--- DarthVader/TrackerLevel2/src/F77/grkuta.f 2006/05/19 13:15:55 1.1.1.1 +++ DarthVader/TrackerLevel2/src/F77/grkuta.f 2007/02/16 14:56:02 1.4 @@ -41,7 +41,7 @@ PARAMETER (ZERO=0, ONE=1, TWO=2, THREE=3) PARAMETER (THIRD=ONE/THREE, HALF=ONE/TWO) PARAMETER (PISQUA=.986960440109D+01) - PARAMETER (IX=1,IY=2,IZ=3,IPX=4,IPY=5,IPZ=6) + PARAMETER (IX=1,IY=2,IZ=3,IPX=4,IPY=5,IPZ=6) *. *. ------------------------------------------------------------------ @@ -237,7 +237,276 @@ * * +********************************************************************** +* +* +* routine per tracciare la particella di uno STEP +* *** extended version *** +* it return also the track-length +* + SUBROUTINE GRKUTA2 (CHARGE,STEP,VECT,VOUT) +C. +C. ****************************************************************** +C. * * +C. * Runge-Kutta method for tracking a particle through a magnetic * +C. * field. Uses Nystroem algorithm (See Handbook Nat. Bur. of * +C. * Standards, procedure 25.5.20) * +C. * * +C. * Input parameters * +C. * CHARGE Particle charge * +C. * STEP Step size * +C. * VECT Initial co-ords,direction cosines,momentum * +C. * Output parameters * +C. * VOUT Output co-ords,direction cosines,momentum * +C. * User routine called * +C. * CALL GUFLD(X,F) * +C. * * +C. * ==>Called by : , GUSWIM * +C. * Authors R.Brun, M.Hansroul ********* * +C. * V.Perevoztchikov (CUT STEP implementation) * +C. * * +C. * * +C. ****************************************************************** +C. + IMPLICIT DOUBLE PRECISION(A-H,O-Z) +* + REAL VVV(3),FFF(3) + REAL*8 CHARGE, STEP, VECT(*), VOUT(*), F(4) + REAL*8 XYZT(3), XYZ(3), X, Y, Z, XT, YT, ZT + DIMENSION SECXS(4),SECYS(4),SECZS(4),HXP(3) + EQUIVALENCE (X,XYZ(1)),(Y,XYZ(2)),(Z,XYZ(3)), + + (XT,XYZT(1)),(YT,XYZT(2)),(ZT,XYZT(3)) +* + PARAMETER (MAXIT = 1992, MAXCUT = 11) + PARAMETER (EC=2.9979251D-4,DLT=1D-4,DLT32=DLT/32) + PARAMETER (ZERO=0, ONE=1, TWO=2, THREE=3) + PARAMETER (THIRD=ONE/THREE, HALF=ONE/TWO) + PARAMETER (PISQUA=.986960440109D+01) + PARAMETER (IX=1,IY=2,IZ=3,IPX=4,IPY=5,IPZ=6) + +* track length + REAL*8 DL + +*. +*. ------------------------------------------------------------------ +*. +* This constant is for units CM,GEV/C and KGAUSS +* + ITER = 0 + NCUT = 0 + DO 10 J=1,8 + VOUT(J)=VECT(J) + 10 CONTINUE + PINV = EC * CHARGE / VECT(7) + TL = 0. + H = STEP + +c print*,'===================== START GRKUTA2' + +* +* + 20 REST = STEP-TL + IF (DABS(H).GT.DABS(REST)) H = REST + DO I=1,3 + VVV(I)=SNGL(VOUT(I)) + ENDDO + + CALL GUFLD(VVV,FFF) +* print*,'GRKUTA Bx,By,Bz: ',(FFF(i),i=1,3) + DO I=1,3 + F(I)=DBLE(FFF(I)) + ENDDO +* +* Start of integration +* + X = VOUT(1) + Y = VOUT(2) + Z = VOUT(3) + A = VOUT(4) + B = VOUT(5) + C = VOUT(6) + + DL = VOUT(8) + +* + H2 = HALF * H + H4 = HALF * H2 + PH = PINV * H + PH2 = HALF * PH + SECXS(1) = (B * F(3) - C * F(2)) * PH2 + SECYS(1) = (C * F(1) - A * F(3)) * PH2 + SECZS(1) = (A * F(2) - B * F(1)) * PH2 + ANG2 = (SECXS(1)**2 + SECYS(1)**2 + SECZS(1)**2) + IF (ANG2.GT.PISQUA) GO TO 40 + DXT = H2 * A + H4 * SECXS(1) + DYT = H2 * B + H4 * SECYS(1) + DZT = H2 * C + H4 * SECZS(1) + XT = X + DXT + YT = Y + DYT + ZT = Z + DZT +* +* Second intermediate point +* + EST = DABS(DXT)+DABS(DYT)+DABS(DZT) + IF (EST.GT.H) GO TO 30 + + DO I=1,3 + VVV(I)=SNGL(XYZT(I)) + ENDDO + CALL GUFLD(VVV,FFF) + DO I=1,3 + F(I)=DBLE(FFF(I)) + ENDDO +C CALL GUFLD(XYZT,F) + AT = A + SECXS(1) + BT = B + SECYS(1) + CT = C + SECZS(1) +* + SECXS(2) = (BT * F(3) - CT * F(2)) * PH2 + SECYS(2) = (CT * F(1) - AT * F(3)) * PH2 + SECZS(2) = (AT * F(2) - BT * F(1)) * PH2 + AT = A + SECXS(2) + BT = B + SECYS(2) + CT = C + SECZS(2) + SECXS(3) = (BT * F(3) - CT * F(2)) * PH2 + SECYS(3) = (CT * F(1) - AT * F(3)) * PH2 + SECZS(3) = (AT * F(2) - BT * F(1)) * PH2 + DXT = H * (A + SECXS(3)) + DYT = H * (B + SECYS(3)) + DZT = H * (C + SECZS(3)) + XT = X + DXT + YT = Y + DYT + ZT = Z + DZT + AT = A + TWO*SECXS(3) + BT = B + TWO*SECYS(3) + CT = C + TWO*SECZS(3) +* + EST = ABS(DXT)+ABS(DYT)+ABS(DZT) + IF (EST.GT.2.*ABS(H)) GO TO 30 + + DO I=1,3 + VVV(I)=SNGL(XYZT(I)) + ENDDO + CALL GUFLD(VVV,FFF) + DO I=1,3 + F(I)=DBLE(FFF(I)) + ENDDO +C CALL GUFLD(XYZT,F) +* + Z = Z + (C + (SECZS(1) + SECZS(2) + SECZS(3)) * THIRD) * H + Y = Y + (B + (SECYS(1) + SECYS(2) + SECYS(3)) * THIRD) * H + X = X + (A + (SECXS(1) + SECXS(2) + SECXS(3)) * THIRD) * H +* + SECXS(4) = (BT*F(3) - CT*F(2))* PH2 + SECYS(4) = (CT*F(1) - AT*F(3))* PH2 + SECZS(4) = (AT*F(2) - BT*F(1))* PH2 + A = A+(SECXS(1)+SECXS(4)+TWO * (SECXS(2)+SECXS(3))) * THIRD + B = B+(SECYS(1)+SECYS(4)+TWO * (SECYS(2)+SECYS(3))) * THIRD + C = C+(SECZS(1)+SECZS(4)+TWO * (SECZS(2)+SECZS(3))) * THIRD +* + EST = ABS(SECXS(1)+SECXS(4) - (SECXS(2)+SECXS(3))) + ++ ABS(SECYS(1)+SECYS(4) - (SECYS(2)+SECYS(3))) + ++ ABS(SECZS(1)+SECZS(4) - (SECZS(2)+SECZS(3))) +* + IF (EST.GT.DLT .AND. ABS(H).GT.1.E-4) GO TO 30 + + ITER = ITER + 1 + NCUT = 0 +* If too many iterations, go to HELIX + IF (ITER.GT.MAXIT) GO TO 40 +* + DL = VOUT(8) + + $ DSQRT( 0 + $ + (X-VOUT(1))**2 + $ + (Y-VOUT(2))**2 + $ + (Z-VOUT(3))**2 + $ ) +c print*,'- ',VOUT(3),z,VOUT(1),x,VOUT(2),y,DL +* + TL = TL + H + IF (EST.LT.(DLT32)) THEN + H = H*TWO + ENDIF + CBA = ONE/ SQRT(A*A + B*B + C*C) + VOUT(1) = X + VOUT(2) = Y + VOUT(3) = Z + VOUT(4) = CBA*A + VOUT(5) = CBA*B + VOUT(6) = CBA*C + VOUT(8) = DL + REST = STEP - TL + IF (STEP.LT.0.) REST = -REST + IF (REST .GT. 1.E-5*DABS(STEP)) GO TO 20 +* + GO TO 999 +* +** CUT STEP + 30 NCUT = NCUT + 1 +* If too many cuts , go to HELIX + IF (NCUT.GT.MAXCUT) GO TO 40 + H = H*HALF + GO TO 20 +* +** ANGLE TOO BIG, USE HELIX + 40 F1 = F(1) + F2 = F(2) + F3 = F(3) + F4 = DSQRT(F1**2+F2**2+F3**2) + RHO = -F4*PINV + TET = RHO * STEP + IF(TET.NE.0.) THEN + HNORM = ONE/F4 + F1 = F1*HNORM + F2 = F2*HNORM + F3 = F3*HNORM +* + HXP(1) = F2*VECT(IPZ) - F3*VECT(IPY) + HXP(2) = F3*VECT(IPX) - F1*VECT(IPZ) + HXP(3) = F1*VECT(IPY) - F2*VECT(IPX) + + HP = F1*VECT(IPX) + F2*VECT(IPY) + F3*VECT(IPZ) +* + RHO1 = ONE/RHO + SINT = DSIN(TET) + COST = TWO*DSIN(HALF*TET)**2 +* + G1 = SINT*RHO1 + G2 = COST*RHO1 + G3 = (TET-SINT) * HP*RHO1 + G4 = -COST + G5 = SINT + G6 = COST * HP + + VOUT(IX) = VECT(IX) + (G1*VECT(IPX) + G2*HXP(1) + G3*F1) + VOUT(IY) = VECT(IY) + (G1*VECT(IPY) + G2*HXP(2) + G3*F2) + VOUT(IZ) = VECT(IZ) + (G1*VECT(IPZ) + G2*HXP(3) + G3*F3) + + VOUT(IPX) = VECT(IPX) + (G4*VECT(IPX) + G5*HXP(1) + G6*F1) + VOUT(IPY) = VECT(IPY) + (G4*VECT(IPY) + G5*HXP(2) + G6*F2) + VOUT(IPZ) = VECT(IPZ) + (G4*VECT(IPZ) + G5*HXP(3) + G6*F3) +* + ELSE + VOUT(IX) = VECT(IX) + STEP*VECT(IPX) + VOUT(IY) = VECT(IY) + STEP*VECT(IPY) + VOUT(IZ) = VECT(IZ) + STEP*VECT(IPZ) +* + ENDIF +* TEMP !!! TEMP !!! TEMP !!! TEMP !!! TEMP !!! TEMP !!! +* devo mettere la lunghezza dell'elica!!!!!!!!!!!!!! +* ma non mi riesce :-( + VOUT(8) = DSQRT( 0 + $ +(VOUT(IX)-VECT(IX))**2 + $ +(VOUT(IY)-VECT(IY))**2 + $ +(VOUT(IZ)-VECT(IZ))**2 + $ ) + print*,'WARNING: GRKUTA2 --> ' + $ ,'helix :-( ... length evaluated with straight line' +* + 999 END +* +* ********************************************************************** * @@ -252,15 +521,17 @@ real*8 vv(3),ff(3) !inter_B.f works in double precision - do i=1,3 - vv(i)=v(i)/100. !inter_B.f works in meters - enddo -c inter_B: coordinates in m, B field in Tesla - call inter_B(vv(1),vv(2),vv(3),ff) - do i=1,3 !change back the field in kGauss - f(i)=ff(i)*10. - enddo - + do i=1,3 + vv(i)=v(i)/100. !inter_B.f works in meters + enddo +c inter_B: coordinates in m, B field in Tesla +c$$$ print*,'GUFLD: v ',v + call inter_B(vv(1),vv(2),vv(3),ff) + do i=1,3 !change back the field in kGauss + f(i)=ff(i)*10. + enddo +c$$$ print*,'GUFLD: b ',f + return end