254 |
* |
* |
255 |
* |
* |
256 |
|
|
257 |
********************************************************************** |
c$$$********************************************************************** |
258 |
* |
c$$$* |
259 |
* |
c$$$* |
260 |
* routine per tracciare la particella di uno STEP |
c$$$* routine per tracciare la particella di uno STEP |
261 |
* *** extended version *** |
c$$$* *** extended version *** |
262 |
* it return also the track-length |
c$$$* it return also the track-length |
263 |
* |
c$$$* |
264 |
SUBROUTINE GRKUTA2 (CHARGE,STEP,VECT,VOUT) |
c$$$ SUBROUTINE GRKUTA2 (CHARGE,STEP,VECT,VOUT) |
265 |
C. |
c$$$C. |
266 |
C. ****************************************************************** |
c$$$C. ****************************************************************** |
267 |
C. * * |
c$$$C. * * |
268 |
C. * Runge-Kutta method for tracking a particle through a magnetic * |
c$$$C. * Runge-Kutta method for tracking a particle through a magnetic * |
269 |
C. * field. Uses Nystroem algorithm (See Handbook Nat. Bur. of * |
c$$$C. * field. Uses Nystroem algorithm (See Handbook Nat. Bur. of * |
270 |
C. * Standards, procedure 25.5.20) * |
c$$$C. * Standards, procedure 25.5.20) * |
271 |
C. * * |
c$$$C. * * |
272 |
C. * Input parameters * |
c$$$C. * Input parameters * |
273 |
C. * CHARGE Particle charge * |
c$$$C. * CHARGE Particle charge * |
274 |
C. * STEP Step size * |
c$$$C. * STEP Step size * |
275 |
C. * VECT Initial co-ords,direction cosines,momentum * |
c$$$C. * VECT Initial co-ords,direction cosines,momentum * |
276 |
C. * Output parameters * |
c$$$C. * Output parameters * |
277 |
C. * VOUT Output co-ords,direction cosines,momentum * |
c$$$C. * VOUT Output co-ords,direction cosines,momentum * |
278 |
C. * User routine called * |
c$$$C. * User routine called * |
279 |
C. * CALL GUFLD(X,F) * |
c$$$C. * CALL GUFLD(X,F) * |
280 |
C. * * |
c$$$C. * * |
281 |
C. * ==>Called by : <USER>, GUSWIM * |
c$$$C. * ==>Called by : <USER>, GUSWIM * |
282 |
C. * Authors R.Brun, M.Hansroul ********* * |
c$$$C. * Authors R.Brun, M.Hansroul ********* * |
283 |
C. * V.Perevoztchikov (CUT STEP implementation) * |
c$$$C. * V.Perevoztchikov (CUT STEP implementation) * |
284 |
C. * * |
c$$$C. * * |
285 |
C. * * |
c$$$C. * * |
286 |
C. ****************************************************************** |
c$$$C. ****************************************************************** |
287 |
C. |
c$$$C. |
288 |
IMPLICIT DOUBLE PRECISION(A-H,O-Z) |
c$$$ IMPLICIT DOUBLE PRECISION(A-H,O-Z) |
289 |
* |
c$$$* |
290 |
REAL VVV(3),FFF(3) |
c$$$ REAL VVV(3),FFF(3) |
291 |
REAL*8 CHARGE, STEP, VECT(*), VOUT(*), F(4) |
c$$$ REAL*8 CHARGE, STEP, VECT(*), VOUT(*), F(4) |
292 |
REAL*8 XYZT(3), XYZ(3), X, Y, Z, XT, YT, ZT |
c$$$ REAL*8 XYZT(3), XYZ(3), X, Y, Z, XT, YT, ZT |
293 |
DIMENSION SECXS(4),SECYS(4),SECZS(4),HXP(3) |
c$$$ DIMENSION SECXS(4),SECYS(4),SECZS(4),HXP(3) |
294 |
EQUIVALENCE (X,XYZ(1)),(Y,XYZ(2)),(Z,XYZ(3)), |
c$$$ EQUIVALENCE (X,XYZ(1)),(Y,XYZ(2)),(Z,XYZ(3)), |
295 |
+ (XT,XYZT(1)),(YT,XYZT(2)),(ZT,XYZT(3)) |
c$$$ + (XT,XYZT(1)),(YT,XYZT(2)),(ZT,XYZT(3)) |
296 |
* |
c$$$* |
297 |
PARAMETER (MAXIT = 1992, MAXCUT = 11) |
c$$$ PARAMETER (MAXIT = 1992, MAXCUT = 11) |
298 |
PARAMETER (EC=2.9979251D-4,DLT=1D-4,DLT32=DLT/32) |
c$$$ PARAMETER (EC=2.9979251D-4,DLT=1D-4,DLT32=DLT/32) |
299 |
PARAMETER (ZERO=0, ONE=1, TWO=2, THREE=3) |
c$$$ PARAMETER (ZERO=0, ONE=1, TWO=2, THREE=3) |
300 |
PARAMETER (THIRD=ONE/THREE, HALF=ONE/TWO) |
c$$$ PARAMETER (THIRD=ONE/THREE, HALF=ONE/TWO) |
301 |
PARAMETER (PISQUA=.986960440109D+01) |
c$$$ PARAMETER (PISQUA=.986960440109D+01) |
302 |
PARAMETER (IX=1,IY=2,IZ=3,IPX=4,IPY=5,IPZ=6) |
c$$$ PARAMETER (IX=1,IY=2,IZ=3,IPX=4,IPY=5,IPZ=6) |
303 |
|
c$$$ |
304 |
* track length |
c$$$* track length |
305 |
REAL*8 DL |
c$$$ REAL*8 DL |
306 |
|
c$$$ |
307 |
*. |
c$$$*. |
308 |
*. ------------------------------------------------------------------ |
c$$$*. ------------------------------------------------------------------ |
309 |
*. |
c$$$*. |
310 |
* This constant is for units CM,GEV/C and KGAUSS |
c$$$* This constant is for units CM,GEV/C and KGAUSS |
311 |
* |
c$$$* |
312 |
ITER = 0 |
c$$$ ITER = 0 |
313 |
NCUT = 0 |
c$$$ NCUT = 0 |
314 |
DO 10 J=1,8 |
c$$$ DO 10 J=1,8 |
315 |
VOUT(J)=VECT(J) |
c$$$ VOUT(J)=VECT(J) |
316 |
10 CONTINUE |
c$$$ 10 CONTINUE |
317 |
PINV = EC * CHARGE / VECT(7) |
c$$$ PINV = EC * CHARGE / VECT(7) |
318 |
TL = 0. |
c$$$ TL = 0. |
319 |
H = STEP |
c$$$ H = STEP |
320 |
|
c$$$ |
321 |
c print*,'===================== START GRKUTA2' |
c$$$c print*,'===================== START GRKUTA2' |
322 |
|
c$$$ |
323 |
* |
c$$$* |
324 |
* |
c$$$* |
325 |
20 REST = STEP-TL |
c$$$ 20 REST = STEP-TL |
326 |
IF (DABS(H).GT.DABS(REST)) H = REST |
c$$$ IF (DABS(H).GT.DABS(REST)) H = REST |
327 |
DO I=1,3 |
c$$$ DO I=1,3 |
328 |
VVV(I)=SNGL(VOUT(I)) |
c$$$ VVV(I)=SNGL(VOUT(I)) |
329 |
ENDDO |
c$$$ ENDDO |
330 |
|
c$$$ |
331 |
CALL GUFLD(VVV,FFF) |
c$$$ CALL GUFLD(VVV,FFF) |
332 |
* print*,'GRKUTA Bx,By,Bz: ',(FFF(i),i=1,3) |
c$$$* print*,'GRKUTA Bx,By,Bz: ',(FFF(i),i=1,3) |
333 |
DO I=1,3 |
c$$$ DO I=1,3 |
334 |
F(I)=DBLE(FFF(I)) |
c$$$ F(I)=DBLE(FFF(I)) |
335 |
ENDDO |
c$$$ ENDDO |
336 |
* |
c$$$* |
337 |
* Start of integration |
c$$$* Start of integration |
338 |
* |
c$$$* |
339 |
X = VOUT(1) |
c$$$ X = VOUT(1) |
340 |
Y = VOUT(2) |
c$$$ Y = VOUT(2) |
341 |
Z = VOUT(3) |
c$$$ Z = VOUT(3) |
342 |
A = VOUT(4) |
c$$$ A = VOUT(4) |
343 |
B = VOUT(5) |
c$$$ B = VOUT(5) |
344 |
C = VOUT(6) |
c$$$ C = VOUT(6) |
345 |
|
c$$$ |
346 |
DL = VOUT(8) |
c$$$ DL = VOUT(8) |
347 |
|
c$$$ |
348 |
* |
c$$$* |
349 |
H2 = HALF * H |
c$$$ H2 = HALF * H |
350 |
H4 = HALF * H2 |
c$$$ H4 = HALF * H2 |
351 |
PH = PINV * H |
c$$$ PH = PINV * H |
352 |
PH2 = HALF * PH |
c$$$ PH2 = HALF * PH |
353 |
SECXS(1) = (B * F(3) - C * F(2)) * PH2 |
c$$$ SECXS(1) = (B * F(3) - C * F(2)) * PH2 |
354 |
SECYS(1) = (C * F(1) - A * F(3)) * PH2 |
c$$$ SECYS(1) = (C * F(1) - A * F(3)) * PH2 |
355 |
SECZS(1) = (A * F(2) - B * F(1)) * PH2 |
c$$$ SECZS(1) = (A * F(2) - B * F(1)) * PH2 |
356 |
ANG2 = (SECXS(1)**2 + SECYS(1)**2 + SECZS(1)**2) |
c$$$ ANG2 = (SECXS(1)**2 + SECYS(1)**2 + SECZS(1)**2) |
357 |
IF (ANG2.GT.PISQUA) GO TO 40 |
c$$$ IF (ANG2.GT.PISQUA) GO TO 40 |
358 |
DXT = H2 * A + H4 * SECXS(1) |
c$$$ DXT = H2 * A + H4 * SECXS(1) |
359 |
DYT = H2 * B + H4 * SECYS(1) |
c$$$ DYT = H2 * B + H4 * SECYS(1) |
360 |
DZT = H2 * C + H4 * SECZS(1) |
c$$$ DZT = H2 * C + H4 * SECZS(1) |
361 |
XT = X + DXT |
c$$$ XT = X + DXT |
362 |
YT = Y + DYT |
c$$$ YT = Y + DYT |
363 |
ZT = Z + DZT |
c$$$ ZT = Z + DZT |
364 |
* |
c$$$* |
365 |
* Second intermediate point |
c$$$* Second intermediate point |
366 |
* |
c$$$* |
367 |
EST = DABS(DXT)+DABS(DYT)+DABS(DZT) |
c$$$ EST = DABS(DXT)+DABS(DYT)+DABS(DZT) |
368 |
IF (EST.GT.H) GO TO 30 |
c$$$ IF (EST.GT.H) GO TO 30 |
369 |
|
c$$$ |
370 |
DO I=1,3 |
c$$$ DO I=1,3 |
371 |
VVV(I)=SNGL(XYZT(I)) |
c$$$ VVV(I)=SNGL(XYZT(I)) |
372 |
ENDDO |
c$$$ ENDDO |
373 |
CALL GUFLD(VVV,FFF) |
c$$$ CALL GUFLD(VVV,FFF) |
374 |
DO I=1,3 |
c$$$ DO I=1,3 |
375 |
F(I)=DBLE(FFF(I)) |
c$$$ F(I)=DBLE(FFF(I)) |
376 |
ENDDO |
c$$$ ENDDO |
377 |
C CALL GUFLD(XYZT,F) |
c$$$C CALL GUFLD(XYZT,F) |
378 |
AT = A + SECXS(1) |
c$$$ AT = A + SECXS(1) |
379 |
BT = B + SECYS(1) |
c$$$ BT = B + SECYS(1) |
380 |
CT = C + SECZS(1) |
c$$$ CT = C + SECZS(1) |
381 |
* |
c$$$* |
382 |
SECXS(2) = (BT * F(3) - CT * F(2)) * PH2 |
c$$$ SECXS(2) = (BT * F(3) - CT * F(2)) * PH2 |
383 |
SECYS(2) = (CT * F(1) - AT * F(3)) * PH2 |
c$$$ SECYS(2) = (CT * F(1) - AT * F(3)) * PH2 |
384 |
SECZS(2) = (AT * F(2) - BT * F(1)) * PH2 |
c$$$ SECZS(2) = (AT * F(2) - BT * F(1)) * PH2 |
385 |
AT = A + SECXS(2) |
c$$$ AT = A + SECXS(2) |
386 |
BT = B + SECYS(2) |
c$$$ BT = B + SECYS(2) |
387 |
CT = C + SECZS(2) |
c$$$ CT = C + SECZS(2) |
388 |
SECXS(3) = (BT * F(3) - CT * F(2)) * PH2 |
c$$$ SECXS(3) = (BT * F(3) - CT * F(2)) * PH2 |
389 |
SECYS(3) = (CT * F(1) - AT * F(3)) * PH2 |
c$$$ SECYS(3) = (CT * F(1) - AT * F(3)) * PH2 |
390 |
SECZS(3) = (AT * F(2) - BT * F(1)) * PH2 |
c$$$ SECZS(3) = (AT * F(2) - BT * F(1)) * PH2 |
391 |
DXT = H * (A + SECXS(3)) |
c$$$ DXT = H * (A + SECXS(3)) |
392 |
DYT = H * (B + SECYS(3)) |
c$$$ DYT = H * (B + SECYS(3)) |
393 |
DZT = H * (C + SECZS(3)) |
c$$$ DZT = H * (C + SECZS(3)) |
394 |
XT = X + DXT |
c$$$ XT = X + DXT |
395 |
YT = Y + DYT |
c$$$ YT = Y + DYT |
396 |
ZT = Z + DZT |
c$$$ ZT = Z + DZT |
397 |
AT = A + TWO*SECXS(3) |
c$$$ AT = A + TWO*SECXS(3) |
398 |
BT = B + TWO*SECYS(3) |
c$$$ BT = B + TWO*SECYS(3) |
399 |
CT = C + TWO*SECZS(3) |
c$$$ CT = C + TWO*SECZS(3) |
400 |
* |
c$$$* |
401 |
EST = ABS(DXT)+ABS(DYT)+ABS(DZT) |
c$$$ EST = ABS(DXT)+ABS(DYT)+ABS(DZT) |
402 |
IF (EST.GT.2.*ABS(H)) GO TO 30 |
c$$$ IF (EST.GT.2.*ABS(H)) GO TO 30 |
403 |
|
c$$$ |
404 |
DO I=1,3 |
c$$$ DO I=1,3 |
405 |
VVV(I)=SNGL(XYZT(I)) |
c$$$ VVV(I)=SNGL(XYZT(I)) |
406 |
ENDDO |
c$$$ ENDDO |
407 |
CALL GUFLD(VVV,FFF) |
c$$$ CALL GUFLD(VVV,FFF) |
408 |
DO I=1,3 |
c$$$ DO I=1,3 |
409 |
F(I)=DBLE(FFF(I)) |
c$$$ F(I)=DBLE(FFF(I)) |
410 |
ENDDO |
c$$$ ENDDO |
411 |
C CALL GUFLD(XYZT,F) |
c$$$C CALL GUFLD(XYZT,F) |
412 |
* |
c$$$* |
413 |
Z = Z + (C + (SECZS(1) + SECZS(2) + SECZS(3)) * THIRD) * H |
c$$$ Z = Z + (C + (SECZS(1) + SECZS(2) + SECZS(3)) * THIRD) * H |
414 |
Y = Y + (B + (SECYS(1) + SECYS(2) + SECYS(3)) * THIRD) * H |
c$$$ Y = Y + (B + (SECYS(1) + SECYS(2) + SECYS(3)) * THIRD) * H |
415 |
X = X + (A + (SECXS(1) + SECXS(2) + SECXS(3)) * THIRD) * H |
c$$$ X = X + (A + (SECXS(1) + SECXS(2) + SECXS(3)) * THIRD) * H |
416 |
* |
c$$$* |
417 |
SECXS(4) = (BT*F(3) - CT*F(2))* PH2 |
c$$$ SECXS(4) = (BT*F(3) - CT*F(2))* PH2 |
418 |
SECYS(4) = (CT*F(1) - AT*F(3))* PH2 |
c$$$ SECYS(4) = (CT*F(1) - AT*F(3))* PH2 |
419 |
SECZS(4) = (AT*F(2) - BT*F(1))* PH2 |
c$$$ SECZS(4) = (AT*F(2) - BT*F(1))* PH2 |
420 |
A = A+(SECXS(1)+SECXS(4)+TWO * (SECXS(2)+SECXS(3))) * THIRD |
c$$$ A = A+(SECXS(1)+SECXS(4)+TWO * (SECXS(2)+SECXS(3))) * THIRD |
421 |
B = B+(SECYS(1)+SECYS(4)+TWO * (SECYS(2)+SECYS(3))) * THIRD |
c$$$ B = B+(SECYS(1)+SECYS(4)+TWO * (SECYS(2)+SECYS(3))) * THIRD |
422 |
C = C+(SECZS(1)+SECZS(4)+TWO * (SECZS(2)+SECZS(3))) * THIRD |
c$$$ C = C+(SECZS(1)+SECZS(4)+TWO * (SECZS(2)+SECZS(3))) * THIRD |
423 |
* |
c$$$* |
424 |
EST = ABS(SECXS(1)+SECXS(4) - (SECXS(2)+SECXS(3))) |
c$$$ EST = ABS(SECXS(1)+SECXS(4) - (SECXS(2)+SECXS(3))) |
425 |
++ ABS(SECYS(1)+SECYS(4) - (SECYS(2)+SECYS(3))) |
c$$$ ++ ABS(SECYS(1)+SECYS(4) - (SECYS(2)+SECYS(3))) |
426 |
++ ABS(SECZS(1)+SECZS(4) - (SECZS(2)+SECZS(3))) |
c$$$ ++ ABS(SECZS(1)+SECZS(4) - (SECZS(2)+SECZS(3))) |
427 |
* |
c$$$* |
428 |
IF (EST.GT.DLT .AND. ABS(H).GT.1.E-4) GO TO 30 |
c$$$ IF (EST.GT.DLT .AND. ABS(H).GT.1.E-4) GO TO 30 |
429 |
|
c$$$ |
430 |
ITER = ITER + 1 |
c$$$ ITER = ITER + 1 |
431 |
NCUT = 0 |
c$$$ NCUT = 0 |
432 |
* If too many iterations, go to HELIX |
c$$$* If too many iterations, go to HELIX |
433 |
IF (ITER.GT.MAXIT) GO TO 40 |
c$$$ IF (ITER.GT.MAXIT) GO TO 40 |
434 |
* |
c$$$* |
435 |
DL = VOUT(8) + |
c$$$ DL = VOUT(8) + |
436 |
$ DSQRT( 0 |
c$$$ $ DSQRT( 0 |
437 |
$ + (X-VOUT(1))**2 |
c$$$ $ + (X-VOUT(1))**2 |
438 |
$ + (Y-VOUT(2))**2 |
c$$$ $ + (Y-VOUT(2))**2 |
439 |
$ + (Z-VOUT(3))**2 |
c$$$ $ + (Z-VOUT(3))**2 |
440 |
$ ) |
c$$$ $ ) |
441 |
c print*,'- ',VOUT(3),z,VOUT(1),x,VOUT(2),y,DL |
c$$$c print*,'- ',VOUT(3),z,VOUT(1),x,VOUT(2),y,DL |
442 |
* |
c$$$* |
443 |
TL = TL + H |
c$$$ TL = TL + H |
444 |
IF (EST.LT.(DLT32)) THEN |
c$$$ IF (EST.LT.(DLT32)) THEN |
445 |
H = H*TWO |
c$$$ H = H*TWO |
446 |
ENDIF |
c$$$ ENDIF |
447 |
CBA = ONE/ SQRT(A*A + B*B + C*C) |
c$$$ CBA = ONE/ SQRT(A*A + B*B + C*C) |
448 |
VOUT(1) = X |
c$$$ VOUT(1) = X |
449 |
VOUT(2) = Y |
c$$$ VOUT(2) = Y |
450 |
VOUT(3) = Z |
c$$$ VOUT(3) = Z |
451 |
VOUT(4) = CBA*A |
c$$$ VOUT(4) = CBA*A |
452 |
VOUT(5) = CBA*B |
c$$$ VOUT(5) = CBA*B |
453 |
VOUT(6) = CBA*C |
c$$$ VOUT(6) = CBA*C |
454 |
VOUT(8) = DL |
c$$$ VOUT(8) = DL |
455 |
REST = STEP - TL |
c$$$ REST = STEP - TL |
456 |
IF (STEP.LT.0.) REST = -REST |
c$$$ IF (STEP.LT.0.) REST = -REST |
457 |
IF (REST .GT. 1.E-5*DABS(STEP)) GO TO 20 |
c$$$ IF (REST .GT. 1.E-5*DABS(STEP)) GO TO 20 |
458 |
* |
c$$$* |
459 |
GO TO 999 |
c$$$ GO TO 999 |
460 |
* |
c$$$* |
461 |
** CUT STEP |
c$$$** CUT STEP |
462 |
30 NCUT = NCUT + 1 |
c$$$ 30 NCUT = NCUT + 1 |
463 |
* If too many cuts , go to HELIX |
c$$$* If too many cuts , go to HELIX |
464 |
IF (NCUT.GT.MAXCUT) GO TO 40 |
c$$$ IF (NCUT.GT.MAXCUT) GO TO 40 |
465 |
H = H*HALF |
c$$$ H = H*HALF |
466 |
GO TO 20 |
c$$$ GO TO 20 |
467 |
* |
c$$$* |
468 |
** ANGLE TOO BIG, USE HELIX |
c$$$** ANGLE TOO BIG, USE HELIX |
469 |
40 F1 = F(1) |
c$$$ 40 F1 = F(1) |
470 |
F2 = F(2) |
c$$$ F2 = F(2) |
471 |
F3 = F(3) |
c$$$ F3 = F(3) |
472 |
F4 = DSQRT(F1**2+F2**2+F3**2) |
c$$$ F4 = DSQRT(F1**2+F2**2+F3**2) |
473 |
RHO = -F4*PINV |
c$$$ RHO = -F4*PINV |
474 |
TET = RHO * STEP |
c$$$ TET = RHO * STEP |
475 |
IF(TET.NE.0.) THEN |
c$$$ IF(TET.NE.0.) THEN |
476 |
HNORM = ONE/F4 |
c$$$ HNORM = ONE/F4 |
477 |
F1 = F1*HNORM |
c$$$ F1 = F1*HNORM |
478 |
F2 = F2*HNORM |
c$$$ F2 = F2*HNORM |
479 |
F3 = F3*HNORM |
c$$$ F3 = F3*HNORM |
480 |
* |
c$$$* |
481 |
HXP(1) = F2*VECT(IPZ) - F3*VECT(IPY) |
c$$$ HXP(1) = F2*VECT(IPZ) - F3*VECT(IPY) |
482 |
HXP(2) = F3*VECT(IPX) - F1*VECT(IPZ) |
c$$$ HXP(2) = F3*VECT(IPX) - F1*VECT(IPZ) |
483 |
HXP(3) = F1*VECT(IPY) - F2*VECT(IPX) |
c$$$ HXP(3) = F1*VECT(IPY) - F2*VECT(IPX) |
484 |
|
c$$$ |
485 |
HP = F1*VECT(IPX) + F2*VECT(IPY) + F3*VECT(IPZ) |
c$$$ HP = F1*VECT(IPX) + F2*VECT(IPY) + F3*VECT(IPZ) |
486 |
* |
c$$$* |
487 |
RHO1 = ONE/RHO |
c$$$ RHO1 = ONE/RHO |
488 |
SINT = DSIN(TET) |
c$$$ SINT = DSIN(TET) |
489 |
COST = TWO*DSIN(HALF*TET)**2 |
c$$$ COST = TWO*DSIN(HALF*TET)**2 |
490 |
* |
c$$$* |
491 |
G1 = SINT*RHO1 |
c$$$ G1 = SINT*RHO1 |
492 |
G2 = COST*RHO1 |
c$$$ G2 = COST*RHO1 |
493 |
G3 = (TET-SINT) * HP*RHO1 |
c$$$ G3 = (TET-SINT) * HP*RHO1 |
494 |
G4 = -COST |
c$$$ G4 = -COST |
495 |
G5 = SINT |
c$$$ G5 = SINT |
496 |
G6 = COST * HP |
c$$$ G6 = COST * HP |
497 |
|
c$$$ |
498 |
VOUT(IX) = VECT(IX) + (G1*VECT(IPX) + G2*HXP(1) + G3*F1) |
c$$$ VOUT(IX) = VECT(IX) + (G1*VECT(IPX) + G2*HXP(1) + G3*F1) |
499 |
VOUT(IY) = VECT(IY) + (G1*VECT(IPY) + G2*HXP(2) + G3*F2) |
c$$$ VOUT(IY) = VECT(IY) + (G1*VECT(IPY) + G2*HXP(2) + G3*F2) |
500 |
VOUT(IZ) = VECT(IZ) + (G1*VECT(IPZ) + G2*HXP(3) + G3*F3) |
c$$$ VOUT(IZ) = VECT(IZ) + (G1*VECT(IPZ) + G2*HXP(3) + G3*F3) |
501 |
|
c$$$ |
502 |
VOUT(IPX) = VECT(IPX) + (G4*VECT(IPX) + G5*HXP(1) + G6*F1) |
c$$$ VOUT(IPX) = VECT(IPX) + (G4*VECT(IPX) + G5*HXP(1) + G6*F1) |
503 |
VOUT(IPY) = VECT(IPY) + (G4*VECT(IPY) + G5*HXP(2) + G6*F2) |
c$$$ VOUT(IPY) = VECT(IPY) + (G4*VECT(IPY) + G5*HXP(2) + G6*F2) |
504 |
VOUT(IPZ) = VECT(IPZ) + (G4*VECT(IPZ) + G5*HXP(3) + G6*F3) |
c$$$ VOUT(IPZ) = VECT(IPZ) + (G4*VECT(IPZ) + G5*HXP(3) + G6*F3) |
505 |
* |
c$$$* |
506 |
ELSE |
c$$$ ELSE |
507 |
VOUT(IX) = VECT(IX) + STEP*VECT(IPX) |
c$$$ VOUT(IX) = VECT(IX) + STEP*VECT(IPX) |
508 |
VOUT(IY) = VECT(IY) + STEP*VECT(IPY) |
c$$$ VOUT(IY) = VECT(IY) + STEP*VECT(IPY) |
509 |
VOUT(IZ) = VECT(IZ) + STEP*VECT(IPZ) |
c$$$ VOUT(IZ) = VECT(IZ) + STEP*VECT(IPZ) |
510 |
* |
c$$$* |
511 |
ENDIF |
c$$$ ENDIF |
512 |
* TEMP !!! TEMP !!! TEMP !!! TEMP !!! TEMP !!! TEMP !!! |
c$$$* TEMP !!! TEMP !!! TEMP !!! TEMP !!! TEMP !!! TEMP !!! |
513 |
* devo mettere la lunghezza dell'elica!!!!!!!!!!!!!! |
c$$$* devo mettere la lunghezza dell'elica!!!!!!!!!!!!!! |
514 |
* ma non mi riesce :-( |
c$$$* ma non mi riesce :-( |
515 |
VOUT(8) = DSQRT( 0 |
c$$$ VOUT(8) = DSQRT( 0 |
516 |
$ +(VOUT(IX)-VECT(IX))**2 |
c$$$ $ +(VOUT(IX)-VECT(IX))**2 |
517 |
$ +(VOUT(IY)-VECT(IY))**2 |
c$$$ $ +(VOUT(IY)-VECT(IY))**2 |
518 |
$ +(VOUT(IZ)-VECT(IZ))**2 |
c$$$ $ +(VOUT(IZ)-VECT(IZ))**2 |
519 |
$ ) |
c$$$ $ ) |
520 |
c print*,'WARNING: GRKUTA2 --> ' |
c$$$c print*,'WARNING: GRKUTA2 --> ' |
521 |
c $ ,'helix :-( ... length evaluated with straight line' |
c$$$c $ ,'helix :-( ... length evaluated with straight line' |
522 |
|
c$$$ |
523 |
* |
c$$$* |
524 |
999 END |
c$$$ 999 END |
525 |
* |
c$$$* |
526 |
* |
c$$$* |
527 |
|
|
528 |
********************************************************************** |
********************************************************************** |
529 |
* |
* |