| 1 |
mocchiut |
1.1 |
********************************************************************** |
| 2 |
|
|
* |
| 3 |
|
|
* |
| 4 |
|
|
* routine per tracciare la particella di uno STEP |
| 5 |
|
|
* |
| 6 |
|
|
SUBROUTINE GRKUTA (CHARGE,STEP,VECT,VOUT) |
| 7 |
|
|
C. |
| 8 |
|
|
C. ****************************************************************** |
| 9 |
|
|
C. * * |
| 10 |
|
|
C. * Runge-Kutta method for tracking a particle through a magnetic * |
| 11 |
|
|
C. * field. Uses Nystroem algorithm (See Handbook Nat. Bur. of * |
| 12 |
|
|
C. * Standards, procedure 25.5.20) * |
| 13 |
|
|
C. * * |
| 14 |
|
|
C. * Input parameters * |
| 15 |
|
|
C. * CHARGE Particle charge * |
| 16 |
|
|
C. * STEP Step size * |
| 17 |
|
|
C. * VECT Initial co-ords,direction cosines,momentum * |
| 18 |
|
|
C. * Output parameters * |
| 19 |
|
|
C. * VOUT Output co-ords,direction cosines,momentum * |
| 20 |
|
|
C. * User routine called * |
| 21 |
|
|
C. * CALL GUFLD(X,F) * |
| 22 |
|
|
C. * * |
| 23 |
|
|
C. * ==>Called by : <USER>, GUSWIM * |
| 24 |
|
|
C. * Authors R.Brun, M.Hansroul ********* * |
| 25 |
|
|
C. * V.Perevoztchikov (CUT STEP implementation) * |
| 26 |
|
|
C. * * |
| 27 |
|
|
C. * * |
| 28 |
|
|
C. ****************************************************************** |
| 29 |
|
|
C. |
| 30 |
|
|
IMPLICIT DOUBLE PRECISION(A-H,O-Z) |
| 31 |
|
|
* |
| 32 |
|
|
REAL VVV(3),FFF(3) |
| 33 |
|
|
REAL*8 CHARGE, STEP, VECT(*), VOUT(*), F(4) |
| 34 |
|
|
REAL*8 XYZT(3), XYZ(3), X, Y, Z, XT, YT, ZT |
| 35 |
|
|
DIMENSION SECXS(4),SECYS(4),SECZS(4),HXP(3) |
| 36 |
|
|
EQUIVALENCE (X,XYZ(1)),(Y,XYZ(2)),(Z,XYZ(3)), |
| 37 |
|
|
+ (XT,XYZT(1)),(YT,XYZT(2)),(ZT,XYZT(3)) |
| 38 |
|
|
* |
| 39 |
|
|
PARAMETER (MAXIT = 1992, MAXCUT = 11) |
| 40 |
|
|
PARAMETER (EC=2.9979251D-4,DLT=1D-4,DLT32=DLT/32) |
| 41 |
|
|
PARAMETER (ZERO=0, ONE=1, TWO=2, THREE=3) |
| 42 |
|
|
PARAMETER (THIRD=ONE/THREE, HALF=ONE/TWO) |
| 43 |
|
|
PARAMETER (PISQUA=.986960440109D+01) |
| 44 |
pam-fi |
1.2 |
PARAMETER (IX=1,IY=2,IZ=3,IPX=4,IPY=5,IPZ=6) |
| 45 |
mocchiut |
1.1 |
|
| 46 |
|
|
*. |
| 47 |
|
|
*. ------------------------------------------------------------------ |
| 48 |
|
|
*. |
| 49 |
|
|
* This constant is for units CM,GEV/C and KGAUSS |
| 50 |
|
|
* |
| 51 |
|
|
ITER = 0 |
| 52 |
|
|
NCUT = 0 |
| 53 |
|
|
DO 10 J=1,7 |
| 54 |
|
|
VOUT(J)=VECT(J) |
| 55 |
|
|
10 CONTINUE |
| 56 |
|
|
PINV = EC * CHARGE / VECT(7) |
| 57 |
|
|
TL = 0. |
| 58 |
|
|
H = STEP |
| 59 |
|
|
* |
| 60 |
|
|
* |
| 61 |
|
|
20 REST = STEP-TL |
| 62 |
|
|
IF (DABS(H).GT.DABS(REST)) H = REST |
| 63 |
|
|
DO I=1,3 |
| 64 |
|
|
VVV(I)=SNGL(VOUT(I)) |
| 65 |
|
|
ENDDO |
| 66 |
|
|
|
| 67 |
|
|
CALL GUFLD(VVV,FFF) |
| 68 |
|
|
* print*,'GRKUTA Bx,By,Bz: ',(FFF(i),i=1,3) |
| 69 |
|
|
DO I=1,3 |
| 70 |
|
|
F(I)=DBLE(FFF(I)) |
| 71 |
|
|
ENDDO |
| 72 |
|
|
* |
| 73 |
|
|
* Start of integration |
| 74 |
|
|
* |
| 75 |
|
|
X = VOUT(1) |
| 76 |
|
|
Y = VOUT(2) |
| 77 |
|
|
Z = VOUT(3) |
| 78 |
|
|
A = VOUT(4) |
| 79 |
|
|
B = VOUT(5) |
| 80 |
|
|
C = VOUT(6) |
| 81 |
|
|
* |
| 82 |
|
|
H2 = HALF * H |
| 83 |
|
|
H4 = HALF * H2 |
| 84 |
|
|
PH = PINV * H |
| 85 |
|
|
PH2 = HALF * PH |
| 86 |
|
|
SECXS(1) = (B * F(3) - C * F(2)) * PH2 |
| 87 |
|
|
SECYS(1) = (C * F(1) - A * F(3)) * PH2 |
| 88 |
|
|
SECZS(1) = (A * F(2) - B * F(1)) * PH2 |
| 89 |
|
|
ANG2 = (SECXS(1)**2 + SECYS(1)**2 + SECZS(1)**2) |
| 90 |
|
|
IF (ANG2.GT.PISQUA) GO TO 40 |
| 91 |
|
|
DXT = H2 * A + H4 * SECXS(1) |
| 92 |
|
|
DYT = H2 * B + H4 * SECYS(1) |
| 93 |
|
|
DZT = H2 * C + H4 * SECZS(1) |
| 94 |
|
|
XT = X + DXT |
| 95 |
|
|
YT = Y + DYT |
| 96 |
|
|
ZT = Z + DZT |
| 97 |
|
|
* |
| 98 |
|
|
* Second intermediate point |
| 99 |
|
|
* |
| 100 |
|
|
EST = DABS(DXT)+DABS(DYT)+DABS(DZT) |
| 101 |
|
|
IF (EST.GT.H) GO TO 30 |
| 102 |
|
|
|
| 103 |
|
|
DO I=1,3 |
| 104 |
|
|
VVV(I)=SNGL(XYZT(I)) |
| 105 |
|
|
ENDDO |
| 106 |
|
|
CALL GUFLD(VVV,FFF) |
| 107 |
|
|
DO I=1,3 |
| 108 |
|
|
F(I)=DBLE(FFF(I)) |
| 109 |
|
|
ENDDO |
| 110 |
|
|
C CALL GUFLD(XYZT,F) |
| 111 |
|
|
AT = A + SECXS(1) |
| 112 |
|
|
BT = B + SECYS(1) |
| 113 |
|
|
CT = C + SECZS(1) |
| 114 |
|
|
* |
| 115 |
|
|
SECXS(2) = (BT * F(3) - CT * F(2)) * PH2 |
| 116 |
|
|
SECYS(2) = (CT * F(1) - AT * F(3)) * PH2 |
| 117 |
|
|
SECZS(2) = (AT * F(2) - BT * F(1)) * PH2 |
| 118 |
|
|
AT = A + SECXS(2) |
| 119 |
|
|
BT = B + SECYS(2) |
| 120 |
|
|
CT = C + SECZS(2) |
| 121 |
|
|
SECXS(3) = (BT * F(3) - CT * F(2)) * PH2 |
| 122 |
|
|
SECYS(3) = (CT * F(1) - AT * F(3)) * PH2 |
| 123 |
|
|
SECZS(3) = (AT * F(2) - BT * F(1)) * PH2 |
| 124 |
|
|
DXT = H * (A + SECXS(3)) |
| 125 |
|
|
DYT = H * (B + SECYS(3)) |
| 126 |
|
|
DZT = H * (C + SECZS(3)) |
| 127 |
|
|
XT = X + DXT |
| 128 |
|
|
YT = Y + DYT |
| 129 |
|
|
ZT = Z + DZT |
| 130 |
|
|
AT = A + TWO*SECXS(3) |
| 131 |
|
|
BT = B + TWO*SECYS(3) |
| 132 |
|
|
CT = C + TWO*SECZS(3) |
| 133 |
|
|
* |
| 134 |
|
|
EST = ABS(DXT)+ABS(DYT)+ABS(DZT) |
| 135 |
|
|
IF (EST.GT.2.*ABS(H)) GO TO 30 |
| 136 |
|
|
|
| 137 |
|
|
DO I=1,3 |
| 138 |
|
|
VVV(I)=SNGL(XYZT(I)) |
| 139 |
|
|
ENDDO |
| 140 |
|
|
CALL GUFLD(VVV,FFF) |
| 141 |
|
|
DO I=1,3 |
| 142 |
|
|
F(I)=DBLE(FFF(I)) |
| 143 |
|
|
ENDDO |
| 144 |
|
|
C CALL GUFLD(XYZT,F) |
| 145 |
|
|
* |
| 146 |
|
|
Z = Z + (C + (SECZS(1) + SECZS(2) + SECZS(3)) * THIRD) * H |
| 147 |
|
|
Y = Y + (B + (SECYS(1) + SECYS(2) + SECYS(3)) * THIRD) * H |
| 148 |
|
|
X = X + (A + (SECXS(1) + SECXS(2) + SECXS(3)) * THIRD) * H |
| 149 |
|
|
* |
| 150 |
|
|
SECXS(4) = (BT*F(3) - CT*F(2))* PH2 |
| 151 |
|
|
SECYS(4) = (CT*F(1) - AT*F(3))* PH2 |
| 152 |
|
|
SECZS(4) = (AT*F(2) - BT*F(1))* PH2 |
| 153 |
|
|
A = A+(SECXS(1)+SECXS(4)+TWO * (SECXS(2)+SECXS(3))) * THIRD |
| 154 |
|
|
B = B+(SECYS(1)+SECYS(4)+TWO * (SECYS(2)+SECYS(3))) * THIRD |
| 155 |
|
|
C = C+(SECZS(1)+SECZS(4)+TWO * (SECZS(2)+SECZS(3))) * THIRD |
| 156 |
|
|
* |
| 157 |
|
|
EST = ABS(SECXS(1)+SECXS(4) - (SECXS(2)+SECXS(3))) |
| 158 |
|
|
++ ABS(SECYS(1)+SECYS(4) - (SECYS(2)+SECYS(3))) |
| 159 |
|
|
++ ABS(SECZS(1)+SECZS(4) - (SECZS(2)+SECZS(3))) |
| 160 |
|
|
* |
| 161 |
|
|
IF (EST.GT.DLT .AND. ABS(H).GT.1.E-4) GO TO 30 |
| 162 |
|
|
ITER = ITER + 1 |
| 163 |
|
|
NCUT = 0 |
| 164 |
|
|
* If too many iterations, go to HELIX |
| 165 |
|
|
IF (ITER.GT.MAXIT) GO TO 40 |
| 166 |
|
|
* |
| 167 |
|
|
TL = TL + H |
| 168 |
|
|
IF (EST.LT.(DLT32)) THEN |
| 169 |
|
|
H = H*TWO |
| 170 |
|
|
ENDIF |
| 171 |
|
|
CBA = ONE/ SQRT(A*A + B*B + C*C) |
| 172 |
|
|
VOUT(1) = X |
| 173 |
|
|
VOUT(2) = Y |
| 174 |
|
|
VOUT(3) = Z |
| 175 |
|
|
VOUT(4) = CBA*A |
| 176 |
|
|
VOUT(5) = CBA*B |
| 177 |
|
|
VOUT(6) = CBA*C |
| 178 |
|
|
REST = STEP - TL |
| 179 |
|
|
IF (STEP.LT.0.) REST = -REST |
| 180 |
|
|
IF (REST .GT. 1.E-5*DABS(STEP)) GO TO 20 |
| 181 |
|
|
* |
| 182 |
|
|
GO TO 999 |
| 183 |
|
|
* |
| 184 |
|
|
** CUT STEP |
| 185 |
|
|
30 NCUT = NCUT + 1 |
| 186 |
|
|
* If too many cuts , go to HELIX |
| 187 |
|
|
IF (NCUT.GT.MAXCUT) GO TO 40 |
| 188 |
|
|
H = H*HALF |
| 189 |
|
|
GO TO 20 |
| 190 |
|
|
* |
| 191 |
|
|
** ANGLE TOO BIG, USE HELIX |
| 192 |
|
|
40 F1 = F(1) |
| 193 |
|
|
F2 = F(2) |
| 194 |
|
|
F3 = F(3) |
| 195 |
|
|
F4 = DSQRT(F1**2+F2**2+F3**2) |
| 196 |
|
|
RHO = -F4*PINV |
| 197 |
|
|
TET = RHO * STEP |
| 198 |
|
|
IF(TET.NE.0.) THEN |
| 199 |
|
|
HNORM = ONE/F4 |
| 200 |
|
|
F1 = F1*HNORM |
| 201 |
|
|
F2 = F2*HNORM |
| 202 |
|
|
F3 = F3*HNORM |
| 203 |
|
|
* |
| 204 |
|
|
HXP(1) = F2*VECT(IPZ) - F3*VECT(IPY) |
| 205 |
|
|
HXP(2) = F3*VECT(IPX) - F1*VECT(IPZ) |
| 206 |
|
|
HXP(3) = F1*VECT(IPY) - F2*VECT(IPX) |
| 207 |
|
|
|
| 208 |
|
|
HP = F1*VECT(IPX) + F2*VECT(IPY) + F3*VECT(IPZ) |
| 209 |
|
|
* |
| 210 |
|
|
RHO1 = ONE/RHO |
| 211 |
|
|
SINT = DSIN(TET) |
| 212 |
|
|
COST = TWO*DSIN(HALF*TET)**2 |
| 213 |
|
|
* |
| 214 |
|
|
G1 = SINT*RHO1 |
| 215 |
|
|
G2 = COST*RHO1 |
| 216 |
|
|
G3 = (TET-SINT) * HP*RHO1 |
| 217 |
|
|
G4 = -COST |
| 218 |
|
|
G5 = SINT |
| 219 |
|
|
G6 = COST * HP |
| 220 |
|
|
|
| 221 |
|
|
VOUT(IX) = VECT(IX) + (G1*VECT(IPX) + G2*HXP(1) + G3*F1) |
| 222 |
|
|
VOUT(IY) = VECT(IY) + (G1*VECT(IPY) + G2*HXP(2) + G3*F2) |
| 223 |
|
|
VOUT(IZ) = VECT(IZ) + (G1*VECT(IPZ) + G2*HXP(3) + G3*F3) |
| 224 |
|
|
|
| 225 |
|
|
VOUT(IPX) = VECT(IPX) + (G4*VECT(IPX) + G5*HXP(1) + G6*F1) |
| 226 |
|
|
VOUT(IPY) = VECT(IPY) + (G4*VECT(IPY) + G5*HXP(2) + G6*F2) |
| 227 |
|
|
VOUT(IPZ) = VECT(IPZ) + (G4*VECT(IPZ) + G5*HXP(3) + G6*F3) |
| 228 |
|
|
* |
| 229 |
|
|
ELSE |
| 230 |
|
|
VOUT(IX) = VECT(IX) + STEP*VECT(IPX) |
| 231 |
|
|
VOUT(IY) = VECT(IY) + STEP*VECT(IPY) |
| 232 |
|
|
VOUT(IZ) = VECT(IZ) + STEP*VECT(IPZ) |
| 233 |
|
|
* |
| 234 |
|
|
ENDIF |
| 235 |
|
|
* |
| 236 |
|
|
999 END |
| 237 |
|
|
* |
| 238 |
|
|
* |
| 239 |
|
|
|
| 240 |
pam-fi |
1.2 |
********************************************************************** |
| 241 |
|
|
* |
| 242 |
|
|
* |
| 243 |
|
|
* routine per tracciare la particella di uno STEP |
| 244 |
|
|
* *** extended version *** |
| 245 |
|
|
* it return also the track-length |
| 246 |
|
|
* |
| 247 |
|
|
SUBROUTINE GRKUTA2 (CHARGE,STEP,VECT,VOUT) |
| 248 |
|
|
C. |
| 249 |
|
|
C. ****************************************************************** |
| 250 |
|
|
C. * * |
| 251 |
|
|
C. * Runge-Kutta method for tracking a particle through a magnetic * |
| 252 |
|
|
C. * field. Uses Nystroem algorithm (See Handbook Nat. Bur. of * |
| 253 |
|
|
C. * Standards, procedure 25.5.20) * |
| 254 |
|
|
C. * * |
| 255 |
|
|
C. * Input parameters * |
| 256 |
|
|
C. * CHARGE Particle charge * |
| 257 |
|
|
C. * STEP Step size * |
| 258 |
|
|
C. * VECT Initial co-ords,direction cosines,momentum * |
| 259 |
|
|
C. * Output parameters * |
| 260 |
|
|
C. * VOUT Output co-ords,direction cosines,momentum * |
| 261 |
|
|
C. * User routine called * |
| 262 |
|
|
C. * CALL GUFLD(X,F) * |
| 263 |
|
|
C. * * |
| 264 |
|
|
C. * ==>Called by : <USER>, GUSWIM * |
| 265 |
|
|
C. * Authors R.Brun, M.Hansroul ********* * |
| 266 |
|
|
C. * V.Perevoztchikov (CUT STEP implementation) * |
| 267 |
|
|
C. * * |
| 268 |
|
|
C. * * |
| 269 |
|
|
C. ****************************************************************** |
| 270 |
|
|
C. |
| 271 |
|
|
IMPLICIT DOUBLE PRECISION(A-H,O-Z) |
| 272 |
|
|
* |
| 273 |
|
|
REAL VVV(3),FFF(3) |
| 274 |
|
|
REAL*8 CHARGE, STEP, VECT(*), VOUT(*), F(4) |
| 275 |
|
|
REAL*8 XYZT(3), XYZ(3), X, Y, Z, XT, YT, ZT |
| 276 |
|
|
DIMENSION SECXS(4),SECYS(4),SECZS(4),HXP(3) |
| 277 |
|
|
EQUIVALENCE (X,XYZ(1)),(Y,XYZ(2)),(Z,XYZ(3)), |
| 278 |
|
|
+ (XT,XYZT(1)),(YT,XYZT(2)),(ZT,XYZT(3)) |
| 279 |
|
|
* |
| 280 |
|
|
PARAMETER (MAXIT = 1992, MAXCUT = 11) |
| 281 |
|
|
PARAMETER (EC=2.9979251D-4,DLT=1D-4,DLT32=DLT/32) |
| 282 |
|
|
PARAMETER (ZERO=0, ONE=1, TWO=2, THREE=3) |
| 283 |
|
|
PARAMETER (THIRD=ONE/THREE, HALF=ONE/TWO) |
| 284 |
|
|
PARAMETER (PISQUA=.986960440109D+01) |
| 285 |
|
|
PARAMETER (IX=1,IY=2,IZ=3,IPX=4,IPY=5,IPZ=6) |
| 286 |
|
|
|
| 287 |
|
|
* track length |
| 288 |
|
|
REAL*8 DL |
| 289 |
|
|
|
| 290 |
|
|
*. |
| 291 |
|
|
*. ------------------------------------------------------------------ |
| 292 |
|
|
*. |
| 293 |
|
|
* This constant is for units CM,GEV/C and KGAUSS |
| 294 |
|
|
* |
| 295 |
|
|
ITER = 0 |
| 296 |
|
|
NCUT = 0 |
| 297 |
|
|
DO 10 J=1,8 |
| 298 |
|
|
VOUT(J)=VECT(J) |
| 299 |
|
|
10 CONTINUE |
| 300 |
|
|
PINV = EC * CHARGE / VECT(7) |
| 301 |
|
|
TL = 0. |
| 302 |
|
|
H = STEP |
| 303 |
|
|
|
| 304 |
|
|
c print*,'===================== START GRKUTA2' |
| 305 |
|
|
|
| 306 |
|
|
* |
| 307 |
|
|
* |
| 308 |
|
|
20 REST = STEP-TL |
| 309 |
|
|
IF (DABS(H).GT.DABS(REST)) H = REST |
| 310 |
|
|
DO I=1,3 |
| 311 |
|
|
VVV(I)=SNGL(VOUT(I)) |
| 312 |
|
|
ENDDO |
| 313 |
|
|
|
| 314 |
|
|
CALL GUFLD(VVV,FFF) |
| 315 |
|
|
* print*,'GRKUTA Bx,By,Bz: ',(FFF(i),i=1,3) |
| 316 |
|
|
DO I=1,3 |
| 317 |
|
|
F(I)=DBLE(FFF(I)) |
| 318 |
|
|
ENDDO |
| 319 |
|
|
* |
| 320 |
|
|
* Start of integration |
| 321 |
|
|
* |
| 322 |
|
|
X = VOUT(1) |
| 323 |
|
|
Y = VOUT(2) |
| 324 |
|
|
Z = VOUT(3) |
| 325 |
|
|
A = VOUT(4) |
| 326 |
|
|
B = VOUT(5) |
| 327 |
|
|
C = VOUT(6) |
| 328 |
|
|
|
| 329 |
|
|
DL = VOUT(8) |
| 330 |
|
|
|
| 331 |
|
|
* |
| 332 |
|
|
H2 = HALF * H |
| 333 |
|
|
H4 = HALF * H2 |
| 334 |
|
|
PH = PINV * H |
| 335 |
|
|
PH2 = HALF * PH |
| 336 |
|
|
SECXS(1) = (B * F(3) - C * F(2)) * PH2 |
| 337 |
|
|
SECYS(1) = (C * F(1) - A * F(3)) * PH2 |
| 338 |
|
|
SECZS(1) = (A * F(2) - B * F(1)) * PH2 |
| 339 |
|
|
ANG2 = (SECXS(1)**2 + SECYS(1)**2 + SECZS(1)**2) |
| 340 |
|
|
IF (ANG2.GT.PISQUA) GO TO 40 |
| 341 |
|
|
DXT = H2 * A + H4 * SECXS(1) |
| 342 |
|
|
DYT = H2 * B + H4 * SECYS(1) |
| 343 |
|
|
DZT = H2 * C + H4 * SECZS(1) |
| 344 |
|
|
XT = X + DXT |
| 345 |
|
|
YT = Y + DYT |
| 346 |
|
|
ZT = Z + DZT |
| 347 |
|
|
* |
| 348 |
|
|
* Second intermediate point |
| 349 |
|
|
* |
| 350 |
|
|
EST = DABS(DXT)+DABS(DYT)+DABS(DZT) |
| 351 |
|
|
IF (EST.GT.H) GO TO 30 |
| 352 |
|
|
|
| 353 |
|
|
DO I=1,3 |
| 354 |
|
|
VVV(I)=SNGL(XYZT(I)) |
| 355 |
|
|
ENDDO |
| 356 |
|
|
CALL GUFLD(VVV,FFF) |
| 357 |
|
|
DO I=1,3 |
| 358 |
|
|
F(I)=DBLE(FFF(I)) |
| 359 |
|
|
ENDDO |
| 360 |
|
|
C CALL GUFLD(XYZT,F) |
| 361 |
|
|
AT = A + SECXS(1) |
| 362 |
|
|
BT = B + SECYS(1) |
| 363 |
|
|
CT = C + SECZS(1) |
| 364 |
|
|
* |
| 365 |
|
|
SECXS(2) = (BT * F(3) - CT * F(2)) * PH2 |
| 366 |
|
|
SECYS(2) = (CT * F(1) - AT * F(3)) * PH2 |
| 367 |
|
|
SECZS(2) = (AT * F(2) - BT * F(1)) * PH2 |
| 368 |
|
|
AT = A + SECXS(2) |
| 369 |
|
|
BT = B + SECYS(2) |
| 370 |
|
|
CT = C + SECZS(2) |
| 371 |
|
|
SECXS(3) = (BT * F(3) - CT * F(2)) * PH2 |
| 372 |
|
|
SECYS(3) = (CT * F(1) - AT * F(3)) * PH2 |
| 373 |
|
|
SECZS(3) = (AT * F(2) - BT * F(1)) * PH2 |
| 374 |
|
|
DXT = H * (A + SECXS(3)) |
| 375 |
|
|
DYT = H * (B + SECYS(3)) |
| 376 |
|
|
DZT = H * (C + SECZS(3)) |
| 377 |
|
|
XT = X + DXT |
| 378 |
|
|
YT = Y + DYT |
| 379 |
|
|
ZT = Z + DZT |
| 380 |
|
|
AT = A + TWO*SECXS(3) |
| 381 |
|
|
BT = B + TWO*SECYS(3) |
| 382 |
|
|
CT = C + TWO*SECZS(3) |
| 383 |
|
|
* |
| 384 |
|
|
EST = ABS(DXT)+ABS(DYT)+ABS(DZT) |
| 385 |
|
|
IF (EST.GT.2.*ABS(H)) GO TO 30 |
| 386 |
|
|
|
| 387 |
|
|
DO I=1,3 |
| 388 |
|
|
VVV(I)=SNGL(XYZT(I)) |
| 389 |
|
|
ENDDO |
| 390 |
|
|
CALL GUFLD(VVV,FFF) |
| 391 |
|
|
DO I=1,3 |
| 392 |
|
|
F(I)=DBLE(FFF(I)) |
| 393 |
|
|
ENDDO |
| 394 |
|
|
C CALL GUFLD(XYZT,F) |
| 395 |
|
|
* |
| 396 |
|
|
Z = Z + (C + (SECZS(1) + SECZS(2) + SECZS(3)) * THIRD) * H |
| 397 |
|
|
Y = Y + (B + (SECYS(1) + SECYS(2) + SECYS(3)) * THIRD) * H |
| 398 |
|
|
X = X + (A + (SECXS(1) + SECXS(2) + SECXS(3)) * THIRD) * H |
| 399 |
|
|
* |
| 400 |
|
|
SECXS(4) = (BT*F(3) - CT*F(2))* PH2 |
| 401 |
|
|
SECYS(4) = (CT*F(1) - AT*F(3))* PH2 |
| 402 |
|
|
SECZS(4) = (AT*F(2) - BT*F(1))* PH2 |
| 403 |
|
|
A = A+(SECXS(1)+SECXS(4)+TWO * (SECXS(2)+SECXS(3))) * THIRD |
| 404 |
|
|
B = B+(SECYS(1)+SECYS(4)+TWO * (SECYS(2)+SECYS(3))) * THIRD |
| 405 |
|
|
C = C+(SECZS(1)+SECZS(4)+TWO * (SECZS(2)+SECZS(3))) * THIRD |
| 406 |
|
|
* |
| 407 |
|
|
EST = ABS(SECXS(1)+SECXS(4) - (SECXS(2)+SECXS(3))) |
| 408 |
|
|
++ ABS(SECYS(1)+SECYS(4) - (SECYS(2)+SECYS(3))) |
| 409 |
|
|
++ ABS(SECZS(1)+SECZS(4) - (SECZS(2)+SECZS(3))) |
| 410 |
|
|
* |
| 411 |
|
|
IF (EST.GT.DLT .AND. ABS(H).GT.1.E-4) GO TO 30 |
| 412 |
mocchiut |
1.1 |
|
| 413 |
pam-fi |
1.2 |
ITER = ITER + 1 |
| 414 |
|
|
NCUT = 0 |
| 415 |
|
|
* If too many iterations, go to HELIX |
| 416 |
|
|
IF (ITER.GT.MAXIT) GO TO 40 |
| 417 |
|
|
* |
| 418 |
|
|
DL = VOUT(8) + |
| 419 |
|
|
$ DSQRT( 0 |
| 420 |
|
|
$ + (X-VOUT(1))**2 |
| 421 |
|
|
$ + (Y-VOUT(2))**2 |
| 422 |
|
|
$ + (Z-VOUT(3))**2 |
| 423 |
|
|
$ ) |
| 424 |
|
|
c print*,'- ',VOUT(3),z,VOUT(1),x,VOUT(2),y,DL |
| 425 |
|
|
* |
| 426 |
|
|
TL = TL + H |
| 427 |
|
|
IF (EST.LT.(DLT32)) THEN |
| 428 |
|
|
H = H*TWO |
| 429 |
|
|
ENDIF |
| 430 |
|
|
CBA = ONE/ SQRT(A*A + B*B + C*C) |
| 431 |
|
|
VOUT(1) = X |
| 432 |
|
|
VOUT(2) = Y |
| 433 |
|
|
VOUT(3) = Z |
| 434 |
|
|
VOUT(4) = CBA*A |
| 435 |
|
|
VOUT(5) = CBA*B |
| 436 |
|
|
VOUT(6) = CBA*C |
| 437 |
|
|
VOUT(8) = DL |
| 438 |
|
|
REST = STEP - TL |
| 439 |
|
|
IF (STEP.LT.0.) REST = -REST |
| 440 |
|
|
IF (REST .GT. 1.E-5*DABS(STEP)) GO TO 20 |
| 441 |
|
|
* |
| 442 |
|
|
GO TO 999 |
| 443 |
|
|
* |
| 444 |
|
|
** CUT STEP |
| 445 |
|
|
30 NCUT = NCUT + 1 |
| 446 |
|
|
* If too many cuts , go to HELIX |
| 447 |
|
|
IF (NCUT.GT.MAXCUT) GO TO 40 |
| 448 |
|
|
H = H*HALF |
| 449 |
|
|
GO TO 20 |
| 450 |
|
|
* |
| 451 |
|
|
** ANGLE TOO BIG, USE HELIX |
| 452 |
|
|
40 F1 = F(1) |
| 453 |
|
|
F2 = F(2) |
| 454 |
|
|
F3 = F(3) |
| 455 |
|
|
F4 = DSQRT(F1**2+F2**2+F3**2) |
| 456 |
|
|
RHO = -F4*PINV |
| 457 |
|
|
TET = RHO * STEP |
| 458 |
|
|
IF(TET.NE.0.) THEN |
| 459 |
|
|
HNORM = ONE/F4 |
| 460 |
|
|
F1 = F1*HNORM |
| 461 |
|
|
F2 = F2*HNORM |
| 462 |
|
|
F3 = F3*HNORM |
| 463 |
|
|
* |
| 464 |
|
|
HXP(1) = F2*VECT(IPZ) - F3*VECT(IPY) |
| 465 |
|
|
HXP(2) = F3*VECT(IPX) - F1*VECT(IPZ) |
| 466 |
|
|
HXP(3) = F1*VECT(IPY) - F2*VECT(IPX) |
| 467 |
|
|
|
| 468 |
|
|
HP = F1*VECT(IPX) + F2*VECT(IPY) + F3*VECT(IPZ) |
| 469 |
|
|
* |
| 470 |
|
|
RHO1 = ONE/RHO |
| 471 |
|
|
SINT = DSIN(TET) |
| 472 |
|
|
COST = TWO*DSIN(HALF*TET)**2 |
| 473 |
|
|
* |
| 474 |
|
|
G1 = SINT*RHO1 |
| 475 |
|
|
G2 = COST*RHO1 |
| 476 |
|
|
G3 = (TET-SINT) * HP*RHO1 |
| 477 |
|
|
G4 = -COST |
| 478 |
|
|
G5 = SINT |
| 479 |
|
|
G6 = COST * HP |
| 480 |
|
|
|
| 481 |
|
|
VOUT(IX) = VECT(IX) + (G1*VECT(IPX) + G2*HXP(1) + G3*F1) |
| 482 |
|
|
VOUT(IY) = VECT(IY) + (G1*VECT(IPY) + G2*HXP(2) + G3*F2) |
| 483 |
|
|
VOUT(IZ) = VECT(IZ) + (G1*VECT(IPZ) + G2*HXP(3) + G3*F3) |
| 484 |
|
|
|
| 485 |
|
|
VOUT(IPX) = VECT(IPX) + (G4*VECT(IPX) + G5*HXP(1) + G6*F1) |
| 486 |
|
|
VOUT(IPY) = VECT(IPY) + (G4*VECT(IPY) + G5*HXP(2) + G6*F2) |
| 487 |
|
|
VOUT(IPZ) = VECT(IPZ) + (G4*VECT(IPZ) + G5*HXP(3) + G6*F3) |
| 488 |
|
|
* |
| 489 |
|
|
ELSE |
| 490 |
|
|
VOUT(IX) = VECT(IX) + STEP*VECT(IPX) |
| 491 |
|
|
VOUT(IY) = VECT(IY) + STEP*VECT(IPY) |
| 492 |
|
|
VOUT(IZ) = VECT(IZ) + STEP*VECT(IPZ) |
| 493 |
|
|
* |
| 494 |
|
|
ENDIF |
| 495 |
|
|
* TEMP !!! TEMP !!! TEMP !!! TEMP !!! TEMP !!! TEMP !!! |
| 496 |
|
|
* devo mettere la lunghezza dell'elica!!!!!!!!!!!!!! |
| 497 |
|
|
* ma non mi riesce :-( |
| 498 |
|
|
VOUT(8) = DSQRT( 0 |
| 499 |
|
|
$ +(VOUT(IX)-VECT(IX))**2 |
| 500 |
|
|
$ +(VOUT(IY)-VECT(IY))**2 |
| 501 |
|
|
$ +(VOUT(IZ)-VECT(IZ))**2 |
| 502 |
|
|
$ ) |
| 503 |
|
|
print*,'WARNING: GRKUTA2 --> ' |
| 504 |
|
|
$ ,'helix :-( ... length evaluated with straight line' |
| 505 |
|
|
|
| 506 |
|
|
* |
| 507 |
|
|
999 END |
| 508 |
|
|
* |
| 509 |
|
|
* |
| 510 |
mocchiut |
1.1 |
|
| 511 |
|
|
********************************************************************** |
| 512 |
|
|
* |
| 513 |
|
|
* gives the value of the magnetic field in the tracking point |
| 514 |
|
|
* |
| 515 |
|
|
********************************************************************** |
| 516 |
|
|
|
| 517 |
|
|
subroutine gufld(v,f) !coordinates in cm, B field in kGauss |
| 518 |
|
|
|
| 519 |
|
|
real v(3),f(3) !coordinates in cm, B field in kGauss, error in kGauss |
| 520 |
|
|
|
| 521 |
|
|
real*8 vv(3),ff(3) !inter_B.f works in double precision |
| 522 |
|
|
|
| 523 |
|
|
|
| 524 |
|
|
do i=1,3 |
| 525 |
|
|
vv(i)=v(i)/100. !inter_B.f works in meters |
| 526 |
|
|
enddo |
| 527 |
|
|
c inter_B: coordinates in m, B field in Tesla |
| 528 |
pam-fi |
1.3 |
c print*,'GUFLD: v ',v |
| 529 |
mocchiut |
1.1 |
call inter_B(vv(1),vv(2),vv(3),ff) |
| 530 |
|
|
do i=1,3 !change back the field in kGauss |
| 531 |
|
|
f(i)=ff(i)*10. |
| 532 |
|
|
enddo |
| 533 |
pam-fi |
1.3 |
c print*,'GUFLD: b ',f |
| 534 |
|
|
c print*,vv,ff |
| 535 |
mocchiut |
1.1 |
|
| 536 |
|
|
return |
| 537 |
|
|
end |
| 538 |
|
|
|