| 1 | 
mocchiut | 
1.1 | 
************************************************************************* | 
| 2 | 
  | 
  | 
*      | 
| 3 | 
  | 
  | 
*     Subroutine inter_B.f | 
| 4 | 
  | 
  | 
*      | 
| 5 | 
  | 
  | 
*     it computes the magnetic field in a chosen point x,y,z inside or  | 
| 6 | 
  | 
  | 
*     outside the magnetic cavity, using a trilinear interpolation of | 
| 7 | 
  | 
  | 
*     B field measurements (read before by means of ./read_B.f) | 
| 8 | 
  | 
  | 
*     if the point falls outside the interpolation volume, set the field to 0 | 
| 9 | 
  | 
  | 
*      | 
| 10 | 
  | 
  | 
*     needs: | 
| 11 | 
  | 
  | 
*     - common_B_inner.f common file for the inner magnetic field map | 
| 12 | 
  | 
  | 
*     - ./inter_B_inner.f common file for the inner magnetic field map | 
| 13 | 
  | 
  | 
*     - common_B_outer.f common file for the outer magnetic field map | 
| 14 | 
  | 
  | 
*     - ./inter_B_outer.f common file for the outer magnetic field map | 
| 15 | 
  | 
  | 
*      | 
| 16 | 
  | 
  | 
*     to be called after ./read_B.f (magnetic field map reading subroutine) | 
| 17 | 
  | 
  | 
*      | 
| 18 | 
  | 
  | 
*     input: coordinates in m | 
| 19 | 
  | 
  | 
*     output: magnetic field in T | 
| 20 | 
  | 
  | 
*      | 
| 21 | 
  | 
  | 
************************************************************************* | 
| 22 | 
  | 
  | 
 | 
| 23 | 
  | 
  | 
      subroutine inter_B(x,y,z,res) !coordinates in m, magnetic field in T | 
| 24 | 
  | 
  | 
 | 
| 25 | 
  | 
  | 
      implicit double precision (a-h,o-z) | 
| 26 | 
  | 
  | 
      include 'common_B.f' | 
| 27 | 
  | 
  | 
 | 
| 28 | 
  | 
  | 
 | 
| 29 | 
  | 
  | 
c------------------------------------------------------------------------ | 
| 30 | 
  | 
  | 
c      | 
| 31 | 
  | 
  | 
c     local variables | 
| 32 | 
  | 
  | 
c      | 
| 33 | 
  | 
  | 
c------------------------------------------------------------------------ | 
| 34 | 
  | 
  | 
 | 
| 35 | 
  | 
  | 
      real*8 x,y,z              !point of interest | 
| 36 | 
  | 
  | 
      real*8 res(3)             !interpolated B components: res = (Bx, By, Bz) | 
| 37 | 
  | 
  | 
 | 
| 38 | 
  | 
  | 
      real*8 zl,zu | 
| 39 | 
  | 
  | 
      real*8 resu(3),resl(3) | 
| 40 | 
  | 
  | 
 | 
| 41 | 
  | 
  | 
c------------------------------------------------------------------------ | 
| 42 | 
  | 
  | 
c      | 
| 43 | 
  | 
  | 
c     set the field outside the interpolation volume to be 0 | 
| 44 | 
  | 
  | 
c      | 
| 45 | 
  | 
  | 
c------------------------------------------------------------------------ | 
| 46 | 
  | 
  | 
 | 
| 47 | 
  | 
  | 
      do ip=1,3 | 
| 48 | 
  | 
  | 
        res(ip)=0. | 
| 49 | 
  | 
  | 
      enddo | 
| 50 | 
  | 
  | 
 | 
| 51 | 
  | 
  | 
 | 
| 52 | 
  | 
  | 
c------------------------------------------------------------------------ | 
| 53 | 
  | 
  | 
c      | 
| 54 | 
  | 
  | 
c     check if the point falls inside the interpolation volumes | 
| 55 | 
  | 
  | 
c      | 
| 56 | 
  | 
  | 
c------------------------------------------------------------------------ | 
| 57 | 
  | 
  | 
 | 
| 58 | 
  | 
  | 
*     ----------------------- | 
| 59 | 
  | 
  | 
*     INNER MAP | 
| 60 | 
  | 
  | 
*     ----------------------- | 
| 61 | 
  | 
  | 
      if( | 
| 62 | 
  | 
  | 
     $          (x.ge.edgexmin).and.(x.le.edgexmax) | 
| 63 | 
  | 
  | 
     $     .and.(y.ge.edgeymin).and.(y.le.edgeymax) | 
| 64 | 
  | 
  | 
     $     .and.(z.ge.edgezmin).and.(z.le.edgezmax) | 
| 65 | 
  | 
  | 
     $     ) then | 
| 66 | 
  | 
  | 
 | 
| 67 | 
  | 
  | 
        call inter_B_inner(x,y,z,res) | 
| 68 | 
  | 
  | 
c        print*,'INNER - ',z,res | 
| 69 | 
  | 
  | 
 | 
| 70 | 
  | 
  | 
      endif | 
| 71 | 
  | 
  | 
 | 
| 72 | 
  | 
  | 
*     ----------------------- | 
| 73 | 
  | 
  | 
*     OUTER MAP | 
| 74 | 
  | 
  | 
*     ----------------------- | 
| 75 | 
  | 
  | 
      if( | 
| 76 | 
  | 
  | 
     $         ((x.ge.edgeuxmin).and.(x.le.edgeuxmax) | 
| 77 | 
  | 
  | 
     $     .and.(y.ge.edgeuymin).and.(y.le.edgeuymax) | 
| 78 | 
  | 
  | 
     $     .and.(z.ge.edgeuzmin).and.(z.le.edgeuzmax)) | 
| 79 | 
  | 
  | 
     $     .or. | 
| 80 | 
  | 
  | 
     $         ((x.ge.edgelxmin).and.(x.le.edgelxmax) | 
| 81 | 
  | 
  | 
     $     .and.(y.ge.edgelymin).and.(y.le.edgelymax) | 
| 82 | 
  | 
  | 
     $     .and.(z.ge.edgelzmin).and.(z.le.edgelzmax)) | 
| 83 | 
  | 
  | 
     $     ) then | 
| 84 | 
  | 
  | 
          | 
| 85 | 
  | 
  | 
        call inter_B_outer(x,y,z,res) | 
| 86 | 
  | 
  | 
c        res(2)=res(2)*10 | 
| 87 | 
  | 
  | 
c        print*,'OUTER - ',z,res | 
| 88 | 
  | 
  | 
 | 
| 89 | 
  | 
  | 
      endif | 
| 90 | 
  | 
  | 
 | 
| 91 | 
  | 
  | 
*     -------------------------------- | 
| 92 | 
  | 
  | 
*     GAP between INNER and OUTER MAPS | 
| 93 | 
  | 
  | 
*     -------------------------------- | 
| 94 | 
  | 
  | 
      if( | 
| 95 | 
  | 
  | 
     $          (x.gt.edgexmin).and.(x.lt.edgexmax) | 
| 96 | 
  | 
  | 
     $     .and.(y.gt.edgeymin).and.(y.lt.edgeymax) | 
| 97 | 
  | 
  | 
     $     .and.(z.gt.edgezmax).and.(z.lt.edgeuzmin) | 
| 98 | 
  | 
  | 
     $     )then | 
| 99 | 
  | 
  | 
          | 
| 100 | 
  | 
  | 
         zu = edgeuzmin | 
| 101 | 
  | 
  | 
         zl = edgezmax | 
| 102 | 
  | 
  | 
         call inter_B_inner(x,y,zl,resu) | 
| 103 | 
  | 
  | 
         call inter_B_outer(x,y,zu,resl) | 
| 104 | 
  | 
  | 
 | 
| 105 | 
  | 
  | 
         do i=1,3 | 
| 106 | 
  | 
  | 
            res(i) = z  * ((resu(i)-resl(i))/(zu-zl)) | 
| 107 | 
  | 
  | 
     $           + resu(i) | 
| 108 | 
  | 
  | 
     $           -   zu * ((resu(i)-resl(i))/(zu-zl)) | 
| 109 | 
  | 
  | 
         enddo | 
| 110 | 
  | 
  | 
c        print*,'GAP U - ',z,res | 
| 111 | 
  | 
  | 
 | 
| 112 | 
  | 
  | 
      elseif( | 
| 113 | 
  | 
  | 
     $          (x.gt.edgexmin).and.(x.lt.edgexmax) | 
| 114 | 
  | 
  | 
     $     .and.(y.gt.edgeymin).and.(y.lt.edgeymax) | 
| 115 | 
  | 
  | 
     $     .and.(z.gt.edgelzmax).and.(z.lt.edgezmin) | 
| 116 | 
  | 
  | 
     $     ) then | 
| 117 | 
  | 
  | 
          | 
| 118 | 
  | 
  | 
         | 
| 119 | 
  | 
  | 
         zu = edgezmin | 
| 120 | 
  | 
  | 
         zl = edgelzmax | 
| 121 | 
  | 
  | 
         call inter_B_inner(x,y,zu,resu) | 
| 122 | 
  | 
  | 
         call inter_B_outer(x,y,zl,resl) | 
| 123 | 
  | 
  | 
          | 
| 124 | 
  | 
  | 
         do i=1,3 | 
| 125 | 
  | 
  | 
            res(i) = z  * ((resu(i)-resl(i))/(zu-zl)) | 
| 126 | 
  | 
  | 
     $           + resu(i) | 
| 127 | 
  | 
  | 
     $           -   zu * ((resu(i)-resl(i))/(zu-zl)) | 
| 128 | 
  | 
  | 
         enddo | 
| 129 | 
  | 
  | 
c        print*,'GAP D - ',z,res | 
| 130 | 
  | 
  | 
 | 
| 131 | 
  | 
  | 
      endif | 
| 132 | 
  | 
  | 
 | 
| 133 | 
  | 
  | 
      return | 
| 134 | 
  | 
  | 
      end | 
| 135 | 
  | 
  | 
 | 
| 136 | 
  | 
  | 
 | 
| 137 | 
  | 
  | 
************************************************************************* | 
| 138 | 
  | 
  | 
*      | 
| 139 | 
  | 
  | 
*     Subroutine inter_B_inner.f | 
| 140 | 
  | 
  | 
*      | 
| 141 | 
  | 
  | 
*     it computes the magnetic field in a chosen point x,y,z inside the | 
| 142 | 
  | 
  | 
*     magnetic cavity, using a trilinear interpolation of | 
| 143 | 
  | 
  | 
*     B field measurements (read before by means of ./read_B.f) | 
| 144 | 
  | 
  | 
*     the value is computed for two different inner maps and then averaged | 
| 145 | 
  | 
  | 
*      | 
| 146 | 
  | 
  | 
*     needs: | 
| 147 | 
  | 
  | 
*     - ../common/common_B_inner.f | 
| 148 | 
  | 
  | 
*      | 
| 149 | 
  | 
  | 
*     input: coordinates in m | 
| 150 | 
  | 
  | 
*     output: magnetic field in T | 
| 151 | 
  | 
  | 
*      | 
| 152 | 
  | 
  | 
************************************************************************* | 
| 153 | 
  | 
  | 
 | 
| 154 | 
  | 
  | 
      subroutine inter_B_inner(x,y,z,res) !coordinates in m, magnetic field in T | 
| 155 | 
  | 
  | 
 | 
| 156 | 
  | 
  | 
      implicit double precision (a-h,o-z) | 
| 157 | 
  | 
  | 
      include 'common_B.f' | 
| 158 | 
  | 
  | 
 | 
| 159 | 
  | 
  | 
 | 
| 160 | 
  | 
  | 
c------------------------------------------------------------------------ | 
| 161 | 
  | 
  | 
c      | 
| 162 | 
  | 
  | 
c     local variables | 
| 163 | 
  | 
  | 
c      | 
| 164 | 
  | 
  | 
c------------------------------------------------------------------------ | 
| 165 | 
  | 
  | 
 | 
| 166 | 
  | 
  | 
      real*8 x,y,z              !point of interpolation | 
| 167 | 
  | 
  | 
      real*8 res(3)             !interpolated B components: res = (Bx, By, Bz) | 
| 168 | 
  | 
  | 
      real*8 res1(3),res2(3)    !interpolated B components for the two maps | 
| 169 | 
  | 
  | 
 | 
| 170 | 
  | 
  | 
      integer ic                !index for B components: | 
| 171 | 
  | 
  | 
                                ! ic=1 ---> Bx | 
| 172 | 
  | 
  | 
                                ! ic=2 ---> By | 
| 173 | 
  | 
  | 
                                ! ic=3 ---> Bz | 
| 174 | 
  | 
  | 
 | 
| 175 | 
  | 
  | 
      integer cube(3)           !vector of indexes identifying the cube | 
| 176 | 
  | 
  | 
                                ! containing the point of interpolation | 
| 177 | 
  | 
  | 
                                ! (see later...) | 
| 178 | 
  | 
  | 
       | 
| 179 | 
  | 
  | 
      real*8 xl,xh,yl,yh,zl,zh  !cube vertexes coordinates | 
| 180 | 
  | 
  | 
 | 
| 181 | 
  | 
  | 
      real*8 xr,yr,zr           !reduced variables (coordinates of the  | 
| 182 | 
  | 
  | 
                                ! point of interpolation inside the cube) | 
| 183 | 
  | 
  | 
 | 
| 184 | 
  | 
  | 
      real*8 Bp(8)              !vector of values of B component  | 
| 185 | 
  | 
  | 
                                ! being computed, on the eight cube vertexes | 
| 186 | 
  | 
  | 
 | 
| 187 | 
  | 
  | 
 | 
| 188 | 
  | 
  | 
c------------------------------------------------------------------------ | 
| 189 | 
  | 
  | 
c      | 
| 190 | 
  | 
  | 
c     *** FIRST MAP *** | 
| 191 | 
  | 
  | 
c      | 
| 192 | 
  | 
  | 
c------------------------------------------------------------------------ | 
| 193 | 
  | 
  | 
 | 
| 194 | 
  | 
  | 
      do ic=1,3                 !loops on the three B components | 
| 195 | 
  | 
  | 
 | 
| 196 | 
  | 
  | 
c------------------------------------------------------------------------ | 
| 197 | 
  | 
  | 
c      | 
| 198 | 
  | 
  | 
c     chooses the coordinates interval containing the input point | 
| 199 | 
  | 
  | 
c      | 
| 200 | 
  | 
  | 
c------------------------------------------------------------------------ | 
| 201 | 
  | 
  | 
c     e.g.: | 
| 202 | 
  | 
  | 
c      | 
| 203 | 
  | 
  | 
c     x1    x2    x3    x4    x5... | 
| 204 | 
  | 
  | 
c     |-----|-+---|-----|-----|---- | 
| 205 | 
  | 
  | 
c     ~~~~~~~~x | 
| 206 | 
  | 
  | 
c      | 
| 207 | 
  | 
  | 
c     in this case the right interval is identified by indexes 2-3, so the  | 
| 208 | 
  | 
  | 
c     value assigned to cube variable is 2 | 
| 209 | 
  | 
  | 
 | 
| 210 | 
  | 
  | 
        cube(1)=INT((nx-1)*(x-px1min(ic))/(px1max(ic)-px1min(ic))) +1 | 
| 211 | 
  | 
  | 
        cube(2)=INT((ny-1)*(y-py1min(ic))/(py1max(ic)-py1min(ic))) +1 | 
| 212 | 
  | 
  | 
        cube(3)=INT((nz-1)*(z-pz1min(ic))/(pz1max(ic)-pz1min(ic))) +1 | 
| 213 | 
  | 
  | 
         | 
| 214 | 
  | 
  | 
c------------------------------------------------------------------------ | 
| 215 | 
  | 
  | 
c      | 
| 216 | 
  | 
  | 
c     if the point falls beyond the extremes of the grid... | 
| 217 | 
  | 
  | 
c      | 
| 218 | 
  | 
  | 
c------------------------------------------------------------------------ | 
| 219 | 
  | 
  | 
c      | 
| 220 | 
  | 
  | 
c     ~~~~~~~~~~x1    x2    x3... | 
| 221 | 
  | 
  | 
c     - - + - - |-----|-----|---- | 
| 222 | 
  | 
  | 
c     ~~~~x | 
| 223 | 
  | 
  | 
c      | 
| 224 | 
  | 
  | 
c     in the case cube = 1 | 
| 225 | 
  | 
  | 
c      | 
| 226 | 
  | 
  | 
c      | 
| 227 | 
  | 
  | 
c     ...nx-2  nx-1  nx | 
| 228 | 
  | 
  | 
c     ----|-----|-----| - - - + - - | 
| 229 | 
  | 
  | 
c     ~~~~~~~~~~~~~~~~~~~~~~~~x | 
| 230 | 
  | 
  | 
c      | 
| 231 | 
  | 
  | 
c     in this case cube = nx-1 | 
| 232 | 
  | 
  | 
 | 
| 233 | 
  | 
  | 
        if (cube(1).le.0) cube(1) = 1 | 
| 234 | 
  | 
  | 
        if (cube(2).le.0) cube(2) = 1 | 
| 235 | 
  | 
  | 
        if (cube(3).le.0) cube(3) = 1 | 
| 236 | 
  | 
  | 
        if (cube(1).ge.nx) cube(1) = nx-1 | 
| 237 | 
  | 
  | 
        if (cube(2).ge.ny) cube(2) = ny-1 | 
| 238 | 
  | 
  | 
        if (cube(3).ge.nz) cube(3) = nz-1 | 
| 239 | 
  | 
  | 
 | 
| 240 | 
  | 
  | 
 | 
| 241 | 
  | 
  | 
c------------------------------------------------------------------------ | 
| 242 | 
  | 
  | 
c      | 
| 243 | 
  | 
  | 
c     temporary variables definition for field computation | 
| 244 | 
  | 
  | 
c      | 
| 245 | 
  | 
  | 
c------------------------------------------------------------------------ | 
| 246 | 
  | 
  | 
 | 
| 247 | 
  | 
  | 
        xl = px1(cube(1),ic)    !X coordinates of cube vertexes | 
| 248 | 
  | 
  | 
        xh = px1(cube(1)+1,ic) | 
| 249 | 
  | 
  | 
 | 
| 250 | 
  | 
  | 
        yl = py1(cube(2),ic)    !Y coordinates of cube vertexes | 
| 251 | 
  | 
  | 
        yh = py1(cube(2)+1,ic) | 
| 252 | 
  | 
  | 
 | 
| 253 | 
  | 
  | 
        zl = pz1(cube(3),ic)    !Z coordinates of cube vertexes | 
| 254 | 
  | 
  | 
        zh = pz1(cube(3)+1,ic) | 
| 255 | 
  | 
  | 
 | 
| 256 | 
  | 
  | 
        xr = (x-xl) / (xh-xl)   !reduced variables | 
| 257 | 
  | 
  | 
        yr = (y-yl) / (yh-yl) | 
| 258 | 
  | 
  | 
        zr = (z-zl) / (zh-zl) | 
| 259 | 
  | 
  | 
 | 
| 260 | 
  | 
  | 
        Bp(1) = b1(cube(1)  ,cube(2)  ,cube(3)  ,ic) !ic-th component of B | 
| 261 | 
  | 
  | 
        Bp(2) = b1(cube(1)+1,cube(2)  ,cube(3)  ,ic) ! on the eight cube | 
| 262 | 
  | 
  | 
        Bp(3) = b1(cube(1)  ,cube(2)+1,cube(3)  ,ic) ! vertexes | 
| 263 | 
  | 
  | 
        Bp(4) = b1(cube(1)+1,cube(2)+1,cube(3)  ,ic) | 
| 264 | 
  | 
  | 
        Bp(5) = b1(cube(1)  ,cube(2)  ,cube(3)+1,ic) | 
| 265 | 
  | 
  | 
        Bp(6) = b1(cube(1)+1,cube(2)  ,cube(3)+1,ic) | 
| 266 | 
  | 
  | 
        Bp(7) = b1(cube(1)  ,cube(2)+1,cube(3)+1,ic) | 
| 267 | 
  | 
  | 
        Bp(8) = b1(cube(1)+1,cube(2)+1,cube(3)+1,ic) | 
| 268 | 
  | 
  | 
 | 
| 269 | 
  | 
  | 
c------------------------------------------------------------------------ | 
| 270 | 
  | 
  | 
c      | 
| 271 | 
  | 
  | 
c     computes interpolated ic-th component of B in (x,y,z) | 
| 272 | 
  | 
  | 
c      | 
| 273 | 
  | 
  | 
c------------------------------------------------------------------------ | 
| 274 | 
  | 
  | 
 | 
| 275 | 
  | 
  | 
        res1(ic) =  | 
| 276 | 
  | 
  | 
     +       Bp(1)*(1-xr)*(1-yr)*(1-zr) +  | 
| 277 | 
  | 
  | 
     +       Bp(2)*xr*(1-yr)*(1-zr) + | 
| 278 | 
  | 
  | 
     +       Bp(3)*(1-xr)*yr*(1-zr) +  | 
| 279 | 
  | 
  | 
     +       Bp(4)*xr*yr*(1-zr) + | 
| 280 | 
  | 
  | 
     +       Bp(5)*(1-xr)*(1-yr)*zr +  | 
| 281 | 
  | 
  | 
     +       Bp(6)*xr*(1-yr)*zr + | 
| 282 | 
  | 
  | 
     +       Bp(7)*(1-xr)*yr*zr + | 
| 283 | 
  | 
  | 
     +       Bp(8)*xr*yr*zr | 
| 284 | 
  | 
  | 
 | 
| 285 | 
  | 
  | 
 | 
| 286 | 
  | 
  | 
      enddo | 
| 287 | 
  | 
  | 
       | 
| 288 | 
  | 
  | 
c------------------------------------------------------------------------ | 
| 289 | 
  | 
  | 
c      | 
| 290 | 
  | 
  | 
c     *** SECOND MAP *** | 
| 291 | 
  | 
  | 
c      | 
| 292 | 
  | 
  | 
c------------------------------------------------------------------------ | 
| 293 | 
  | 
  | 
 | 
| 294 | 
  | 
  | 
c     second map is rotated by 180 degree along the Z axis. so change sign | 
| 295 | 
  | 
  | 
c     of x and y coordinates and then change sign to Bx and By components | 
| 296 | 
  | 
  | 
c     to obtain the correct result | 
| 297 | 
  | 
  | 
 | 
| 298 | 
  | 
  | 
      x=-x | 
| 299 | 
  | 
  | 
      y=-y | 
| 300 | 
  | 
  | 
 | 
| 301 | 
  | 
  | 
      do ic=1,3 | 
| 302 | 
  | 
  | 
 | 
| 303 | 
  | 
  | 
        cube(1)=INT((nx-1)*(x-px2min(ic))/(px2max(ic)-px2min(ic))) +1 | 
| 304 | 
  | 
  | 
        cube(2)=INT((ny-1)*(y-py2min(ic))/(py2max(ic)-py2min(ic))) +1 | 
| 305 | 
  | 
  | 
        cube(3)=INT((nz-1)*(z-pz2min(ic))/(pz2max(ic)-pz2min(ic))) +1 | 
| 306 | 
  | 
  | 
         | 
| 307 | 
  | 
  | 
        if (cube(1).le.0) cube(1) = 1 | 
| 308 | 
  | 
  | 
        if (cube(2).le.0) cube(2) = 1 | 
| 309 | 
  | 
  | 
        if (cube(3).le.0) cube(3) = 1 | 
| 310 | 
  | 
  | 
        if (cube(1).ge.nx) cube(1) = nx-1 | 
| 311 | 
  | 
  | 
        if (cube(2).ge.ny) cube(2) = ny-1 | 
| 312 | 
  | 
  | 
        if (cube(3).ge.nz) cube(3) = nz-1 | 
| 313 | 
  | 
  | 
 | 
| 314 | 
  | 
  | 
        xl = px2(cube(1),ic) | 
| 315 | 
  | 
  | 
        xh = px2(cube(1)+1,ic) | 
| 316 | 
  | 
  | 
 | 
| 317 | 
  | 
  | 
        yl = py2(cube(2),ic) | 
| 318 | 
  | 
  | 
        yh = py2(cube(2)+1,ic) | 
| 319 | 
  | 
  | 
 | 
| 320 | 
  | 
  | 
        zl = pz2(cube(3),ic) | 
| 321 | 
  | 
  | 
        zh = pz2(cube(3)+1,ic) | 
| 322 | 
  | 
  | 
 | 
| 323 | 
  | 
  | 
        xr = (x-xl) / (xh-xl) | 
| 324 | 
  | 
  | 
        yr = (y-yl) / (yh-yl) | 
| 325 | 
  | 
  | 
        zr = (z-zl) / (zh-zl) | 
| 326 | 
  | 
  | 
 | 
| 327 | 
  | 
  | 
        Bp(1) = b2(cube(1)  ,cube(2)  ,cube(3)  ,ic) | 
| 328 | 
  | 
  | 
        Bp(2) = b2(cube(1)+1,cube(2)  ,cube(3)  ,ic) | 
| 329 | 
  | 
  | 
        Bp(3) = b2(cube(1)  ,cube(2)+1,cube(3)  ,ic) | 
| 330 | 
  | 
  | 
        Bp(4) = b2(cube(1)+1,cube(2)+1,cube(3)  ,ic) | 
| 331 | 
  | 
  | 
        Bp(5) = b2(cube(1)  ,cube(2)  ,cube(3)+1,ic) | 
| 332 | 
  | 
  | 
        Bp(6) = b2(cube(1)+1,cube(2)  ,cube(3)+1,ic) | 
| 333 | 
  | 
  | 
        Bp(7) = b2(cube(1)  ,cube(2)+1,cube(3)+1,ic) | 
| 334 | 
  | 
  | 
        Bp(8) = b2(cube(1)+1,cube(2)+1,cube(3)+1,ic) | 
| 335 | 
  | 
  | 
 | 
| 336 | 
  | 
  | 
        res2(ic) =  | 
| 337 | 
  | 
  | 
     +       Bp(1)*(1-xr)*(1-yr)*(1-zr) +  | 
| 338 | 
  | 
  | 
     +       Bp(2)*xr*(1-yr)*(1-zr) + | 
| 339 | 
  | 
  | 
     +       Bp(3)*(1-xr)*yr*(1-zr) +  | 
| 340 | 
  | 
  | 
     +       Bp(4)*xr*yr*(1-zr) + | 
| 341 | 
  | 
  | 
     +       Bp(5)*(1-xr)*(1-yr)*zr +  | 
| 342 | 
  | 
  | 
     +       Bp(6)*xr*(1-yr)*zr + | 
| 343 | 
  | 
  | 
     +       Bp(7)*(1-xr)*yr*zr + | 
| 344 | 
  | 
  | 
     +       Bp(8)*xr*yr*zr | 
| 345 | 
  | 
  | 
 | 
| 346 | 
  | 
  | 
      enddo | 
| 347 | 
  | 
  | 
 | 
| 348 | 
  | 
  | 
c     change Bx and By components sign | 
| 349 | 
  | 
  | 
      res2(1)=-res2(1) | 
| 350 | 
  | 
  | 
      res2(2)=-res2(2) | 
| 351 | 
  | 
  | 
 | 
| 352 | 
  | 
  | 
c     change back the x and y coordinate signs | 
| 353 | 
  | 
  | 
      x=-x | 
| 354 | 
  | 
  | 
      y=-y | 
| 355 | 
  | 
  | 
 | 
| 356 | 
  | 
  | 
 | 
| 357 | 
  | 
  | 
c------------------------------------------------------------------------ | 
| 358 | 
  | 
  | 
c      | 
| 359 | 
  | 
  | 
c     average the two maps results | 
| 360 | 
  | 
  | 
c      | 
| 361 | 
  | 
  | 
c------------------------------------------------------------------------ | 
| 362 | 
  | 
  | 
 | 
| 363 | 
  | 
  | 
      do ic=1,3 | 
| 364 | 
  | 
  | 
        res(ic)=(res1(ic)+res2(ic))/2 | 
| 365 | 
  | 
  | 
      enddo | 
| 366 | 
  | 
  | 
 | 
| 367 | 
  | 
  | 
 | 
| 368 | 
  | 
  | 
      return | 
| 369 | 
  | 
  | 
      end | 
| 370 | 
  | 
  | 
************************************************************************* | 
| 371 | 
  | 
  | 
*      | 
| 372 | 
  | 
  | 
*     Subroutine inter_B_outer.f | 
| 373 | 
  | 
  | 
*      | 
| 374 | 
  | 
  | 
*     it computes the magnetic field in a chosen point x,y,z OUTSIDE the | 
| 375 | 
  | 
  | 
*     magnetic cavity, using a trilinear interpolation of | 
| 376 | 
  | 
  | 
*     B field measurements (read before by means of ./read_B.f) | 
| 377 | 
  | 
  | 
*     the value is computed for the outer map | 
| 378 | 
  | 
  | 
*      | 
| 379 | 
  | 
  | 
*     needs: | 
| 380 | 
  | 
  | 
*     - ../common/common_B_outer.f | 
| 381 | 
  | 
  | 
*      | 
| 382 | 
  | 
  | 
*     input: coordinates in m | 
| 383 | 
  | 
  | 
*     output: magnetic field in T | 
| 384 | 
  | 
  | 
*      | 
| 385 | 
  | 
  | 
************************************************************************* | 
| 386 | 
  | 
  | 
 | 
| 387 | 
  | 
  | 
      subroutine inter_B_outer(x,y,z,res) !coordinates in m, magnetic field in T | 
| 388 | 
  | 
  | 
 | 
| 389 | 
  | 
  | 
      implicit double precision (a-h,o-z) | 
| 390 | 
  | 
  | 
      include 'common_B.f' | 
| 391 | 
  | 
  | 
 | 
| 392 | 
  | 
  | 
 | 
| 393 | 
  | 
  | 
c------------------------------------------------------------------------ | 
| 394 | 
  | 
  | 
c      | 
| 395 | 
  | 
  | 
c     local variables | 
| 396 | 
  | 
  | 
c      | 
| 397 | 
  | 
  | 
c------------------------------------------------------------------------ | 
| 398 | 
  | 
  | 
 | 
| 399 | 
  | 
  | 
      real*8 x,y,z              !point of interpolation | 
| 400 | 
  | 
  | 
      real*8 res(3)             !interpolated B components: res = (Bx, By, Bz) | 
| 401 | 
  | 
  | 
      real*8 zin | 
| 402 | 
  | 
  | 
 | 
| 403 | 
  | 
  | 
      integer ic                 | 
| 404 | 
  | 
  | 
c     !index for B components: | 
| 405 | 
  | 
  | 
c     ! ic=1 ---> Bx | 
| 406 | 
  | 
  | 
c     ! ic=2 ---> By | 
| 407 | 
  | 
  | 
c     ! ic=3 ---> Bz | 
| 408 | 
  | 
  | 
       | 
| 409 | 
  | 
  | 
      integer cube(3)            | 
| 410 | 
  | 
  | 
c     !vector of indexes identifying the cube | 
| 411 | 
  | 
  | 
c     ! containing the point of interpolation | 
| 412 | 
  | 
  | 
c     ! (see later...) | 
| 413 | 
  | 
  | 
       | 
| 414 | 
  | 
  | 
      real*8 xl,xh,yl,yh,zl,zh  !cube vertexes coordinates | 
| 415 | 
  | 
  | 
 | 
| 416 | 
  | 
  | 
      real*8 xr,yr,zr            | 
| 417 | 
  | 
  | 
c     !reduced variables (coordinates of the  | 
| 418 | 
  | 
  | 
c     ! point of interpolation inside the cube) | 
| 419 | 
  | 
  | 
 | 
| 420 | 
  | 
  | 
      real*8 Bp(8)               | 
| 421 | 
  | 
  | 
c     !vector of values of B component  | 
| 422 | 
  | 
  | 
c     ! being computed, on the eight cube vertexes | 
| 423 | 
  | 
  | 
 | 
| 424 | 
  | 
  | 
 | 
| 425 | 
  | 
  | 
c     LOWER MAP | 
| 426 | 
  | 
  | 
c     ---> up/down simmetry | 
| 427 | 
  | 
  | 
      zin=z | 
| 428 | 
  | 
  | 
      if(zin.le.edgelzmax)z=-z | 
| 429 | 
  | 
  | 
 | 
| 430 | 
  | 
  | 
c------------------------------------------------------------------------ | 
| 431 | 
  | 
  | 
c      | 
| 432 | 
  | 
  | 
c     *** MAP *** | 
| 433 | 
  | 
  | 
c      | 
| 434 | 
  | 
  | 
c------------------------------------------------------------------------ | 
| 435 | 
  | 
  | 
 | 
| 436 | 
  | 
  | 
      do ic=1,3                 !loops on the three B components | 
| 437 | 
  | 
  | 
 | 
| 438 | 
  | 
  | 
c------------------------------------------------------------------------ | 
| 439 | 
  | 
  | 
c      | 
| 440 | 
  | 
  | 
c     chooses the coordinates interval containing the input point | 
| 441 | 
  | 
  | 
c      | 
| 442 | 
  | 
  | 
c------------------------------------------------------------------------ | 
| 443 | 
  | 
  | 
c     e.g.: | 
| 444 | 
  | 
  | 
c      | 
| 445 | 
  | 
  | 
c     x1    x2    x3    x4    x5...               xN | 
| 446 | 
  | 
  | 
c     |-----|-+---|-----|-----|---- ... ----|-----| | 
| 447 | 
  | 
  | 
c     ~~~~~~~~x | 
| 448 | 
  | 
  | 
c      | 
| 449 | 
  | 
  | 
c     in this case the right interval is identified by indexes 2-3, so the  | 
| 450 | 
  | 
  | 
c     value assigned to cube variable is 2 | 
| 451 | 
  | 
  | 
 | 
| 452 | 
  | 
  | 
        cube(1)=INT((nox-1)*(x-poxmin(ic))/(poxmax(ic)-poxmin(ic))) +1 | 
| 453 | 
  | 
  | 
        cube(2)=INT((noy-1)*(y-poymin(ic))/(poymax(ic)-poymin(ic))) +1 | 
| 454 | 
  | 
  | 
        cube(3)=INT((noz-1)*(z-pozmin(ic))/(pozmax(ic)-pozmin(ic))) +1 | 
| 455 | 
  | 
  | 
         | 
| 456 | 
  | 
  | 
c------------------------------------------------------------------------ | 
| 457 | 
  | 
  | 
c      | 
| 458 | 
  | 
  | 
c     if the point falls beyond the extremes of the grid... | 
| 459 | 
  | 
  | 
c      | 
| 460 | 
  | 
  | 
c------------------------------------------------------------------------ | 
| 461 | 
  | 
  | 
c      | 
| 462 | 
  | 
  | 
c     ~~~~~~~~~~x1    x2    x3... | 
| 463 | 
  | 
  | 
c     - - + - - |-----|-----|---- | 
| 464 | 
  | 
  | 
c     ~~~~x | 
| 465 | 
  | 
  | 
c      | 
| 466 | 
  | 
  | 
c     in the case cube = 1 | 
| 467 | 
  | 
  | 
c      | 
| 468 | 
  | 
  | 
c      | 
| 469 | 
  | 
  | 
c     ...nx-2  nx-1  nx | 
| 470 | 
  | 
  | 
c     ----|-----|-----| - - - + - - | 
| 471 | 
  | 
  | 
c     ~~~~~~~~~~~~~~~~~~~~~~~~x | 
| 472 | 
  | 
  | 
c      | 
| 473 | 
  | 
  | 
c     in this case cube = nx-1 | 
| 474 | 
  | 
  | 
 | 
| 475 | 
  | 
  | 
        if (cube(1).le.0) cube(1) = 1 | 
| 476 | 
  | 
  | 
        if (cube(2).le.0) cube(2) = 1 | 
| 477 | 
  | 
  | 
        if (cube(3).le.0) cube(3) = 1 | 
| 478 | 
  | 
  | 
        if (cube(1).ge.nox) cube(1) = nox-1 | 
| 479 | 
  | 
  | 
        if (cube(2).ge.noy) cube(2) = noy-1 | 
| 480 | 
  | 
  | 
        if (cube(3).ge.noz) cube(3) = noz-1 | 
| 481 | 
  | 
  | 
 | 
| 482 | 
  | 
  | 
 | 
| 483 | 
  | 
  | 
c------------------------------------------------------------------------ | 
| 484 | 
  | 
  | 
c      | 
| 485 | 
  | 
  | 
c     temporary variables definition for field computation | 
| 486 | 
  | 
  | 
c      | 
| 487 | 
  | 
  | 
c------------------------------------------------------------------------ | 
| 488 | 
  | 
  | 
 | 
| 489 | 
  | 
  | 
        xl = pox(cube(1),ic)    !X coordinates of cube vertexes | 
| 490 | 
  | 
  | 
        xh = pox(cube(1)+1,ic) | 
| 491 | 
  | 
  | 
 | 
| 492 | 
  | 
  | 
        yl = poy(cube(2),ic)    !Y coordinates of cube vertexes | 
| 493 | 
  | 
  | 
        yh = poy(cube(2)+1,ic) | 
| 494 | 
  | 
  | 
 | 
| 495 | 
  | 
  | 
        zl = poz(cube(3),ic)    !Z coordinates of cube vertexes | 
| 496 | 
  | 
  | 
        zh = poz(cube(3)+1,ic) | 
| 497 | 
  | 
  | 
 | 
| 498 | 
  | 
  | 
        xr = (x-xl) / (xh-xl)   !reduced variables | 
| 499 | 
  | 
  | 
        yr = (y-yl) / (yh-yl) | 
| 500 | 
  | 
  | 
        zr = (z-zl) / (zh-zl) | 
| 501 | 
  | 
  | 
 | 
| 502 | 
  | 
  | 
        Bp(1) = bo(cube(1)  ,cube(2)  ,cube(3)  ,ic) !ic-th component of B | 
| 503 | 
  | 
  | 
        Bp(2) = bo(cube(1)+1,cube(2)  ,cube(3)  ,ic) ! on the eight cube | 
| 504 | 
  | 
  | 
        Bp(3) = bo(cube(1)  ,cube(2)+1,cube(3)  ,ic) ! vertexes | 
| 505 | 
  | 
  | 
        Bp(4) = bo(cube(1)+1,cube(2)+1,cube(3)  ,ic) | 
| 506 | 
  | 
  | 
        Bp(5) = bo(cube(1)  ,cube(2)  ,cube(3)+1,ic) | 
| 507 | 
  | 
  | 
        Bp(6) = bo(cube(1)+1,cube(2)  ,cube(3)+1,ic) | 
| 508 | 
  | 
  | 
        Bp(7) = bo(cube(1)  ,cube(2)+1,cube(3)+1,ic) | 
| 509 | 
  | 
  | 
        Bp(8) = bo(cube(1)+1,cube(2)+1,cube(3)+1,ic) | 
| 510 | 
  | 
  | 
 | 
| 511 | 
  | 
  | 
c------------------------------------------------------------------------ | 
| 512 | 
  | 
  | 
c      | 
| 513 | 
  | 
  | 
c     computes interpolated ic-th component of B in (x,y,z) | 
| 514 | 
  | 
  | 
c      | 
| 515 | 
  | 
  | 
c------------------------------------------------------------------------ | 
| 516 | 
  | 
  | 
 | 
| 517 | 
  | 
  | 
        res(ic) =  | 
| 518 | 
  | 
  | 
     +       Bp(1)*(1-xr)*(1-yr)*(1-zr) +  | 
| 519 | 
  | 
  | 
     +       Bp(2)*xr*(1-yr)*(1-zr) + | 
| 520 | 
  | 
  | 
     +       Bp(3)*(1-xr)*yr*(1-zr) +  | 
| 521 | 
  | 
  | 
     +       Bp(4)*xr*yr*(1-zr) + | 
| 522 | 
  | 
  | 
     +       Bp(5)*(1-xr)*(1-yr)*zr +  | 
| 523 | 
  | 
  | 
     +       Bp(6)*xr*(1-yr)*zr + | 
| 524 | 
  | 
  | 
     +       Bp(7)*(1-xr)*yr*zr + | 
| 525 | 
  | 
  | 
     +       Bp(8)*xr*yr*zr | 
| 526 | 
  | 
  | 
 | 
| 527 | 
  | 
  | 
 | 
| 528 | 
  | 
  | 
      enddo      | 
| 529 | 
  | 
  | 
 | 
| 530 | 
  | 
  | 
c     LOWER MAP | 
| 531 | 
  | 
  | 
c     ---> up/down simmetry  | 
| 532 | 
  | 
  | 
      if(zin.le.edgelzmax)then | 
| 533 | 
  | 
  | 
         z=-z                   !back to initial ccoordinate | 
| 534 | 
  | 
  | 
         res(3)=-res(3)         !invert BZ component | 
| 535 | 
  | 
  | 
      endif | 
| 536 | 
  | 
  | 
 | 
| 537 | 
  | 
  | 
      return | 
| 538 | 
  | 
  | 
      end |