| 1 |
mocchiut |
1.1 |
************************************************************************* |
| 2 |
|
|
* |
| 3 |
|
|
* Subroutine inter_B.f |
| 4 |
|
|
* |
| 5 |
|
|
* it computes the magnetic field in a chosen point x,y,z inside or |
| 6 |
|
|
* outside the magnetic cavity, using a trilinear interpolation of |
| 7 |
|
|
* B field measurements (read before by means of ./read_B.f) |
| 8 |
|
|
* if the point falls outside the interpolation volume, set the field to 0 |
| 9 |
|
|
* |
| 10 |
|
|
* needs: |
| 11 |
|
|
* - common_B_inner.f common file for the inner magnetic field map |
| 12 |
|
|
* - ./inter_B_inner.f common file for the inner magnetic field map |
| 13 |
|
|
* - common_B_outer.f common file for the outer magnetic field map |
| 14 |
|
|
* - ./inter_B_outer.f common file for the outer magnetic field map |
| 15 |
|
|
* |
| 16 |
|
|
* to be called after ./read_B.f (magnetic field map reading subroutine) |
| 17 |
|
|
* |
| 18 |
|
|
* input: coordinates in m |
| 19 |
|
|
* output: magnetic field in T |
| 20 |
|
|
* |
| 21 |
|
|
************************************************************************* |
| 22 |
|
|
|
| 23 |
|
|
subroutine inter_B(x,y,z,res) !coordinates in m, magnetic field in T |
| 24 |
|
|
|
| 25 |
|
|
implicit double precision (a-h,o-z) |
| 26 |
|
|
include 'common_B.f' |
| 27 |
|
|
|
| 28 |
|
|
|
| 29 |
|
|
c------------------------------------------------------------------------ |
| 30 |
|
|
c |
| 31 |
|
|
c local variables |
| 32 |
|
|
c |
| 33 |
|
|
c------------------------------------------------------------------------ |
| 34 |
|
|
|
| 35 |
|
|
real*8 x,y,z !point of interest |
| 36 |
|
|
real*8 res(3) !interpolated B components: res = (Bx, By, Bz) |
| 37 |
|
|
|
| 38 |
|
|
real*8 zl,zu |
| 39 |
|
|
real*8 resu(3),resl(3) |
| 40 |
|
|
|
| 41 |
|
|
c------------------------------------------------------------------------ |
| 42 |
|
|
c |
| 43 |
|
|
c set the field outside the interpolation volume to be 0 |
| 44 |
|
|
c |
| 45 |
|
|
c------------------------------------------------------------------------ |
| 46 |
|
|
|
| 47 |
|
|
do ip=1,3 |
| 48 |
|
|
res(ip)=0. |
| 49 |
|
|
enddo |
| 50 |
|
|
|
| 51 |
|
|
|
| 52 |
|
|
c------------------------------------------------------------------------ |
| 53 |
|
|
c |
| 54 |
|
|
c check if the point falls inside the interpolation volumes |
| 55 |
|
|
c |
| 56 |
|
|
c------------------------------------------------------------------------ |
| 57 |
|
|
|
| 58 |
|
|
* ----------------------- |
| 59 |
|
|
* INNER MAP |
| 60 |
|
|
* ----------------------- |
| 61 |
|
|
if( |
| 62 |
|
|
$ (x.ge.edgexmin).and.(x.le.edgexmax) |
| 63 |
|
|
$ .and.(y.ge.edgeymin).and.(y.le.edgeymax) |
| 64 |
|
|
$ .and.(z.ge.edgezmin).and.(z.le.edgezmax) |
| 65 |
|
|
$ ) then |
| 66 |
|
|
|
| 67 |
|
|
call inter_B_inner(x,y,z,res) |
| 68 |
|
|
c print*,'INNER - ',z,res |
| 69 |
|
|
|
| 70 |
|
|
endif |
| 71 |
|
|
|
| 72 |
|
|
* ----------------------- |
| 73 |
|
|
* OUTER MAP |
| 74 |
|
|
* ----------------------- |
| 75 |
|
|
if( |
| 76 |
|
|
$ ((x.ge.edgeuxmin).and.(x.le.edgeuxmax) |
| 77 |
|
|
$ .and.(y.ge.edgeuymin).and.(y.le.edgeuymax) |
| 78 |
|
|
$ .and.(z.ge.edgeuzmin).and.(z.le.edgeuzmax)) |
| 79 |
|
|
$ .or. |
| 80 |
|
|
$ ((x.ge.edgelxmin).and.(x.le.edgelxmax) |
| 81 |
|
|
$ .and.(y.ge.edgelymin).and.(y.le.edgelymax) |
| 82 |
|
|
$ .and.(z.ge.edgelzmin).and.(z.le.edgelzmax)) |
| 83 |
|
|
$ ) then |
| 84 |
|
|
|
| 85 |
|
|
call inter_B_outer(x,y,z,res) |
| 86 |
|
|
c res(2)=res(2)*10 |
| 87 |
|
|
c print*,'OUTER - ',z,res |
| 88 |
|
|
|
| 89 |
|
|
endif |
| 90 |
|
|
|
| 91 |
|
|
* -------------------------------- |
| 92 |
|
|
* GAP between INNER and OUTER MAPS |
| 93 |
|
|
* -------------------------------- |
| 94 |
|
|
if( |
| 95 |
|
|
$ (x.gt.edgexmin).and.(x.lt.edgexmax) |
| 96 |
|
|
$ .and.(y.gt.edgeymin).and.(y.lt.edgeymax) |
| 97 |
|
|
$ .and.(z.gt.edgezmax).and.(z.lt.edgeuzmin) |
| 98 |
|
|
$ )then |
| 99 |
|
|
|
| 100 |
|
|
zu = edgeuzmin |
| 101 |
|
|
zl = edgezmax |
| 102 |
|
|
call inter_B_inner(x,y,zl,resu) |
| 103 |
|
|
call inter_B_outer(x,y,zu,resl) |
| 104 |
|
|
|
| 105 |
|
|
do i=1,3 |
| 106 |
|
|
res(i) = z * ((resu(i)-resl(i))/(zu-zl)) |
| 107 |
|
|
$ + resu(i) |
| 108 |
|
|
$ - zu * ((resu(i)-resl(i))/(zu-zl)) |
| 109 |
|
|
enddo |
| 110 |
|
|
c print*,'GAP U - ',z,res |
| 111 |
|
|
|
| 112 |
|
|
elseif( |
| 113 |
|
|
$ (x.gt.edgexmin).and.(x.lt.edgexmax) |
| 114 |
|
|
$ .and.(y.gt.edgeymin).and.(y.lt.edgeymax) |
| 115 |
|
|
$ .and.(z.gt.edgelzmax).and.(z.lt.edgezmin) |
| 116 |
|
|
$ ) then |
| 117 |
|
|
|
| 118 |
|
|
|
| 119 |
|
|
zu = edgezmin |
| 120 |
|
|
zl = edgelzmax |
| 121 |
|
|
call inter_B_inner(x,y,zu,resu) |
| 122 |
|
|
call inter_B_outer(x,y,zl,resl) |
| 123 |
|
|
|
| 124 |
|
|
do i=1,3 |
| 125 |
|
|
res(i) = z * ((resu(i)-resl(i))/(zu-zl)) |
| 126 |
|
|
$ + resu(i) |
| 127 |
|
|
$ - zu * ((resu(i)-resl(i))/(zu-zl)) |
| 128 |
|
|
enddo |
| 129 |
|
|
c print*,'GAP D - ',z,res |
| 130 |
|
|
|
| 131 |
|
|
endif |
| 132 |
|
|
|
| 133 |
|
|
return |
| 134 |
|
|
end |
| 135 |
|
|
|
| 136 |
|
|
|
| 137 |
|
|
************************************************************************* |
| 138 |
|
|
* |
| 139 |
|
|
* Subroutine inter_B_inner.f |
| 140 |
|
|
* |
| 141 |
|
|
* it computes the magnetic field in a chosen point x,y,z inside the |
| 142 |
|
|
* magnetic cavity, using a trilinear interpolation of |
| 143 |
|
|
* B field measurements (read before by means of ./read_B.f) |
| 144 |
|
|
* the value is computed for two different inner maps and then averaged |
| 145 |
|
|
* |
| 146 |
|
|
* needs: |
| 147 |
|
|
* - ../common/common_B_inner.f |
| 148 |
|
|
* |
| 149 |
|
|
* input: coordinates in m |
| 150 |
|
|
* output: magnetic field in T |
| 151 |
|
|
* |
| 152 |
|
|
************************************************************************* |
| 153 |
|
|
|
| 154 |
|
|
subroutine inter_B_inner(x,y,z,res) !coordinates in m, magnetic field in T |
| 155 |
|
|
|
| 156 |
|
|
implicit double precision (a-h,o-z) |
| 157 |
|
|
include 'common_B.f' |
| 158 |
|
|
|
| 159 |
|
|
|
| 160 |
|
|
c------------------------------------------------------------------------ |
| 161 |
|
|
c |
| 162 |
|
|
c local variables |
| 163 |
|
|
c |
| 164 |
|
|
c------------------------------------------------------------------------ |
| 165 |
|
|
|
| 166 |
|
|
real*8 x,y,z !point of interpolation |
| 167 |
|
|
real*8 res(3) !interpolated B components: res = (Bx, By, Bz) |
| 168 |
|
|
real*8 res1(3),res2(3) !interpolated B components for the two maps |
| 169 |
|
|
|
| 170 |
|
|
integer ic !index for B components: |
| 171 |
|
|
! ic=1 ---> Bx |
| 172 |
|
|
! ic=2 ---> By |
| 173 |
|
|
! ic=3 ---> Bz |
| 174 |
|
|
|
| 175 |
|
|
integer cube(3) !vector of indexes identifying the cube |
| 176 |
|
|
! containing the point of interpolation |
| 177 |
|
|
! (see later...) |
| 178 |
|
|
|
| 179 |
|
|
real*8 xl,xh,yl,yh,zl,zh !cube vertexes coordinates |
| 180 |
|
|
|
| 181 |
|
|
real*8 xr,yr,zr !reduced variables (coordinates of the |
| 182 |
|
|
! point of interpolation inside the cube) |
| 183 |
|
|
|
| 184 |
|
|
real*8 Bp(8) !vector of values of B component |
| 185 |
|
|
! being computed, on the eight cube vertexes |
| 186 |
|
|
|
| 187 |
|
|
|
| 188 |
|
|
c------------------------------------------------------------------------ |
| 189 |
|
|
c |
| 190 |
|
|
c *** FIRST MAP *** |
| 191 |
|
|
c |
| 192 |
|
|
c------------------------------------------------------------------------ |
| 193 |
|
|
|
| 194 |
|
|
do ic=1,3 !loops on the three B components |
| 195 |
|
|
|
| 196 |
|
|
c------------------------------------------------------------------------ |
| 197 |
|
|
c |
| 198 |
|
|
c chooses the coordinates interval containing the input point |
| 199 |
|
|
c |
| 200 |
|
|
c------------------------------------------------------------------------ |
| 201 |
|
|
c e.g.: |
| 202 |
|
|
c |
| 203 |
|
|
c x1 x2 x3 x4 x5... |
| 204 |
|
|
c |-----|-+---|-----|-----|---- |
| 205 |
|
|
c ~~~~~~~~x |
| 206 |
|
|
c |
| 207 |
|
|
c in this case the right interval is identified by indexes 2-3, so the |
| 208 |
|
|
c value assigned to cube variable is 2 |
| 209 |
|
|
|
| 210 |
|
|
cube(1)=INT((nx-1)*(x-px1min(ic))/(px1max(ic)-px1min(ic))) +1 |
| 211 |
|
|
cube(2)=INT((ny-1)*(y-py1min(ic))/(py1max(ic)-py1min(ic))) +1 |
| 212 |
|
|
cube(3)=INT((nz-1)*(z-pz1min(ic))/(pz1max(ic)-pz1min(ic))) +1 |
| 213 |
|
|
|
| 214 |
|
|
c------------------------------------------------------------------------ |
| 215 |
|
|
c |
| 216 |
|
|
c if the point falls beyond the extremes of the grid... |
| 217 |
|
|
c |
| 218 |
|
|
c------------------------------------------------------------------------ |
| 219 |
|
|
c |
| 220 |
|
|
c ~~~~~~~~~~x1 x2 x3... |
| 221 |
|
|
c - - + - - |-----|-----|---- |
| 222 |
|
|
c ~~~~x |
| 223 |
|
|
c |
| 224 |
|
|
c in the case cube = 1 |
| 225 |
|
|
c |
| 226 |
|
|
c |
| 227 |
|
|
c ...nx-2 nx-1 nx |
| 228 |
|
|
c ----|-----|-----| - - - + - - |
| 229 |
|
|
c ~~~~~~~~~~~~~~~~~~~~~~~~x |
| 230 |
|
|
c |
| 231 |
|
|
c in this case cube = nx-1 |
| 232 |
|
|
|
| 233 |
|
|
if (cube(1).le.0) cube(1) = 1 |
| 234 |
|
|
if (cube(2).le.0) cube(2) = 1 |
| 235 |
|
|
if (cube(3).le.0) cube(3) = 1 |
| 236 |
|
|
if (cube(1).ge.nx) cube(1) = nx-1 |
| 237 |
|
|
if (cube(2).ge.ny) cube(2) = ny-1 |
| 238 |
|
|
if (cube(3).ge.nz) cube(3) = nz-1 |
| 239 |
|
|
|
| 240 |
|
|
|
| 241 |
|
|
c------------------------------------------------------------------------ |
| 242 |
|
|
c |
| 243 |
|
|
c temporary variables definition for field computation |
| 244 |
|
|
c |
| 245 |
|
|
c------------------------------------------------------------------------ |
| 246 |
|
|
|
| 247 |
|
|
xl = px1(cube(1),ic) !X coordinates of cube vertexes |
| 248 |
|
|
xh = px1(cube(1)+1,ic) |
| 249 |
|
|
|
| 250 |
|
|
yl = py1(cube(2),ic) !Y coordinates of cube vertexes |
| 251 |
|
|
yh = py1(cube(2)+1,ic) |
| 252 |
|
|
|
| 253 |
|
|
zl = pz1(cube(3),ic) !Z coordinates of cube vertexes |
| 254 |
|
|
zh = pz1(cube(3)+1,ic) |
| 255 |
|
|
|
| 256 |
|
|
xr = (x-xl) / (xh-xl) !reduced variables |
| 257 |
|
|
yr = (y-yl) / (yh-yl) |
| 258 |
|
|
zr = (z-zl) / (zh-zl) |
| 259 |
|
|
|
| 260 |
|
|
Bp(1) = b1(cube(1) ,cube(2) ,cube(3) ,ic) !ic-th component of B |
| 261 |
|
|
Bp(2) = b1(cube(1)+1,cube(2) ,cube(3) ,ic) ! on the eight cube |
| 262 |
|
|
Bp(3) = b1(cube(1) ,cube(2)+1,cube(3) ,ic) ! vertexes |
| 263 |
|
|
Bp(4) = b1(cube(1)+1,cube(2)+1,cube(3) ,ic) |
| 264 |
|
|
Bp(5) = b1(cube(1) ,cube(2) ,cube(3)+1,ic) |
| 265 |
|
|
Bp(6) = b1(cube(1)+1,cube(2) ,cube(3)+1,ic) |
| 266 |
|
|
Bp(7) = b1(cube(1) ,cube(2)+1,cube(3)+1,ic) |
| 267 |
|
|
Bp(8) = b1(cube(1)+1,cube(2)+1,cube(3)+1,ic) |
| 268 |
|
|
|
| 269 |
|
|
c------------------------------------------------------------------------ |
| 270 |
|
|
c |
| 271 |
|
|
c computes interpolated ic-th component of B in (x,y,z) |
| 272 |
|
|
c |
| 273 |
|
|
c------------------------------------------------------------------------ |
| 274 |
|
|
|
| 275 |
|
|
res1(ic) = |
| 276 |
|
|
+ Bp(1)*(1-xr)*(1-yr)*(1-zr) + |
| 277 |
|
|
+ Bp(2)*xr*(1-yr)*(1-zr) + |
| 278 |
|
|
+ Bp(3)*(1-xr)*yr*(1-zr) + |
| 279 |
|
|
+ Bp(4)*xr*yr*(1-zr) + |
| 280 |
|
|
+ Bp(5)*(1-xr)*(1-yr)*zr + |
| 281 |
|
|
+ Bp(6)*xr*(1-yr)*zr + |
| 282 |
|
|
+ Bp(7)*(1-xr)*yr*zr + |
| 283 |
|
|
+ Bp(8)*xr*yr*zr |
| 284 |
|
|
|
| 285 |
|
|
|
| 286 |
|
|
enddo |
| 287 |
|
|
|
| 288 |
|
|
c------------------------------------------------------------------------ |
| 289 |
|
|
c |
| 290 |
|
|
c *** SECOND MAP *** |
| 291 |
|
|
c |
| 292 |
|
|
c------------------------------------------------------------------------ |
| 293 |
|
|
|
| 294 |
|
|
c second map is rotated by 180 degree along the Z axis. so change sign |
| 295 |
|
|
c of x and y coordinates and then change sign to Bx and By components |
| 296 |
|
|
c to obtain the correct result |
| 297 |
|
|
|
| 298 |
|
|
x=-x |
| 299 |
|
|
y=-y |
| 300 |
|
|
|
| 301 |
|
|
do ic=1,3 |
| 302 |
|
|
|
| 303 |
|
|
cube(1)=INT((nx-1)*(x-px2min(ic))/(px2max(ic)-px2min(ic))) +1 |
| 304 |
|
|
cube(2)=INT((ny-1)*(y-py2min(ic))/(py2max(ic)-py2min(ic))) +1 |
| 305 |
|
|
cube(3)=INT((nz-1)*(z-pz2min(ic))/(pz2max(ic)-pz2min(ic))) +1 |
| 306 |
|
|
|
| 307 |
|
|
if (cube(1).le.0) cube(1) = 1 |
| 308 |
|
|
if (cube(2).le.0) cube(2) = 1 |
| 309 |
|
|
if (cube(3).le.0) cube(3) = 1 |
| 310 |
|
|
if (cube(1).ge.nx) cube(1) = nx-1 |
| 311 |
|
|
if (cube(2).ge.ny) cube(2) = ny-1 |
| 312 |
|
|
if (cube(3).ge.nz) cube(3) = nz-1 |
| 313 |
|
|
|
| 314 |
|
|
xl = px2(cube(1),ic) |
| 315 |
|
|
xh = px2(cube(1)+1,ic) |
| 316 |
|
|
|
| 317 |
|
|
yl = py2(cube(2),ic) |
| 318 |
|
|
yh = py2(cube(2)+1,ic) |
| 319 |
|
|
|
| 320 |
|
|
zl = pz2(cube(3),ic) |
| 321 |
|
|
zh = pz2(cube(3)+1,ic) |
| 322 |
|
|
|
| 323 |
|
|
xr = (x-xl) / (xh-xl) |
| 324 |
|
|
yr = (y-yl) / (yh-yl) |
| 325 |
|
|
zr = (z-zl) / (zh-zl) |
| 326 |
|
|
|
| 327 |
|
|
Bp(1) = b2(cube(1) ,cube(2) ,cube(3) ,ic) |
| 328 |
|
|
Bp(2) = b2(cube(1)+1,cube(2) ,cube(3) ,ic) |
| 329 |
|
|
Bp(3) = b2(cube(1) ,cube(2)+1,cube(3) ,ic) |
| 330 |
|
|
Bp(4) = b2(cube(1)+1,cube(2)+1,cube(3) ,ic) |
| 331 |
|
|
Bp(5) = b2(cube(1) ,cube(2) ,cube(3)+1,ic) |
| 332 |
|
|
Bp(6) = b2(cube(1)+1,cube(2) ,cube(3)+1,ic) |
| 333 |
|
|
Bp(7) = b2(cube(1) ,cube(2)+1,cube(3)+1,ic) |
| 334 |
|
|
Bp(8) = b2(cube(1)+1,cube(2)+1,cube(3)+1,ic) |
| 335 |
|
|
|
| 336 |
|
|
res2(ic) = |
| 337 |
|
|
+ Bp(1)*(1-xr)*(1-yr)*(1-zr) + |
| 338 |
|
|
+ Bp(2)*xr*(1-yr)*(1-zr) + |
| 339 |
|
|
+ Bp(3)*(1-xr)*yr*(1-zr) + |
| 340 |
|
|
+ Bp(4)*xr*yr*(1-zr) + |
| 341 |
|
|
+ Bp(5)*(1-xr)*(1-yr)*zr + |
| 342 |
|
|
+ Bp(6)*xr*(1-yr)*zr + |
| 343 |
|
|
+ Bp(7)*(1-xr)*yr*zr + |
| 344 |
|
|
+ Bp(8)*xr*yr*zr |
| 345 |
|
|
|
| 346 |
|
|
enddo |
| 347 |
|
|
|
| 348 |
|
|
c change Bx and By components sign |
| 349 |
|
|
res2(1)=-res2(1) |
| 350 |
|
|
res2(2)=-res2(2) |
| 351 |
|
|
|
| 352 |
|
|
c change back the x and y coordinate signs |
| 353 |
|
|
x=-x |
| 354 |
|
|
y=-y |
| 355 |
|
|
|
| 356 |
|
|
|
| 357 |
|
|
c------------------------------------------------------------------------ |
| 358 |
|
|
c |
| 359 |
|
|
c average the two maps results |
| 360 |
|
|
c |
| 361 |
|
|
c------------------------------------------------------------------------ |
| 362 |
|
|
|
| 363 |
|
|
do ic=1,3 |
| 364 |
|
|
res(ic)=(res1(ic)+res2(ic))/2 |
| 365 |
|
|
enddo |
| 366 |
|
|
|
| 367 |
|
|
|
| 368 |
|
|
return |
| 369 |
|
|
end |
| 370 |
|
|
************************************************************************* |
| 371 |
|
|
* |
| 372 |
|
|
* Subroutine inter_B_outer.f |
| 373 |
|
|
* |
| 374 |
|
|
* it computes the magnetic field in a chosen point x,y,z OUTSIDE the |
| 375 |
|
|
* magnetic cavity, using a trilinear interpolation of |
| 376 |
|
|
* B field measurements (read before by means of ./read_B.f) |
| 377 |
|
|
* the value is computed for the outer map |
| 378 |
|
|
* |
| 379 |
|
|
* needs: |
| 380 |
|
|
* - ../common/common_B_outer.f |
| 381 |
|
|
* |
| 382 |
|
|
* input: coordinates in m |
| 383 |
|
|
* output: magnetic field in T |
| 384 |
|
|
* |
| 385 |
|
|
************************************************************************* |
| 386 |
|
|
|
| 387 |
|
|
subroutine inter_B_outer(x,y,z,res) !coordinates in m, magnetic field in T |
| 388 |
|
|
|
| 389 |
|
|
implicit double precision (a-h,o-z) |
| 390 |
|
|
include 'common_B.f' |
| 391 |
|
|
|
| 392 |
|
|
|
| 393 |
|
|
c------------------------------------------------------------------------ |
| 394 |
|
|
c |
| 395 |
|
|
c local variables |
| 396 |
|
|
c |
| 397 |
|
|
c------------------------------------------------------------------------ |
| 398 |
|
|
|
| 399 |
|
|
real*8 x,y,z !point of interpolation |
| 400 |
|
|
real*8 res(3) !interpolated B components: res = (Bx, By, Bz) |
| 401 |
|
|
real*8 zin |
| 402 |
|
|
|
| 403 |
|
|
integer ic |
| 404 |
|
|
c !index for B components: |
| 405 |
|
|
c ! ic=1 ---> Bx |
| 406 |
|
|
c ! ic=2 ---> By |
| 407 |
|
|
c ! ic=3 ---> Bz |
| 408 |
|
|
|
| 409 |
|
|
integer cube(3) |
| 410 |
|
|
c !vector of indexes identifying the cube |
| 411 |
|
|
c ! containing the point of interpolation |
| 412 |
|
|
c ! (see later...) |
| 413 |
|
|
|
| 414 |
|
|
real*8 xl,xh,yl,yh,zl,zh !cube vertexes coordinates |
| 415 |
|
|
|
| 416 |
|
|
real*8 xr,yr,zr |
| 417 |
|
|
c !reduced variables (coordinates of the |
| 418 |
|
|
c ! point of interpolation inside the cube) |
| 419 |
|
|
|
| 420 |
|
|
real*8 Bp(8) |
| 421 |
|
|
c !vector of values of B component |
| 422 |
|
|
c ! being computed, on the eight cube vertexes |
| 423 |
|
|
|
| 424 |
|
|
|
| 425 |
|
|
c LOWER MAP |
| 426 |
|
|
c ---> up/down simmetry |
| 427 |
|
|
zin=z |
| 428 |
|
|
if(zin.le.edgelzmax)z=-z |
| 429 |
|
|
|
| 430 |
|
|
c------------------------------------------------------------------------ |
| 431 |
|
|
c |
| 432 |
|
|
c *** MAP *** |
| 433 |
|
|
c |
| 434 |
|
|
c------------------------------------------------------------------------ |
| 435 |
|
|
|
| 436 |
|
|
do ic=1,3 !loops on the three B components |
| 437 |
|
|
|
| 438 |
|
|
c------------------------------------------------------------------------ |
| 439 |
|
|
c |
| 440 |
|
|
c chooses the coordinates interval containing the input point |
| 441 |
|
|
c |
| 442 |
|
|
c------------------------------------------------------------------------ |
| 443 |
|
|
c e.g.: |
| 444 |
|
|
c |
| 445 |
|
|
c x1 x2 x3 x4 x5... xN |
| 446 |
|
|
c |-----|-+---|-----|-----|---- ... ----|-----| |
| 447 |
|
|
c ~~~~~~~~x |
| 448 |
|
|
c |
| 449 |
|
|
c in this case the right interval is identified by indexes 2-3, so the |
| 450 |
|
|
c value assigned to cube variable is 2 |
| 451 |
|
|
|
| 452 |
|
|
cube(1)=INT((nox-1)*(x-poxmin(ic))/(poxmax(ic)-poxmin(ic))) +1 |
| 453 |
|
|
cube(2)=INT((noy-1)*(y-poymin(ic))/(poymax(ic)-poymin(ic))) +1 |
| 454 |
|
|
cube(3)=INT((noz-1)*(z-pozmin(ic))/(pozmax(ic)-pozmin(ic))) +1 |
| 455 |
|
|
|
| 456 |
|
|
c------------------------------------------------------------------------ |
| 457 |
|
|
c |
| 458 |
|
|
c if the point falls beyond the extremes of the grid... |
| 459 |
|
|
c |
| 460 |
|
|
c------------------------------------------------------------------------ |
| 461 |
|
|
c |
| 462 |
|
|
c ~~~~~~~~~~x1 x2 x3... |
| 463 |
|
|
c - - + - - |-----|-----|---- |
| 464 |
|
|
c ~~~~x |
| 465 |
|
|
c |
| 466 |
|
|
c in the case cube = 1 |
| 467 |
|
|
c |
| 468 |
|
|
c |
| 469 |
|
|
c ...nx-2 nx-1 nx |
| 470 |
|
|
c ----|-----|-----| - - - + - - |
| 471 |
|
|
c ~~~~~~~~~~~~~~~~~~~~~~~~x |
| 472 |
|
|
c |
| 473 |
|
|
c in this case cube = nx-1 |
| 474 |
|
|
|
| 475 |
|
|
if (cube(1).le.0) cube(1) = 1 |
| 476 |
|
|
if (cube(2).le.0) cube(2) = 1 |
| 477 |
|
|
if (cube(3).le.0) cube(3) = 1 |
| 478 |
|
|
if (cube(1).ge.nox) cube(1) = nox-1 |
| 479 |
|
|
if (cube(2).ge.noy) cube(2) = noy-1 |
| 480 |
|
|
if (cube(3).ge.noz) cube(3) = noz-1 |
| 481 |
|
|
|
| 482 |
|
|
|
| 483 |
|
|
c------------------------------------------------------------------------ |
| 484 |
|
|
c |
| 485 |
|
|
c temporary variables definition for field computation |
| 486 |
|
|
c |
| 487 |
|
|
c------------------------------------------------------------------------ |
| 488 |
|
|
|
| 489 |
|
|
xl = pox(cube(1),ic) !X coordinates of cube vertexes |
| 490 |
|
|
xh = pox(cube(1)+1,ic) |
| 491 |
|
|
|
| 492 |
|
|
yl = poy(cube(2),ic) !Y coordinates of cube vertexes |
| 493 |
|
|
yh = poy(cube(2)+1,ic) |
| 494 |
|
|
|
| 495 |
|
|
zl = poz(cube(3),ic) !Z coordinates of cube vertexes |
| 496 |
|
|
zh = poz(cube(3)+1,ic) |
| 497 |
|
|
|
| 498 |
|
|
xr = (x-xl) / (xh-xl) !reduced variables |
| 499 |
|
|
yr = (y-yl) / (yh-yl) |
| 500 |
|
|
zr = (z-zl) / (zh-zl) |
| 501 |
|
|
|
| 502 |
|
|
Bp(1) = bo(cube(1) ,cube(2) ,cube(3) ,ic) !ic-th component of B |
| 503 |
|
|
Bp(2) = bo(cube(1)+1,cube(2) ,cube(3) ,ic) ! on the eight cube |
| 504 |
|
|
Bp(3) = bo(cube(1) ,cube(2)+1,cube(3) ,ic) ! vertexes |
| 505 |
|
|
Bp(4) = bo(cube(1)+1,cube(2)+1,cube(3) ,ic) |
| 506 |
|
|
Bp(5) = bo(cube(1) ,cube(2) ,cube(3)+1,ic) |
| 507 |
|
|
Bp(6) = bo(cube(1)+1,cube(2) ,cube(3)+1,ic) |
| 508 |
|
|
Bp(7) = bo(cube(1) ,cube(2)+1,cube(3)+1,ic) |
| 509 |
|
|
Bp(8) = bo(cube(1)+1,cube(2)+1,cube(3)+1,ic) |
| 510 |
|
|
|
| 511 |
|
|
c------------------------------------------------------------------------ |
| 512 |
|
|
c |
| 513 |
|
|
c computes interpolated ic-th component of B in (x,y,z) |
| 514 |
|
|
c |
| 515 |
|
|
c------------------------------------------------------------------------ |
| 516 |
|
|
|
| 517 |
|
|
res(ic) = |
| 518 |
|
|
+ Bp(1)*(1-xr)*(1-yr)*(1-zr) + |
| 519 |
|
|
+ Bp(2)*xr*(1-yr)*(1-zr) + |
| 520 |
|
|
+ Bp(3)*(1-xr)*yr*(1-zr) + |
| 521 |
|
|
+ Bp(4)*xr*yr*(1-zr) + |
| 522 |
|
|
+ Bp(5)*(1-xr)*(1-yr)*zr + |
| 523 |
|
|
+ Bp(6)*xr*(1-yr)*zr + |
| 524 |
|
|
+ Bp(7)*(1-xr)*yr*zr + |
| 525 |
|
|
+ Bp(8)*xr*yr*zr |
| 526 |
|
|
|
| 527 |
|
|
|
| 528 |
|
|
enddo |
| 529 |
|
|
|
| 530 |
|
|
c LOWER MAP |
| 531 |
|
|
c ---> up/down simmetry |
| 532 |
|
|
if(zin.le.edgelzmax)then |
| 533 |
|
|
z=-z !back to initial ccoordinate |
| 534 |
|
|
res(3)=-res(3) !invert BZ component |
| 535 |
|
|
endif |
| 536 |
|
|
|
| 537 |
|
|
return |
| 538 |
|
|
end |