
pam-fi |
1.4 |
if(TRKVERBOSE)then |
304 |
pam-fi |
1.3 |
PRINT *, |
305 |
|
|
$ '*** ERROR in mini ***'// |
306 |
|
|
$ 'on matrix inversion (not pos-def)' |
307 |
|
|
$ ,DET |
308 |
|
|
endif |
309 |
|
|
IF(CHI2.EQ.0) CHI2=-9999. |
310 |
|
|
IF(CHI2.GT.0) CHI2=-CHI2 |
311 |
|
|
IFAIL=1 |
312 |
|
|
RETURN |
313 |
|
|
ENDIF |
314 |
|
|
CALL DSFINV(5,CHI2DD,5) !CHI2DD matrix inversion |
315 |
|
|
DO I=1,5 |
316 |
|
|
DAL(I)=0. |
317 |
|
|
DO J=1,5 |
318 |
|
|
COV(I,J)=2.*COST*CHI2DD(I,J) |
319 |
|
|
ENDDO |
320 |
|
|
ENDDO |
321 |
|
|
ELSE |
322 |
|
|
DO I=1,4 |
323 |
|
|
CHI2D_R(I)=CHI2D(I) |
324 |
|
|
DO J=1,4 |
325 |
|
|
CHI2DD_R(I,J)=CHI2DD(I,J) |
326 |
|
|
ENDDO |
327 |
|
|
ENDDO |
328 |
|
|
CALL DSFACT(4,CHI2DD_R,4,IFA,DET,JFA) |
329 |
|
|
IF(IFA.NE.0) THEN |
330 |
pam-fi |
1.4 |
if(TRKVERBOSE)then |
331 |
pam-fi |
1.3 |
PRINT *, |
332 |
|
|
$ '*** ERROR in mini ***'// |
333 |
|
|
$ 'on matrix inversion (not pos-def)' |
334 |
|
|
$ ,DET |
335 |
|
|
endif |
336 |
|
|
IF(CHI2.EQ.0) CHI2=-9999. |
337 |
|
|
IF(CHI2.GT.0) CHI2=-CHI2 |
338 |
|
|
IFAIL=1 |
339 |
|
|
RETURN |
340 |
|
|
ENDIF |
341 |
|
|
CALL DSFINV(4,CHI2DD_R,4) |
342 |
|
|
DO I=1,4 |
343 |
|
|
DAL(I)=0. |
344 |
|
|
DO J=1,4 |
345 |
|
|
COV(I,J)=2.*COST*CHI2DD_R(I,J) |
346 |
|
|
ENDDO |
347 |
|
|
ENDDO |
348 |
|
|
ENDIF |
349 |
|
|
***************************** |
350 |
mocchiut |
1.1 |
|
351 |
|
|
* ------------------------------------ |
352 |
|
|
* Number of Degree Of Freedom |
353 |
|
|
ndof=0 |
354 |
|
|
do ip=1,nplanes |
355 |
|
|
ndof=ndof |
356 |
|
|
$ +int(xgood(ip)) |
357 |
|
|
$ +int(ygood(ip)) |
358 |
|
|
enddo |
359 |
pam-fi |
1.3 |
if(pfixed.eq.0.) ndof=ndof-5 ! ***PP*** |
360 |
|
|
if(pfixed.ne.0.) ndof=ndof-4 ! ***PP*** |
361 |
|
|
if(ndof.le.0.) then |
362 |
|
|
ndof = 1 |
363 |
pam-fi |
1.4 |
if(TRKVERBOSE) |
364 |
pam-fi |
1.3 |
$ print*,'*** WARNING *** in mini n.dof = 0 (set to 1)' |
365 |
|
|
endif |
366 |
pam-fi |
1.4 |
|
367 |
|
|
if(TRKDEBUG) print*,'mini2: -ok- ',istep,chi2,1./AL(5) |
368 |
|
|
|
369 |
mocchiut |
1.1 |
* ------------------------------------ |
370 |
|
|
* Reduced chi^2 |
371 |
|
|
CHI2 = CHI2/dble(ndof) |
372 |
|
|
|
373 |
pam-fi |
1.4 |
c print*,'mini2: chi2 ',chi2 |
374 |
|
|
|
375 |
mocchiut |
1.1 |
11 CONTINUE |
376 |
|
|
|
377 |
pam-fi |
1.3 |
NSTEP=ISTEP ! ***PP*** |
378 |
mocchiut |
1.1 |
|
379 |
|
|
RETURN |
380 |
|
|
END |
381 |
|
|
|
382 |
|
|
****************************************************************************** |
383 |
|
|
* |
384 |
|
|
* routine to compute chi^2 and its derivatives |
385 |
|
|
* |
386 |
|
|
* |
387 |
|
|
* (modified in respect to the previous one in order to include |
388 |
|
|
* single clusters. In this case the residual is evaluated by |
389 |
|
|
* calculating the distance between the track intersection and the |
390 |
|
|
* segment AB associated to the single cluster) |
391 |
|
|
* |
392 |
|
|
****************************************************************************** |
393 |
|
|
|
394 |
|
|
SUBROUTINE CHISQ(IFLAG,IFAIL) |
395 |
|
|
|
396 |
|
|
IMPLICIT DOUBLE PRECISION (A-H,O-Z) |
397 |
|
|
|
398 |
|
|
include 'commontracker.f' !tracker general common |
399 |
|
|
include 'common_mini_2.f' !common for the tracking procedure |
400 |
|
|
|
401 |
|
|
DIMENSION XV2(nplanes),YV2(nplanes),XV1(nplanes),YV1(nplanes) |
402 |
|
|
$ ,XV0(nplanes),YV0(nplanes) |
403 |
|
|
DIMENSION AL_P(5) |
404 |
pam-fi |
1.3 |
|
405 |
pam-fi |
1.4 |
c LOGICAL TRKVERBOSE |
406 |
|
|
c COMMON/TRKD/TRKVERBOSE |
407 |
|
|
LOGICAL TRKDEBUG,TRKVERBOSE |
408 |
|
|
COMMON/TRKD/TRKDEBUG,TRKVERBOSE |
409 |
mocchiut |
1.1 |
* |
410 |
|
|
* chi^2 computation |
411 |
|
|
* |
412 |
|
|
DO I=1,5 |
413 |
|
|
AL_P(I)=AL(I) |
414 |
|
|
ENDDO |
415 |
|
|
JFAIL=0 !error flag |
416 |
|
|
CALL POSXYZ(AL_P,JFAIL) !track intersection with tracking planes |
417 |
|
|
IF(JFAIL.NE.0) THEN |
418 |
pam-fi |
1.4 |
IF(TRKVERBOSE) |
419 |
pam-fi |
1.3 |
$ PRINT *,'CHISQ ==> error from trk routine POSXYZ !!' |
420 |
mocchiut |
1.1 |
IFAIL=1 |
421 |
|
|
RETURN |
422 |
|
|
ENDIF |
423 |
|
|
DO I=1,nplanes |
424 |
|
|
XV0(I)=XV(I) |
425 |
|
|
YV0(I)=YV(I) |
426 |
|
|
ENDDO |
427 |
|
|
* ------------------------------------------------ |
428 |
|
|
c$$$ CHI2=0. |
429 |
|
|
c$$$ DO I=1,nplanes |
430 |
|
|
c$$$ CHI2=CHI2 |
431 |
|
|
c$$$ + +(XV(I)-XM(I))**2/RESX(i)**2 *XGOOD(I)*YGOOD(I) |
432 |
|
|
c$$$ + +(YV(I)-YM(I))**2/RESY(i)**2 *YGOOD(I)*XGOOD(I) |
433 |
|
|
c$$$ ENDDO |
434 |
|
|
* --------------------------------------------------------- |
435 |
|
|
* For planes with only a X or Y-cl included, instead of |
436 |
|
|
* a X-Y couple, the residual for chi^2 calculation is |
437 |
|
|
* evaluated by finding the point x-y, along the segment AB, |
438 |
|
|
* closest to the track. |
439 |
|
|
* The X or Y coordinate, respectivelly for X and Y-cl, is |
440 |
|
|
* then assigned to XM or YM, which is then considered the |
441 |
|
|
* measured position of the cluster. |
442 |
|
|
* --------------------------------------------------------- |
443 |
|
|
CHI2=0. |
444 |
|
|
DO I=1,nplanes |
445 |
|
|
IF(XGOOD(I).EQ.1.AND.YGOOD(I).EQ.0)THEN !X-cl |
446 |
|
|
BETA = (XM_B(I)-XM_A(I))/(YM_B(I)-YM_A(I)) |
447 |
|
|
ALFA = XM_A(I) - BETA * YM_A(I) |
448 |
|
|
YM(I) = ( YV(I) + BETA*XV(I) - BETA*ALFA )/(1+BETA**2) |
449 |
|
|
if(YM(I).lt.dmin1(YM_A(I),YM_B(I))) |
450 |
|
|
$ YM(I)=dmin1(YM_A(I),YM_B(I)) |
451 |
|
|
if(YM(I).gt.dmax1(YM_A(I),YM_B(I))) |
452 |
|
|
$ YM(I)=dmax1(YM_A(I),YM_B(I)) |
453 |
|
|
XM(I) = ALFA + BETA * YM(I) !<<<< measured coordinates |
454 |
|
|
ELSEIF(XGOOD(I).EQ.0.AND.YGOOD(I).EQ.1)THEN !Y-cl |
455 |
|
|
BETA = (YM_B(I)-YM_A(I))/(XM_B(I)-XM_A(I)) |
456 |
|
|
ALFA = YM_A(I) - BETA * XM_A(I) |
457 |
|
|
XM(I) = ( XV(I) + BETA*YV(I) - BETA*ALFA )/(1+BETA**2) |
458 |
|
|
if(XM(I).lt.dmin1(XM_A(I),XM_B(I))) |
459 |
|
|
$ XM(I)=dmin1(XM_A(I),XM_B(I)) |
460 |
|
|
if(XM(I).gt.dmax1(XM_A(I),XM_B(I))) |
461 |
|
|
$ XM(I)=dmax1(XM_A(I),XM_B(I)) |
462 |
|
|
YM(I) = ALFA + BETA * XM(I) !<<<< measured coordinates |
463 |
|
|
ENDIF |
464 |
|
|
CHI2=CHI2 |
465 |
|
|
+ +(XV(I)-XM(I))**2/RESX(i)**2 *( XGOOD(I)*YGOOD(I) ) |
466 |
|
|
+ +(YV(I)-YM(I))**2/RESY(i)**2 *( YGOOD(I)*XGOOD(I) ) |
467 |
|
|
+ +((XV(I)-XM(I))**2+(YV(I)-YM(I))**2)/RESX(i)**2 |
468 |
|
|
+ *( XGOOD(I)*(1-YGOOD(I)) ) |
469 |
|
|
+ +((XV(I)-XM(I))**2+(YV(I)-YM(I))**2)/RESY(i)**2 |
470 |
|
|
+ *( (1-XGOOD(I))*YGOOD(I) ) |
471 |
pam-fi |
1.10 |
c$$$ print*,(XV(I)-XM(I))**2/RESX(i)**2 *( XGOOD(I)*YGOOD(I) ) |
472 |
|
|
c$$$ print*,(YV(I)-YM(I))**2/RESY(i)**2 *( YGOOD(I)*XGOOD(I) ) |
473 |
|
|
c$$$ print*,((XV(I)-XM(I))**2+(YV(I)-YM(I))**2)/RESX(i)**2 |
474 |
|
|
c$$$ + *( XGOOD(I)*(1-YGOOD(I)) ) |
475 |
|
|
c$$$ print*,((XV(I)-XM(I))**2+(YV(I)-YM(I))**2)/RESY(i)**2 |
476 |
|
|
c$$$ + *( (1-XGOOD(I))*YGOOD(I) ) |
477 |
|
|
c$$$ print*,XV(I),XM(I),XGOOD(I) |
478 |
|
|
c$$$ print*,YV(I),YM(I),YGOOD(I) |
479 |
mocchiut |
1.1 |
ENDDO |
480 |
pam-fi |
1.10 |
c$$$ print*,'CHISQ ',chi2 |
481 |
mocchiut |
1.1 |
* ------------------------------------------------ |
482 |
|
|
* |
483 |
|
|
* calculation of derivatives (dX/dAL_fa and dY/dAL_fa) |
484 |
|
|
* |
485 |
|
|
* ////////////////////////////////////////////////// |
486 |
|
|
* METHOD 1 -- incremental ratios |
487 |
|
|
* ////////////////////////////////////////////////// |
488 |
|
|
|
489 |
|
|
IF(IFLAG.EQ.1) THEN |
490 |
|
|
|
491 |
|
|
DO J=1,5 |
492 |
|
|
DO JJ=1,5 |
493 |
|
|
AL_P(JJ)=AL(JJ) |
494 |
|
|
ENDDO |
495 |
|
|
AL_P(J)=AL_P(J)+STEPAL(J)/2. |
496 |
|
|
JFAIL=0 |
497 |
|
|
CALL POSXYZ(AL_P,JFAIL) |
498 |
|
|
IF(JFAIL.NE.0) THEN |
499 |
pam-fi |
1.4 |
IF(TRKVERBOSE) |
500 |
pam-fi |
1.3 |
*23456789012345678901234567890123456789012345678901234567890123456789012 |
501 |
|
|
$ PRINT *,'CHISQ ==> error from trk routine POSXYZ' |
502 |
mocchiut |
1.1 |
IFAIL=1 |
503 |
|
|
RETURN |
504 |
|
|
ENDIF |
505 |
|
|
DO I=1,nplanes |
506 |
|
|
XV2(I)=XV(I) |
507 |
|
|
YV2(I)=YV(I) |
508 |
|
|
ENDDO |
509 |
|
|
AL_P(J)=AL_P(J)-STEPAL(J) |
510 |
|
|
JFAIL=0 |
511 |
|
|
CALL POSXYZ(AL_P,JFAIL) |
512 |
|
|
IF(JFAIL.NE.0) THEN |
513 |
pam-fi |
1.4 |
IF(TRKVERBOSE) |
514 |
pam-fi |
1.3 |
$ PRINT *,'CHISQ ==> error from trk routine POSXYZ' |
515 |
mocchiut |
1.1 |
IFAIL=1 |
516 |
|
|
RETURN |
517 |
|
|
ENDIF |
518 |
|
|
DO I=1,nplanes |
519 |
|
|
XV1(I)=XV(I) |
520 |
|
|
YV1(I)=YV(I) |
521 |
|
|
ENDDO |
522 |
|
|
DO I=1,nplanes |
523 |
|
|
DXDAL(I,J)=(XV2(I)-XV1(I))/STEPAL(J) |
524 |
|
|
DYDAL(I,J)=(YV2(I)-YV1(I))/STEPAL(J) |
525 |
|
|
ENDDO |
526 |
|
|
ENDDO |
527 |
|
|
|
528 |
|
|
ENDIF |
529 |
|
|
|
530 |
|
|
* ////////////////////////////////////////////////// |
531 |
|
|
* METHOD 2 -- Bob Golden |
532 |
|
|
* ////////////////////////////////////////////////// |
533 |
|
|
|
534 |
|
|
IF(IFLAG.EQ.2) THEN |
535 |
|
|
|
536 |
|
|
DO I=1,nplanes |
537 |
|
|
DXDAL(I,1)=1. |
538 |
|
|
DYDAL(I,1)=0. |
539 |
|
|
|
540 |
|
|
DXDAL(I,2)=0. |
541 |
|
|
DYDAL(I,2)=1. |
542 |
|
|
|
543 |
|
|
COSTHE=DSQRT(1.-AL(3)**2) |
544 |
|
|
IF(COSTHE.EQ.0.) THEN |
545 |
pam-fi |
1.4 |
IF(TRKVERBOSE)PRINT *,'=== WARNING ===> COSTHE=0' |
546 |
pam-fi |
1.3 |
IFAIL=1 |
547 |
|
|
RETURN |
548 |
mocchiut |
1.1 |
ENDIF |
549 |
|
|
|
550 |
|
|
DXDAL(I,3)=(ZINI-ZM(I))*DCOS(AL(4))/COSTHE**3 |
551 |
|
|
DYDAL(I,3)=(ZINI-ZM(I))*DSIN(AL(4))/COSTHE**3 |
552 |
|
|
|
553 |
|
|
DXDAL(I,4)=-AL(3)*(ZINI-ZM(I))*DSIN(AL(4))/COSTHE |
554 |
|
|
DYDAL(I,4)=AL(3)*(ZINI-ZM(I))*DCOS(AL(4))/COSTHE |
555 |
|
|
|
556 |
|
|
IF(AL(5).NE.0.) THEN |
557 |
|
|
DXDAL(I,5)= |
558 |
|
|
+ (XV(I)-(AL(1)+AL(3)/COSTHE*(ZINI-ZM(I)) |
559 |
|
|
+ *DCOS(AL(4))))/AL(5) |
560 |
|
|
DYDAL(I,5)= |
561 |
|
|
+ (YV(I)-(AL(2)+AL(3)/COSTHE*(ZINI-ZM(I)) |
562 |
|
|
+ *DSIN(AL(4))))/AL(5) |
563 |
|
|
ELSE |
564 |
|
|
DXDAL(I,5)=100.*( 0.25 *0.3*0.4*(0.01*(ZINI-ZM(I)))**2 ) |
565 |
|
|
DYDAL(I,5)=0. |
566 |
|
|
ENDIF |
567 |
|
|
|
568 |
|
|
ENDDO |
569 |
|
|
ENDIF |
570 |
|
|
* |
571 |
|
|
* x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x |
572 |
|
|
* >>> CHI2D evaluation |
573 |
|
|
* |
574 |
|
|
DO J=1,5 |
575 |
|
|
CHI2D(J)=0. |
576 |
|
|
DO I=1,nplanes |
577 |
|
|
CHI2D(J)=CHI2D(J) |
578 |
|
|
+ +2.*(XV0(I)-XM(I))/RESX(i)**2*DXDAL(I,J) *XGOOD(I) |
579 |
|
|
+ +2.*(YV0(I)-YM(I))/RESY(i)**2*DYDAL(I,J) *YGOOD(I) |
580 |
|
|
ENDDO |
581 |
|
|
ENDDO |
582 |
|
|
* |
583 |
|
|
* >>> CHI2DD evaluation |
584 |
|
|
* |
585 |
|
|
DO I=1,5 |
586 |
|
|
DO J=1,5 |
587 |
|
|
CHI2DD(I,J)=0. |
588 |
|
|
DO K=1,nplanes |
589 |
|
|
CHI2DD(I,J)=CHI2DD(I,J) |
590 |
|
|
+ +2.*DXDAL(K,I)*DXDAL(K,J)/RESX(k)**2 *XGOOD(K) |
591 |
|
|
+ +2.*DYDAL(K,I)*DYDAL(K,J)/RESY(k)**2 *YGOOD(K) |
592 |
|
|
ENDDO |
593 |
|
|
ENDDO |
594 |
|
|
ENDDO |
595 |
|
|
* x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x |
596 |
|
|
|
597 |
|
|
RETURN |
598 |
|
|
END |
599 |
|
|
|
600 |
|
|
|
601 |
|
|
***************************************************************** |
602 |
|
|
* |
603 |
|
|
* Routine to compute the track intersection points |
604 |
|
|
* on the tracking-system planes, given the track parameters |
605 |
|
|
* |
606 |
|
|
* The routine is based on GRKUTA, which computes the |
607 |
|
|
* trajectory of a charged particle in a magnetic field |
608 |
|
|
* by solving the equatins of motion with Runge-Kuta method. |
609 |
|
|
* |
610 |
|
|
* Variables that have to be assigned when the subroutine |
611 |
|
|
* is called are: |
612 |
|
|
* |
613 |
|
|
* ZM(1,NPLANES) ----> z coordinates of the planes |
614 |
|
|
* AL_P(1,5) ----> track-parameter vector |
615 |
|
|
* |
616 |
|
|
* ----------------------------------------------------------- |
617 |
|
|
* NB !!! |
618 |
|
|
* The routine works properly only if the |
619 |
|
|
* planes are numbered in descending order starting from the |
620 |
|
|
* reference plane (ZINI) |
621 |
|
|
* ----------------------------------------------------------- |
622 |
|
|
* |
623 |
|
|
***************************************************************** |
624 |
|
|
|
625 |
|
|
SUBROUTINE POSXYZ(AL_P,IFAIL) |
626 |
|
|
|
627 |
|
|
IMPLICIT DOUBLE PRECISION (A-H,O-Z) |
628 |
|
|
|
629 |
|
|
include 'commontracker.f' !tracker general common |
630 |
|
|
include 'common_mini_2.f' !common for the tracking procedure |
631 |
pam-fi |
1.3 |
|
632 |
pam-fi |
1.4 |
c LOGICAL TRKVERBOSE |
633 |
|
|
c COMMON/TRKD/TRKVERBOSE |
634 |
|
|
LOGICAL TRKDEBUG,TRKVERBOSE |
635 |
|
|
COMMON/TRKD/TRKDEBUG,TRKVERBOSE |
636 |
mocchiut |
1.1 |
c |
637 |
|
|
DIMENSION AL_P(5) |
638 |
|
|
* |
639 |
|
|
DO I=1,nplanes |
640 |
|
|
ZV(I)=ZM(I) ! |
641 |
|
|
ENDDO |
642 |
|
|
* |
643 |
|
|
* set parameters for GRKUTA |
644 |
|
|
* |
645 |
|
|
IF(AL_P(5).NE.0) CHARGE=AL_P(5)/DABS(AL_P(5)) |
646 |
|
|
IF(AL_P(5).EQ.0) CHARGE=1. |
647 |
|
|
VOUT(1)=AL_P(1) |
648 |
|
|
VOUT(2)=AL_P(2) |
649 |
|
|
VOUT(3)=ZINI ! DBLE(Z0)-DBLE(ZSPEC) |
650 |
|
|
VOUT(4)=AL_P(3)*DCOS(AL_P(4)) |
651 |
|
|
VOUT(5)=AL_P(3)*DSIN(AL_P(4)) |
652 |
|
|
VOUT(6)=-1.*DSQRT(1.-AL_P(3)**2) |
653 |
|
|
IF(AL_P(5).NE.0.) VOUT(7)=DABS(1./AL_P(5)) |
654 |
|
|
IF(AL_P(5).EQ.0.) VOUT(7)=1.E8 |
655 |
pam-fi |
1.5 |
|
656 |
pam-fi |
1.10 |
c$$$ print*,'POSXY (prima) ',vout |
657 |
pam-fi |
1.5 |
|
658 |
mocchiut |
1.1 |
DO I=1,nplanes |
659 |
|
|
step=vout(3)-zv(i) |
660 |
|
|
10 DO J=1,7 |
661 |
|
|
VECT(J)=VOUT(J) |
662 |
|
|
VECTINI(J)=VOUT(J) |
663 |
|
|
ENDDO |
664 |
|
|
11 continue |
665 |
|
|
CALL GRKUTA(CHARGE,STEP,VECT,VOUT) |
666 |
|
|
IF(VOUT(3).GT.VECT(3)) THEN |
667 |
|
|
IFAIL=1 |
668 |
pam-fi |
1.4 |
if(TRKVERBOSE) |
669 |
pam-fi |
1.2 |
$ PRINT *,'posxy (grkuta): WARNING ===> backward track!!' |
670 |
pam-fi |
1.4 |
c$$$ if(.TRUE.)print*,'charge',charge |
671 |
|
|
c$$$ if(.TRUE.)print*,'vect',vect |
672 |
|
|
c$$$ if(.TRUE.)print*,'vout',vout |
673 |
|
|
c$$$ if(.TRUE.)print*,'step',step |
674 |
|
|
if(TRKVERBOSE)print*,'charge',charge |
675 |
|
|
if(TRKVERBOSE)print*,'vect',vect |
676 |
|
|
if(TRKVERBOSE)print*,'vout',vout |
677 |
|
|
if(TRKVERBOSE)print*,'step',step |
678 |
mocchiut |
1.1 |
RETURN |
679 |
|
|
ENDIF |
680 |
|
|
Z=VOUT(3) |
681 |
|
|
IF(Z.LE.ZM(I)+TOLL.AND.Z.GE.ZM(I)-TOLL) GOTO 100 |
682 |
|
|
IF(Z.GT.ZM(I)+TOLL) GOTO 10 |
683 |
|
|
IF(Z.LE.ZM(I)-TOLL) THEN |
684 |
|
|
STEP=STEP*(ZM(I)-VECT(3))/(Z-VECT(3)) |
685 |
|
|
DO J=1,7 |
686 |
|
|
VECT(J)=VECTINI(J) |
687 |
|
|
ENDDO |
688 |
|
|
GOTO 11 |
689 |
|
|
ENDIF |
690 |
|
|
|
691 |
pam-fi |
1.10 |
|
692 |
mocchiut |
1.1 |
* ----------------------------------------------- |
693 |
|
|
* evaluate track coordinates |
694 |
|
|
100 XV(I)=VOUT(1) |
695 |
|
|
YV(I)=VOUT(2) |
696 |
|
|
ZV(I)=VOUT(3) |
697 |
|
|
AXV(I)=DATAN(VOUT(4)/VOUT(6))*180./ACOS(-1.) |
698 |
|
|
AYV(I)=DATAN(VOUT(5)/VOUT(6))*180./ACOS(-1.) |
699 |
|
|
* ----------------------------------------------- |
700 |
|
|
|
701 |
pam-fi |
1.13 |
IF(TRACKMODE.EQ.1) THEN |
702 |
|
|
* ----------------------------------------------- |
703 |
|
|
* change of energy by bremsstrahlung for electrons |
704 |
|
|
VOUT(7) = VOUT(7) * 0.997 !0.9968 |
705 |
|
|
* ----------------------------------------------- |
706 |
|
|
ENDIF |
707 |
|
|
|
708 |
mocchiut |
1.1 |
ENDDO |
709 |
|
|
|
710 |
pam-fi |
1.10 |
c$$$ print*,'POSXY (dopo) ',vout |
711 |
|
|
|
712 |
|
|
|
713 |
mocchiut |
1.1 |
RETURN |
714 |
|
|
END |
715 |
|
|
|
716 |
|
|
|
717 |
|
|
|
718 |
|
|
|
719 |
|
|
|
720 |
|
|
* ********************************************************** |
721 |
|
|
* Some initialization routines |
722 |
|
|
* ********************************************************** |
723 |
|
|
|
724 |
|
|
* ---------------------------------------------------------- |
725 |
|
|
* Routine to initialize COMMON/TRACK/ |
726 |
|
|
* |
727 |
|
|
subroutine track_init |
728 |
|
|
|
729 |
|
|
IMPLICIT DOUBLE PRECISION (A-H,O-Z) |
730 |
|
|
|
731 |
|
|
include 'commontracker.f' !tracker general common |
732 |
|
|
include 'common_mini_2.f' !common for the tracking procedure |
733 |
|
|
include 'common_mech.f' |
734 |
|
|
|
735 |
|
|
do i=1,5 |
736 |
|
|
AL(i) = 0. |
737 |
|
|
enddo |
738 |
|
|
|
739 |
|
|
do ip=1,NPLANES |
740 |
|
|
ZM(IP) = fitz(nplanes-ip+1) !init to mech. position |
741 |
|
|
XM(IP) = -100. !0. |
742 |
|
|
YM(IP) = -100. !0. |
743 |
|
|
XM_A(IP) = -100. !0. |
744 |
|
|
YM_A(IP) = -100. !0. |
745 |
|
|
c ZM_A(IP) = 0 |
746 |
|
|
XM_B(IP) = -100. !0. |
747 |
|
|
YM_B(IP) = -100. !0. |
748 |
|
|
c ZM_B(IP) = 0 |
749 |
|
|
RESX(IP) = 1000. !3.d-4 |
750 |
|
|
RESY(IP) = 1000. !12.d-4 |
751 |
|
|
XGOOD(IP) = 0 |
752 |
|
|
YGOOD(IP) = 0 |
753 |
|
|
enddo |
754 |
|
|
|
755 |
|
|
return |
756 |
|
|
end |
757 |
pam-fi |
1.4 |
|
758 |
|
|
|
759 |
|
|
*************************************************** |
760 |
|
|
* * |
761 |
|
|
* * |
762 |
|
|
* * |
763 |
|
|
* * |
764 |
|
|
* * |
765 |
|
|
* * |
766 |
|
|
************************************************** |
767 |
|
|
|
768 |
|
|
subroutine guess() |
769 |
|
|
|
770 |
|
|
c IMPLICIT DOUBLE PRECISION (A-H,O-Z) |
771 |
|
|
|
772 |
|
|
include 'commontracker.f' !tracker general common |
773 |
|
|
include 'common_mini_2.f' !common for the tracking procedure |
774 |
|
|
|
775 |
|
|
REAL*4 XP(NPLANES),ZP(NPLANES),AP(NPLANES),RP(NPLANES) |
776 |
|
|
REAL*4 CHI,XC,ZC,RADIUS |
777 |
|
|
* ---------------------------------------- |
778 |
|
|
* Y view |
779 |
|
|
* ---------------------------------------- |
780 |
|
|
* ---------------------------------------- |
781 |
|
|
* initial guess with a straigth line |
782 |
|
|
* ---------------------------------------- |
783 |
|
|
SZZ=0. |
784 |
|
|
SZY=0. |
785 |
|
|
SSY=0. |
786 |
|
|
SZ=0. |
787 |
|
|
S1=0. |
788 |
|
|
DO I=1,nplanes |
789 |
|
|
IF(YGOOD(I).EQ.1)THEN |
790 |
|
|
YY = YM(I) |
791 |
|
|
IF(XGOOD(I).EQ.0)THEN |
792 |
|
|
YY = (YM_A(I) + YM_B(I))/2 |
793 |
|
|
ENDIF |
794 |
|
|
SZZ=SZZ+ZM(I)*ZM(I) |
795 |
|
|
SZY=SZY+ZM(I)*YY |
796 |
|
|
SSY=SSY+YY |
797 |
|
|
SZ=SZ+ZM(I) |
798 |
|
|
S1=S1+1. |
799 |
|
|
ENDIF |
800 |
|
|
ENDDO |
801 |
|
|
DET=SZZ*S1-SZ*SZ |
802 |
|
|
AY=(SZY*S1-SZ*SSY)/DET |
803 |
|
|
BY=(SZZ*SSY-SZY*SZ)/DET |
804 |
|
|
Y0 = AY*ZINI+BY |
805 |
|
|
* ---------------------------------------- |
806 |
|
|
* X view |
807 |
|
|
* ---------------------------------------- |
808 |
|
|
* ---------------------------------------- |
809 |
|
|
* 1) initial guess with a circle |
810 |
|
|
* ---------------------------------------- |
811 |
|
|
NP=0 |
812 |
|
|
DO I=1,nplanes |
813 |
|
|
IF(XGOOD(I).EQ.1)THEN |
814 |
|
|
XX = XM(I) |
815 |
|
|
IF(YGOOD(I).EQ.0)THEN |
816 |
|
|
XX = (XM_A(I) + XM_B(I))/2 |
817 |
|
|
ENDIF |
818 |
|
|
NP=NP+1 |
819 |
|
|
XP(NP)=XX |
820 |
|
|
ZP(NP)=ZM(I) |
821 |
|
|
ENDIF |
822 |
|
|
ENDDO |
823 |
pam-fi |
1.9 |
IFLAG=0 !no debug mode |
824 |
pam-fi |
1.4 |
CALL TRICIRCLE(NP,XP,ZP,AP,RP,CHI,XC,ZC,RADIUS,IFLAG) |
825 |
pam-fi |
1.9 |
c print*,' circle: ',XC,ZC,RADIUS,' --- ',CHI,IFLAG |
826 |
pam-fi |
1.4 |
IF(IFLAG.NE.0)GOTO 10 !straigth fit |
827 |
pam-fi |
1.8 |
if(CHI.gt.100)GOTO 10 !straigth fit |
828 |
pam-fi |
1.4 |
ARG = RADIUS**2-(ZINI-ZC)**2 |
829 |
|
|
IF(ARG.LT.0)GOTO 10 !straigth fit |
830 |
|
|
DC = SQRT(ARG) |
831 |
|
|
IF(XC.GT.0)DC=-DC |
832 |
|
|
X0=XC+DC |
833 |
|
|
AX = -(ZINI-ZC)/DC |
834 |
|
|
DEF=100./(RADIUS*0.3*0.43) |
835 |
|
|
IF(XC.GT.0)DEF=-DEF |
836 |
pam-fi |
1.8 |
|
837 |
|
|
IF(ABS(X0).GT.30)THEN |
838 |
pam-fi |
1.10 |
c$$$ PRINT*,'STRANGE GUESS: XC,ZC,R ',XC,ZC,RADIUS |
839 |
|
|
c$$$ $ ,' - CHI ',CHI,' - X0,AX,DEF ',X0,AX,DEF |
840 |
pam-fi |
1.8 |
GOTO 10 !straigth fit |
841 |
|
|
ENDIF |
842 |
pam-fi |
1.4 |
GOTO 20 !guess is ok |
843 |
|
|
|
844 |
|
|
* ---------------------------------------- |
845 |
|
|
* 2) initial guess with a straigth line |
846 |
|
|
* - if circle does not intersect reference plane |
847 |
|
|
* - if bad chi**2 |
848 |
|
|
* ---------------------------------------- |
849 |
|
|
10 CONTINUE |
850 |
|
|
SZZ=0. |
851 |
|
|
SZX=0. |
852 |
|
|
SSX=0. |
853 |
|
|
SZ=0. |
854 |
|
|
S1=0. |
855 |
|
|
DO I=1,nplanes |
856 |
|
|
IF(XGOOD(I).EQ.1)THEN |
857 |
|
|
XX = XM(I) |
858 |
|
|
IF(YGOOD(I).EQ.0)THEN |
859 |
|
|
XX = (XM_A(I) + XM_B(I))/2 |
860 |
|
|
ENDIF |
861 |
|
|
SZZ=SZZ+ZM(I)*ZM(I) |
862 |
|
|
SZX=SZX+ZM(I)*XX |
863 |
|
|
SSX=SSX+XX |
864 |
|
|
SZ=SZ+ZM(I) |
865 |
|
|
S1=S1+1. |
866 |
|
|
ENDIF |
867 |
|
|
ENDDO |
868 |
|
|
DET=SZZ*S1-SZ*SZ |
869 |
|
|
AX=(SZX*S1-SZ*SSX)/DET |
870 |
|
|
BX=(SZZ*SSX-SZX*SZ)/DET |
871 |
|
|
DEF = 0 |
872 |
|
|
X0 = AX*ZINI+BX |
873 |
|
|
|
874 |
|
|
20 CONTINUE |
875 |
|
|
* ---------------------------------------- |
876 |
|
|
* guess |
877 |
|
|
* ---------------------------------------- |
878 |
|
|
|
879 |
|
|
AL(1) = X0 |
880 |
|
|
AL(2) = Y0 |
881 |
|
|
tath = sqrt(AY**2+AX**2) |
882 |
|
|
AL(3) = tath/sqrt(1+tath**2) |
883 |
pam-fi |
1.10 |
c$$$ IF(AX.NE.0)THEN |
884 |
|
|
c$$$ AL(4)= atan(AY/AX) |
885 |
|
|
c$$$ ELSE |
886 |
|
|
c$$$ AL(4) = acos(-1.)/2 |
887 |
|
|
c$$$ IF(AY.LT.0)AL(4) = AL(4)+acos(-1.) |
888 |
|
|
c$$$ ENDIF |
889 |
|
|
c$$$ IF(AX.LT.0)AL(4)= acos(-1.)+ AL(4) |
890 |
|
|
c$$$ AL(4) = -acos(-1.) + AL(4) !from incidence direction to tracking ref.sys. |
891 |
|
|
|
892 |
|
|
c$$$ AL(4) = 0. |
893 |
|
|
c$$$ IF(AX.NE.0.AND.AY.NE.0)THEN |
894 |
|
|
c$$$ AL(4)= atan(AY/AX) |
895 |
|
|
c$$$ ELSEIF(AY.EQ.0)THEN |
896 |
|
|
c$$$ AL(4) = 0. |
897 |
|
|
c$$$ IF(AX.LT.0)AL(4) = AL(4)+acos(-1.) |
898 |
|
|
c$$$ ELSEIF(AX.EQ.0)THEN |
899 |
|
|
c$$$ AL(4) = acos(-1.)/2 |
900 |
|
|
c$$$ IF(AY.LT.0)AL(4) = AL(4)+acos(-1.) |
901 |
|
|
c$$$ ENDIF |
902 |
|
|
c$$$ IF(AX.LT.0)AL(4)= acos(-1.)+ AL(4) |
903 |
|
|
c$$$ AL(4) = -acos(-1.) + AL(4) !from incidence direction to tracking ref.sys. |
904 |
|
|
|
905 |
|
|
c$$$ AL(4)=0. |
906 |
|
|
c$$$ IF( AX.NE.0.OR.AY.NE.0. ) THEN |
907 |
|
|
c$$$ AL(4) = ASIN(AY/SQRT(AX**2+AY**2)) |
908 |
|
|
c$$$ IF(AX.LT.0.) AL(4) = ACOS(-1.0)-AL(4) |
909 |
|
|
c$$$ ENDIF |
910 |
|
|
|
911 |
|
|
AL(4)=0. |
912 |
|
|
IF( AX.NE.0.OR.AY.NE.0. ) THEN |
913 |
|
|
AL(4) = ASIN(AY/SQRT(AX**2+AY**2)) |
914 |
|
|
IF(AX.LT.0.AND.AY.GE.0) AL(4) = ACOS(-1.0)-AL(4) |
915 |
|
|
IF(AX.LT.0.AND.AY.LT.0) AL(4) = -ACOS(-1.0)-AL(4) |
916 |
pam-fi |
1.4 |
ENDIF |
917 |
pam-fi |
1.10 |
IF(AY.GT.0.) AL(4) = AL(4)-ACOS(-1.0) |
918 |
|
|
IF(AY.LE.0.) AL(4) = AL(4)+ACOS(-1.0) |
919 |
|
|
|
920 |
pam-fi |
1.4 |
AL(5) = DEF |
921 |
|
|
|
922 |
|
|
c print*,' guess: ',(al(i),i=1,5) |
923 |
|
|
|
924 |
|
|
end |