/[PAMELA software]/DarthVader/TrackerLevel2/src/F77/grkuta.f
ViewVC logotype

Contents of /DarthVader/TrackerLevel2/src/F77/grkuta.f

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1.1.1.1 - (show annotations) (download) (vendor branch)
Fri May 19 13:15:55 2006 UTC (18 years, 6 months ago) by mocchiut
Branch: DarthVader
CVS Tags: v0r01, start
Changes since 1.1: +0 -0 lines
Imported sources

1 **********************************************************************
2 *
3 *
4 * routine per tracciare la particella di uno STEP
5 *
6 SUBROUTINE GRKUTA (CHARGE,STEP,VECT,VOUT)
7 C.
8 C. ******************************************************************
9 C. * *
10 C. * Runge-Kutta method for tracking a particle through a magnetic *
11 C. * field. Uses Nystroem algorithm (See Handbook Nat. Bur. of *
12 C. * Standards, procedure 25.5.20) *
13 C. * *
14 C. * Input parameters *
15 C. * CHARGE Particle charge *
16 C. * STEP Step size *
17 C. * VECT Initial co-ords,direction cosines,momentum *
18 C. * Output parameters *
19 C. * VOUT Output co-ords,direction cosines,momentum *
20 C. * User routine called *
21 C. * CALL GUFLD(X,F) *
22 C. * *
23 C. * ==>Called by : <USER>, GUSWIM *
24 C. * Authors R.Brun, M.Hansroul ********* *
25 C. * V.Perevoztchikov (CUT STEP implementation) *
26 C. * *
27 C. * *
28 C. ******************************************************************
29 C.
30 IMPLICIT DOUBLE PRECISION(A-H,O-Z)
31 *
32 REAL VVV(3),FFF(3)
33 REAL*8 CHARGE, STEP, VECT(*), VOUT(*), F(4)
34 REAL*8 XYZT(3), XYZ(3), X, Y, Z, XT, YT, ZT
35 DIMENSION SECXS(4),SECYS(4),SECZS(4),HXP(3)
36 EQUIVALENCE (X,XYZ(1)),(Y,XYZ(2)),(Z,XYZ(3)),
37 + (XT,XYZT(1)),(YT,XYZT(2)),(ZT,XYZT(3))
38 *
39 PARAMETER (MAXIT = 1992, MAXCUT = 11)
40 PARAMETER (EC=2.9979251D-4,DLT=1D-4,DLT32=DLT/32)
41 PARAMETER (ZERO=0, ONE=1, TWO=2, THREE=3)
42 PARAMETER (THIRD=ONE/THREE, HALF=ONE/TWO)
43 PARAMETER (PISQUA=.986960440109D+01)
44 PARAMETER (IX=1,IY=2,IZ=3,IPX=4,IPY=5,IPZ=6)
45
46 *.
47 *. ------------------------------------------------------------------
48 *.
49 * This constant is for units CM,GEV/C and KGAUSS
50 *
51 ITER = 0
52 NCUT = 0
53 DO 10 J=1,7
54 VOUT(J)=VECT(J)
55 10 CONTINUE
56 PINV = EC * CHARGE / VECT(7)
57 TL = 0.
58 H = STEP
59 *
60 *
61 20 REST = STEP-TL
62 IF (DABS(H).GT.DABS(REST)) H = REST
63 DO I=1,3
64 VVV(I)=SNGL(VOUT(I))
65 ENDDO
66
67 CALL GUFLD(VVV,FFF)
68 * print*,'GRKUTA Bx,By,Bz: ',(FFF(i),i=1,3)
69 DO I=1,3
70 F(I)=DBLE(FFF(I))
71 ENDDO
72 *
73 * Start of integration
74 *
75 X = VOUT(1)
76 Y = VOUT(2)
77 Z = VOUT(3)
78 A = VOUT(4)
79 B = VOUT(5)
80 C = VOUT(6)
81 *
82 H2 = HALF * H
83 H4 = HALF * H2
84 PH = PINV * H
85 PH2 = HALF * PH
86 SECXS(1) = (B * F(3) - C * F(2)) * PH2
87 SECYS(1) = (C * F(1) - A * F(3)) * PH2
88 SECZS(1) = (A * F(2) - B * F(1)) * PH2
89 ANG2 = (SECXS(1)**2 + SECYS(1)**2 + SECZS(1)**2)
90 IF (ANG2.GT.PISQUA) GO TO 40
91 DXT = H2 * A + H4 * SECXS(1)
92 DYT = H2 * B + H4 * SECYS(1)
93 DZT = H2 * C + H4 * SECZS(1)
94 XT = X + DXT
95 YT = Y + DYT
96 ZT = Z + DZT
97 *
98 * Second intermediate point
99 *
100 EST = DABS(DXT)+DABS(DYT)+DABS(DZT)
101 IF (EST.GT.H) GO TO 30
102
103 DO I=1,3
104 VVV(I)=SNGL(XYZT(I))
105 ENDDO
106 CALL GUFLD(VVV,FFF)
107 DO I=1,3
108 F(I)=DBLE(FFF(I))
109 ENDDO
110 C CALL GUFLD(XYZT,F)
111 AT = A + SECXS(1)
112 BT = B + SECYS(1)
113 CT = C + SECZS(1)
114 *
115 SECXS(2) = (BT * F(3) - CT * F(2)) * PH2
116 SECYS(2) = (CT * F(1) - AT * F(3)) * PH2
117 SECZS(2) = (AT * F(2) - BT * F(1)) * PH2
118 AT = A + SECXS(2)
119 BT = B + SECYS(2)
120 CT = C + SECZS(2)
121 SECXS(3) = (BT * F(3) - CT * F(2)) * PH2
122 SECYS(3) = (CT * F(1) - AT * F(3)) * PH2
123 SECZS(3) = (AT * F(2) - BT * F(1)) * PH2
124 DXT = H * (A + SECXS(3))
125 DYT = H * (B + SECYS(3))
126 DZT = H * (C + SECZS(3))
127 XT = X + DXT
128 YT = Y + DYT
129 ZT = Z + DZT
130 AT = A + TWO*SECXS(3)
131 BT = B + TWO*SECYS(3)
132 CT = C + TWO*SECZS(3)
133 *
134 EST = ABS(DXT)+ABS(DYT)+ABS(DZT)
135 IF (EST.GT.2.*ABS(H)) GO TO 30
136
137 DO I=1,3
138 VVV(I)=SNGL(XYZT(I))
139 ENDDO
140 CALL GUFLD(VVV,FFF)
141 DO I=1,3
142 F(I)=DBLE(FFF(I))
143 ENDDO
144 C CALL GUFLD(XYZT,F)
145 *
146 Z = Z + (C + (SECZS(1) + SECZS(2) + SECZS(3)) * THIRD) * H
147 Y = Y + (B + (SECYS(1) + SECYS(2) + SECYS(3)) * THIRD) * H
148 X = X + (A + (SECXS(1) + SECXS(2) + SECXS(3)) * THIRD) * H
149 *
150 SECXS(4) = (BT*F(3) - CT*F(2))* PH2
151 SECYS(4) = (CT*F(1) - AT*F(3))* PH2
152 SECZS(4) = (AT*F(2) - BT*F(1))* PH2
153 A = A+(SECXS(1)+SECXS(4)+TWO * (SECXS(2)+SECXS(3))) * THIRD
154 B = B+(SECYS(1)+SECYS(4)+TWO * (SECYS(2)+SECYS(3))) * THIRD
155 C = C+(SECZS(1)+SECZS(4)+TWO * (SECZS(2)+SECZS(3))) * THIRD
156 *
157 EST = ABS(SECXS(1)+SECXS(4) - (SECXS(2)+SECXS(3)))
158 ++ ABS(SECYS(1)+SECYS(4) - (SECYS(2)+SECYS(3)))
159 ++ ABS(SECZS(1)+SECZS(4) - (SECZS(2)+SECZS(3)))
160 *
161 IF (EST.GT.DLT .AND. ABS(H).GT.1.E-4) GO TO 30
162 ITER = ITER + 1
163 NCUT = 0
164 * If too many iterations, go to HELIX
165 IF (ITER.GT.MAXIT) GO TO 40
166 *
167 TL = TL + H
168 IF (EST.LT.(DLT32)) THEN
169 H = H*TWO
170 ENDIF
171 CBA = ONE/ SQRT(A*A + B*B + C*C)
172 VOUT(1) = X
173 VOUT(2) = Y
174 VOUT(3) = Z
175 VOUT(4) = CBA*A
176 VOUT(5) = CBA*B
177 VOUT(6) = CBA*C
178 REST = STEP - TL
179 IF (STEP.LT.0.) REST = -REST
180 IF (REST .GT. 1.E-5*DABS(STEP)) GO TO 20
181 *
182 GO TO 999
183 *
184 ** CUT STEP
185 30 NCUT = NCUT + 1
186 * If too many cuts , go to HELIX
187 IF (NCUT.GT.MAXCUT) GO TO 40
188 H = H*HALF
189 GO TO 20
190 *
191 ** ANGLE TOO BIG, USE HELIX
192 40 F1 = F(1)
193 F2 = F(2)
194 F3 = F(3)
195 F4 = DSQRT(F1**2+F2**2+F3**2)
196 RHO = -F4*PINV
197 TET = RHO * STEP
198 IF(TET.NE.0.) THEN
199 HNORM = ONE/F4
200 F1 = F1*HNORM
201 F2 = F2*HNORM
202 F3 = F3*HNORM
203 *
204 HXP(1) = F2*VECT(IPZ) - F3*VECT(IPY)
205 HXP(2) = F3*VECT(IPX) - F1*VECT(IPZ)
206 HXP(3) = F1*VECT(IPY) - F2*VECT(IPX)
207
208 HP = F1*VECT(IPX) + F2*VECT(IPY) + F3*VECT(IPZ)
209 *
210 RHO1 = ONE/RHO
211 SINT = DSIN(TET)
212 COST = TWO*DSIN(HALF*TET)**2
213 *
214 G1 = SINT*RHO1
215 G2 = COST*RHO1
216 G3 = (TET-SINT) * HP*RHO1
217 G4 = -COST
218 G5 = SINT
219 G6 = COST * HP
220
221 VOUT(IX) = VECT(IX) + (G1*VECT(IPX) + G2*HXP(1) + G3*F1)
222 VOUT(IY) = VECT(IY) + (G1*VECT(IPY) + G2*HXP(2) + G3*F2)
223 VOUT(IZ) = VECT(IZ) + (G1*VECT(IPZ) + G2*HXP(3) + G3*F3)
224
225 VOUT(IPX) = VECT(IPX) + (G4*VECT(IPX) + G5*HXP(1) + G6*F1)
226 VOUT(IPY) = VECT(IPY) + (G4*VECT(IPY) + G5*HXP(2) + G6*F2)
227 VOUT(IPZ) = VECT(IPZ) + (G4*VECT(IPZ) + G5*HXP(3) + G6*F3)
228 *
229 ELSE
230 VOUT(IX) = VECT(IX) + STEP*VECT(IPX)
231 VOUT(IY) = VECT(IY) + STEP*VECT(IPY)
232 VOUT(IZ) = VECT(IZ) + STEP*VECT(IPZ)
233 *
234 ENDIF
235 *
236 999 END
237 *
238 *
239
240
241
242 **********************************************************************
243 *
244 * gives the value of the magnetic field in the tracking point
245 *
246 **********************************************************************
247
248 subroutine gufld(v,f) !coordinates in cm, B field in kGauss
249
250 real v(3),f(3) !coordinates in cm, B field in kGauss, error in kGauss
251
252 real*8 vv(3),ff(3) !inter_B.f works in double precision
253
254
255 do i=1,3
256 vv(i)=v(i)/100. !inter_B.f works in meters
257 enddo
258 c inter_B: coordinates in m, B field in Tesla
259 call inter_B(vv(1),vv(2),vv(3),ff)
260 do i=1,3 !change back the field in kGauss
261 f(i)=ff(i)*10.
262 enddo
263
264 return
265 end
266

  ViewVC Help
Powered by ViewVC 1.1.23