| 28 |
C. ****************************************************************** |
C. ****************************************************************** |
| 29 |
C. |
C. |
| 30 |
IMPLICIT DOUBLE PRECISION(A-H,O-Z) |
IMPLICIT DOUBLE PRECISION(A-H,O-Z) |
| 31 |
|
COMMON/DELTAB/DELTA0,DELTA1,DLT |
| 32 |
* |
* |
| 33 |
REAL VVV(3),FFF(3) |
REAL VVV(3),FFF(3) |
| 34 |
REAL*8 CHARGE, STEP, VECT(*), VOUT(*), F(4) |
REAL*8 CHARGE, STEP, VECT(*), VOUT(*), F(4) |
| 38 |
+ (XT,XYZT(1)),(YT,XYZT(2)),(ZT,XYZT(3)) |
+ (XT,XYZT(1)),(YT,XYZT(2)),(ZT,XYZT(3)) |
| 39 |
* |
* |
| 40 |
PARAMETER (MAXIT = 1992, MAXCUT = 11) |
PARAMETER (MAXIT = 1992, MAXCUT = 11) |
| 41 |
PARAMETER (EC=2.9979251D-4,DLT=1D-4,DLT32=DLT/32) |
cPP PARAMETER (EC=2.9979251D-4,DLT=1D-4,DLT32=DLT/32) |
| 42 |
PARAMETER (ZERO=0, ONE=1, TWO=2, THREE=3) |
PARAMETER (EC=2.99792458D-4) |
| 43 |
|
cPP PARAMETER (ZERO=0, ONE=1, TWO=2, THREE=3) |
| 44 |
|
PARAMETER (ZERO=0.D0, ONE=1.D0, TWO=2.D0, THREE=3.D0) |
| 45 |
PARAMETER (THIRD=ONE/THREE, HALF=ONE/TWO) |
PARAMETER (THIRD=ONE/THREE, HALF=ONE/TWO) |
| 46 |
PARAMETER (PISQUA=.986960440109D+01) |
PARAMETER (PISQUA=.986960440109D+01) |
| 47 |
PARAMETER (IX=1,IY=2,IZ=3,IPX=4,IPY=5,IPZ=6) |
PARAMETER (IX=1,IY=2,IZ=3,IPX=4,IPY=5,IPZ=6) |
| 48 |
|
|
| 49 |
|
REAL*8 DELTAB(3) |
| 50 |
|
REAL*8 DLT32 |
| 51 |
|
DLT32=DLT/32. |
| 52 |
|
|
| 53 |
*. |
*. |
| 54 |
*. ------------------------------------------------------------------ |
*. ------------------------------------------------------------------ |
| 55 |
*. |
*. |
| 56 |
* This constant is for units CM,GEV/C and KGAUSS |
* This constant is for units CM,GEV/C and KGAUSS |
| 57 |
* |
* |
| 58 |
|
|
| 59 |
ITER = 0 |
ITER = 0 |
| 60 |
NCUT = 0 |
NCUT = 0 |
| 61 |
DO 10 J=1,7 |
DO 10 J=1,7 |
| 77 |
DO I=1,3 |
DO I=1,3 |
| 78 |
F(I)=DBLE(FFF(I)) |
F(I)=DBLE(FFF(I)) |
| 79 |
ENDDO |
ENDDO |
| 80 |
|
DELTAB(2) = -F(2)*VECT(7)*CHARGE*(DELTA0+DELTA1*VVV(2)) |
| 81 |
|
F(2) = F(2)+DELTAB(2) |
| 82 |
|
cPP ----------------- |
| 83 |
* |
* |
| 84 |
* Start of integration |
* Start of integration |
| 85 |
* |
* |
| 117 |
CALL GUFLD(VVV,FFF) |
CALL GUFLD(VVV,FFF) |
| 118 |
DO I=1,3 |
DO I=1,3 |
| 119 |
F(I)=DBLE(FFF(I)) |
F(I)=DBLE(FFF(I)) |
| 120 |
ENDDO |
ENDDO |
| 121 |
|
DELTAB(2) = -F(2)*VECT(7)*CHARGE*(DELTA0+DELTA1*VVV(2)) |
| 122 |
|
F(2) = F(2)+DELTAB(2) |
| 123 |
|
cPP ----------------- |
| 124 |
C CALL GUFLD(XYZT,F) |
C CALL GUFLD(XYZT,F) |
| 125 |
AT = A + SECXS(1) |
AT = A + SECXS(1) |
| 126 |
BT = B + SECYS(1) |
BT = B + SECYS(1) |
| 155 |
DO I=1,3 |
DO I=1,3 |
| 156 |
F(I)=DBLE(FFF(I)) |
F(I)=DBLE(FFF(I)) |
| 157 |
ENDDO |
ENDDO |
| 158 |
|
DELTAB(2) = -F(2)*VECT(7)*CHARGE*(DELTA0+DELTA1*VVV(2)) |
| 159 |
|
F(2) = F(2)+DELTAB(2) |
| 160 |
|
cPP ----------------- |
| 161 |
C CALL GUFLD(XYZT,F) |
C CALL GUFLD(XYZT,F) |
| 162 |
* |
* |
| 163 |
Z = Z + (C + (SECZS(1) + SECZS(2) + SECZS(3)) * THIRD) * H |
Z = Z + (C + (SECZS(1) + SECZS(2) + SECZS(3)) * THIRD) * H |
| 254 |
* |
* |
| 255 |
* |
* |
| 256 |
|
|
| 257 |
********************************************************************** |
c$$$********************************************************************** |
| 258 |
* |
c$$$* |
| 259 |
* |
c$$$* |
| 260 |
* routine per tracciare la particella di uno STEP |
c$$$* routine per tracciare la particella di uno STEP |
| 261 |
* *** extended version *** |
c$$$* *** extended version *** |
| 262 |
* it return also the track-length |
c$$$* it return also the track-length |
| 263 |
* |
c$$$* |
| 264 |
SUBROUTINE GRKUTA2 (CHARGE,STEP,VECT,VOUT) |
c$$$ SUBROUTINE GRKUTA2 (CHARGE,STEP,VECT,VOUT) |
| 265 |
C. |
c$$$C. |
| 266 |
C. ****************************************************************** |
c$$$C. ****************************************************************** |
| 267 |
C. * * |
c$$$C. * * |
| 268 |
C. * Runge-Kutta method for tracking a particle through a magnetic * |
c$$$C. * Runge-Kutta method for tracking a particle through a magnetic * |
| 269 |
C. * field. Uses Nystroem algorithm (See Handbook Nat. Bur. of * |
c$$$C. * field. Uses Nystroem algorithm (See Handbook Nat. Bur. of * |
| 270 |
C. * Standards, procedure 25.5.20) * |
c$$$C. * Standards, procedure 25.5.20) * |
| 271 |
C. * * |
c$$$C. * * |
| 272 |
C. * Input parameters * |
c$$$C. * Input parameters * |
| 273 |
C. * CHARGE Particle charge * |
c$$$C. * CHARGE Particle charge * |
| 274 |
C. * STEP Step size * |
c$$$C. * STEP Step size * |
| 275 |
C. * VECT Initial co-ords,direction cosines,momentum * |
c$$$C. * VECT Initial co-ords,direction cosines,momentum * |
| 276 |
C. * Output parameters * |
c$$$C. * Output parameters * |
| 277 |
C. * VOUT Output co-ords,direction cosines,momentum * |
c$$$C. * VOUT Output co-ords,direction cosines,momentum * |
| 278 |
C. * User routine called * |
c$$$C. * User routine called * |
| 279 |
C. * CALL GUFLD(X,F) * |
c$$$C. * CALL GUFLD(X,F) * |
| 280 |
C. * * |
c$$$C. * * |
| 281 |
C. * ==>Called by : <USER>, GUSWIM * |
c$$$C. * ==>Called by : <USER>, GUSWIM * |
| 282 |
C. * Authors R.Brun, M.Hansroul ********* * |
c$$$C. * Authors R.Brun, M.Hansroul ********* * |
| 283 |
C. * V.Perevoztchikov (CUT STEP implementation) * |
c$$$C. * V.Perevoztchikov (CUT STEP implementation) * |
| 284 |
C. * * |
c$$$C. * * |
| 285 |
C. * * |
c$$$C. * * |
| 286 |
C. ****************************************************************** |
c$$$C. ****************************************************************** |
| 287 |
C. |
c$$$C. |
| 288 |
IMPLICIT DOUBLE PRECISION(A-H,O-Z) |
c$$$ IMPLICIT DOUBLE PRECISION(A-H,O-Z) |
| 289 |
* |
c$$$* |
| 290 |
REAL VVV(3),FFF(3) |
c$$$ REAL VVV(3),FFF(3) |
| 291 |
REAL*8 CHARGE, STEP, VECT(*), VOUT(*), F(4) |
c$$$ REAL*8 CHARGE, STEP, VECT(*), VOUT(*), F(4) |
| 292 |
REAL*8 XYZT(3), XYZ(3), X, Y, Z, XT, YT, ZT |
c$$$ REAL*8 XYZT(3), XYZ(3), X, Y, Z, XT, YT, ZT |
| 293 |
DIMENSION SECXS(4),SECYS(4),SECZS(4),HXP(3) |
c$$$ DIMENSION SECXS(4),SECYS(4),SECZS(4),HXP(3) |
| 294 |
EQUIVALENCE (X,XYZ(1)),(Y,XYZ(2)),(Z,XYZ(3)), |
c$$$ EQUIVALENCE (X,XYZ(1)),(Y,XYZ(2)),(Z,XYZ(3)), |
| 295 |
+ (XT,XYZT(1)),(YT,XYZT(2)),(ZT,XYZT(3)) |
c$$$ + (XT,XYZT(1)),(YT,XYZT(2)),(ZT,XYZT(3)) |
| 296 |
* |
c$$$* |
| 297 |
PARAMETER (MAXIT = 1992, MAXCUT = 11) |
c$$$ PARAMETER (MAXIT = 1992, MAXCUT = 11) |
| 298 |
PARAMETER (EC=2.9979251D-4,DLT=1D-4,DLT32=DLT/32) |
c$$$ PARAMETER (EC=2.9979251D-4,DLT=1D-4,DLT32=DLT/32) |
| 299 |
PARAMETER (ZERO=0, ONE=1, TWO=2, THREE=3) |
c$$$ PARAMETER (ZERO=0, ONE=1, TWO=2, THREE=3) |
| 300 |
PARAMETER (THIRD=ONE/THREE, HALF=ONE/TWO) |
c$$$ PARAMETER (THIRD=ONE/THREE, HALF=ONE/TWO) |
| 301 |
PARAMETER (PISQUA=.986960440109D+01) |
c$$$ PARAMETER (PISQUA=.986960440109D+01) |
| 302 |
PARAMETER (IX=1,IY=2,IZ=3,IPX=4,IPY=5,IPZ=6) |
c$$$ PARAMETER (IX=1,IY=2,IZ=3,IPX=4,IPY=5,IPZ=6) |
| 303 |
|
c$$$ |
| 304 |
* track length |
c$$$* track length |
| 305 |
REAL*8 DL |
c$$$ REAL*8 DL |
| 306 |
|
c$$$ |
| 307 |
*. |
c$$$*. |
| 308 |
*. ------------------------------------------------------------------ |
c$$$*. ------------------------------------------------------------------ |
| 309 |
*. |
c$$$*. |
| 310 |
* This constant is for units CM,GEV/C and KGAUSS |
c$$$* This constant is for units CM,GEV/C and KGAUSS |
| 311 |
* |
c$$$* |
| 312 |
ITER = 0 |
c$$$ ITER = 0 |
| 313 |
NCUT = 0 |
c$$$ NCUT = 0 |
| 314 |
DO 10 J=1,8 |
c$$$ DO 10 J=1,8 |
| 315 |
VOUT(J)=VECT(J) |
c$$$ VOUT(J)=VECT(J) |
| 316 |
10 CONTINUE |
c$$$ 10 CONTINUE |
| 317 |
PINV = EC * CHARGE / VECT(7) |
c$$$ PINV = EC * CHARGE / VECT(7) |
| 318 |
TL = 0. |
c$$$ TL = 0. |
| 319 |
H = STEP |
c$$$ H = STEP |
| 320 |
|
c$$$ |
| 321 |
c print*,'===================== START GRKUTA2' |
c$$$c print*,'===================== START GRKUTA2' |
| 322 |
|
c$$$ |
| 323 |
* |
c$$$* |
| 324 |
* |
c$$$* |
| 325 |
20 REST = STEP-TL |
c$$$ 20 REST = STEP-TL |
| 326 |
IF (DABS(H).GT.DABS(REST)) H = REST |
c$$$ IF (DABS(H).GT.DABS(REST)) H = REST |
| 327 |
DO I=1,3 |
c$$$ DO I=1,3 |
| 328 |
VVV(I)=SNGL(VOUT(I)) |
c$$$ VVV(I)=SNGL(VOUT(I)) |
| 329 |
ENDDO |
c$$$ ENDDO |
| 330 |
|
c$$$ |
| 331 |
CALL GUFLD(VVV,FFF) |
c$$$ CALL GUFLD(VVV,FFF) |
| 332 |
* print*,'GRKUTA Bx,By,Bz: ',(FFF(i),i=1,3) |
c$$$* print*,'GRKUTA Bx,By,Bz: ',(FFF(i),i=1,3) |
| 333 |
DO I=1,3 |
c$$$ DO I=1,3 |
| 334 |
F(I)=DBLE(FFF(I)) |
c$$$ F(I)=DBLE(FFF(I)) |
| 335 |
ENDDO |
c$$$ ENDDO |
| 336 |
* |
c$$$* |
| 337 |
* Start of integration |
c$$$* Start of integration |
| 338 |
* |
c$$$* |
| 339 |
X = VOUT(1) |
c$$$ X = VOUT(1) |
| 340 |
Y = VOUT(2) |
c$$$ Y = VOUT(2) |
| 341 |
Z = VOUT(3) |
c$$$ Z = VOUT(3) |
| 342 |
A = VOUT(4) |
c$$$ A = VOUT(4) |
| 343 |
B = VOUT(5) |
c$$$ B = VOUT(5) |
| 344 |
C = VOUT(6) |
c$$$ C = VOUT(6) |
| 345 |
|
c$$$ |
| 346 |
DL = VOUT(8) |
c$$$ DL = VOUT(8) |
| 347 |
|
c$$$ |
| 348 |
* |
c$$$* |
| 349 |
H2 = HALF * H |
c$$$ H2 = HALF * H |
| 350 |
H4 = HALF * H2 |
c$$$ H4 = HALF * H2 |
| 351 |
PH = PINV * H |
c$$$ PH = PINV * H |
| 352 |
PH2 = HALF * PH |
c$$$ PH2 = HALF * PH |
| 353 |
SECXS(1) = (B * F(3) - C * F(2)) * PH2 |
c$$$ SECXS(1) = (B * F(3) - C * F(2)) * PH2 |
| 354 |
SECYS(1) = (C * F(1) - A * F(3)) * PH2 |
c$$$ SECYS(1) = (C * F(1) - A * F(3)) * PH2 |
| 355 |
SECZS(1) = (A * F(2) - B * F(1)) * PH2 |
c$$$ SECZS(1) = (A * F(2) - B * F(1)) * PH2 |
| 356 |
ANG2 = (SECXS(1)**2 + SECYS(1)**2 + SECZS(1)**2) |
c$$$ ANG2 = (SECXS(1)**2 + SECYS(1)**2 + SECZS(1)**2) |
| 357 |
IF (ANG2.GT.PISQUA) GO TO 40 |
c$$$ IF (ANG2.GT.PISQUA) GO TO 40 |
| 358 |
DXT = H2 * A + H4 * SECXS(1) |
c$$$ DXT = H2 * A + H4 * SECXS(1) |
| 359 |
DYT = H2 * B + H4 * SECYS(1) |
c$$$ DYT = H2 * B + H4 * SECYS(1) |
| 360 |
DZT = H2 * C + H4 * SECZS(1) |
c$$$ DZT = H2 * C + H4 * SECZS(1) |
| 361 |
XT = X + DXT |
c$$$ XT = X + DXT |
| 362 |
YT = Y + DYT |
c$$$ YT = Y + DYT |
| 363 |
ZT = Z + DZT |
c$$$ ZT = Z + DZT |
| 364 |
* |
c$$$* |
| 365 |
* Second intermediate point |
c$$$* Second intermediate point |
| 366 |
* |
c$$$* |
| 367 |
EST = DABS(DXT)+DABS(DYT)+DABS(DZT) |
c$$$ EST = DABS(DXT)+DABS(DYT)+DABS(DZT) |
| 368 |
IF (EST.GT.H) GO TO 30 |
c$$$ IF (EST.GT.H) GO TO 30 |
| 369 |
|
c$$$ |
| 370 |
DO I=1,3 |
c$$$ DO I=1,3 |
| 371 |
VVV(I)=SNGL(XYZT(I)) |
c$$$ VVV(I)=SNGL(XYZT(I)) |
| 372 |
ENDDO |
c$$$ ENDDO |
| 373 |
CALL GUFLD(VVV,FFF) |
c$$$ CALL GUFLD(VVV,FFF) |
| 374 |
DO I=1,3 |
c$$$ DO I=1,3 |
| 375 |
F(I)=DBLE(FFF(I)) |
c$$$ F(I)=DBLE(FFF(I)) |
| 376 |
ENDDO |
c$$$ ENDDO |
| 377 |
C CALL GUFLD(XYZT,F) |
c$$$C CALL GUFLD(XYZT,F) |
| 378 |
AT = A + SECXS(1) |
c$$$ AT = A + SECXS(1) |
| 379 |
BT = B + SECYS(1) |
c$$$ BT = B + SECYS(1) |
| 380 |
CT = C + SECZS(1) |
c$$$ CT = C + SECZS(1) |
| 381 |
* |
c$$$* |
| 382 |
SECXS(2) = (BT * F(3) - CT * F(2)) * PH2 |
c$$$ SECXS(2) = (BT * F(3) - CT * F(2)) * PH2 |
| 383 |
SECYS(2) = (CT * F(1) - AT * F(3)) * PH2 |
c$$$ SECYS(2) = (CT * F(1) - AT * F(3)) * PH2 |
| 384 |
SECZS(2) = (AT * F(2) - BT * F(1)) * PH2 |
c$$$ SECZS(2) = (AT * F(2) - BT * F(1)) * PH2 |
| 385 |
AT = A + SECXS(2) |
c$$$ AT = A + SECXS(2) |
| 386 |
BT = B + SECYS(2) |
c$$$ BT = B + SECYS(2) |
| 387 |
CT = C + SECZS(2) |
c$$$ CT = C + SECZS(2) |
| 388 |
SECXS(3) = (BT * F(3) - CT * F(2)) * PH2 |
c$$$ SECXS(3) = (BT * F(3) - CT * F(2)) * PH2 |
| 389 |
SECYS(3) = (CT * F(1) - AT * F(3)) * PH2 |
c$$$ SECYS(3) = (CT * F(1) - AT * F(3)) * PH2 |
| 390 |
SECZS(3) = (AT * F(2) - BT * F(1)) * PH2 |
c$$$ SECZS(3) = (AT * F(2) - BT * F(1)) * PH2 |
| 391 |
DXT = H * (A + SECXS(3)) |
c$$$ DXT = H * (A + SECXS(3)) |
| 392 |
DYT = H * (B + SECYS(3)) |
c$$$ DYT = H * (B + SECYS(3)) |
| 393 |
DZT = H * (C + SECZS(3)) |
c$$$ DZT = H * (C + SECZS(3)) |
| 394 |
XT = X + DXT |
c$$$ XT = X + DXT |
| 395 |
YT = Y + DYT |
c$$$ YT = Y + DYT |
| 396 |
ZT = Z + DZT |
c$$$ ZT = Z + DZT |
| 397 |
AT = A + TWO*SECXS(3) |
c$$$ AT = A + TWO*SECXS(3) |
| 398 |
BT = B + TWO*SECYS(3) |
c$$$ BT = B + TWO*SECYS(3) |
| 399 |
CT = C + TWO*SECZS(3) |
c$$$ CT = C + TWO*SECZS(3) |
| 400 |
* |
c$$$* |
| 401 |
EST = ABS(DXT)+ABS(DYT)+ABS(DZT) |
c$$$ EST = ABS(DXT)+ABS(DYT)+ABS(DZT) |
| 402 |
IF (EST.GT.2.*ABS(H)) GO TO 30 |
c$$$ IF (EST.GT.2.*ABS(H)) GO TO 30 |
| 403 |
|
c$$$ |
| 404 |
DO I=1,3 |
c$$$ DO I=1,3 |
| 405 |
VVV(I)=SNGL(XYZT(I)) |
c$$$ VVV(I)=SNGL(XYZT(I)) |
| 406 |
ENDDO |
c$$$ ENDDO |
| 407 |
CALL GUFLD(VVV,FFF) |
c$$$ CALL GUFLD(VVV,FFF) |
| 408 |
DO I=1,3 |
c$$$ DO I=1,3 |
| 409 |
F(I)=DBLE(FFF(I)) |
c$$$ F(I)=DBLE(FFF(I)) |
| 410 |
ENDDO |
c$$$ ENDDO |
| 411 |
C CALL GUFLD(XYZT,F) |
c$$$C CALL GUFLD(XYZT,F) |
| 412 |
* |
c$$$* |
| 413 |
Z = Z + (C + (SECZS(1) + SECZS(2) + SECZS(3)) * THIRD) * H |
c$$$ Z = Z + (C + (SECZS(1) + SECZS(2) + SECZS(3)) * THIRD) * H |
| 414 |
Y = Y + (B + (SECYS(1) + SECYS(2) + SECYS(3)) * THIRD) * H |
c$$$ Y = Y + (B + (SECYS(1) + SECYS(2) + SECYS(3)) * THIRD) * H |
| 415 |
X = X + (A + (SECXS(1) + SECXS(2) + SECXS(3)) * THIRD) * H |
c$$$ X = X + (A + (SECXS(1) + SECXS(2) + SECXS(3)) * THIRD) * H |
| 416 |
* |
c$$$* |
| 417 |
SECXS(4) = (BT*F(3) - CT*F(2))* PH2 |
c$$$ SECXS(4) = (BT*F(3) - CT*F(2))* PH2 |
| 418 |
SECYS(4) = (CT*F(1) - AT*F(3))* PH2 |
c$$$ SECYS(4) = (CT*F(1) - AT*F(3))* PH2 |
| 419 |
SECZS(4) = (AT*F(2) - BT*F(1))* PH2 |
c$$$ SECZS(4) = (AT*F(2) - BT*F(1))* PH2 |
| 420 |
A = A+(SECXS(1)+SECXS(4)+TWO * (SECXS(2)+SECXS(3))) * THIRD |
c$$$ A = A+(SECXS(1)+SECXS(4)+TWO * (SECXS(2)+SECXS(3))) * THIRD |
| 421 |
B = B+(SECYS(1)+SECYS(4)+TWO * (SECYS(2)+SECYS(3))) * THIRD |
c$$$ B = B+(SECYS(1)+SECYS(4)+TWO * (SECYS(2)+SECYS(3))) * THIRD |
| 422 |
C = C+(SECZS(1)+SECZS(4)+TWO * (SECZS(2)+SECZS(3))) * THIRD |
c$$$ C = C+(SECZS(1)+SECZS(4)+TWO * (SECZS(2)+SECZS(3))) * THIRD |
| 423 |
* |
c$$$* |
| 424 |
EST = ABS(SECXS(1)+SECXS(4) - (SECXS(2)+SECXS(3))) |
c$$$ EST = ABS(SECXS(1)+SECXS(4) - (SECXS(2)+SECXS(3))) |
| 425 |
++ ABS(SECYS(1)+SECYS(4) - (SECYS(2)+SECYS(3))) |
c$$$ ++ ABS(SECYS(1)+SECYS(4) - (SECYS(2)+SECYS(3))) |
| 426 |
++ ABS(SECZS(1)+SECZS(4) - (SECZS(2)+SECZS(3))) |
c$$$ ++ ABS(SECZS(1)+SECZS(4) - (SECZS(2)+SECZS(3))) |
| 427 |
* |
c$$$* |
| 428 |
IF (EST.GT.DLT .AND. ABS(H).GT.1.E-4) GO TO 30 |
c$$$ IF (EST.GT.DLT .AND. ABS(H).GT.1.E-4) GO TO 30 |
| 429 |
|
c$$$ |
| 430 |
ITER = ITER + 1 |
c$$$ ITER = ITER + 1 |
| 431 |
NCUT = 0 |
c$$$ NCUT = 0 |
| 432 |
* If too many iterations, go to HELIX |
c$$$* If too many iterations, go to HELIX |
| 433 |
IF (ITER.GT.MAXIT) GO TO 40 |
c$$$ IF (ITER.GT.MAXIT) GO TO 40 |
| 434 |
* |
c$$$* |
| 435 |
DL = VOUT(8) + |
c$$$ DL = VOUT(8) + |
| 436 |
$ DSQRT( 0 |
c$$$ $ DSQRT( 0 |
| 437 |
$ + (X-VOUT(1))**2 |
c$$$ $ + (X-VOUT(1))**2 |
| 438 |
$ + (Y-VOUT(2))**2 |
c$$$ $ + (Y-VOUT(2))**2 |
| 439 |
$ + (Z-VOUT(3))**2 |
c$$$ $ + (Z-VOUT(3))**2 |
| 440 |
$ ) |
c$$$ $ ) |
| 441 |
c print*,'- ',VOUT(3),z,VOUT(1),x,VOUT(2),y,DL |
c$$$c print*,'- ',VOUT(3),z,VOUT(1),x,VOUT(2),y,DL |
| 442 |
* |
c$$$* |
| 443 |
TL = TL + H |
c$$$ TL = TL + H |
| 444 |
IF (EST.LT.(DLT32)) THEN |
c$$$ IF (EST.LT.(DLT32)) THEN |
| 445 |
H = H*TWO |
c$$$ H = H*TWO |
| 446 |
ENDIF |
c$$$ ENDIF |
| 447 |
CBA = ONE/ SQRT(A*A + B*B + C*C) |
c$$$ CBA = ONE/ SQRT(A*A + B*B + C*C) |
| 448 |
VOUT(1) = X |
c$$$ VOUT(1) = X |
| 449 |
VOUT(2) = Y |
c$$$ VOUT(2) = Y |
| 450 |
VOUT(3) = Z |
c$$$ VOUT(3) = Z |
| 451 |
VOUT(4) = CBA*A |
c$$$ VOUT(4) = CBA*A |
| 452 |
VOUT(5) = CBA*B |
c$$$ VOUT(5) = CBA*B |
| 453 |
VOUT(6) = CBA*C |
c$$$ VOUT(6) = CBA*C |
| 454 |
VOUT(8) = DL |
c$$$ VOUT(8) = DL |
| 455 |
REST = STEP - TL |
c$$$ REST = STEP - TL |
| 456 |
IF (STEP.LT.0.) REST = -REST |
c$$$ IF (STEP.LT.0.) REST = -REST |
| 457 |
IF (REST .GT. 1.E-5*DABS(STEP)) GO TO 20 |
c$$$ IF (REST .GT. 1.E-5*DABS(STEP)) GO TO 20 |
| 458 |
* |
c$$$* |
| 459 |
GO TO 999 |
c$$$ GO TO 999 |
| 460 |
* |
c$$$* |
| 461 |
** CUT STEP |
c$$$** CUT STEP |
| 462 |
30 NCUT = NCUT + 1 |
c$$$ 30 NCUT = NCUT + 1 |
| 463 |
* If too many cuts , go to HELIX |
c$$$* If too many cuts , go to HELIX |
| 464 |
IF (NCUT.GT.MAXCUT) GO TO 40 |
c$$$ IF (NCUT.GT.MAXCUT) GO TO 40 |
| 465 |
H = H*HALF |
c$$$ H = H*HALF |
| 466 |
GO TO 20 |
c$$$ GO TO 20 |
| 467 |
* |
c$$$* |
| 468 |
** ANGLE TOO BIG, USE HELIX |
c$$$** ANGLE TOO BIG, USE HELIX |
| 469 |
40 F1 = F(1) |
c$$$ 40 F1 = F(1) |
| 470 |
F2 = F(2) |
c$$$ F2 = F(2) |
| 471 |
F3 = F(3) |
c$$$ F3 = F(3) |
| 472 |
F4 = DSQRT(F1**2+F2**2+F3**2) |
c$$$ F4 = DSQRT(F1**2+F2**2+F3**2) |
| 473 |
RHO = -F4*PINV |
c$$$ RHO = -F4*PINV |
| 474 |
TET = RHO * STEP |
c$$$ TET = RHO * STEP |
| 475 |
IF(TET.NE.0.) THEN |
c$$$ IF(TET.NE.0.) THEN |
| 476 |
HNORM = ONE/F4 |
c$$$ HNORM = ONE/F4 |
| 477 |
F1 = F1*HNORM |
c$$$ F1 = F1*HNORM |
| 478 |
F2 = F2*HNORM |
c$$$ F2 = F2*HNORM |
| 479 |
F3 = F3*HNORM |
c$$$ F3 = F3*HNORM |
| 480 |
* |
c$$$* |
| 481 |
HXP(1) = F2*VECT(IPZ) - F3*VECT(IPY) |
c$$$ HXP(1) = F2*VECT(IPZ) - F3*VECT(IPY) |
| 482 |
HXP(2) = F3*VECT(IPX) - F1*VECT(IPZ) |
c$$$ HXP(2) = F3*VECT(IPX) - F1*VECT(IPZ) |
| 483 |
HXP(3) = F1*VECT(IPY) - F2*VECT(IPX) |
c$$$ HXP(3) = F1*VECT(IPY) - F2*VECT(IPX) |
| 484 |
|
c$$$ |
| 485 |
HP = F1*VECT(IPX) + F2*VECT(IPY) + F3*VECT(IPZ) |
c$$$ HP = F1*VECT(IPX) + F2*VECT(IPY) + F3*VECT(IPZ) |
| 486 |
* |
c$$$* |
| 487 |
RHO1 = ONE/RHO |
c$$$ RHO1 = ONE/RHO |
| 488 |
SINT = DSIN(TET) |
c$$$ SINT = DSIN(TET) |
| 489 |
COST = TWO*DSIN(HALF*TET)**2 |
c$$$ COST = TWO*DSIN(HALF*TET)**2 |
| 490 |
* |
c$$$* |
| 491 |
G1 = SINT*RHO1 |
c$$$ G1 = SINT*RHO1 |
| 492 |
G2 = COST*RHO1 |
c$$$ G2 = COST*RHO1 |
| 493 |
G3 = (TET-SINT) * HP*RHO1 |
c$$$ G3 = (TET-SINT) * HP*RHO1 |
| 494 |
G4 = -COST |
c$$$ G4 = -COST |
| 495 |
G5 = SINT |
c$$$ G5 = SINT |
| 496 |
G6 = COST * HP |
c$$$ G6 = COST * HP |
| 497 |
|
c$$$ |
| 498 |
VOUT(IX) = VECT(IX) + (G1*VECT(IPX) + G2*HXP(1) + G3*F1) |
c$$$ VOUT(IX) = VECT(IX) + (G1*VECT(IPX) + G2*HXP(1) + G3*F1) |
| 499 |
VOUT(IY) = VECT(IY) + (G1*VECT(IPY) + G2*HXP(2) + G3*F2) |
c$$$ VOUT(IY) = VECT(IY) + (G1*VECT(IPY) + G2*HXP(2) + G3*F2) |
| 500 |
VOUT(IZ) = VECT(IZ) + (G1*VECT(IPZ) + G2*HXP(3) + G3*F3) |
c$$$ VOUT(IZ) = VECT(IZ) + (G1*VECT(IPZ) + G2*HXP(3) + G3*F3) |
| 501 |
|
c$$$ |
| 502 |
VOUT(IPX) = VECT(IPX) + (G4*VECT(IPX) + G5*HXP(1) + G6*F1) |
c$$$ VOUT(IPX) = VECT(IPX) + (G4*VECT(IPX) + G5*HXP(1) + G6*F1) |
| 503 |
VOUT(IPY) = VECT(IPY) + (G4*VECT(IPY) + G5*HXP(2) + G6*F2) |
c$$$ VOUT(IPY) = VECT(IPY) + (G4*VECT(IPY) + G5*HXP(2) + G6*F2) |
| 504 |
VOUT(IPZ) = VECT(IPZ) + (G4*VECT(IPZ) + G5*HXP(3) + G6*F3) |
c$$$ VOUT(IPZ) = VECT(IPZ) + (G4*VECT(IPZ) + G5*HXP(3) + G6*F3) |
| 505 |
* |
c$$$* |
| 506 |
ELSE |
c$$$ ELSE |
| 507 |
VOUT(IX) = VECT(IX) + STEP*VECT(IPX) |
c$$$ VOUT(IX) = VECT(IX) + STEP*VECT(IPX) |
| 508 |
VOUT(IY) = VECT(IY) + STEP*VECT(IPY) |
c$$$ VOUT(IY) = VECT(IY) + STEP*VECT(IPY) |
| 509 |
VOUT(IZ) = VECT(IZ) + STEP*VECT(IPZ) |
c$$$ VOUT(IZ) = VECT(IZ) + STEP*VECT(IPZ) |
| 510 |
* |
c$$$* |
| 511 |
ENDIF |
c$$$ ENDIF |
| 512 |
* TEMP !!! TEMP !!! TEMP !!! TEMP !!! TEMP !!! TEMP !!! |
c$$$* TEMP !!! TEMP !!! TEMP !!! TEMP !!! TEMP !!! TEMP !!! |
| 513 |
* devo mettere la lunghezza dell'elica!!!!!!!!!!!!!! |
c$$$* devo mettere la lunghezza dell'elica!!!!!!!!!!!!!! |
| 514 |
* ma non mi riesce :-( |
c$$$* ma non mi riesce :-( |
| 515 |
VOUT(8) = DSQRT( 0 |
c$$$ VOUT(8) = DSQRT( 0 |
| 516 |
$ +(VOUT(IX)-VECT(IX))**2 |
c$$$ $ +(VOUT(IX)-VECT(IX))**2 |
| 517 |
$ +(VOUT(IY)-VECT(IY))**2 |
c$$$ $ +(VOUT(IY)-VECT(IY))**2 |
| 518 |
$ +(VOUT(IZ)-VECT(IZ))**2 |
c$$$ $ +(VOUT(IZ)-VECT(IZ))**2 |
| 519 |
$ ) |
c$$$ $ ) |
| 520 |
c print*,'WARNING: GRKUTA2 --> ' |
c$$$c print*,'WARNING: GRKUTA2 --> ' |
| 521 |
c $ ,'helix :-( ... length evaluated with straight line' |
c$$$c $ ,'helix :-( ... length evaluated with straight line' |
| 522 |
|
c$$$ |
| 523 |
* |
c$$$* |
| 524 |
999 END |
c$$$ 999 END |
| 525 |
* |
c$$$* |
| 526 |
* |
c$$$* |
| 527 |
|
|
| 528 |
********************************************************************** |
********************************************************************** |
| 529 |
* |
* |
| 545 |
c$$$ print*,'GUFLD: v ',v |
c$$$ print*,'GUFLD: v ',v |
| 546 |
call inter_B(vv(1),vv(2),vv(3),ff) |
call inter_B(vv(1),vv(2),vv(3),ff) |
| 547 |
do i=1,3 !change back the field in kGauss |
do i=1,3 !change back the field in kGauss |
| 548 |
f(i)=ff(i)*10. |
f(i)=REAL(ff(i)*10.) ! EM GCC4.7 |
| 549 |
enddo |
enddo |
| 550 |
c$$$ print*,'GUFLD: b ',f |
c$$$ print*,'GUFLD: b ',f |
| 551 |
|
|