1 |
*** * * * *** * * * *** * * * *** * * * *** * * * *** * * * *** |
2 |
* this file contains all subroutines and functions |
3 |
* that are needed for position finding algorithms: |
4 |
* |
5 |
* subroutine idtoc(ipfa,cpfa) |
6 |
* |
7 |
* subroutine applypfa(PFAtt,ic,ang,corr,res) |
8 |
* |
9 |
* integer function npfastrips(ic,angle) |
10 |
* |
11 |
* real function pfaeta(ic,angle) |
12 |
* real function pfaetal(ic,angle) |
13 |
* real function pfaeta2(ic,angle) |
14 |
* real function pfaeta3(ic,angle) |
15 |
* real function pfaeta4(ic,angle) |
16 |
* real function cog(ncog,ic) |
17 |
* |
18 |
* real function fbad_cog(ncog,ic) |
19 |
* real function fbad_eta(ic,angle) |
20 |
* |
21 |
* real function riseta(iview,angle) |
22 |
* FUNCTION risxeta2(x) |
23 |
* FUNCTION risxeta3(x) |
24 |
* FUNCTION risxeta4(x) |
25 |
* FUNCTION risyeta2(x) |
26 |
* FUNCTION risy_cog(x) |
27 |
* FUNCTION risx_cog(x) |
28 |
* |
29 |
* real function pfacorr(ic,angle) |
30 |
* |
31 |
* real function effectiveangle(ang,iview,bbb) |
32 |
* real function fieldcorr(iview,bbb) |
33 |
* |
34 |
* NB - The angle is the "effective angle", which is relative |
35 |
* to the sensor and it takes into account the magnetic field |
36 |
* |
37 |
*** * * * *** * * * *** * * * *** * * * *** * * * *** * * * *** |
38 |
|
39 |
subroutine idtoc(ipfa,cpfa) |
40 |
|
41 |
integer ipfa |
42 |
character*10 cpfa |
43 |
|
44 |
CPFA='COG4' |
45 |
if(ipfa.eq.0)CPFA='ETA' |
46 |
if(ipfa.eq.2)CPFA='ETA2' |
47 |
if(ipfa.eq.3)CPFA='ETA3' |
48 |
if(ipfa.eq.4)CPFA='ETA4' |
49 |
if(ipfa.eq.5)CPFA='ETAL' |
50 |
if(ipfa.eq.10)CPFA='COG' |
51 |
if(ipfa.eq.11)CPFA='COG1' |
52 |
if(ipfa.eq.12)CPFA='COG2' |
53 |
if(ipfa.eq.13)CPFA='COG3' |
54 |
if(ipfa.eq.14)CPFA='COG4' |
55 |
|
56 |
end |
57 |
*** * * * *** * * * *** * * * *** * * * *** * * * *** * * * *** |
58 |
real function effectiveangle(ang,iview,bbb) |
59 |
|
60 |
include 'commontracker.f' |
61 |
|
62 |
effectiveangle = 0. |
63 |
|
64 |
if(mod(iview,2).eq.0)then |
65 |
c ================================================= |
66 |
c X view |
67 |
c ================================================= |
68 |
c here bbb is the y component of the m.field |
69 |
angx = ang |
70 |
by = bbb |
71 |
if(iview.eq.12) angx = -1. * ang |
72 |
if(iview.eq.12) by = -1. * bbb |
73 |
cc tgtemp = tan(ang*acos(-1.)/180.) + pmuH_h*by*0.00001 !ORRORE!! |
74 |
tgtemp = tan(angx*acos(-1.)/180.) + pmuH_h*by*0.00001 |
75 |
|
76 |
elseif(mod(iview,2).eq.1)then |
77 |
c ================================================= |
78 |
c Y view |
79 |
c ================================================= |
80 |
c here bbb is the x component of the m.filed |
81 |
angy = ang |
82 |
bx = bbb |
83 |
tgtemp = tan(angy*acos(-1.)/180.)+pmuH_e*bx*0.00001 |
84 |
|
85 |
endif |
86 |
effectiveangle = 180.*atan(tgtemp)/acos(-1.) |
87 |
|
88 |
return |
89 |
end |
90 |
*** * * * *** * * * *** * * * *** * * * *** * * * *** * * * *** |
91 |
real function fieldcorr(iview,bbb) |
92 |
|
93 |
include 'commontracker.f' |
94 |
|
95 |
fieldcorr = 0. |
96 |
|
97 |
if(mod(iview,2).eq.0)then |
98 |
|
99 |
c ================================================= |
100 |
c X view |
101 |
c ================================================= |
102 |
c here bbb is the y component of the m.field |
103 |
by = bbb |
104 |
if(iview.eq.12) by = -1. * bbb |
105 |
fieldcorr = -1. * 0.5*pmuH_h*by*0.00001*SiDimZ/pitchX |
106 |
|
107 |
elseif(mod(iview,2).eq.1)then |
108 |
c ================================================= |
109 |
c Y view |
110 |
c ================================================= |
111 |
c here bbb is the x component of the m.filed |
112 |
bx = bbb |
113 |
fieldcorr = 0.5*pmuH_e*bx*0.00001*SiDimZ/pitchY |
114 |
|
115 |
endif |
116 |
|
117 |
return |
118 |
end |
119 |
*** * * * *** * * * *** * * * *** * * * *** * * * *** * * * *** |
120 |
|
121 |
subroutine applypfa(PFAtt,ic,ang,corr,res) |
122 |
*--------------------------------------------------------------- |
123 |
* this subroutine calculate the coordinate of cluster ic (in |
124 |
* strip units), relative to the strip with the maximum signal, |
125 |
* and its spatial resolution (in cm), applying PFAtt. |
126 |
* ang is the effective angle, relative to the sensor |
127 |
*--------------------------------------------------------------- |
128 |
|
129 |
character*4 PFAtt |
130 |
include 'commontracker.f' |
131 |
include 'level1.f' |
132 |
|
133 |
corr = 0 |
134 |
res = 0 |
135 |
|
136 |
if(ic.le.0)return |
137 |
|
138 |
iview = VIEW(ic) |
139 |
|
140 |
if(mod(iview,2).eq.0)then |
141 |
c ================================================= |
142 |
c X view |
143 |
c ================================================= |
144 |
|
145 |
res = RESXAV |
146 |
|
147 |
if(PFAtt.eq.'COG1')then |
148 |
|
149 |
corr = 0 |
150 |
res = 1e-4*pitchX/sqrt(12.)!!res |
151 |
|
152 |
elseif(PFAtt.eq.'COG2')then |
153 |
|
154 |
corr = cog(2,ic) |
155 |
res = risx_cog(abs(ang))!TEMPORANEO |
156 |
res = res*fbad_cog(2,ic) |
157 |
|
158 |
elseif(PFAtt.eq.'COG3')then |
159 |
|
160 |
corr = cog(3,ic) |
161 |
res = risx_cog(abs(ang))!TEMPORANEO |
162 |
res = res*fbad_cog(3,ic) |
163 |
|
164 |
elseif(PFAtt.eq.'COG4')then |
165 |
|
166 |
corr = cog(4,ic) |
167 |
res = risx_cog(abs(ang))!TEMPORANEO |
168 |
res = res*fbad_cog(4,ic) |
169 |
|
170 |
elseif(PFAtt.eq.'ETA2')then |
171 |
|
172 |
corr = pfaeta2(ic,ang) |
173 |
res = risxeta2(abs(ang)) |
174 |
res = res*fbad_cog(2,ic) |
175 |
|
176 |
elseif(PFAtt.eq.'ETA3')then |
177 |
|
178 |
corr = pfaeta3(ic,ang) |
179 |
res = risxeta3(abs(ang)) |
180 |
res = res*fbad_cog(3,ic) |
181 |
|
182 |
elseif(PFAtt.eq.'ETA4')then |
183 |
|
184 |
corr = pfaeta4(ic,ang) |
185 |
res = risxeta4(abs(ang)) |
186 |
res = res*fbad_cog(4,ic) |
187 |
|
188 |
elseif(PFAtt.eq.'ETA')then |
189 |
|
190 |
corr = pfaeta(ic,ang) |
191 |
c res = riseta(ic,ang) |
192 |
res = riseta(iview,ang) |
193 |
res = res*fbad_eta(ic,ang) |
194 |
|
195 |
elseif(PFAtt.eq.'ETAL')then |
196 |
|
197 |
corr = pfaetal(ic,ang) |
198 |
res = riseta(iview,ang) |
199 |
res = res*fbad_eta(ic,ang) |
200 |
|
201 |
elseif(PFAtt.eq.'COG')then |
202 |
|
203 |
corr = cog(0,ic) |
204 |
res = risx_cog(abs(ang)) |
205 |
res = res*fbad_cog(0,ic) |
206 |
|
207 |
else |
208 |
if(DEBUG.EQ.1) print*,'*** Non valid p.f.a. (x) --> ',PFAtt |
209 |
endif |
210 |
|
211 |
|
212 |
* ====================================== |
213 |
* temporary patch for saturated clusters |
214 |
* ====================================== |
215 |
if( nsatstrips(ic).gt.0 )then |
216 |
corr = cog(4,ic) |
217 |
res = pitchX*1e-4/sqrt(12.) |
218 |
cc cc=cog(4,ic) |
219 |
c$$$ print*,ic,' *** ',cc |
220 |
c$$$ print*,ic,' *** ',res |
221 |
endif |
222 |
|
223 |
|
224 |
elseif(mod(iview,2).eq.1)then |
225 |
c ================================================= |
226 |
c Y view |
227 |
c ================================================= |
228 |
|
229 |
res = RESYAV |
230 |
|
231 |
if(PFAtt.eq.'COG1')then |
232 |
|
233 |
corr = 0 |
234 |
res = 1e-4*pitchY/sqrt(12.)!res |
235 |
|
236 |
elseif(PFAtt.eq.'COG2')then |
237 |
|
238 |
corr = cog(2,ic) |
239 |
res = risy_cog(abs(ang))!TEMPORANEO |
240 |
res = res*fbad_cog(2,ic) |
241 |
|
242 |
elseif(PFAtt.eq.'COG3')then |
243 |
|
244 |
corr = cog(3,ic) |
245 |
res = risy_cog(abs(ang))!TEMPORANEO |
246 |
res = res*fbad_cog(3,ic) |
247 |
|
248 |
elseif(PFAtt.eq.'COG4')then |
249 |
|
250 |
corr = cog(4,ic) |
251 |
res = risy_cog(abs(ang))!TEMPORANEO |
252 |
res = res*fbad_cog(4,ic) |
253 |
|
254 |
elseif(PFAtt.eq.'ETA2')then |
255 |
|
256 |
corr = pfaeta2(ic,ang) |
257 |
res = risyeta2(abs(ang)) |
258 |
res = res*fbad_cog(2,ic) |
259 |
|
260 |
elseif(PFAtt.eq.'ETA3')then |
261 |
|
262 |
corr = pfaeta3(ic,ang) |
263 |
res = res*fbad_cog(3,ic) |
264 |
|
265 |
elseif(PFAtt.eq.'ETA4')then |
266 |
|
267 |
corr = pfaeta4(ic,ang) |
268 |
res = res*fbad_cog(4,ic) |
269 |
|
270 |
elseif(PFAtt.eq.'ETA')then |
271 |
|
272 |
corr = pfaeta(ic,ang) |
273 |
c res = riseta(ic,ang) |
274 |
res = riseta(iview,ang) |
275 |
res = res*fbad_eta(ic,ang) |
276 |
|
277 |
elseif(PFAtt.eq.'ETAL')then |
278 |
|
279 |
corr = pfaetal(ic,ang) |
280 |
res = riseta(iview,ang) |
281 |
res = res*fbad_eta(ic,ang) |
282 |
|
283 |
elseif(PFAtt.eq.'COG')then |
284 |
|
285 |
corr = cog(0,ic) |
286 |
res = risy_cog(abs(ang)) |
287 |
res = res*fbad_cog(0,ic) |
288 |
|
289 |
else |
290 |
if(DEBUG.EQ.1) print*,'*** Non valid p.f.a. (y) --> ',PFAtt |
291 |
endif |
292 |
|
293 |
|
294 |
* ====================================== |
295 |
* temporary patch for saturated clusters |
296 |
* ====================================== |
297 |
if( nsatstrips(ic).gt.0 )then |
298 |
corr = cog(4,ic) |
299 |
res = pitchY*1e-4/sqrt(12.) |
300 |
cc cc=cog(4,ic) |
301 |
c$$$ print*,ic,' *** ',cc |
302 |
c$$$ print*,ic,' *** ',res |
303 |
endif |
304 |
|
305 |
endif |
306 |
end |
307 |
|
308 |
*** * * * *** * * * *** * * * *** * * * *** * * * *** * * * *** |
309 |
integer function npfastrips(ic,angle) |
310 |
*-------------------------------------------------------------- |
311 |
* thid function returns the number of strips used |
312 |
* to evaluate the position of a cluster, according to the p.f.a. |
313 |
*-------------------------------------------------------------- |
314 |
include 'commontracker.f' |
315 |
include 'level1.f' |
316 |
include 'calib.f' |
317 |
|
318 |
character*4 usedPFA |
319 |
|
320 |
|
321 |
|
322 |
call idtoc(pfaid,usedPFA) |
323 |
|
324 |
npfastrips=-1 |
325 |
|
326 |
if(usedPFA.eq.'COG1')npfastrips=1 |
327 |
if(usedPFA.eq.'COG2')npfastrips=2 |
328 |
if(usedPFA.eq.'COG3')npfastrips=3 |
329 |
if(usedPFA.eq.'COG4')npfastrips=4 |
330 |
if(usedPFA.eq.'ETA2')npfastrips=2 |
331 |
if(usedPFA.eq.'ETA3')npfastrips=3 |
332 |
if(usedPFA.eq.'ETA4')npfastrips=4 |
333 |
* ---------------------------------------------------------------- |
334 |
if(usedPFA.eq.'ETA'.or.usedPFA.eq.'ETAL')then |
335 |
c print*,VIEW(ic),angle |
336 |
if(mod(int(VIEW(ic)),2).eq.1)then !Y-view |
337 |
if( abs(angle).ge.e2fay.and.abs(angle).lt.e2tay )then |
338 |
npfastrips=2 |
339 |
elseif( abs(angle).ge.e3fay.and.abs(angle).lt.e3tay )then |
340 |
npfastrips=3 |
341 |
elseif( abs(angle).ge.e4fay.and.abs(angle).lt.e4tay )then |
342 |
npfastrips=4 |
343 |
else |
344 |
npfastrips=4 !COG4 |
345 |
endif |
346 |
else !X-view |
347 |
if( abs(angle).ge.e2fax.and.abs(angle).lt.e2tax )then |
348 |
npfastrips=2 |
349 |
elseif( abs(angle).ge.e3fax.and.abs(angle).lt.e3tax )then |
350 |
npfastrips=3 |
351 |
elseif( abs(angle).ge.e4fax.and.abs(angle).lt.e4tax )then |
352 |
npfastrips=4 |
353 |
else |
354 |
npfastrips=4 !COG4 |
355 |
endif |
356 |
endif |
357 |
endif |
358 |
* ---------------------------------------------------------------- |
359 |
if(usedPFA.eq.'COG')then |
360 |
|
361 |
npfastrips=0 |
362 |
|
363 |
c$$$ iv=VIEW(ic) |
364 |
c$$$ if(mod(iv,2).eq.1)incut=incuty |
365 |
c$$$ if(mod(iv,2).eq.0)incut=incutx |
366 |
c$$$ istart = INDSTART(IC) |
367 |
c$$$ istop = TOTCLLENGTH |
368 |
c$$$ if(ic.lt.NCLSTR1)istop=INDSTART(IC+1)-1 |
369 |
c$$$ mu = 0 |
370 |
c$$$ do i = INDMAX(IC),istart,-1 |
371 |
c$$$ ipos = i-INDMAX(ic) |
372 |
c$$$ cut = incut*CLSIGMA(i) |
373 |
c$$$ if(CLSIGNAL(i).ge.cut)then |
374 |
c$$$ mu = mu + 1 |
375 |
c$$$ print*,i,mu |
376 |
c$$$ else |
377 |
c$$$ goto 10 |
378 |
c$$$ endif |
379 |
c$$$ enddo |
380 |
c$$$ 10 continue |
381 |
c$$$ do i = INDMAX(IC)+1,istop |
382 |
c$$$ ipos = i-INDMAX(ic) |
383 |
c$$$ cut = incut*CLSIGMA(i) |
384 |
c$$$ if(CLSIGNAL(i).ge.cut)then |
385 |
c$$$ mu = mu + 1 |
386 |
c$$$ print*,i,mu |
387 |
c$$$ else |
388 |
c$$$ goto 20 |
389 |
c$$$ endif |
390 |
c$$$ enddo |
391 |
c$$$ 20 continue |
392 |
c$$$ npfastrips=mu |
393 |
|
394 |
endif |
395 |
* ---------------------------------------------------------------- |
396 |
|
397 |
c print*,pfaid,usedPFA,angle,npfastrips |
398 |
|
399 |
return |
400 |
end |
401 |
|
402 |
*** * * * *** * * * *** * * * *** * * * *** * * * *** * * * *** |
403 |
real function pfaeta(ic,angle) |
404 |
*-------------------------------------------------------------- |
405 |
* this function returns the position (in strip units) |
406 |
* it calls: |
407 |
* - pfaeta2(ic,angle) |
408 |
* - pfaeta3(ic,angle) |
409 |
* - pfaeta4(ic,angle) |
410 |
* according to the angle |
411 |
*-------------------------------------------------------------- |
412 |
include 'commontracker.f' |
413 |
include 'level1.f' |
414 |
include 'calib.f' |
415 |
|
416 |
pfaeta = 0 |
417 |
|
418 |
if(mod(int(VIEW(ic)),2).eq.1)then !Y-view |
419 |
|
420 |
if( abs(angle).ge.e2fay.and.abs(angle).lt.e2tay )then |
421 |
pfaeta = pfaeta2(ic,angle) |
422 |
cc print*,pfaeta2(ic,angle) |
423 |
elseif( abs(angle).ge.e3fay.and.abs(angle).lt.e3tay )then |
424 |
pfaeta = pfaeta3(ic,angle) |
425 |
elseif( abs(angle).ge.e4fay.and.abs(angle).lt.e4tay )then |
426 |
pfaeta = pfaeta4(ic,angle) |
427 |
else |
428 |
pfaeta = cog(4,ic) |
429 |
endif |
430 |
|
431 |
else !X-view |
432 |
|
433 |
if( abs(angle).ge.e2fax.and.abs(angle).lt.e2tax )then |
434 |
pfaeta = pfaeta2(ic,angle) |
435 |
elseif( abs(angle).ge.e3fax.and.abs(angle).lt.e3tax )then |
436 |
pfaeta = pfaeta3(ic,angle) |
437 |
elseif( abs(angle).ge.e4fax.and.abs(angle).lt.e4tax )then |
438 |
pfaeta = pfaeta4(ic,angle) |
439 |
else |
440 |
pfaeta = cog(4,ic) |
441 |
endif |
442 |
|
443 |
endif |
444 |
|
445 |
100 return |
446 |
end |
447 |
|
448 |
*** * * * *** * * * *** * * * *** * * * *** * * * *** * * * *** |
449 |
real function pfaetal(ic,angle) |
450 |
*-------------------------------------------------------------- |
451 |
* this function returns the position (in strip units) |
452 |
* it calls: |
453 |
* - pfaeta2(ic,angle)+pfcorr(ic,angle) |
454 |
* - pfaeta3(ic,angle)+pfcorr(ic,angle) |
455 |
* - pfaeta4(ic,angle)+pfcorr(ic,angle) |
456 |
* according to the angle |
457 |
*-------------------------------------------------------------- |
458 |
include 'commontracker.f' |
459 |
include 'level1.f' |
460 |
include 'calib.f' |
461 |
|
462 |
pfaetal = 0 |
463 |
|
464 |
if(mod(int(VIEW(ic)),2).eq.1)then !Y-view |
465 |
|
466 |
if( abs(angle).ge.e2fay.and.abs(angle).lt.e2tay )then |
467 |
pfaetal = pfaeta2(ic,angle)+pfacorr(ic,angle) |
468 |
cc print*,VIEW(ic),angle,pfaeta2(ic,angle),pfacorr(ic,angle) |
469 |
elseif( abs(angle).ge.e3fay.and.abs(angle).lt.e3tay )then |
470 |
pfaetal = pfaeta3(ic,angle)+pfacorr(ic,angle) |
471 |
elseif( abs(angle).ge.e4fay.and.abs(angle).lt.e4tay )then |
472 |
pfaetal = pfaeta4(ic,angle)+pfacorr(ic,angle) |
473 |
else |
474 |
pfaetal = cog(4,ic) |
475 |
endif |
476 |
|
477 |
else !X-view |
478 |
|
479 |
if( abs(angle).ge.e2fax.and.abs(angle).lt.e2tax )then |
480 |
pfaetal = pfaeta2(ic,angle)+pfacorr(ic,angle) |
481 |
cc print*,VIEW(ic),angle,pfaeta2(ic,angle),pfacorr(ic,angle) |
482 |
elseif( abs(angle).ge.e3fax.and.abs(angle).lt.e3tax )then |
483 |
pfaetal = pfaeta3(ic,angle)+pfacorr(ic,angle) |
484 |
elseif( abs(angle).ge.e4fax.and.abs(angle).lt.e4tax )then |
485 |
pfaetal = pfaeta4(ic,angle)+pfacorr(ic,angle) |
486 |
else |
487 |
pfaetal = cog(4,ic) |
488 |
endif |
489 |
|
490 |
endif |
491 |
|
492 |
100 return |
493 |
end |
494 |
*** * * * *** * * * *** * * * *** * * * *** * * * *** * * * *** |
495 |
c real function riseta(ic,angle) |
496 |
real function riseta(iview,angle) |
497 |
*-------------------------------------------------------------- |
498 |
* this function returns the average spatial resolution |
499 |
* (in cm) for the ETA algorithm (function pfaeta(ic,angle)) |
500 |
* it calls: |
501 |
* - risxeta2(angle) |
502 |
* - risyeta2(angle) |
503 |
* - risxeta3(angle) |
504 |
* - risxeta4(angle) |
505 |
* according to the angle |
506 |
*-------------------------------------------------------------- |
507 |
include 'commontracker.f' |
508 |
include 'level1.f' |
509 |
include 'calib.f' |
510 |
|
511 |
riseta = 0 |
512 |
|
513 |
c if(mod(int(VIEW(ic)),2).eq.1)then !Y-view |
514 |
if(mod(iview,2).eq.1)then !Y-view |
515 |
|
516 |
|
517 |
if( abs(angle).ge.e2fay.and.abs(angle).le.e2tay )then |
518 |
riseta = risyeta2(angle) |
519 |
elseif( abs(angle).ge.e3fay.and.abs(angle).le.e3tay )then |
520 |
riseta = risy_cog(angle) !ATTENZIONE!! |
521 |
elseif( abs(angle).ge.e4fay.and.abs(angle).le.e4tay )then |
522 |
riseta = risy_cog(angle) !ATTENZIONE!! |
523 |
else |
524 |
riseta = risy_cog(angle) |
525 |
endif |
526 |
|
527 |
else !X-view |
528 |
|
529 |
if( abs(angle).ge.e2fax.and.abs(angle).le.e2tax )then |
530 |
riseta = risxeta2(angle) |
531 |
elseif( abs(angle).ge.e3fax.and.abs(angle).le.e3tax )then |
532 |
riseta = risxeta3(angle) |
533 |
elseif( abs(angle).ge.e4fax.and.abs(angle).le.e4tax )then |
534 |
riseta = risxeta4(angle) |
535 |
else |
536 |
riseta = risx_cog(angle) |
537 |
endif |
538 |
|
539 |
endif |
540 |
|
541 |
|
542 |
100 return |
543 |
end |
544 |
|
545 |
*** * * * *** * * * *** * * * *** * * * *** * * * *** * * * *** |
546 |
real function fbad_eta(ic,angle) |
547 |
*------------------------------------------------------- |
548 |
* this function returns a factor that takes into |
549 |
* account deterioration of the spatial resolution |
550 |
* in the case BAD strips are included in the cluster. |
551 |
* This factor should multiply the nominal spatial |
552 |
* resolution. |
553 |
* It calls the function FBAD_COG(NCOG,IC), |
554 |
* accordingto the angle |
555 |
*------------------------------------------------------- |
556 |
|
557 |
include 'commontracker.f' |
558 |
include 'level1.f' |
559 |
include 'calib.f' |
560 |
fbad_eta = 0 |
561 |
|
562 |
if(mod(int(VIEW(ic)),2).eq.1)then !Y-view |
563 |
|
564 |
if( abs(angle).ge.e2fay.and.abs(angle).le.e2tay )then |
565 |
fbad_eta = fbad_cog(2,ic) |
566 |
elseif( abs(angle).ge.e3fay.and.abs(angle).le.e3tay )then |
567 |
fbad_eta = fbad_cog(3,ic) |
568 |
elseif( abs(angle).ge.e4fay.and.abs(angle).le.e4tay )then |
569 |
fbad_eta = fbad_cog(4,ic) |
570 |
else |
571 |
fbad_eta = fbad_cog(4,ic) |
572 |
endif |
573 |
|
574 |
else !X-view |
575 |
|
576 |
if( abs(angle).ge.e2fax.and.abs(angle).le.e2tax )then |
577 |
fbad_eta = fbad_cog(2,ic) |
578 |
elseif( abs(angle).ge.e3fax.and.abs(angle).le.e3tax )then |
579 |
fbad_eta = fbad_cog(3,ic) |
580 |
elseif( abs(angle).ge.e4fax.and.abs(angle).le.e4tax )then |
581 |
fbad_eta = fbad_cog(4,ic) |
582 |
else |
583 |
fbad_eta = fbad_cog(4,ic) |
584 |
endif |
585 |
|
586 |
endif |
587 |
|
588 |
return |
589 |
end |
590 |
|
591 |
*** * * * *** * * * *** * * * *** * * * *** * * * *** * * * *** |
592 |
real function pfaeta2(ic,angle) !(1) |
593 |
*-------------------------------------------------------------- |
594 |
* this function returns |
595 |
* |
596 |
* - the position (in strip units) |
597 |
* corrected according to the ETA2 Position Finding Algorithm. |
598 |
* The function performs an interpolation of FETA2%ETA2 |
599 |
* |
600 |
* - if the angle is out of range, the calibration parameters |
601 |
* of the lowest or higher bin are used |
602 |
* |
603 |
*-------------------------------------------------------------- |
604 |
include 'commontracker.f' |
605 |
include 'calib.f' |
606 |
include 'level1.f' |
607 |
|
608 |
real cog2,angle |
609 |
integer iview,lad |
610 |
|
611 |
iview = VIEW(ic) |
612 |
lad = nld(MAXS(ic),VIEW(ic)) |
613 |
cog2 = cog(2,ic) |
614 |
pfaeta2=cog2 |
615 |
|
616 |
* ---------------- |
617 |
* find angular bin |
618 |
* ---------------- |
619 |
* (in futuro possiamo pensare di interpolare anche sull'angolo) |
620 |
do iang=1,nangbin |
621 |
if(angL(iang).lt.angle.and.angR(iang).ge.angle)then |
622 |
iangle=iang |
623 |
goto 98 |
624 |
endif |
625 |
enddo |
626 |
if(DEBUG.EQ.1) |
627 |
$ print*,'pfaeta2 *** warning *** angle out of range: ',angle |
628 |
if(angle.le.angL(1))iang=1 |
629 |
if(angle.ge.angR(nangbin))iang=nangbin |
630 |
98 continue !jump here if ok |
631 |
|
632 |
* ------------- |
633 |
* within +/-0.5 |
634 |
* ------------- |
635 |
|
636 |
iaddmax=10 |
637 |
iadd=0 |
638 |
10 continue |
639 |
if(cog2.lt.eta2(1,iang))then |
640 |
cog2 = cog2 + 1 |
641 |
iadd = iadd + 1 |
642 |
if(iadd>iaddmax)goto 111 |
643 |
goto 10 |
644 |
endif |
645 |
20 continue |
646 |
if(cog2.gt.eta2(netaval,iang))then |
647 |
cog2 = cog2 - 1 |
648 |
iadd = iadd - 1 |
649 |
if(iadd<-1*iaddmax)goto 111 |
650 |
goto 20 |
651 |
endif |
652 |
goto 1111 |
653 |
111 continue |
654 |
if(DEBUG.eq.1)print*,'pfaeta2 *** warning *** anomalous cluster' |
655 |
if(DEBUG.eq.1)print*,'--> COG(2) = ',cog2-iadd,' (set to zero)' |
656 |
cog2=0 |
657 |
1111 continue |
658 |
|
659 |
* -------------------------------- |
660 |
c print*,'*****',i,view,lad,iang,'------> cog2 ',cog2 |
661 |
do i=2,netaval |
662 |
if(eta2(i,iang).gt.cog2)then |
663 |
|
664 |
x1 = eta2(i-1,iang) |
665 |
x2 = eta2(i,iang) |
666 |
y1 = feta2(i-1,iview,lad,iang) |
667 |
y2 = feta2(i,iview,lad,iang) |
668 |
|
669 |
c print*,'*****',i,view,lad,iang |
670 |
c print*,'-----',x1,x2,y1,y2 |
671 |
goto 99 |
672 |
endif |
673 |
enddo |
674 |
99 continue |
675 |
|
676 |
|
677 |
AA=(y2-y1)/(x2-x1) |
678 |
BB=y1-AA*x1 |
679 |
|
680 |
pfaeta2 = AA*cog2+BB |
681 |
pfaeta2 = pfaeta2 - iadd |
682 |
|
683 |
c$$$ if(iflag.eq.1)then |
684 |
c$$$ pfaeta2=pfaeta2-1. !temp |
685 |
c$$$ cog2=cog2-1. !temp |
686 |
c$$$ endif |
687 |
c$$$ if(iflag.eq.-1)then |
688 |
c$$$ pfaeta2=pfaeta2+1. !temp |
689 |
c$$$ cog2=cog2+1. !temp |
690 |
c$$$ endif |
691 |
|
692 |
if(DEBUG.EQ.1)print*,'ETA2 (ic ',ic,' ang',angle,')' |
693 |
$ ,cog2-iadd,' -->',pfaeta2 |
694 |
|
695 |
|
696 |
100 return |
697 |
end |
698 |
|
699 |
*** * * * *** * * * *** * * * *** * * * *** * * * *** * * * *** |
700 |
real function pfaeta3(ic,angle) !(1) |
701 |
*-------------------------------------------------------------- |
702 |
* this function returns |
703 |
* |
704 |
* - the position (in strip units) |
705 |
* corrected according to the ETA3 Position Finding Algorithm. |
706 |
* The function performs an interpolation of FETA3%ETA3 |
707 |
* |
708 |
* - if the angle is out of range, the calibration parameters |
709 |
* of the lowest or higher bin are used |
710 |
* |
711 |
*-------------------------------------------------------------- |
712 |
include 'commontracker.f' |
713 |
include 'calib.f' |
714 |
include 'level1.f' |
715 |
|
716 |
real cog3,angle |
717 |
integer iview,lad |
718 |
|
719 |
|
720 |
iview = VIEW(ic) |
721 |
lad = nld(MAXS(ic),VIEW(ic)) |
722 |
cog3 = cog(3,ic) |
723 |
cc = cog3 |
724 |
cog3 = cc |
725 |
pfaeta3=cog3 |
726 |
|
727 |
* ---------------- |
728 |
* find angular bin |
729 |
* ---------------- |
730 |
* (in futuro possiamo pensare di interpolare anche sull'angolo) |
731 |
do iang=1,nangbin |
732 |
c print*,'~~~~~~~~~~~~ ',iang,angL(iang),angR(iang),angle |
733 |
if(angL(iang).lt.angle.and.angR(iang).ge.angle)then |
734 |
iangle=iang |
735 |
goto 98 |
736 |
endif |
737 |
enddo |
738 |
if(DEBUG.EQ.1) |
739 |
$ print*,'pfaeta3 *** warning *** angle out of range: ',angle |
740 |
if(angle.le.angL(1))iang=1 |
741 |
if(angle.ge.angR(nangbin))iang=nangbin |
742 |
98 continue !jump here if ok |
743 |
|
744 |
* ------------- |
745 |
* within +/-0.5 |
746 |
* ------------- |
747 |
|
748 |
iaddmax=10 |
749 |
iadd=0 |
750 |
10 continue |
751 |
if(cog3.lt.eta3(1,iang))then |
752 |
cog3 = cog3 + 1. |
753 |
iadd = iadd + 1 |
754 |
if(iadd>iaddmax) goto 111 |
755 |
goto 10 |
756 |
endif |
757 |
20 continue |
758 |
if(cog3.gt.eta3(netaval,iang))then |
759 |
cog3 = cog3 - 1. |
760 |
iadd = iadd - 1 |
761 |
if(iadd<-1*iaddmax) goto 111 |
762 |
goto 20 |
763 |
endif |
764 |
goto 1111 |
765 |
111 continue |
766 |
if(DEBUG.eq.1)print*,'pfaeta3 *** warning *** anomalous cluster' |
767 |
if(DEBUG.eq.1)print*,'--> COG(3) = ',cog3-iadd,' (set to zero)' |
768 |
cog3=0 |
769 |
1111 continue |
770 |
|
771 |
* -------------------------------- |
772 |
c print*,'*****',i,view,lad,iang,'------> cog2 ',cog2 |
773 |
do i=2,netaval |
774 |
if(eta3(i,iang).gt.cog3)then |
775 |
|
776 |
x1 = eta3(i-1,iang) |
777 |
x2 = eta3(i,iang) |
778 |
y1 = feta3(i-1,iview,lad,iang) |
779 |
y2 = feta3(i,iview,lad,iang) |
780 |
|
781 |
c print*,'*****',i,view,lad,iang |
782 |
c print*,'-----',x1,x2,y1,y2 |
783 |
goto 99 |
784 |
endif |
785 |
enddo |
786 |
99 continue |
787 |
|
788 |
|
789 |
AA=(y2-y1)/(x2-x1) |
790 |
BB=y1-AA*x1 |
791 |
|
792 |
pfaeta3 = AA*cog3+BB |
793 |
pfaeta3 = pfaeta3 - iadd |
794 |
|
795 |
|
796 |
if(DEBUG.EQ.1)print*,'ETA3 (ic ',ic,' ang',angle,')' |
797 |
$ ,cog3-iadd,' -->',pfaeta3 |
798 |
|
799 |
100 return |
800 |
end |
801 |
|
802 |
*** * * * *** * * * *** * * * *** * * * *** * * * *** * * * *** |
803 |
real function pfaeta4(ic,angle) |
804 |
*-------------------------------------------------------------- |
805 |
* this function returns |
806 |
* |
807 |
* - the position (in strip units) |
808 |
* corrected according to the ETA4 Position Finding Algorithm. |
809 |
* The function performs an interpolation of FETA3%ETA3 |
810 |
* |
811 |
* - if the angle is out of range, the calibration parameters |
812 |
* of the lowest or higher bin are used |
813 |
* |
814 |
*-------------------------------------------------------------- |
815 |
include 'commontracker.f' |
816 |
include 'calib.f' |
817 |
include 'level1.f' |
818 |
|
819 |
real cog4,angle |
820 |
integer iview,lad |
821 |
|
822 |
|
823 |
iview = VIEW(ic) |
824 |
lad = nld(MAXS(ic),VIEW(ic)) |
825 |
cog4=cog(4,ic) |
826 |
pfaeta4=cog4 |
827 |
|
828 |
* ---------------- |
829 |
* find angular bin |
830 |
* ---------------- |
831 |
* (in futuro possiamo pensare di interpolare anche sull'angolo) |
832 |
do iang=1,nangbin |
833 |
c print*,'~~~~~~~~~~~~ ',iang,angL(iang),angR(iang),angle |
834 |
if(angL(iang).lt.angle.and.angR(iang).ge.angle)then |
835 |
iangle=iang |
836 |
goto 98 |
837 |
endif |
838 |
enddo |
839 |
if(DEBUG.EQ.1) |
840 |
$ print*,'pfaeta4 *** warning *** angle out of range: ',angle |
841 |
if(angle.le.angL(1))iang=1 |
842 |
if(angle.ge.angR(nangbin))iang=nangbin |
843 |
98 continue !jump here if ok |
844 |
|
845 |
* ------------- |
846 |
* within +/-0.5 |
847 |
* ------------- |
848 |
|
849 |
iaddmax=10 |
850 |
iadd=0 |
851 |
10 continue |
852 |
if(cog4.lt.eta4(1,iang))then |
853 |
cog4 = cog4 + 1 |
854 |
iadd = iadd + 1 |
855 |
if(iadd>iaddmax)goto 111 |
856 |
goto 10 |
857 |
endif |
858 |
20 continue |
859 |
if(cog4.gt.eta4(netaval,iang))then |
860 |
cog4 = cog4 - 1 |
861 |
iadd = iadd - 1 |
862 |
if(iadd<-1*iaddmax)goto 111 |
863 |
goto 20 |
864 |
endif |
865 |
goto 1111 |
866 |
111 continue |
867 |
if(DEBUG.eq.1)print*,'pfaeta4 *** warning *** anomalous cluster' |
868 |
if(DEBUG.eq.1)print*,'--> COG(4) = ',cog4-iadd,' (set to zero)' |
869 |
cog4=0 |
870 |
1111 continue |
871 |
|
872 |
* -------------------------------- |
873 |
c print*,'*****',i,view,lad,iang,'------> cog2 ',cog2 |
874 |
do i=2,netaval |
875 |
if(eta4(i,iang).gt.cog4)then |
876 |
|
877 |
x1 = eta4(i-1,iang) |
878 |
x2 = eta4(i,iang) |
879 |
y1 = feta4(i-1,iview,lad,iang) |
880 |
y2 = feta4(i,iview,lad,iang) |
881 |
|
882 |
c print*,'*****',i,view,lad,iang |
883 |
c print*,'-----',x1,x2,y1,y2 |
884 |
goto 99 |
885 |
endif |
886 |
enddo |
887 |
99 continue |
888 |
|
889 |
|
890 |
AA=(y2-y1)/(x2-x1) |
891 |
BB=y1-AA*x1 |
892 |
|
893 |
pfaeta4 = AA*cog4+BB |
894 |
pfaeta4 = pfaeta4 - iadd |
895 |
|
896 |
c$$$ if(iflag.eq.1)then |
897 |
c$$$ pfaeta2=pfaeta2-1. !temp |
898 |
c$$$ cog2=cog2-1. !temp |
899 |
c$$$ endif |
900 |
c$$$ if(iflag.eq.-1)then |
901 |
c$$$ pfaeta2=pfaeta2+1. !temp |
902 |
c$$$ cog2=cog2+1. !temp |
903 |
c$$$ endif |
904 |
|
905 |
if(DEBUG.EQ.1)print*,'ETA4 (ic ',ic,' ang',angle,')' |
906 |
$ ,cog4-iadd,' -->',pfaeta4 |
907 |
|
908 |
100 return |
909 |
end |
910 |
|
911 |
|
912 |
|
913 |
*** * * * *** * * * *** * * * *** * * * *** * * * *** * * * *** |
914 |
real function cog(ncog,ic) |
915 |
*------------------------------------------------- |
916 |
* this function returns |
917 |
* |
918 |
* - if NCOG=0, the Center-Of-Gravity of the |
919 |
* cluster IC, relative to MAXS(IC), according to |
920 |
* the cluster multiplicity |
921 |
* |
922 |
* - if NCOG>0, the Center-Of-Gravity of the cluster IC |
923 |
* evaluated using NCOG strips, even if they have a |
924 |
* negative signal (according to Landi) |
925 |
* |
926 |
*------------------------------------------------- |
927 |
|
928 |
|
929 |
include 'commontracker.f' |
930 |
include 'calib.f' |
931 |
include 'level1.f' |
932 |
|
933 |
|
934 |
|
935 |
if (ncog.gt.0) then |
936 |
* =========================== |
937 |
* ETA2 ETA3 ETA4 computation |
938 |
* =========================== |
939 |
|
940 |
* --> signal of the central strip |
941 |
sc = CLSIGNAL(INDMAX(ic)) !center |
942 |
* signal of adjacent strips |
943 |
sl1 = -9999. !left 1 |
944 |
if( |
945 |
$ (INDMAX(ic)-1).ge.INDSTART(ic) |
946 |
$ ) |
947 |
$ sl1 = CLSIGNAL(INDMAX(ic)-1) |
948 |
|
949 |
sl2 = -9999. !left 2 |
950 |
if( |
951 |
$ (INDMAX(ic)-2).ge.INDSTART(ic) |
952 |
$ ) |
953 |
$ sl2 = CLSIGNAL(INDMAX(ic)-2) |
954 |
|
955 |
sr1 = -9999. !right 1 |
956 |
if( |
957 |
$ (ic.ne.NCLSTR1.and.(INDMAX(ic)+1).lt.INDSTART(ic+1)) |
958 |
$ .or. |
959 |
$ (ic.eq.NCLSTR1.and.(INDMAX(ic)+1).le.TOTCLLENGTH) |
960 |
$ ) |
961 |
$ sr1 = CLSIGNAL(INDMAX(ic)+1) |
962 |
|
963 |
sr2 = -9999. !right 2 |
964 |
if( |
965 |
$ (ic.ne.NCLSTR1.and.(INDMAX(ic)+2).lt.INDSTART(ic+1)) |
966 |
$ .or. |
967 |
$ (ic.eq.NCLSTR1.and.(INDMAX(ic)+2).le.TOTCLLENGTH) |
968 |
$ ) |
969 |
$ sr2 = CLSIGNAL(INDMAX(ic)+2) |
970 |
|
971 |
COG = 0. |
972 |
|
973 |
c print *,'## ',sl2,sl1,sc,sr1,sr2 |
974 |
|
975 |
c ============================================================== |
976 |
if(ncog.eq.1)then |
977 |
COG = 0. |
978 |
if(sr1.gt.sc)cog=1. |
979 |
if(sl1.gt.sc.and.sl1.gt.sr1)cog=-1. |
980 |
c ============================================================== |
981 |
elseif(ncog.eq.2)then |
982 |
COG = 0. |
983 |
if(sl1.gt.sr1)then |
984 |
if((sl1+sc).ne.0)COG = -sl1/(sl1+sc) |
985 |
elseif(sl1.lt.sr1)then |
986 |
if((sc+sr1).ne.0)COG = sr1/(sc+sr1) |
987 |
elseif( sl1.eq.sr1.and.sl1.ne.-9999.)then |
988 |
if( clsigma(indmax(ic)-1).lt.clsigma(indmax(ic)+1) |
989 |
$ .and.(sl1+sc).ne.0 )cog = -sl1/(sl1+sc) |
990 |
if( clsigma(indmax(ic)-1).gt.clsigma(indmax(ic)+1) |
991 |
$ .and.(sc+sr1).ne.0 )cog = sr1/(sc+sr1) |
992 |
endif |
993 |
c if(cog==0)print*,'Strange cluster (2) - @maxs ',MAXS(ic) |
994 |
c $ ,' : ',sl2,sl1,sc,sr1,sr2 |
995 |
c ============================================================== |
996 |
elseif(ncog.eq.3)then |
997 |
COG = 0 |
998 |
sss = sc |
999 |
if( sl1.ne.-9999. )COG = COG-sl1 |
1000 |
if( sl1.ne.-9999. )sss = sss+sl1 |
1001 |
if( sr1.ne.-9999. )COG = COG+sr1 |
1002 |
if( sr1.ne.-9999. )sss = sss+sr1 |
1003 |
if(sss.ne.0)COG=COG/sss |
1004 |
|
1005 |
c if( (sl1+sc+sr1).ne.0 )COG = (sr1-sl1)/(sl1+sc+sr1) |
1006 |
c if(cog==0)print*,'Strange cluster (3) - @maxs ',MAXS(ic) |
1007 |
c $ ,' : ',sl2,sl1,sc,sr1,sr2 |
1008 |
c ============================================================== |
1009 |
elseif(ncog.eq.4)then |
1010 |
|
1011 |
COG = 0 |
1012 |
sss = sc |
1013 |
if( sl1.ne.-9999. )COG = COG-sl1 |
1014 |
if( sl1.ne.-9999. )sss = sss+sl1 |
1015 |
if( sr1.ne.-9999. )COG = COG+sr1 |
1016 |
if( sr1.ne.-9999. )sss = sss+sr1 |
1017 |
if(sl2.gt.sr2)then |
1018 |
if((sl2+sss).ne.0) |
1019 |
$ COG = (COG-2*sl2)/(sl2+sss) |
1020 |
elseif(sl2.lt.sr2)then |
1021 |
if((sr2+sss).ne.0) |
1022 |
$ COG = (2*sr2+COG)/(sr2+sss) |
1023 |
elseif(sl2.eq.sr2.and.sl2.ne.-9999.)then |
1024 |
if( clsigma(indmax(ic)-2).lt.clsigma(indmax(ic)+2) |
1025 |
$ .and.(sl2+sss).ne.0 ) |
1026 |
$ cog = (cog-2*sl2)/(sl2+sss) |
1027 |
if( clsigma(indmax(ic)-2).gt.clsigma(indmax(ic)+2) |
1028 |
$ .and.(sr2+sss).ne.0 ) |
1029 |
$ cog = (2*sr2+cog)/(sr2+sss) |
1030 |
endif |
1031 |
c ============================================================== |
1032 |
elseif(ncog.eq.5)then |
1033 |
COG = 0 |
1034 |
sss = sc |
1035 |
if( sl1.ne.-9999. )COG = COG-sl1 |
1036 |
if( sl1.ne.-9999. )sss = sss+sl1 |
1037 |
if( sr1.ne.-9999. )COG = COG+sr1 |
1038 |
if( sr1.ne.-9999. )sss = sss+sr1 |
1039 |
if( sl2.ne.-9999. )COG = COG-2*sl2 |
1040 |
if( sl2.ne.-9999. )sss = sss+sl2 |
1041 |
if( sr2.ne.-9999. )COG = COG+2*sr2 |
1042 |
if( sr2.ne.-9999. )sss = sss+sr2 |
1043 |
if(sss.ne.0)COG=COG/sss |
1044 |
else |
1045 |
print*,'function COG(NCOG,IC) ==> WARNING!! NCOG=',NCOG |
1046 |
$ ,' not implemented' |
1047 |
COG = 0. |
1048 |
endif |
1049 |
|
1050 |
c print*,'NCOG ',ncog,ic,' @@@ ',sl1,sc,sr1,' @@@ ',cog |
1051 |
|
1052 |
elseif(ncog.eq.0)then |
1053 |
* ========================= |
1054 |
* COG computation |
1055 |
* ========================= |
1056 |
|
1057 |
iv=VIEW(ic) |
1058 |
if(mod(iv,2).eq.1)incut=incuty |
1059 |
if(mod(iv,2).eq.0)incut=incutx |
1060 |
istart = INDSTART(IC) |
1061 |
istop = TOTCLLENGTH |
1062 |
if(ic.lt.NCLSTR1)istop=INDSTART(IC+1)-1 |
1063 |
COG = 0 |
1064 |
SGN = 0. |
1065 |
mu = 0 |
1066 |
c print*,'-------' |
1067 |
do i = INDMAX(IC),istart,-1 |
1068 |
ipos = i-INDMAX(ic) |
1069 |
cut = incut*CLSIGMA(i) |
1070 |
if(CLSIGNAL(i).ge.cut)then |
1071 |
COG = COG + ipos*CLSIGNAL(i) |
1072 |
SGN = SGN + CLSIGNAL(i) |
1073 |
mu = mu + 1 |
1074 |
c print*,ipos,CLSIGNAL(i) |
1075 |
else |
1076 |
goto 10 |
1077 |
endif |
1078 |
enddo |
1079 |
10 continue |
1080 |
do i = INDMAX(IC)+1,istop |
1081 |
ipos = i-INDMAX(ic) |
1082 |
cut = incut*CLSIGMA(i) |
1083 |
if(CLSIGNAL(i).ge.cut)then |
1084 |
COG = COG + ipos*CLSIGNAL(i) |
1085 |
SGN = SGN + CLSIGNAL(i) |
1086 |
mu = mu + 1 |
1087 |
c print*,ipos,CLSIGNAL(i) |
1088 |
else |
1089 |
goto 20 |
1090 |
endif |
1091 |
enddo |
1092 |
20 continue |
1093 |
if(SGN.le.0)then |
1094 |
print*,'cog(0,ic) --> ic, dedx ',ic,SGN |
1095 |
print*,(CLSIGNAL(i)/CLSIGMA(i),i=istart,istop) |
1096 |
print*,(CLSIGNAL(i),i=istart,istop) |
1097 |
c print*,'cog(0,ic) --> NOT EVALUATED ' |
1098 |
else |
1099 |
COG=COG/SGN |
1100 |
endif |
1101 |
c print*,'-------' |
1102 |
|
1103 |
else |
1104 |
|
1105 |
COG=0 |
1106 |
print*,'function COG(NCOG,IC) ==> WARNING!! NCOG=',NCOG |
1107 |
print*,' (NCOG must be >= 0)' |
1108 |
|
1109 |
|
1110 |
endif |
1111 |
|
1112 |
c print *,'## cog ',ncog,ic,cog,'/////////////' |
1113 |
|
1114 |
if(COG.lt.-0.75.or.COG.gt.+0.75)then |
1115 |
if(DEBUG.eq.1) |
1116 |
$ print*,'cog *** warning *** anomalous cluster ??? --> ' |
1117 |
if(DEBUG.eq.1) |
1118 |
$ print*,sl2,sl1,sc,sr1,sr2,' --> COG(',ncog,') = ',COG |
1119 |
endif |
1120 |
|
1121 |
|
1122 |
return |
1123 |
end |
1124 |
|
1125 |
*** * * * *** * * * *** * * * *** * * * *** * * * *** * * * *** |
1126 |
|
1127 |
real function fbad_cog(ncog,ic) |
1128 |
*------------------------------------------------------- |
1129 |
* this function returns a factor that takes into |
1130 |
* account deterioration of the spatial resolution |
1131 |
* in the case BAD strips are included in the cluster. |
1132 |
* This factor should multiply the nominal spatial |
1133 |
* resolution. |
1134 |
* |
1135 |
*------------------------------------------------------- |
1136 |
|
1137 |
include 'commontracker.f' |
1138 |
include 'level1.f' |
1139 |
include 'calib.f' |
1140 |
|
1141 |
if(mod(int(VIEW(ic)),2).eq.1)then !Y-view |
1142 |
si = 8.4 !average good-strip noise |
1143 |
f = 4. !average bad-strip noise: f*si |
1144 |
incut=incuty |
1145 |
else !X-view |
1146 |
si = 3.9 !average good-strip noise |
1147 |
f = 6. !average bad-strip noise: f*si |
1148 |
incut=incutx |
1149 |
endif |
1150 |
|
1151 |
fbad_cog = 1. |
1152 |
|
1153 |
if (ncog.gt.0) then |
1154 |
|
1155 |
* --> signal of the central strip |
1156 |
sc = CLSIGNAL(INDMAX(ic)) !center |
1157 |
fsc = 1 |
1158 |
c if( CLBAD(INDMAX(ic)).eq.0 )fsc=f |
1159 |
fsc = clsigma(INDMAX(ic))/si |
1160 |
* --> signal of adjacent strips |
1161 |
sl1 = 0 !left 1 |
1162 |
fsl1 = 1 !left 1 |
1163 |
if( |
1164 |
$ (INDMAX(ic)-1).ge.INDSTART(ic) |
1165 |
$ )then |
1166 |
sl1 = CLSIGNAL(INDMAX(ic)-1) |
1167 |
c if( CLBAD(INDMAX(ic)-1).eq.0)fsl1=f |
1168 |
fsl1 = clsigma(INDMAX(ic)-1)/si |
1169 |
endif |
1170 |
|
1171 |
sl2 = 0 !left 2 |
1172 |
fsl2 = 1 !left 2 |
1173 |
if( |
1174 |
$ (INDMAX(ic)-2).ge.INDSTART(ic) |
1175 |
$ )then |
1176 |
sl2 = CLSIGNAL(INDMAX(ic)-2) |
1177 |
c if(CLBAD(INDMAX(ic)-2).eq.0)fsl2=f |
1178 |
fsl2 = clsigma(INDMAX(ic)-2)/si |
1179 |
endif |
1180 |
sr1 = 0 !right 1 |
1181 |
fsr1 = 1 !right 1 |
1182 |
if( |
1183 |
$ (ic.ne.NCLSTR1.and.(INDMAX(ic)+1).lt.INDSTART(ic+1)) |
1184 |
$ .or. |
1185 |
$ (ic.eq.NCLSTR1.and.(INDMAX(ic)+1).le.TOTCLLENGTH) |
1186 |
$ )then |
1187 |
sr1 = CLSIGNAL(INDMAX(ic)+1) |
1188 |
c if(CLBAD(INDMAX(ic)+1).eq.0)fsr1=f |
1189 |
fsr1 = clsigma(INDMAX(ic)+1)/si |
1190 |
endif |
1191 |
sr2 = 0 !right 2 |
1192 |
fsr2 = 1 !right 2 |
1193 |
if( |
1194 |
$ (ic.ne.NCLSTR1.and.(INDMAX(ic)+2).lt.INDSTART(ic+1)) |
1195 |
$ .or. |
1196 |
$ (ic.eq.NCLSTR1.and.(INDMAX(ic)+2).le.TOTCLLENGTH) |
1197 |
$ )then |
1198 |
sr2 = CLSIGNAL(INDMAX(ic)+2) |
1199 |
c if(CLBAD(INDMAX(ic)+2).eq.0)fsr2=f |
1200 |
fsr2 = clsigma(INDMAX(ic)+2)/si |
1201 |
endif |
1202 |
|
1203 |
|
1204 |
|
1205 |
************************************************************ |
1206 |
* COG2-3-4 computation |
1207 |
************************************************************ |
1208 |
|
1209 |
c print*,sl2,sl1,sc,sr1,sr2 |
1210 |
|
1211 |
vCOG = cog(ncog,ic)!0. |
1212 |
|
1213 |
if(ncog.eq.2)then |
1214 |
if(sl1.gt.sr1)then |
1215 |
c COG = -sl1/(sl1+sc) |
1216 |
fbad_cog = (fsl1*(-1-vCOG)**2+fsc*(-vCOG)**2) |
1217 |
fbad_cog = fbad_cog / ((-1-vCOG)**2+(-vCOG)**2) |
1218 |
elseif(sl1.le.sr1)then |
1219 |
c COG = sr1/(sc+sr1) |
1220 |
fbad_cog = (fsc*(-vCOG)**2+fsr1*(1-vCOG)**2) |
1221 |
fbad_cog = fbad_cog / ((-vCOG)**2+(1-vCOG)**2) |
1222 |
endif |
1223 |
elseif(ncog.eq.3)then |
1224 |
c COG = (sr1-sl1)/(sl1+sc+sr1) |
1225 |
fbad_cog = |
1226 |
$ (fsl1*(-1-vCOG)**2+fsc*(-vCOG)**2+fsr1*(1-vCOG)**2) |
1227 |
fbad_cog = |
1228 |
$ fbad_cog / ((-1-vCOG)**2+(-vCOG)**2+(1-vCOG)**2) |
1229 |
elseif(ncog.eq.4)then |
1230 |
if(sl2.gt.sr2)then |
1231 |
c COG = (sr1-sl1-2*sl2)/(sl2+sl1+sc+sr1) |
1232 |
fbad_cog = |
1233 |
$ (fsl2*(-2-vCOG)**2+fsl1*(-1-vCOG)**2 |
1234 |
$ +fsc*(-vCOG)**2+fsr1*(1-vCOG)**2) |
1235 |
fbad_cog = |
1236 |
$ fbad_cog / ((-2-vCOG)**2+(-1-vCOG)**2 |
1237 |
$ +(-vCOG)**2+(1-vCOG)**2) |
1238 |
elseif(sl2.le.sr2)then |
1239 |
c COG = (2*sr2+sr1-sl1)/(sl2+sl1+sc+sr1) |
1240 |
fbad_cog = |
1241 |
$ (fsl1*(-1-vCOG)**2 |
1242 |
$ +fsc*(-vCOG)**2+fsr1*(1-vCOG)**2+fsr2*(2-vCOG)**2) |
1243 |
fbad_cog = |
1244 |
$ fbad_cog / ((-1-vCOG)**2 |
1245 |
$ +(-vCOG)**2+(1-vCOG)**2+(2-vCOG)**2) |
1246 |
endif |
1247 |
else |
1248 |
print*,'function FBAD_COG(NCOG,IC) ==> WARNING!! NCOG=',NCOG |
1249 |
print*,' (NCOG must be <= 4)' |
1250 |
c COG = 0. |
1251 |
endif |
1252 |
|
1253 |
elseif(ncog.eq.0)then |
1254 |
* ========================= |
1255 |
* COG computation |
1256 |
* ========================= |
1257 |
|
1258 |
vCOG = cog(0,ic) |
1259 |
|
1260 |
iv = VIEW(ic) |
1261 |
istart = INDSTART(IC) |
1262 |
istop = TOTCLLENGTH |
1263 |
if(ic.lt.NCLSTR1)istop = INDSTART(IC+1)-1 |
1264 |
SGN = 0. |
1265 |
SNU = 0. |
1266 |
SDE = 0. |
1267 |
|
1268 |
do i=INDMAX(IC),istart,-1 |
1269 |
ipos = i-INDMAX(ic) |
1270 |
cut = incut*CLSIGMA(i) |
1271 |
if(CLSIGNAL(i).gt.cut)then |
1272 |
fs = clsigma(i)/si |
1273 |
SNU = SNU + fs*(ipos-vCOG)**2 |
1274 |
SDE = SDE + (ipos-vCOG)**2 |
1275 |
else |
1276 |
goto 10 |
1277 |
endif |
1278 |
enddo |
1279 |
10 continue |
1280 |
do i=INDMAX(IC)+1,istop |
1281 |
ipos = i-INDMAX(ic) |
1282 |
cut = incut*CLSIGMA(i) |
1283 |
if(CLSIGNAL(i).gt.cut)then |
1284 |
fs = clsigma(i)/si |
1285 |
SNU = SNU + fs*(ipos-vCOG)**2 |
1286 |
SDE = SDE + (ipos-vCOG)**2 |
1287 |
else |
1288 |
goto 20 |
1289 |
endif |
1290 |
enddo |
1291 |
20 continue |
1292 |
if(SDE.ne.0)then |
1293 |
FBAD_COG=SNU/SDE |
1294 |
else |
1295 |
|
1296 |
endif |
1297 |
|
1298 |
else |
1299 |
|
1300 |
FBAD_COG=0 |
1301 |
print*,'function FBAD_COG(NCOG,IC) ==> WARNING!! NCOG=',NCOG |
1302 |
print*,' (NCOG must be >= 0)' |
1303 |
|
1304 |
|
1305 |
endif |
1306 |
|
1307 |
|
1308 |
fbad_cog = sqrt(fbad_cog) |
1309 |
|
1310 |
return |
1311 |
end |
1312 |
|
1313 |
|
1314 |
c$$$*** * * * *** * * * *** * * * *** * * * *** * * * *** * * * *** |
1315 |
c$$$ real function fbad_cog0(ncog,ic) |
1316 |
c$$$*------------------------------------------------------- |
1317 |
c$$$* this function returns a factor that takes into |
1318 |
c$$$* account deterioration of the spatial resolution |
1319 |
c$$$* in the case BAD strips are included in the cluster. |
1320 |
c$$$* This factor should multiply the nominal spatial |
1321 |
c$$$* resolution. |
1322 |
c$$$* |
1323 |
c$$$* NB!!! |
1324 |
c$$$* (this is the old version. It consider only the two |
1325 |
c$$$* strips with the greatest signal. The new one is |
1326 |
c$$$* fbad_cog(ncog,ic) ) |
1327 |
c$$$* |
1328 |
c$$$*------------------------------------------------------- |
1329 |
c$$$ |
1330 |
c$$$ include 'commontracker.f' |
1331 |
c$$$ include 'level1.f' |
1332 |
c$$$ include 'calib.f' |
1333 |
c$$$ |
1334 |
c$$$* --> signal of the central strip |
1335 |
c$$$ sc = CLSIGNAL(INDMAX(ic)) !center |
1336 |
c$$$ |
1337 |
c$$$* signal of adjacent strips |
1338 |
c$$$* --> left |
1339 |
c$$$ sl1 = 0 !left 1 |
1340 |
c$$$ if( |
1341 |
c$$$ $ (INDMAX(ic)-1).ge.INDSTART(ic) |
1342 |
c$$$ $ ) |
1343 |
c$$$ $ sl1 = max(0.,CLSIGNAL(INDMAX(ic)-1)) |
1344 |
c$$$ |
1345 |
c$$$ sl2 = 0 !left 2 |
1346 |
c$$$ if( |
1347 |
c$$$ $ (INDMAX(ic)-2).ge.INDSTART(ic) |
1348 |
c$$$ $ ) |
1349 |
c$$$ $ sl2 = max(0.,CLSIGNAL(INDMAX(ic)-2)) |
1350 |
c$$$ |
1351 |
c$$$* --> right |
1352 |
c$$$ sr1 = 0 !right 1 |
1353 |
c$$$ if( |
1354 |
c$$$ $ (ic.ne.NCLSTR1.and.(INDMAX(ic)+1).lt.INDSTART(ic+1)) |
1355 |
c$$$ $ .or. |
1356 |
c$$$ $ (ic.eq.NCLSTR1.and.(INDMAX(ic)+1).le.TOTCLLENGTH) |
1357 |
c$$$ $ ) |
1358 |
c$$$ $ sr1 = max(0.,CLSIGNAL(INDMAX(ic)+1)) |
1359 |
c$$$ |
1360 |
c$$$ sr2 = 0 !right 2 |
1361 |
c$$$ if( |
1362 |
c$$$ $ (ic.ne.NCLSTR1.and.(INDMAX(ic)+2).lt.INDSTART(ic+1)) |
1363 |
c$$$ $ .or. |
1364 |
c$$$ $ (ic.eq.NCLSTR1.and.(INDMAX(ic)+2).le.TOTCLLENGTH) |
1365 |
c$$$ $ ) |
1366 |
c$$$ $ sr2 = max(0.,CLSIGNAL(INDMAX(ic)+2)) |
1367 |
c$$$ |
1368 |
c$$$ |
1369 |
c$$$ if(mod(int(VIEW(ic)),2).eq.1)then !Y-view |
1370 |
c$$$ f = 4. |
1371 |
c$$$ si = 8.4 |
1372 |
c$$$ else !X-view |
1373 |
c$$$ f = 6. |
1374 |
c$$$ si = 3.9 |
1375 |
c$$$ endif |
1376 |
c$$$ |
1377 |
c$$$ fbad_cog = 1. |
1378 |
c$$$ f0 = 1 |
1379 |
c$$$ f1 = 1 |
1380 |
c$$$ f2 = 1 |
1381 |
c$$$ f3 = 1 |
1382 |
c$$$ if(sl1.gt.sr1.and.sl1.gt.0.)then |
1383 |
c$$$ |
1384 |
c$$$ if(BAD(VIEW(ic),nvk(MAXS(ic)),nst(MAXS(ic)) ).eq.0)f0=f |
1385 |
c$$$ if(BAD(VIEW(ic),nvk(MAXS(ic)),nst(MAXS(ic)-1)).eq.0)f1=f |
1386 |
c$$$c if(BAD(VIEW(ic),nvk(MAXS(ic)),nst(MAXS(ic)+1)).eq.0)f3=f |
1387 |
c$$$ |
1388 |
c$$$ if(ncog.eq.2.and.sl1.ne.0)then |
1389 |
c$$$ fbad_cog = (f1**2*sc**2/sl1**2+f0**2)/(sc**2/sl1**2+1.) |
1390 |
c$$$ elseif(ncog.eq.3.and.sl1.ne.0.and.sr1.ne.0)then |
1391 |
c$$$ fbad_cog = 1. |
1392 |
c$$$ elseif(ncog.eq.4.and.sl1.ne.0.and.sr1.ne.0.and.sl2.ne.0)then |
1393 |
c$$$ fbad_cog = 1. |
1394 |
c$$$ else |
1395 |
c$$$ fbad_cog = 1. |
1396 |
c$$$ endif |
1397 |
c$$$ |
1398 |
c$$$ elseif(sl1.le.sr1.and.sr1.gt.0.)then |
1399 |
c$$$ |
1400 |
c$$$ |
1401 |
c$$$ if(BAD(VIEW(ic),nvk(MAXS(ic)),nst(MAXS(ic)) ).eq.0)f0=f |
1402 |
c$$$ if(BAD(VIEW(ic),nvk(MAXS(ic)),nst(MAXS(ic)+1)).eq.0)f1=f |
1403 |
c$$$c if(BAD(VIEW(ic),nvk(MAXS(ic)),nst(MAXS(ic)-1)).eq.0)f3=f |
1404 |
c$$$ |
1405 |
c$$$ if(ncog.eq.2.and.sr1.ne.0)then |
1406 |
c$$$ fbad_cog = (f1**2*sc**2/sr1**2+f0**2)/(sc**2/sr1**2+1.) |
1407 |
c$$$ elseif(ncog.eq.3.and.sr1.ne.0.and.sl1.ne.0)then |
1408 |
c$$$ fbad_cog = 1. |
1409 |
c$$$ elseif(ncog.eq.4.and.sr1.ne.0.and.sl1.ne.0.and.sr2.ne.0)then |
1410 |
c$$$ fbad_cog = 1. |
1411 |
c$$$ else |
1412 |
c$$$ fbad_cog = 1. |
1413 |
c$$$ endif |
1414 |
c$$$ |
1415 |
c$$$ endif |
1416 |
c$$$ |
1417 |
c$$$ fbad_cog0 = sqrt(fbad_cog) |
1418 |
c$$$ |
1419 |
c$$$ return |
1420 |
c$$$ end |
1421 |
c$$$ |
1422 |
c$$$ |
1423 |
c$$$ |
1424 |
|
1425 |
*** * * * *** * * * *** * * * *** * * * *** * * * *** * * * *** |
1426 |
|
1427 |
FUNCTION risxeta2(x) |
1428 |
|
1429 |
DOUBLE PRECISION V( 1) |
1430 |
INTEGER NPAR, NDIM, IMQFUN, I, J |
1431 |
DOUBLE PRECISION HQDJ, VV, VCONST |
1432 |
DOUBLE PRECISION SIGVMI( 1), SIGVT( 1) |
1433 |
DOUBLE PRECISION SIGV( 18, 1) |
1434 |
DOUBLE PRECISION SIGDEL( 18) |
1435 |
DOUBLE PRECISION SIGA( 18) |
1436 |
DATA NPAR, NDIM, IMQFUN / 18, 1, 1/ |
1437 |
DATA VCONST / 0.000000000000 / |
1438 |
DATA SIGVMI / -20.50000000000 / |
1439 |
DATA SIGVT / 41.00000000000 / |
1440 |
DATA SIGV / 0.6097560748458E-01 |
1441 |
+, 0.1097560971975 |
1442 |
+, 0.1341463327408 |
1443 |
+, 0.1829268187284 |
1444 |
+, 0.2317073047161 |
1445 |
+, 0.4268292486668 |
1446 |
+, 0.4756097495556 |
1447 |
+, 0.4999999701977 |
1448 |
+, 0.5243902206421 |
1449 |
+, 0.5731707215309 |
1450 |
+, 0.7682926654816 |
1451 |
+, 0.8170731663704 |
1452 |
+, 0.8658536076546 |
1453 |
+, 0.8902438879013 |
1454 |
+, 0.9390243291855 |
1455 |
+, 0.000000000000 |
1456 |
+, 1.000000000000 |
1457 |
+, 0.3658536374569 |
1458 |
+/ |
1459 |
DATA SIGDEL / 0.4878048598766E-01 |
1460 |
+, 0.4878048598766E-01 |
1461 |
+, 0.4878048598766E-01 |
1462 |
+, 0.4878048598766E-01 |
1463 |
+, 0.4878048598766E-01 |
1464 |
+, 0.4878048598766E-01 |
1465 |
+, 0.4878048598766E-01 |
1466 |
+, 0.4878048598766E-01 |
1467 |
+, 0.4878048598766E-01 |
1468 |
+, 0.4878048598766E-01 |
1469 |
+, 0.4878048598766E-01 |
1470 |
+, 0.4878048598766E-01 |
1471 |
+, 0.4878048598766E-01 |
1472 |
+, 0.4878048598766E-01 |
1473 |
+, 0.4878048598766E-01 |
1474 |
+, 0.1999999994950E-05 |
1475 |
+, 0.1999999994950E-05 |
1476 |
+, 0.9756097197533E-01 |
1477 |
+/ |
1478 |
DATA SIGA / 51.65899502118 |
1479 |
+, -150.4733247841 |
1480 |
+, 143.0468613786 |
1481 |
+, -16.56096738997 |
1482 |
+, 5.149319798083 |
1483 |
+, 21.57149712673 |
1484 |
+, -39.46652322782 |
1485 |
+, 47.13181632948 |
1486 |
+, -32.93197883680 |
1487 |
+, 16.38645317092 |
1488 |
+, 1.453688482992 |
1489 |
+, -10.00547244421 |
1490 |
+, 131.3517670587 |
1491 |
+, -140.6351538257 |
1492 |
+, 49.05515749582 |
1493 |
+, -23.00028974788 |
1494 |
+, -22.58470403729 |
1495 |
+, -3.824682486418 |
1496 |
+/ |
1497 |
|
1498 |
V(1)= abs(x) |
1499 |
if(V(1).gt.20.)V(1)=20. |
1500 |
|
1501 |
HQUADF = 0. |
1502 |
DO 20 J = 1, NPAR |
1503 |
HQDJ = 0. |
1504 |
DO 10 I = 1, NDIM |
1505 |
VV = (V (I) - SIGVMI (I)) / SIGVT (I) |
1506 |
HQDJ = HQDJ + (VV - SIGV (J, I)) ** 2 |
1507 |
10 CONTINUE |
1508 |
HQDJ = HQDJ + SIGDEL (J) ** 2 |
1509 |
HQDJ = SQRT (HQDJ) |
1510 |
HQUADF = HQUADF + SIGA (J) * HQDJ |
1511 |
20 CONTINUE |
1512 |
IF (IMQFUN .EQ. 2) HQUADF = VCONST * EXP (HQUADF) |
1513 |
|
1514 |
risxeta2=HQUADF* 1e-4 |
1515 |
|
1516 |
END |
1517 |
|
1518 |
*** * * * *** * * * *** * * * *** * * * *** * * * *** * * * *** |
1519 |
FUNCTION risxeta3(x) |
1520 |
DOUBLE PRECISION V( 1) |
1521 |
INTEGER NPAR, NDIM, IMQFUN, I, J |
1522 |
DOUBLE PRECISION HQDJ, VV, VCONST |
1523 |
DOUBLE PRECISION SIGVMI( 1), SIGVT( 1) |
1524 |
DOUBLE PRECISION SIGV( 18, 1) |
1525 |
DOUBLE PRECISION SIGDEL( 18) |
1526 |
DOUBLE PRECISION SIGA( 18) |
1527 |
DATA NPAR, NDIM, IMQFUN / 18, 1, 1/ |
1528 |
DATA VCONST / 0.000000000000 / |
1529 |
DATA SIGVMI / -20.50000000000 / |
1530 |
DATA SIGVT / 41.00000000000 / |
1531 |
DATA SIGV / 0.6097560748458E-01 |
1532 |
+, 0.1097560971975 |
1533 |
+, 0.1341463327408 |
1534 |
+, 0.1829268187284 |
1535 |
+, 0.2317073047161 |
1536 |
+, 0.4756097495556 |
1537 |
+, 0.4999999701977 |
1538 |
+, 0.5243902206421 |
1539 |
+, 0.7682926654816 |
1540 |
+, 0.8170731663704 |
1541 |
+, 0.8658536076546 |
1542 |
+, 0.8902438879013 |
1543 |
+, 0.9390243291855 |
1544 |
+, 0.000000000000 |
1545 |
+, 1.000000000000 |
1546 |
+, 0.3658536374569 |
1547 |
+, 0.4146341383457 |
1548 |
+, 0.6097560524940 |
1549 |
+/ |
1550 |
DATA SIGDEL / 0.4878048598766E-01 |
1551 |
+, 0.4878048598766E-01 |
1552 |
+, 0.4878048598766E-01 |
1553 |
+, 0.4878048598766E-01 |
1554 |
+, 0.4878048598766E-01 |
1555 |
+, 0.4878048598766E-01 |
1556 |
+, 0.4878048598766E-01 |
1557 |
+, 0.4878048598766E-01 |
1558 |
+, 0.4878048598766E-01 |
1559 |
+, 0.4878048598766E-01 |
1560 |
+, 0.4878048598766E-01 |
1561 |
+, 0.4878048598766E-01 |
1562 |
+, 0.4878048598766E-01 |
1563 |
+, 0.1999999994950E-05 |
1564 |
+, 0.1999999994950E-05 |
1565 |
+, 0.9756097197533E-01 |
1566 |
+, 0.9756097197533E-01 |
1567 |
+, 0.9756097197533E-01 |
1568 |
+/ |
1569 |
DATA SIGA / 55.18284054458 |
1570 |
+, -160.3358431242 |
1571 |
+, 144.6939185763 |
1572 |
+, -20.45200854118 |
1573 |
+, 5.223570087108 |
1574 |
+,-0.4171476953945 |
1575 |
+, -27.67911907462 |
1576 |
+, 17.70327157495 |
1577 |
+, -1.867165491707 |
1578 |
+, -8.884458169181 |
1579 |
+, 124.3526608791 |
1580 |
+, -143.3309398345 |
1581 |
+, 50.80345027122 |
1582 |
+, -16.44454904415 |
1583 |
+, -15.73785568450 |
1584 |
+, -22.71810502561 |
1585 |
+, 36.86170101430 |
1586 |
+, 2.437918198452 |
1587 |
+/ |
1588 |
|
1589 |
V(1) = abs(x) |
1590 |
if(V(1).gt.20.)V(1)=20. |
1591 |
|
1592 |
HQUADF = 0. |
1593 |
DO 20 J = 1, NPAR |
1594 |
HQDJ = 0. |
1595 |
DO 10 I = 1, NDIM |
1596 |
VV = (V (I) - SIGVMI (I)) / SIGVT (I) |
1597 |
HQDJ = HQDJ + (VV - SIGV (J, I)) ** 2 |
1598 |
10 CONTINUE |
1599 |
HQDJ = HQDJ + SIGDEL (J) ** 2 |
1600 |
HQDJ = SQRT (HQDJ) |
1601 |
HQUADF = HQUADF + SIGA (J) * HQDJ |
1602 |
20 CONTINUE |
1603 |
IF (IMQFUN .EQ. 2) HQUADF = VCONST * EXP (HQUADF) |
1604 |
|
1605 |
risxeta3 = HQUADF* 1e-4 |
1606 |
|
1607 |
END |
1608 |
*** * * * *** * * * *** * * * *** * * * *** * * * *** * * * *** |
1609 |
FUNCTION risxeta4(x) |
1610 |
DOUBLE PRECISION V( 1) |
1611 |
INTEGER NPAR, NDIM, IMQFUN, I, J |
1612 |
DOUBLE PRECISION HQDJ, VV, VCONST |
1613 |
DOUBLE PRECISION SIGVMI( 1), SIGVT( 1) |
1614 |
DOUBLE PRECISION SIGV( 18, 1) |
1615 |
DOUBLE PRECISION SIGDEL( 18) |
1616 |
DOUBLE PRECISION SIGA( 18) |
1617 |
DATA NPAR, NDIM, IMQFUN / 18, 1, 1/ |
1618 |
DATA VCONST / 0.000000000000 / |
1619 |
DATA SIGVMI / -20.50000000000 / |
1620 |
DATA SIGVT / 41.00000000000 / |
1621 |
DATA SIGV / 0.3658536449075E-01 |
1622 |
+, 0.6097560748458E-01 |
1623 |
+, 0.1097560971975 |
1624 |
+, 0.1341463327408 |
1625 |
+, 0.4756097495556 |
1626 |
+, 0.5243902206421 |
1627 |
+, 0.8658536076546 |
1628 |
+, 0.8902438879013 |
1629 |
+, 0.9390243291855 |
1630 |
+, 0.9634146094322 |
1631 |
+, 0.000000000000 |
1632 |
+, 1.000000000000 |
1633 |
+, 0.3658536374569 |
1634 |
+, 0.4146341383457 |
1635 |
+, 0.6097560524940 |
1636 |
+, 0.6585365533829 |
1637 |
+, 0.7560975551605 |
1638 |
+, 0.2439024299383 |
1639 |
+/ |
1640 |
DATA SIGDEL / 0.4878048598766E-01 |
1641 |
+, 0.4878048598766E-01 |
1642 |
+, 0.4878048598766E-01 |
1643 |
+, 0.4878048598766E-01 |
1644 |
+, 0.4878048598766E-01 |
1645 |
+, 0.4878048598766E-01 |
1646 |
+, 0.4878048598766E-01 |
1647 |
+, 0.4878048598766E-01 |
1648 |
+, 0.4878048598766E-01 |
1649 |
+, 0.4878048598766E-01 |
1650 |
+, 0.1999999994950E-05 |
1651 |
+, 0.1999999994950E-05 |
1652 |
+, 0.9756097197533E-01 |
1653 |
+, 0.9756097197533E-01 |
1654 |
+, 0.9756097197533E-01 |
1655 |
+, 0.9756097197533E-01 |
1656 |
+, 0.9756097197533E-01 |
1657 |
+, 0.1951219439507 |
1658 |
+/ |
1659 |
DATA SIGA / -43.61551887895 |
1660 |
+, 57.88466995373 |
1661 |
+, -92.04113299504 |
1662 |
+, 74.08166649890 |
1663 |
+, -9.768686062558 |
1664 |
+, -4.304496875334 |
1665 |
+, 72.62237333937 |
1666 |
+, -91.21920840618 |
1667 |
+, 56.75519978630 |
1668 |
+, -43.21115751243 |
1669 |
+, 12.79984505413 |
1670 |
+, 12.10074868595 |
1671 |
+, -6.238587250860 |
1672 |
+, 23.43447356326 |
1673 |
+, 17.98221401495 |
1674 |
+, -7.980332610975 |
1675 |
+, -3.426733307051 |
1676 |
+, -8.683439558751 |
1677 |
+/ |
1678 |
|
1679 |
V(1)=abs(x) |
1680 |
if(V(1).gt.20.)V(1)=20. |
1681 |
|
1682 |
HQUADF = 0. |
1683 |
DO 20 J = 1, NPAR |
1684 |
HQDJ = 0. |
1685 |
DO 10 I = 1, NDIM |
1686 |
VV = (V (I) - SIGVMI (I)) / SIGVT (I) |
1687 |
HQDJ = HQDJ + (VV - SIGV (J, I)) ** 2 |
1688 |
10 CONTINUE |
1689 |
HQDJ = HQDJ + SIGDEL (J) ** 2 |
1690 |
HQDJ = SQRT (HQDJ) |
1691 |
HQUADF = HQUADF + SIGA (J) * HQDJ |
1692 |
20 CONTINUE |
1693 |
IF (IMQFUN .EQ. 2) HQUADF = VCONST * EXP (HQUADF) |
1694 |
|
1695 |
risxeta4=HQUADF* 1e-4 |
1696 |
|
1697 |
END |
1698 |
*** * * * *** * * * *** * * * *** * * * *** * * * *** * * * *** |
1699 |
FUNCTION risyeta2(x) |
1700 |
DOUBLE PRECISION V( 1) |
1701 |
INTEGER NPAR, NDIM, IMQFUN, I, J |
1702 |
DOUBLE PRECISION HQDJ, VV, VCONST |
1703 |
DOUBLE PRECISION SIGVMI( 1), SIGVT( 1) |
1704 |
DOUBLE PRECISION SIGV( 12, 1) |
1705 |
DOUBLE PRECISION SIGDEL( 12) |
1706 |
DOUBLE PRECISION SIGA( 12) |
1707 |
DATA NPAR, NDIM, IMQFUN / 12, 1, 1/ |
1708 |
DATA VCONST / 0.000000000000 / |
1709 |
DATA SIGVMI / -20.50000000000 / |
1710 |
DATA SIGVT / 41.00000000000 / |
1711 |
DATA SIGV / 0.1585365831852 |
1712 |
+, 0.4024389982224 |
1713 |
+, 0.4756097495556 |
1714 |
+, 0.5243902206421 |
1715 |
+, 0.5975609421730 |
1716 |
+, 0.8414633870125 |
1717 |
+, 0.000000000000 |
1718 |
+, 1.000000000000 |
1719 |
+, 0.2682926654816 |
1720 |
+, 0.3170731663704 |
1721 |
+, 0.7073170542717 |
1722 |
+, 0.7560975551605 |
1723 |
+/ |
1724 |
DATA SIGDEL / 0.4878048598766E-01 |
1725 |
+, 0.4878048598766E-01 |
1726 |
+, 0.4878048598766E-01 |
1727 |
+, 0.4878048598766E-01 |
1728 |
+, 0.4878048598766E-01 |
1729 |
+, 0.4878048598766E-01 |
1730 |
+, 0.1999999994950E-05 |
1731 |
+, 0.1999999994950E-05 |
1732 |
+, 0.9756097197533E-01 |
1733 |
+, 0.9756097197533E-01 |
1734 |
+, 0.9756097197533E-01 |
1735 |
+, 0.9756097197533E-01 |
1736 |
+/ |
1737 |
DATA SIGA / 14.57433603529 |
1738 |
+, -15.93532436156 |
1739 |
+, -13.24628335221 |
1740 |
+, -14.31193855410 |
1741 |
+, -12.67339684488 |
1742 |
+, 18.19876051780 |
1743 |
+, -5.270493486725 |
1744 |
+, -5.107670990828 |
1745 |
+, -9.553262933901 |
1746 |
+, 43.34150727448 |
1747 |
+, 55.91366786432 |
1748 |
+, -29.38037318563 |
1749 |
+/ |
1750 |
|
1751 |
v(1)= abs(x) |
1752 |
if(V(1).gt.20.)V(1)=20. |
1753 |
|
1754 |
HQUADF = 0. |
1755 |
DO 20 J = 1, NPAR |
1756 |
HQDJ = 0. |
1757 |
DO 10 I = 1, NDIM |
1758 |
VV = (V (I) - SIGVMI (I)) / SIGVT (I) |
1759 |
HQDJ = HQDJ + (VV - SIGV (J, I)) ** 2 |
1760 |
10 CONTINUE |
1761 |
HQDJ = HQDJ + SIGDEL (J) ** 2 |
1762 |
HQDJ = SQRT (HQDJ) |
1763 |
HQUADF = HQUADF + SIGA (J) * HQDJ |
1764 |
20 CONTINUE |
1765 |
IF (IMQFUN .EQ. 2) HQUADF = VCONST * EXP (HQUADF) |
1766 |
|
1767 |
risyeta2=HQUADF* 1e-4 |
1768 |
|
1769 |
END |
1770 |
*** * * * *** * * * *** * * * *** * * * *** * * * *** * * * *** |
1771 |
|
1772 |
FUNCTION risy_cog(x) |
1773 |
DOUBLE PRECISION V( 1) |
1774 |
INTEGER NPAR, NDIM, IMQFUN, I, J |
1775 |
DOUBLE PRECISION HQDJ, VV, VCONST |
1776 |
DOUBLE PRECISION SIGVMI( 1), SIGVT( 1) |
1777 |
DOUBLE PRECISION SIGV( 10, 1) |
1778 |
DOUBLE PRECISION SIGDEL( 10) |
1779 |
DOUBLE PRECISION SIGA( 10) |
1780 |
DATA NPAR, NDIM, IMQFUN / 10, 1, 1/ |
1781 |
DATA VCONST / 0.000000000000 / |
1782 |
DATA SIGVMI / -20.50000000000 / |
1783 |
DATA SIGVT / 41.00000000000 / |
1784 |
DATA SIGV / 0.1585365831852 |
1785 |
+, 0.8414633870125 |
1786 |
+, 0.000000000000 |
1787 |
+, 1.000000000000 |
1788 |
+, 0.4634146094322 |
1789 |
+, 0.5121951103210 |
1790 |
+, 0.5609756112099 |
1791 |
+, 0.6585365533829 |
1792 |
+, 0.7073170542717 |
1793 |
+, 0.3414633870125 |
1794 |
+/ |
1795 |
DATA SIGDEL / 0.4878048598766E-01 |
1796 |
+, 0.4878048598766E-01 |
1797 |
+, 0.1999999994950E-05 |
1798 |
+, 0.1999999994950E-05 |
1799 |
+, 0.9756097197533E-01 |
1800 |
+, 0.9756097197533E-01 |
1801 |
+, 0.9756097197533E-01 |
1802 |
+, 0.9756097197533E-01 |
1803 |
+, 0.9756097197533E-01 |
1804 |
+, 0.1951219439507 |
1805 |
+/ |
1806 |
DATA SIGA / 23.73833445988 |
1807 |
+, 24.10182100013 |
1808 |
+, 1.865894323190 |
1809 |
+, 1.706006262931 |
1810 |
+, -1.075607857202 |
1811 |
+, -22.11489493403 |
1812 |
+, 1.663100707801 |
1813 |
+, 4.089852595440 |
1814 |
+, -4.314993873697 |
1815 |
+, -2.174479487744 |
1816 |
+/ |
1817 |
|
1818 |
V(1)=abs(x) |
1819 |
if(V(1).gt.20.)V(1)=20. |
1820 |
|
1821 |
HQUADF = 0. |
1822 |
DO 20 J = 1, NPAR |
1823 |
HQDJ = 0. |
1824 |
DO 10 I = 1, NDIM |
1825 |
VV = (V (I) - SIGVMI (I)) / SIGVT (I) |
1826 |
HQDJ = HQDJ + (VV - SIGV (J, I)) ** 2 |
1827 |
10 CONTINUE |
1828 |
HQDJ = HQDJ + SIGDEL (J) ** 2 |
1829 |
HQDJ = SQRT (HQDJ) |
1830 |
HQUADF = HQUADF + SIGA (J) * HQDJ |
1831 |
20 CONTINUE |
1832 |
IF (IMQFUN .EQ. 2) HQUADF = VCONST * EXP (HQUADF) |
1833 |
|
1834 |
risy_cog=HQUADF* 1e-4 |
1835 |
|
1836 |
END |
1837 |
*** * * * *** * * * *** * * * *** * * * *** * * * *** * * * *** |
1838 |
FUNCTION risx_cog(x) |
1839 |
DOUBLE PRECISION V( 1) |
1840 |
INTEGER NPAR, NDIM, IMQFUN, I, J |
1841 |
DOUBLE PRECISION HQDJ, VV, VCONST |
1842 |
DOUBLE PRECISION SIGVMI( 1), SIGVT( 1) |
1843 |
DOUBLE PRECISION SIGV( 15, 1) |
1844 |
DOUBLE PRECISION SIGDEL( 15) |
1845 |
DOUBLE PRECISION SIGA( 15) |
1846 |
DATA NPAR, NDIM, IMQFUN / 15, 1, 1/ |
1847 |
DATA VCONST / 0.000000000000 / |
1848 |
DATA SIGVMI / -20.50000000000 / |
1849 |
DATA SIGVT / 41.00000000000 / |
1850 |
DATA SIGV / 0.6097560748458E-01 |
1851 |
+, 0.8536584675312E-01 |
1852 |
+, 0.1341463327408 |
1853 |
+, 0.2317073047161 |
1854 |
+, 0.2804878056049 |
1855 |
+, 0.3780487775803 |
1856 |
+, 0.6219512224197 |
1857 |
+, 0.7195121645927 |
1858 |
+, 0.7682926654816 |
1859 |
+, 0.8658536076546 |
1860 |
+, 0.9146341085434 |
1861 |
+, 0.9390243291855 |
1862 |
+, 0.000000000000 |
1863 |
+, 1.000000000000 |
1864 |
+, 0.5121951103210 |
1865 |
+/ |
1866 |
DATA SIGDEL / 0.4878048598766E-01 |
1867 |
+, 0.4878048598766E-01 |
1868 |
+, 0.4878048598766E-01 |
1869 |
+, 0.4878048598766E-01 |
1870 |
+, 0.4878048598766E-01 |
1871 |
+, 0.4878048598766E-01 |
1872 |
+, 0.4878048598766E-01 |
1873 |
+, 0.4878048598766E-01 |
1874 |
+, 0.4878048598766E-01 |
1875 |
+, 0.4878048598766E-01 |
1876 |
+, 0.4878048598766E-01 |
1877 |
+, 0.4878048598766E-01 |
1878 |
+, 0.1999999994950E-05 |
1879 |
+, 0.1999999994950E-05 |
1880 |
+, 0.9756097197533E-01 |
1881 |
+/ |
1882 |
DATA SIGA / 31.95672945139 |
1883 |
+, -34.23286209245 |
1884 |
+, -6.298459168211 |
1885 |
+, 10.98847700545 |
1886 |
+,-0.3052213535054 |
1887 |
+, 13.10517991464 |
1888 |
+, 15.60290821679 |
1889 |
+, -1.956118448507 |
1890 |
+, 12.41453816720 |
1891 |
+, -7.354056408553 |
1892 |
+, -32.32512668778 |
1893 |
+, 30.61116178966 |
1894 |
+, 1.418505329236 |
1895 |
+, 1.583492573619 |
1896 |
+, -18.48799977042 |
1897 |
+/ |
1898 |
|
1899 |
V(1)=abs(x) |
1900 |
if(V(1).gt.20.)V(1)=20. |
1901 |
|
1902 |
HQUADF = 0. |
1903 |
DO 20 J = 1, NPAR |
1904 |
HQDJ = 0. |
1905 |
DO 10 I = 1, NDIM |
1906 |
VV = (V (I) - SIGVMI (I)) / SIGVT (I) |
1907 |
HQDJ = HQDJ + (VV - SIGV (J, I)) ** 2 |
1908 |
10 CONTINUE |
1909 |
HQDJ = HQDJ + SIGDEL (J) ** 2 |
1910 |
HQDJ = SQRT (HQDJ) |
1911 |
HQUADF = HQUADF + SIGA (J) * HQDJ |
1912 |
20 CONTINUE |
1913 |
IF (IMQFUN .EQ. 2) HQUADF = VCONST * EXP (HQUADF) |
1914 |
|
1915 |
risx_cog = HQUADF * 1e-4 |
1916 |
|
1917 |
END |
1918 |
|
1919 |
|
1920 |
*** * * * *** * * * *** * * * *** * * * *** * * * *** * * * *** |
1921 |
real function pfacorr(ic,angle) |
1922 |
*-------------------------------------------------------------- |
1923 |
* this function returns the landi correction for this cluster |
1924 |
*-------------------------------------------------------------- |
1925 |
include 'commontracker.f' |
1926 |
include 'calib.f' |
1927 |
include 'level1.f' |
1928 |
|
1929 |
real angle |
1930 |
integer iview,lad |
1931 |
|
1932 |
iview = VIEW(ic) |
1933 |
lad = nld(MAXS(ic),VIEW(ic)) |
1934 |
|
1935 |
* find angular bin |
1936 |
* (in futuro possiamo pensare di interpolare anche sull'angolo) |
1937 |
do iang=1,nangbin |
1938 |
if(angL(iang).lt.angle.and.angR(iang).ge.angle)then |
1939 |
iangle=iang |
1940 |
goto 98 |
1941 |
endif |
1942 |
enddo |
1943 |
if(DEBUG.eq.1) |
1944 |
$ print*,'pfacorr *** warning *** angle out of range: ',angle |
1945 |
if(angle.le.angL(1))iang=1 |
1946 |
if(angle.ge.angR(nangbin))iang=nangbin |
1947 |
98 continue !jump here if ok |
1948 |
|
1949 |
pfacorr = fcorr(iview,lad,iang) |
1950 |
|
1951 |
if(DEBUG.eq.1)print*,'CORR (ic ',ic,' ang',angle,') -->',pfacorr |
1952 |
|
1953 |
|
1954 |
100 return |
1955 |
end |