1 |
*** * * * *** * * * *** * * * *** * * * *** * * * *** * * * *** |
2 |
* this file contains all subroutines and functions |
3 |
* that are needed for position finding algorithms: |
4 |
* |
5 |
* subroutine idtoc(ipfa,cpfa) |
6 |
* |
7 |
* subroutine applypfa(PFAtt,ic,ang,corr,res) |
8 |
* |
9 |
* integer function npfastrips(ic,angle) |
10 |
* |
11 |
* real function pfaeta(ic,angle) |
12 |
* real function pfaetal(ic,angle) |
13 |
* real function pfaeta2(ic,angle) |
14 |
* real function pfaeta3(ic,angle) |
15 |
* real function pfaeta4(ic,angle) |
16 |
* real function cog(ncog,ic) |
17 |
* |
18 |
* real function fbad_cog(ncog,ic) |
19 |
* real function fbad_eta(ic,angle) |
20 |
* |
21 |
* real function riseta(iview,angle) |
22 |
* FUNCTION risxeta2(x) |
23 |
* FUNCTION risxeta3(x) |
24 |
* FUNCTION risxeta4(x) |
25 |
* FUNCTION risyeta2(x) |
26 |
* FUNCTION risy_cog(x) |
27 |
* FUNCTION risx_cog(x) |
28 |
* |
29 |
* real function pfacorr(ic,angle) |
30 |
* |
31 |
* real function effectiveangle(ang,iview,bbb) |
32 |
* real function fieldcorr(iview,bbb) |
33 |
* |
34 |
* NB - The angle is the "effective angle", which is relative |
35 |
* to the sensor and it takes into account the magnetic field |
36 |
* |
37 |
*** * * * *** * * * *** * * * *** * * * *** * * * *** * * * *** |
38 |
|
39 |
subroutine idtoc(ipfa,cpfa) |
40 |
|
41 |
integer ipfa |
42 |
character*10 cpfa |
43 |
|
44 |
CPFA='COG4' |
45 |
if(ipfa.eq.0)CPFA='ETA' |
46 |
if(ipfa.eq.2)CPFA='ETA2' |
47 |
if(ipfa.eq.3)CPFA='ETA3' |
48 |
if(ipfa.eq.4)CPFA='ETA4' |
49 |
if(ipfa.eq.5)CPFA='ETAL' |
50 |
if(ipfa.eq.10)CPFA='COG' |
51 |
if(ipfa.eq.11)CPFA='COG1' |
52 |
if(ipfa.eq.12)CPFA='COG2' |
53 |
if(ipfa.eq.13)CPFA='COG3' |
54 |
if(ipfa.eq.14)CPFA='COG4' |
55 |
|
56 |
end |
57 |
*** * * * *** * * * *** * * * *** * * * *** * * * *** * * * *** |
58 |
real function effectiveangle(ang,iview,bbb) |
59 |
|
60 |
include 'commontracker.f' |
61 |
|
62 |
effectiveangle = 0. |
63 |
|
64 |
if(mod(iview,2).eq.0)then |
65 |
c ================================================= |
66 |
c X view |
67 |
c ================================================= |
68 |
c here bbb is the y component of the m.field |
69 |
angx = ang |
70 |
by = bbb |
71 |
if(iview.eq.12) angx = -1. * ang |
72 |
if(iview.eq.12) by = -1. * bbb |
73 |
tgtemp = tan(ang*acos(-1.)/180.) + pmuH_h*by*0.00001 |
74 |
|
75 |
elseif(mod(iview,2).eq.1)then |
76 |
c ================================================= |
77 |
c Y view |
78 |
c ================================================= |
79 |
c here bbb is the x component of the m.filed |
80 |
angy = ang |
81 |
bx = bbb |
82 |
tgtemp = tan(angy*acos(-1.)/180.)+pmuH_e*bx*0.00001 |
83 |
|
84 |
endif |
85 |
effectiveangle = 180.*atan(tgtemp)/acos(-1.) |
86 |
|
87 |
return |
88 |
end |
89 |
*** * * * *** * * * *** * * * *** * * * *** * * * *** * * * *** |
90 |
real function fieldcorr(iview,bbb) |
91 |
|
92 |
include 'commontracker.f' |
93 |
|
94 |
fieldcorr = 0. |
95 |
|
96 |
if(mod(iview,2).eq.0)then |
97 |
|
98 |
c ================================================= |
99 |
c X view |
100 |
c ================================================= |
101 |
c here bbb is the y component of the m.field |
102 |
by = bbb |
103 |
if(iview.eq.12) by = -1. * bbb |
104 |
fieldcorr = -1. * 0.5*pmuH_h*by*0.00001*SiDimZ/pitchX |
105 |
|
106 |
elseif(mod(iview,2).eq.1)then |
107 |
c ================================================= |
108 |
c Y view |
109 |
c ================================================= |
110 |
c here bbb is the x component of the m.filed |
111 |
bx = bbb |
112 |
fieldcorr = 0.5*pmuH_e*bx*0.00001*SiDimZ/pitchY |
113 |
|
114 |
endif |
115 |
|
116 |
return |
117 |
end |
118 |
*** * * * *** * * * *** * * * *** * * * *** * * * *** * * * *** |
119 |
|
120 |
subroutine applypfa(PFAtt,ic,ang,corr,res) |
121 |
*--------------------------------------------------------------- |
122 |
* this subroutine calculate the coordinate of cluster ic (in |
123 |
* strip units), relative to the strip with the maximum signal, |
124 |
* and its spatial resolution (in cm), applying PFAtt. |
125 |
* ang is the effective angle, relative to the sensor |
126 |
*--------------------------------------------------------------- |
127 |
|
128 |
character*4 PFAtt |
129 |
include 'commontracker.f' |
130 |
include 'level1.f' |
131 |
|
132 |
corr = 0 |
133 |
res = 0 |
134 |
|
135 |
if(ic.le.0)return |
136 |
|
137 |
iview = VIEW(ic) |
138 |
|
139 |
if(mod(iview,2).eq.0)then |
140 |
c ================================================= |
141 |
c X view |
142 |
c ================================================= |
143 |
|
144 |
res = RESXAV |
145 |
|
146 |
if(PFAtt.eq.'COG1')then |
147 |
|
148 |
corr = 0 |
149 |
res = 1e-4*pitchX/sqrt(12.)!!res |
150 |
|
151 |
elseif(PFAtt.eq.'COG2')then |
152 |
|
153 |
corr = cog(2,ic) |
154 |
res = risx_cog(abs(ang))!TEMPORANEO |
155 |
res = res*fbad_cog(2,ic) |
156 |
|
157 |
elseif(PFAtt.eq.'COG3')then |
158 |
|
159 |
corr = cog(3,ic) |
160 |
res = risx_cog(abs(ang))!TEMPORANEO |
161 |
res = res*fbad_cog(3,ic) |
162 |
|
163 |
elseif(PFAtt.eq.'COG4')then |
164 |
|
165 |
corr = cog(4,ic) |
166 |
res = risx_cog(abs(ang))!TEMPORANEO |
167 |
res = res*fbad_cog(4,ic) |
168 |
|
169 |
elseif(PFAtt.eq.'ETA2')then |
170 |
|
171 |
corr = pfaeta2(ic,ang) |
172 |
res = risxeta2(abs(ang)) |
173 |
res = res*fbad_cog(2,ic) |
174 |
|
175 |
elseif(PFAtt.eq.'ETA3')then |
176 |
|
177 |
corr = pfaeta3(ic,ang) |
178 |
res = risxeta3(abs(ang)) |
179 |
res = res*fbad_cog(3,ic) |
180 |
|
181 |
elseif(PFAtt.eq.'ETA4')then |
182 |
|
183 |
corr = pfaeta4(ic,ang) |
184 |
res = risxeta4(abs(ang)) |
185 |
res = res*fbad_cog(4,ic) |
186 |
|
187 |
elseif(PFAtt.eq.'ETA')then |
188 |
|
189 |
corr = pfaeta(ic,ang) |
190 |
c res = riseta(ic,ang) |
191 |
res = riseta(iview,ang) |
192 |
res = res*fbad_eta(ic,ang) |
193 |
|
194 |
elseif(PFAtt.eq.'ETAL')then |
195 |
|
196 |
corr = pfaetal(ic,ang) |
197 |
res = riseta(iview,ang) |
198 |
res = res*fbad_eta(ic,ang) |
199 |
|
200 |
elseif(PFAtt.eq.'COG')then |
201 |
|
202 |
corr = cog(0,ic) |
203 |
res = risx_cog(abs(ang)) |
204 |
res = res*fbad_cog(0,ic) |
205 |
|
206 |
else |
207 |
if(DEBUG.EQ.1) print*,'*** Non valid p.f.a. (x) --> ',PFAtt |
208 |
endif |
209 |
|
210 |
|
211 |
* ====================================== |
212 |
* temporary patch for saturated clusters |
213 |
* ====================================== |
214 |
if( nsatstrips(ic).gt.0 )then |
215 |
corr = cog(4,ic) |
216 |
res = pitchX*1e-4/sqrt(12.) |
217 |
cc cc=cog(4,ic) |
218 |
c$$$ print*,ic,' *** ',cc |
219 |
c$$$ print*,ic,' *** ',res |
220 |
endif |
221 |
|
222 |
|
223 |
elseif(mod(iview,2).eq.1)then |
224 |
c ================================================= |
225 |
c Y view |
226 |
c ================================================= |
227 |
|
228 |
res = RESYAV |
229 |
|
230 |
if(PFAtt.eq.'COG1')then |
231 |
|
232 |
corr = 0 |
233 |
res = 1e-4*pitchY/sqrt(12.)!res |
234 |
|
235 |
elseif(PFAtt.eq.'COG2')then |
236 |
|
237 |
corr = cog(2,ic) |
238 |
res = risy_cog(abs(ang))!TEMPORANEO |
239 |
res = res*fbad_cog(2,ic) |
240 |
|
241 |
elseif(PFAtt.eq.'COG3')then |
242 |
|
243 |
corr = cog(3,ic) |
244 |
res = risy_cog(abs(ang))!TEMPORANEO |
245 |
res = res*fbad_cog(3,ic) |
246 |
|
247 |
elseif(PFAtt.eq.'COG4')then |
248 |
|
249 |
corr = cog(4,ic) |
250 |
res = risy_cog(abs(ang))!TEMPORANEO |
251 |
res = res*fbad_cog(4,ic) |
252 |
|
253 |
elseif(PFAtt.eq.'ETA2')then |
254 |
|
255 |
corr = pfaeta2(ic,ang) |
256 |
res = risyeta2(abs(ang)) |
257 |
res = res*fbad_cog(2,ic) |
258 |
|
259 |
elseif(PFAtt.eq.'ETA3')then |
260 |
|
261 |
corr = pfaeta3(ic,ang) |
262 |
res = res*fbad_cog(3,ic) |
263 |
|
264 |
elseif(PFAtt.eq.'ETA4')then |
265 |
|
266 |
corr = pfaeta4(ic,ang) |
267 |
res = res*fbad_cog(4,ic) |
268 |
|
269 |
elseif(PFAtt.eq.'ETA')then |
270 |
|
271 |
corr = pfaeta(ic,ang) |
272 |
c res = riseta(ic,ang) |
273 |
res = riseta(iview,ang) |
274 |
res = res*fbad_eta(ic,ang) |
275 |
|
276 |
elseif(PFAtt.eq.'ETAL')then |
277 |
|
278 |
corr = pfaetal(ic,ang) |
279 |
res = riseta(iview,ang) |
280 |
res = res*fbad_eta(ic,ang) |
281 |
|
282 |
elseif(PFAtt.eq.'COG')then |
283 |
|
284 |
corr = cog(0,ic) |
285 |
res = risy_cog(abs(ang)) |
286 |
res = res*fbad_cog(0,ic) |
287 |
|
288 |
else |
289 |
if(DEBUG.EQ.1) print*,'*** Non valid p.f.a. (y) --> ',PFAtt |
290 |
endif |
291 |
|
292 |
|
293 |
* ====================================== |
294 |
* temporary patch for saturated clusters |
295 |
* ====================================== |
296 |
if( nsatstrips(ic).gt.0 )then |
297 |
corr = cog(4,ic) |
298 |
res = pitchY*1e-4/sqrt(12.) |
299 |
cc cc=cog(4,ic) |
300 |
c$$$ print*,ic,' *** ',cc |
301 |
c$$$ print*,ic,' *** ',res |
302 |
endif |
303 |
|
304 |
endif |
305 |
end |
306 |
|
307 |
*** * * * *** * * * *** * * * *** * * * *** * * * *** * * * *** |
308 |
integer function npfastrips(ic,angle) |
309 |
*-------------------------------------------------------------- |
310 |
* thid function returns the number of strips used |
311 |
* to evaluate the position of a cluster, according to the p.f.a. |
312 |
*-------------------------------------------------------------- |
313 |
include 'commontracker.f' |
314 |
include 'level1.f' |
315 |
include 'calib.f' |
316 |
|
317 |
character*4 usedPFA |
318 |
|
319 |
|
320 |
|
321 |
call idtoc(pfaid,usedPFA) |
322 |
|
323 |
npfastrips=-1 |
324 |
|
325 |
if(usedPFA.eq.'COG1')npfastrips=1 |
326 |
if(usedPFA.eq.'COG2')npfastrips=2 |
327 |
if(usedPFA.eq.'COG3')npfastrips=3 |
328 |
if(usedPFA.eq.'COG4')npfastrips=4 |
329 |
if(usedPFA.eq.'ETA2')npfastrips=2 |
330 |
if(usedPFA.eq.'ETA3')npfastrips=3 |
331 |
if(usedPFA.eq.'ETA4')npfastrips=4 |
332 |
* ---------------------------------------------------------------- |
333 |
if(usedPFA.eq.'ETA'.or.usedPFA.eq.'ETAL')then |
334 |
c print*,VIEW(ic),angle |
335 |
if(mod(int(VIEW(ic)),2).eq.1)then !Y-view |
336 |
if( abs(angle).ge.e2fay.and.abs(angle).lt.e2tay )then |
337 |
npfastrips=2 |
338 |
elseif( abs(angle).ge.e3fay.and.abs(angle).lt.e3tay )then |
339 |
npfastrips=3 |
340 |
elseif( abs(angle).ge.e4fay.and.abs(angle).lt.e4tay )then |
341 |
npfastrips=4 |
342 |
else |
343 |
npfastrips=4 !COG4 |
344 |
endif |
345 |
else !X-view |
346 |
if( abs(angle).ge.e2fax.and.abs(angle).lt.e2tax )then |
347 |
npfastrips=2 |
348 |
elseif( abs(angle).ge.e3fax.and.abs(angle).lt.e3tax )then |
349 |
npfastrips=3 |
350 |
elseif( abs(angle).ge.e4fax.and.abs(angle).lt.e4tax )then |
351 |
npfastrips=4 |
352 |
else |
353 |
npfastrips=4 !COG4 |
354 |
endif |
355 |
endif |
356 |
endif |
357 |
* ---------------------------------------------------------------- |
358 |
if(usedPFA.eq.'COG')then |
359 |
|
360 |
npfastrips=0 |
361 |
|
362 |
c$$$ iv=VIEW(ic) |
363 |
c$$$ if(mod(iv,2).eq.1)incut=incuty |
364 |
c$$$ if(mod(iv,2).eq.0)incut=incutx |
365 |
c$$$ istart = INDSTART(IC) |
366 |
c$$$ istop = TOTCLLENGTH |
367 |
c$$$ if(ic.lt.NCLSTR1)istop=INDSTART(IC+1)-1 |
368 |
c$$$ mu = 0 |
369 |
c$$$ do i = INDMAX(IC),istart,-1 |
370 |
c$$$ ipos = i-INDMAX(ic) |
371 |
c$$$ cut = incut*CLSIGMA(i) |
372 |
c$$$ if(CLSIGNAL(i).ge.cut)then |
373 |
c$$$ mu = mu + 1 |
374 |
c$$$ print*,i,mu |
375 |
c$$$ else |
376 |
c$$$ goto 10 |
377 |
c$$$ endif |
378 |
c$$$ enddo |
379 |
c$$$ 10 continue |
380 |
c$$$ do i = INDMAX(IC)+1,istop |
381 |
c$$$ ipos = i-INDMAX(ic) |
382 |
c$$$ cut = incut*CLSIGMA(i) |
383 |
c$$$ if(CLSIGNAL(i).ge.cut)then |
384 |
c$$$ mu = mu + 1 |
385 |
c$$$ print*,i,mu |
386 |
c$$$ else |
387 |
c$$$ goto 20 |
388 |
c$$$ endif |
389 |
c$$$ enddo |
390 |
c$$$ 20 continue |
391 |
c$$$ npfastrips=mu |
392 |
|
393 |
endif |
394 |
* ---------------------------------------------------------------- |
395 |
|
396 |
c print*,pfaid,usedPFA,angle,npfastrips |
397 |
|
398 |
return |
399 |
end |
400 |
|
401 |
*** * * * *** * * * *** * * * *** * * * *** * * * *** * * * *** |
402 |
real function pfaeta(ic,angle) |
403 |
*-------------------------------------------------------------- |
404 |
* this function returns the position (in strip units) |
405 |
* it calls: |
406 |
* - pfaeta2(ic,angle) |
407 |
* - pfaeta3(ic,angle) |
408 |
* - pfaeta4(ic,angle) |
409 |
* according to the angle |
410 |
*-------------------------------------------------------------- |
411 |
include 'commontracker.f' |
412 |
include 'level1.f' |
413 |
include 'calib.f' |
414 |
|
415 |
pfaeta = 0 |
416 |
|
417 |
if(mod(int(VIEW(ic)),2).eq.1)then !Y-view |
418 |
|
419 |
if( abs(angle).ge.e2fay.and.abs(angle).lt.e2tay )then |
420 |
pfaeta = pfaeta2(ic,angle) |
421 |
cc print*,pfaeta2(ic,angle) |
422 |
elseif( abs(angle).ge.e3fay.and.abs(angle).lt.e3tay )then |
423 |
pfaeta = pfaeta3(ic,angle) |
424 |
elseif( abs(angle).ge.e4fay.and.abs(angle).lt.e4tay )then |
425 |
pfaeta = pfaeta4(ic,angle) |
426 |
else |
427 |
pfaeta = cog(4,ic) |
428 |
endif |
429 |
|
430 |
else !X-view |
431 |
|
432 |
if( abs(angle).ge.e2fax.and.abs(angle).lt.e2tax )then |
433 |
pfaeta = pfaeta2(ic,angle) |
434 |
elseif( abs(angle).ge.e3fax.and.abs(angle).lt.e3tax )then |
435 |
pfaeta = pfaeta3(ic,angle) |
436 |
elseif( abs(angle).ge.e4fax.and.abs(angle).lt.e4tax )then |
437 |
pfaeta = pfaeta4(ic,angle) |
438 |
else |
439 |
pfaeta = cog(4,ic) |
440 |
endif |
441 |
|
442 |
endif |
443 |
|
444 |
100 return |
445 |
end |
446 |
|
447 |
*** * * * *** * * * *** * * * *** * * * *** * * * *** * * * *** |
448 |
real function pfaetal(ic,angle) |
449 |
*-------------------------------------------------------------- |
450 |
* this function returns the position (in strip units) |
451 |
* it calls: |
452 |
* - pfaeta2(ic,angle)+pfcorr(ic,angle) |
453 |
* - pfaeta3(ic,angle)+pfcorr(ic,angle) |
454 |
* - pfaeta4(ic,angle)+pfcorr(ic,angle) |
455 |
* according to the angle |
456 |
*-------------------------------------------------------------- |
457 |
include 'commontracker.f' |
458 |
include 'level1.f' |
459 |
include 'calib.f' |
460 |
|
461 |
pfaetal = 0 |
462 |
|
463 |
if(mod(int(VIEW(ic)),2).eq.1)then !Y-view |
464 |
|
465 |
if( abs(angle).ge.e2fay.and.abs(angle).lt.e2tay )then |
466 |
pfaetal = pfaeta2(ic,angle)+pfacorr(ic,angle) |
467 |
cc print*,VIEW(ic),angle,pfaeta2(ic,angle),pfacorr(ic,angle) |
468 |
elseif( abs(angle).ge.e3fay.and.abs(angle).lt.e3tay )then |
469 |
pfaetal = pfaeta3(ic,angle)+pfacorr(ic,angle) |
470 |
elseif( abs(angle).ge.e4fay.and.abs(angle).lt.e4tay )then |
471 |
pfaetal = pfaeta4(ic,angle)+pfacorr(ic,angle) |
472 |
else |
473 |
pfaetal = cog(4,ic) |
474 |
endif |
475 |
|
476 |
else !X-view |
477 |
|
478 |
if( abs(angle).ge.e2fax.and.abs(angle).lt.e2tax )then |
479 |
pfaetal = pfaeta2(ic,angle)+pfacorr(ic,angle) |
480 |
cc print*,VIEW(ic),angle,pfaeta2(ic,angle),pfacorr(ic,angle) |
481 |
elseif( abs(angle).ge.e3fax.and.abs(angle).lt.e3tax )then |
482 |
pfaetal = pfaeta3(ic,angle)+pfacorr(ic,angle) |
483 |
elseif( abs(angle).ge.e4fax.and.abs(angle).lt.e4tax )then |
484 |
pfaetal = pfaeta4(ic,angle)+pfacorr(ic,angle) |
485 |
else |
486 |
pfaetal = cog(4,ic) |
487 |
endif |
488 |
|
489 |
endif |
490 |
|
491 |
100 return |
492 |
end |
493 |
*** * * * *** * * * *** * * * *** * * * *** * * * *** * * * *** |
494 |
c real function riseta(ic,angle) |
495 |
real function riseta(iview,angle) |
496 |
*-------------------------------------------------------------- |
497 |
* this function returns the average spatial resolution |
498 |
* (in cm) for the ETA algorithm (function pfaeta(ic,angle)) |
499 |
* it calls: |
500 |
* - risxeta2(angle) |
501 |
* - risyeta2(angle) |
502 |
* - risxeta3(angle) |
503 |
* - risxeta4(angle) |
504 |
* according to the angle |
505 |
*-------------------------------------------------------------- |
506 |
include 'commontracker.f' |
507 |
include 'level1.f' |
508 |
include 'calib.f' |
509 |
|
510 |
riseta = 0 |
511 |
|
512 |
c if(mod(int(VIEW(ic)),2).eq.1)then !Y-view |
513 |
if(mod(iview,2).eq.1)then !Y-view |
514 |
|
515 |
|
516 |
if( abs(angle).ge.e2fay.and.abs(angle).le.e2tay )then |
517 |
riseta = risyeta2(angle) |
518 |
elseif( abs(angle).ge.e3fay.and.abs(angle).le.e3tay )then |
519 |
riseta = risy_cog(angle) !ATTENZIONE!! |
520 |
elseif( abs(angle).ge.e4fay.and.abs(angle).le.e4tay )then |
521 |
riseta = risy_cog(angle) !ATTENZIONE!! |
522 |
else |
523 |
riseta = risy_cog(angle) |
524 |
endif |
525 |
|
526 |
else !X-view |
527 |
|
528 |
if( abs(angle).ge.e2fax.and.abs(angle).le.e2tax )then |
529 |
riseta = risxeta2(angle) |
530 |
elseif( abs(angle).ge.e3fax.and.abs(angle).le.e3tax )then |
531 |
riseta = risxeta3(angle) |
532 |
elseif( abs(angle).ge.e4fax.and.abs(angle).le.e4tax )then |
533 |
riseta = risxeta4(angle) |
534 |
else |
535 |
riseta = risx_cog(angle) |
536 |
endif |
537 |
|
538 |
endif |
539 |
|
540 |
|
541 |
100 return |
542 |
end |
543 |
|
544 |
*** * * * *** * * * *** * * * *** * * * *** * * * *** * * * *** |
545 |
real function fbad_eta(ic,angle) |
546 |
*------------------------------------------------------- |
547 |
* this function returns a factor that takes into |
548 |
* account deterioration of the spatial resolution |
549 |
* in the case BAD strips are included in the cluster. |
550 |
* This factor should multiply the nominal spatial |
551 |
* resolution. |
552 |
* It calls the function FBAD_COG(NCOG,IC), |
553 |
* accordingto the angle |
554 |
*------------------------------------------------------- |
555 |
|
556 |
include 'commontracker.f' |
557 |
include 'level1.f' |
558 |
include 'calib.f' |
559 |
fbad_eta = 0 |
560 |
|
561 |
if(mod(int(VIEW(ic)),2).eq.1)then !Y-view |
562 |
|
563 |
if( abs(angle).ge.e2fay.and.abs(angle).le.e2tay )then |
564 |
fbad_eta = fbad_cog(2,ic) |
565 |
elseif( abs(angle).ge.e3fay.and.abs(angle).le.e3tay )then |
566 |
fbad_eta = fbad_cog(3,ic) |
567 |
elseif( abs(angle).ge.e4fay.and.abs(angle).le.e4tay )then |
568 |
fbad_eta = fbad_cog(4,ic) |
569 |
else |
570 |
fbad_eta = fbad_cog(4,ic) |
571 |
endif |
572 |
|
573 |
else !X-view |
574 |
|
575 |
if( abs(angle).ge.e2fax.and.abs(angle).le.e2tax )then |
576 |
fbad_eta = fbad_cog(2,ic) |
577 |
elseif( abs(angle).ge.e3fax.and.abs(angle).le.e3tax )then |
578 |
fbad_eta = fbad_cog(3,ic) |
579 |
elseif( abs(angle).ge.e4fax.and.abs(angle).le.e4tax )then |
580 |
fbad_eta = fbad_cog(4,ic) |
581 |
else |
582 |
fbad_eta = fbad_cog(4,ic) |
583 |
endif |
584 |
|
585 |
endif |
586 |
|
587 |
return |
588 |
end |
589 |
|
590 |
*** * * * *** * * * *** * * * *** * * * *** * * * *** * * * *** |
591 |
real function pfaeta2(ic,angle) !(1) |
592 |
*-------------------------------------------------------------- |
593 |
* this function returns |
594 |
* |
595 |
* - the position (in strip units) |
596 |
* corrected according to the ETA2 Position Finding Algorithm. |
597 |
* The function performs an interpolation of FETA2%ETA2 |
598 |
* |
599 |
* - if the angle is out of range, the calibration parameters |
600 |
* of the lowest or higher bin are used |
601 |
* |
602 |
*-------------------------------------------------------------- |
603 |
include 'commontracker.f' |
604 |
include 'calib.f' |
605 |
include 'level1.f' |
606 |
|
607 |
real cog2,angle |
608 |
integer iview,lad |
609 |
|
610 |
iview = VIEW(ic) |
611 |
lad = nld(MAXS(ic),VIEW(ic)) |
612 |
cog2 = cog(2,ic) |
613 |
pfaeta2=cog2 |
614 |
|
615 |
* find angular bin |
616 |
* (in futuro possiamo pensare di interpolare anche sull'angolo) |
617 |
do iang=1,nangbin |
618 |
if(angL(iang).lt.angle.and.angR(iang).ge.angle)then |
619 |
iangle=iang |
620 |
goto 98 |
621 |
endif |
622 |
enddo |
623 |
if(DEBUG.EQ.1) |
624 |
$ print*,'pfaeta2 *** warning *** angle out of range: ',angle |
625 |
if(angle.le.angL(1))iang=1 |
626 |
if(angle.ge.angR(nangbin))iang=nangbin |
627 |
98 continue !jump here if ok |
628 |
|
629 |
|
630 |
c$$$* find extremes of interpolation |
631 |
c$$$ iflag=0 |
632 |
c$$$* -------------------------------- |
633 |
c$$$ if(cog2.lt.eta2(1,iang).or.cog2.gt.eta2(netaval,iang))then |
634 |
c$$$c print*,'pfaeta2 *** warning *** argument out of range: ',cog2 |
635 |
c$$$* goto 100 |
636 |
c$$$* ---------------------------------------------- |
637 |
c$$$* non salto piu`, ma scalo di 1 o -1 |
638 |
c$$$* nel caso si tratti di un cluster |
639 |
c$$$* in cui la strip con il segnale massimo non coincide |
640 |
c$$$* con la strip con il rapposto s/n massimo!!! |
641 |
c$$$* ---------------------------------------------- |
642 |
c$$$ if(cog2.lt.eta2(1,iang))then !temp |
643 |
c$$$ cog2=cog2+1. !temp |
644 |
c$$$ iflag=1 !temp |
645 |
c$$$ else !temp |
646 |
c$$$ cog2=cog2-1. !temp |
647 |
c$$$ iflag=-1 !temp |
648 |
c$$$ endif !temp |
649 |
c$$$c print*,'shifted >>> ',cog2 |
650 |
c$$$ endif |
651 |
|
652 |
iadd=0 |
653 |
10 continue |
654 |
if(cog2.lt.eta2(1,iang))then |
655 |
cog2 = cog2 + 1 |
656 |
iadd = iadd + 1 |
657 |
goto 10 |
658 |
endif |
659 |
20 continue |
660 |
if(cog2.gt.eta2(netaval,iang))then |
661 |
cog2 = cog2 - 1 |
662 |
iadd = iadd - 1 |
663 |
goto 20 |
664 |
endif |
665 |
|
666 |
* -------------------------------- |
667 |
c print*,'*****',i,view,lad,iang,'------> cog2 ',cog2 |
668 |
do i=2,netaval |
669 |
if(eta2(i,iang).gt.cog2)then |
670 |
|
671 |
x1 = eta2(i-1,iang) |
672 |
x2 = eta2(i,iang) |
673 |
y1 = feta2(i-1,iview,lad,iang) |
674 |
y2 = feta2(i,iview,lad,iang) |
675 |
|
676 |
c print*,'*****',i,view,lad,iang |
677 |
c print*,'-----',x1,x2,y1,y2 |
678 |
goto 99 |
679 |
endif |
680 |
enddo |
681 |
99 continue |
682 |
|
683 |
|
684 |
AA=(y2-y1)/(x2-x1) |
685 |
BB=y1-AA*x1 |
686 |
|
687 |
pfaeta2 = AA*cog2+BB |
688 |
pfaeta2 = pfaeta2 - iadd |
689 |
|
690 |
c$$$ if(iflag.eq.1)then |
691 |
c$$$ pfaeta2=pfaeta2-1. !temp |
692 |
c$$$ cog2=cog2-1. !temp |
693 |
c$$$ endif |
694 |
c$$$ if(iflag.eq.-1)then |
695 |
c$$$ pfaeta2=pfaeta2+1. !temp |
696 |
c$$$ cog2=cog2+1. !temp |
697 |
c$$$ endif |
698 |
|
699 |
if(DEBUG.EQ.1)print*,'ETA2 (ic ',ic,' ang',angle,')' |
700 |
$ ,cog2-iadd,' -->',pfaeta2 |
701 |
|
702 |
|
703 |
100 return |
704 |
end |
705 |
|
706 |
*** * * * *** * * * *** * * * *** * * * *** * * * *** * * * *** |
707 |
real function pfaeta3(ic,angle) !(1) |
708 |
*-------------------------------------------------------------- |
709 |
* this function returns |
710 |
* |
711 |
* - the position (in strip units) |
712 |
* corrected according to the ETA3 Position Finding Algorithm. |
713 |
* The function performs an interpolation of FETA3%ETA3 |
714 |
* |
715 |
* - if the angle is out of range, the calibration parameters |
716 |
* of the lowest or higher bin are used |
717 |
* |
718 |
*-------------------------------------------------------------- |
719 |
include 'commontracker.f' |
720 |
include 'calib.f' |
721 |
include 'level1.f' |
722 |
|
723 |
real cog3,angle |
724 |
integer iview,lad |
725 |
|
726 |
|
727 |
iview = VIEW(ic) |
728 |
lad = nld(MAXS(ic),VIEW(ic)) |
729 |
cog3 = cog(3,ic) |
730 |
pfaeta3=cog3 |
731 |
|
732 |
* find angular bin |
733 |
* (in futuro possiamo pensare di interpolare anche sull'angolo) |
734 |
do iang=1,nangbin |
735 |
c print*,'~~~~~~~~~~~~ ',iang,angL(iang),angR(iang),angle |
736 |
if(angL(iang).lt.angle.and.angR(iang).ge.angle)then |
737 |
iangle=iang |
738 |
goto 98 |
739 |
endif |
740 |
enddo |
741 |
if(DEBUG.EQ.1) |
742 |
$ print*,'pfaeta3 *** warning *** angle out of range: ',angle |
743 |
if(angle.le.angL(1))iang=1 |
744 |
if(angle.ge.angR(nangbin))iang=nangbin |
745 |
98 continue !jump here if ok |
746 |
|
747 |
|
748 |
c$$$* find extremes of interpolation |
749 |
c$$$ iflag=0 |
750 |
c$$$* -------------------------------- |
751 |
c$$$ if(cog3.lt.eta3(1,iang).or.cog3.gt.eta3(netaval,iang))then |
752 |
c$$$* ---------------------------------------------- |
753 |
c$$$* non salto piu`, ma scalo di 1 o -1 |
754 |
c$$$* nel caso si tratti di un cluster |
755 |
c$$$* in cui la strip con il segnale massimo non coincide |
756 |
c$$$* con la strip con il rapposto s/n massimo!!! |
757 |
c$$$* ---------------------------------------------- |
758 |
c$$$ if(cog2.lt.eta2(1,iang))then !temp |
759 |
c$$$ cog2=cog2+1. !temp |
760 |
c$$$ iflag=1 !temp |
761 |
c$$$ else !temp |
762 |
c$$$ cog2=cog2-1. !temp |
763 |
c$$$ iflag=-1 !temp |
764 |
c$$$ endif !temp |
765 |
c$$$c print*,'shifted >>> ',cog2 |
766 |
c$$$ endif |
767 |
|
768 |
|
769 |
iadd=0 |
770 |
10 continue |
771 |
if(cog3.lt.eta3(1,iang))then |
772 |
cog3 = cog3 + 1 |
773 |
iadd = iadd + 1 |
774 |
goto 10 |
775 |
endif |
776 |
20 continue |
777 |
if(cog3.gt.eta3(netaval,iang))then |
778 |
cog3 = cog3 - 1 |
779 |
iadd = iadd - 1 |
780 |
goto 20 |
781 |
endif |
782 |
|
783 |
* -------------------------------- |
784 |
c print*,'*****',i,view,lad,iang,'------> cog2 ',cog2 |
785 |
do i=2,netaval |
786 |
if(eta3(i,iang).gt.cog3)then |
787 |
|
788 |
x1 = eta3(i-1,iang) |
789 |
x2 = eta3(i,iang) |
790 |
y1 = feta3(i-1,iview,lad,iang) |
791 |
y2 = feta3(i,iview,lad,iang) |
792 |
|
793 |
c print*,'*****',i,view,lad,iang |
794 |
c print*,'-----',x1,x2,y1,y2 |
795 |
goto 99 |
796 |
endif |
797 |
enddo |
798 |
99 continue |
799 |
|
800 |
|
801 |
AA=(y2-y1)/(x2-x1) |
802 |
BB=y1-AA*x1 |
803 |
|
804 |
pfaeta3 = AA*cog3+BB |
805 |
pfaeta3 = pfaeta3 - iadd |
806 |
|
807 |
c$$$ if(iflag.eq.1)then |
808 |
c$$$ pfaeta2=pfaeta2-1. !temp |
809 |
c$$$ cog2=cog2-1. !temp |
810 |
c$$$ endif |
811 |
c$$$ if(iflag.eq.-1)then |
812 |
c$$$ pfaeta2=pfaeta2+1. !temp |
813 |
c$$$ cog2=cog2+1. !temp |
814 |
c$$$ endif |
815 |
|
816 |
if(DEBUG.EQ.1)print*,'ETA3 (ic ',ic,' ang',angle,')' |
817 |
$ ,cog3-iadd,' -->',pfaeta3 |
818 |
|
819 |
100 return |
820 |
end |
821 |
|
822 |
*** * * * *** * * * *** * * * *** * * * *** * * * *** * * * *** |
823 |
real function pfaeta4(ic,angle) |
824 |
*-------------------------------------------------------------- |
825 |
* this function returns |
826 |
* |
827 |
* - the position (in strip units) |
828 |
* corrected according to the ETA4 Position Finding Algorithm. |
829 |
* The function performs an interpolation of FETA3%ETA3 |
830 |
* |
831 |
* - if the angle is out of range, the calibration parameters |
832 |
* of the lowest or higher bin are used |
833 |
* |
834 |
*-------------------------------------------------------------- |
835 |
include 'commontracker.f' |
836 |
include 'calib.f' |
837 |
include 'level1.f' |
838 |
|
839 |
real cog4,angle |
840 |
integer iview,lad |
841 |
|
842 |
|
843 |
iview = VIEW(ic) |
844 |
lad = nld(MAXS(ic),VIEW(ic)) |
845 |
cog4=cog(4,ic) |
846 |
pfaeta4=cog4 |
847 |
|
848 |
* find angular bin |
849 |
* (in futuro possiamo pensare di interpolare anche sull'angolo) |
850 |
do iang=1,nangbin |
851 |
c print*,'~~~~~~~~~~~~ ',iang,angL(iang),angR(iang),angle |
852 |
if(angL(iang).lt.angle.and.angR(iang).ge.angle)then |
853 |
iangle=iang |
854 |
goto 98 |
855 |
endif |
856 |
enddo |
857 |
if(DEBUG.EQ.1) |
858 |
$ print*,'pfaeta4 *** warning *** angle out of range: ',angle |
859 |
if(angle.le.angL(1))iang=1 |
860 |
if(angle.ge.angR(nangbin))iang=nangbin |
861 |
98 continue !jump here if ok |
862 |
|
863 |
|
864 |
c$$$* find extremes of interpolation |
865 |
c$$$ iflag=0 |
866 |
c$$$* -------------------------------- |
867 |
c$$$ if(cog3.lt.eta3(1,iang).or.cog3.gt.eta3(netaval,iang))then |
868 |
c$$$* ---------------------------------------------- |
869 |
c$$$* non salto piu`, ma scalo di 1 o -1 |
870 |
c$$$* nel caso si tratti di un cluster |
871 |
c$$$* in cui la strip con il segnale massimo non coincide |
872 |
c$$$* con la strip con il rapposto s/n massimo!!! |
873 |
c$$$* ---------------------------------------------- |
874 |
c$$$ if(cog2.lt.eta2(1,iang))then !temp |
875 |
c$$$ cog2=cog2+1. !temp |
876 |
c$$$ iflag=1 !temp |
877 |
c$$$ else !temp |
878 |
c$$$ cog2=cog2-1. !temp |
879 |
c$$$ iflag=-1 !temp |
880 |
c$$$ endif !temp |
881 |
c$$$c print*,'shifted >>> ',cog2 |
882 |
c$$$ endif |
883 |
|
884 |
|
885 |
iadd=0 |
886 |
10 continue |
887 |
if(cog4.lt.eta4(1,iang))then |
888 |
cog4 = cog4 + 1 |
889 |
iadd = iadd + 1 |
890 |
goto 10 |
891 |
endif |
892 |
20 continue |
893 |
if(cog4.gt.eta4(netaval,iang))then |
894 |
cog4 = cog4 - 1 |
895 |
iadd = iadd - 1 |
896 |
goto 20 |
897 |
endif |
898 |
|
899 |
* -------------------------------- |
900 |
c print*,'*****',i,view,lad,iang,'------> cog2 ',cog2 |
901 |
do i=2,netaval |
902 |
if(eta4(i,iang).gt.cog4)then |
903 |
|
904 |
x1 = eta4(i-1,iang) |
905 |
x2 = eta4(i,iang) |
906 |
y1 = feta4(i-1,iview,lad,iang) |
907 |
y2 = feta4(i,iview,lad,iang) |
908 |
|
909 |
c print*,'*****',i,view,lad,iang |
910 |
c print*,'-----',x1,x2,y1,y2 |
911 |
goto 99 |
912 |
endif |
913 |
enddo |
914 |
99 continue |
915 |
|
916 |
|
917 |
AA=(y2-y1)/(x2-x1) |
918 |
BB=y1-AA*x1 |
919 |
|
920 |
pfaeta4 = AA*cog4+BB |
921 |
pfaeta4 = pfaeta4 - iadd |
922 |
|
923 |
c$$$ if(iflag.eq.1)then |
924 |
c$$$ pfaeta2=pfaeta2-1. !temp |
925 |
c$$$ cog2=cog2-1. !temp |
926 |
c$$$ endif |
927 |
c$$$ if(iflag.eq.-1)then |
928 |
c$$$ pfaeta2=pfaeta2+1. !temp |
929 |
c$$$ cog2=cog2+1. !temp |
930 |
c$$$ endif |
931 |
|
932 |
if(DEBUG.EQ.1)print*,'ETA4 (ic ',ic,' ang',angle,')' |
933 |
$ ,cog4-iadd,' -->',pfaeta4 |
934 |
|
935 |
100 return |
936 |
end |
937 |
|
938 |
|
939 |
|
940 |
*** * * * *** * * * *** * * * *** * * * *** * * * *** * * * *** |
941 |
real function cog(ncog,ic) |
942 |
*------------------------------------------------- |
943 |
* this function returns |
944 |
* |
945 |
* - if NCOG=0, the Center-Of-Gravity of the |
946 |
* cluster IC, relative to MAXS(IC), according to |
947 |
* the cluster multiplicity |
948 |
* |
949 |
* - if NCOG>0, the Center-Of-Gravity of the cluster IC |
950 |
* evaluated using NCOG strips, even if they have a |
951 |
* negative signal (according to Landi) |
952 |
* |
953 |
*------------------------------------------------- |
954 |
|
955 |
|
956 |
include 'commontracker.f' |
957 |
include 'calib.f' |
958 |
include 'level1.f' |
959 |
|
960 |
|
961 |
|
962 |
if (ncog.gt.0) then |
963 |
* =========================== |
964 |
* ETA2 ETA3 ETA4 computation |
965 |
* =========================== |
966 |
|
967 |
* --> signal of the central strip |
968 |
sc = CLSIGNAL(INDMAX(ic)) !center |
969 |
* signal of adjacent strips |
970 |
sl1 = -9999. !left 1 |
971 |
if( |
972 |
$ (INDMAX(ic)-1).ge.INDSTART(ic) |
973 |
$ ) |
974 |
$ sl1 = CLSIGNAL(INDMAX(ic)-1) |
975 |
|
976 |
sl2 = -9999. !left 2 |
977 |
if( |
978 |
$ (INDMAX(ic)-2).ge.INDSTART(ic) |
979 |
$ ) |
980 |
$ sl2 = CLSIGNAL(INDMAX(ic)-2) |
981 |
|
982 |
sr1 = -9999. !right 1 |
983 |
if( |
984 |
$ (ic.ne.NCLSTR1.and.(INDMAX(ic)+1).lt.INDSTART(ic+1)) |
985 |
$ .or. |
986 |
$ (ic.eq.NCLSTR1.and.(INDMAX(ic)+1).le.TOTCLLENGTH) |
987 |
$ ) |
988 |
$ sr1 = CLSIGNAL(INDMAX(ic)+1) |
989 |
|
990 |
sr2 = -9999. !right 2 |
991 |
if( |
992 |
$ (ic.ne.NCLSTR1.and.(INDMAX(ic)+2).lt.INDSTART(ic+1)) |
993 |
$ .or. |
994 |
$ (ic.eq.NCLSTR1.and.(INDMAX(ic)+2).le.TOTCLLENGTH) |
995 |
$ ) |
996 |
$ sr2 = CLSIGNAL(INDMAX(ic)+2) |
997 |
|
998 |
COG = 0. |
999 |
|
1000 |
c print*,'## ',sl2,sl1,sc,sr1,sr2 |
1001 |
|
1002 |
c ============================================================== |
1003 |
if(ncog.eq.1)then |
1004 |
COG = 0. |
1005 |
if(sr1.gt.sc)cog=1. |
1006 |
if(sl1.gt.sc.and.sl1.gt.sr1)cog=-1. |
1007 |
c ============================================================== |
1008 |
elseif(ncog.eq.2)then |
1009 |
COG = 0. |
1010 |
if(sl1.gt.sr1)then |
1011 |
if((sl1+sc).ne.0)COG = -sl1/(sl1+sc) |
1012 |
elseif(sl1.lt.sr1)then |
1013 |
if((sc+sr1).ne.0)COG = sr1/(sc+sr1) |
1014 |
elseif( sl1.eq.sr1.and.sl1.ne.-9999.)then |
1015 |
if( clsigma(indmax(ic)-1).lt.clsigma(indmax(ic)+1) |
1016 |
$ .and.(sl1+sc).ne.0 )cog = -sl1/(sl1+sc) |
1017 |
if( clsigma(indmax(ic)-1).gt.clsigma(indmax(ic)+1) |
1018 |
$ .and.(sc+sr1).ne.0 )cog = sr1/(sc+sr1) |
1019 |
endif |
1020 |
c if(cog==0)print*,'Strange cluster (2) - @maxs ',MAXS(ic) |
1021 |
c $ ,' : ',sl2,sl1,sc,sr1,sr2 |
1022 |
c ============================================================== |
1023 |
elseif(ncog.eq.3)then |
1024 |
COG = 0 |
1025 |
sss = sc |
1026 |
if( sl1.ne.-9999. )COG = COG-sl1 |
1027 |
if( sl1.ne.-9999. )sss = sss+sl1 |
1028 |
if( sr1.ne.-9999. )COG = COG+sr1 |
1029 |
if( sr1.ne.-9999. )sss = sss+sr1 |
1030 |
if(sss.ne.0)COG=COG/sss |
1031 |
|
1032 |
c if( (sl1+sc+sr1).ne.0 )COG = (sr1-sl1)/(sl1+sc+sr1) |
1033 |
c if(cog==0)print*,'Strange cluster (3) - @maxs ',MAXS(ic) |
1034 |
c $ ,' : ',sl2,sl1,sc,sr1,sr2 |
1035 |
c ============================================================== |
1036 |
elseif(ncog.eq.4)then |
1037 |
|
1038 |
COG = 0 |
1039 |
sss = sc |
1040 |
if( sl1.ne.-9999. )COG = COG-sl1 |
1041 |
if( sl1.ne.-9999. )sss = sss+sl1 |
1042 |
if( sr1.ne.-9999. )COG = COG+sr1 |
1043 |
if( sr1.ne.-9999. )sss = sss+sr1 |
1044 |
if(sl2.gt.sr2)then |
1045 |
if((sl2+sss).ne.0) |
1046 |
$ COG = (COG-2*sl2)/(sl2+sss) |
1047 |
elseif(sl2.lt.sr2)then |
1048 |
if((sr2+sss).ne.0) |
1049 |
$ COG = (2*sr2+COG)/(sr2+sss) |
1050 |
elseif(sl2.eq.sr2.and.sl2.ne.-9999.)then |
1051 |
if( clsigma(indmax(ic)-2).lt.clsigma(indmax(ic)+2) |
1052 |
$ .and.(sl2+sss).ne.0 ) |
1053 |
$ cog = (cog-2*sl2)/(sl2+sss) |
1054 |
if( clsigma(indmax(ic)-2).gt.clsigma(indmax(ic)+2) |
1055 |
$ .and.(sr2+sss).ne.0 ) |
1056 |
$ cog = (2*sr2+cog)/(sr2+sss) |
1057 |
endif |
1058 |
c ============================================================== |
1059 |
elseif(ncog.eq.5)then |
1060 |
COG = 0 |
1061 |
sss = sc |
1062 |
if( sl1.ne.-9999. )COG = COG-sl1 |
1063 |
if( sl1.ne.-9999. )sss = sss+sl1 |
1064 |
if( sr1.ne.-9999. )COG = COG+sr1 |
1065 |
if( sr1.ne.-9999. )sss = sss+sr1 |
1066 |
if( sl2.ne.-9999. )COG = COG-2*sl2 |
1067 |
if( sl2.ne.-9999. )sss = sss+sl2 |
1068 |
if( sr2.ne.-9999. )COG = COG+2*sr2 |
1069 |
if( sr2.ne.-9999. )sss = sss+sr2 |
1070 |
if(sss.ne.0)COG=COG/sss |
1071 |
else |
1072 |
print*,'function COG(NCOG,IC) ==> WARNING!! NCOG=',NCOG |
1073 |
$ ,' not implemented' |
1074 |
COG = 0. |
1075 |
endif |
1076 |
|
1077 |
c print*,'NCOG ',ncog,ic,' @@@ ',sl1,sc,sr1,' @@@ ',cog |
1078 |
|
1079 |
elseif(ncog.eq.0)then |
1080 |
* ========================= |
1081 |
* COG computation |
1082 |
* ========================= |
1083 |
|
1084 |
iv=VIEW(ic) |
1085 |
if(mod(iv,2).eq.1)incut=incuty |
1086 |
if(mod(iv,2).eq.0)incut=incutx |
1087 |
istart = INDSTART(IC) |
1088 |
istop = TOTCLLENGTH |
1089 |
if(ic.lt.NCLSTR1)istop=INDSTART(IC+1)-1 |
1090 |
COG = 0 |
1091 |
SGN = 0. |
1092 |
mu = 0 |
1093 |
c print*,'-------' |
1094 |
do i = INDMAX(IC),istart,-1 |
1095 |
ipos = i-INDMAX(ic) |
1096 |
cut = incut*CLSIGMA(i) |
1097 |
if(CLSIGNAL(i).ge.cut)then |
1098 |
COG = COG + ipos*CLSIGNAL(i) |
1099 |
SGN = SGN + CLSIGNAL(i) |
1100 |
mu = mu + 1 |
1101 |
c print*,ipos,CLSIGNAL(i) |
1102 |
else |
1103 |
goto 10 |
1104 |
endif |
1105 |
enddo |
1106 |
10 continue |
1107 |
do i = INDMAX(IC)+1,istop |
1108 |
ipos = i-INDMAX(ic) |
1109 |
cut = incut*CLSIGMA(i) |
1110 |
if(CLSIGNAL(i).ge.cut)then |
1111 |
COG = COG + ipos*CLSIGNAL(i) |
1112 |
SGN = SGN + CLSIGNAL(i) |
1113 |
mu = mu + 1 |
1114 |
c print*,ipos,CLSIGNAL(i) |
1115 |
else |
1116 |
goto 20 |
1117 |
endif |
1118 |
enddo |
1119 |
20 continue |
1120 |
if(SGN.le.0)then |
1121 |
print*,'cog(0,ic) --> ic, dedx ',ic,SGN |
1122 |
print*,(CLSIGNAL(i)/CLSIGMA(i),i=istart,istop) |
1123 |
print*,(CLSIGNAL(i),i=istart,istop) |
1124 |
c print*,'cog(0,ic) --> NOT EVALUATED ' |
1125 |
else |
1126 |
COG=COG/SGN |
1127 |
endif |
1128 |
c print*,'-------' |
1129 |
|
1130 |
else |
1131 |
|
1132 |
COG=0 |
1133 |
print*,'function COG(NCOG,IC) ==> WARNING!! NCOG=',NCOG |
1134 |
print*,' (NCOG must be >= 0)' |
1135 |
|
1136 |
|
1137 |
endif |
1138 |
|
1139 |
c print *,'## cog ',ncog,ic,cog,'/////////////' |
1140 |
|
1141 |
return |
1142 |
end |
1143 |
|
1144 |
*** * * * *** * * * *** * * * *** * * * *** * * * *** * * * *** |
1145 |
|
1146 |
real function fbad_cog(ncog,ic) |
1147 |
*------------------------------------------------------- |
1148 |
* this function returns a factor that takes into |
1149 |
* account deterioration of the spatial resolution |
1150 |
* in the case BAD strips are included in the cluster. |
1151 |
* This factor should multiply the nominal spatial |
1152 |
* resolution. |
1153 |
* |
1154 |
*------------------------------------------------------- |
1155 |
|
1156 |
include 'commontracker.f' |
1157 |
include 'level1.f' |
1158 |
include 'calib.f' |
1159 |
|
1160 |
if(mod(int(VIEW(ic)),2).eq.1)then !Y-view |
1161 |
si = 8.4 !average good-strip noise |
1162 |
f = 4. !average bad-strip noise: f*si |
1163 |
incut=incuty |
1164 |
else !X-view |
1165 |
si = 3.9 !average good-strip noise |
1166 |
f = 6. !average bad-strip noise: f*si |
1167 |
incut=incutx |
1168 |
endif |
1169 |
|
1170 |
fbad_cog = 1. |
1171 |
|
1172 |
if (ncog.gt.0) then |
1173 |
|
1174 |
* --> signal of the central strip |
1175 |
sc = CLSIGNAL(INDMAX(ic)) !center |
1176 |
fsc = 1 |
1177 |
c if( CLBAD(INDMAX(ic)).eq.0 )fsc=f |
1178 |
fsc = clsigma(INDMAX(ic))/si |
1179 |
* --> signal of adjacent strips |
1180 |
sl1 = 0 !left 1 |
1181 |
fsl1 = 1 !left 1 |
1182 |
if( |
1183 |
$ (INDMAX(ic)-1).ge.INDSTART(ic) |
1184 |
$ )then |
1185 |
sl1 = CLSIGNAL(INDMAX(ic)-1) |
1186 |
c if( CLBAD(INDMAX(ic)-1).eq.0)fsl1=f |
1187 |
fsl1 = clsigma(INDMAX(ic)-1)/si |
1188 |
endif |
1189 |
|
1190 |
sl2 = 0 !left 2 |
1191 |
fsl2 = 1 !left 2 |
1192 |
if( |
1193 |
$ (INDMAX(ic)-2).ge.INDSTART(ic) |
1194 |
$ )then |
1195 |
sl2 = CLSIGNAL(INDMAX(ic)-2) |
1196 |
c if(CLBAD(INDMAX(ic)-2).eq.0)fsl2=f |
1197 |
fsl2 = clsigma(INDMAX(ic)-2)/si |
1198 |
endif |
1199 |
sr1 = 0 !right 1 |
1200 |
fsr1 = 1 !right 1 |
1201 |
if( |
1202 |
$ (ic.ne.NCLSTR1.and.(INDMAX(ic)+1).lt.INDSTART(ic+1)) |
1203 |
$ .or. |
1204 |
$ (ic.eq.NCLSTR1.and.(INDMAX(ic)+1).le.TOTCLLENGTH) |
1205 |
$ )then |
1206 |
sr1 = CLSIGNAL(INDMAX(ic)+1) |
1207 |
c if(CLBAD(INDMAX(ic)+1).eq.0)fsr1=f |
1208 |
fsr1 = clsigma(INDMAX(ic)+1)/si |
1209 |
endif |
1210 |
sr2 = 0 !right 2 |
1211 |
fsr2 = 1 !right 2 |
1212 |
if( |
1213 |
$ (ic.ne.NCLSTR1.and.(INDMAX(ic)+2).lt.INDSTART(ic+1)) |
1214 |
$ .or. |
1215 |
$ (ic.eq.NCLSTR1.and.(INDMAX(ic)+2).le.TOTCLLENGTH) |
1216 |
$ )then |
1217 |
sr2 = CLSIGNAL(INDMAX(ic)+2) |
1218 |
c if(CLBAD(INDMAX(ic)+2).eq.0)fsr2=f |
1219 |
fsr2 = clsigma(INDMAX(ic)+2)/si |
1220 |
endif |
1221 |
|
1222 |
|
1223 |
|
1224 |
************************************************************ |
1225 |
* COG2-3-4 computation |
1226 |
************************************************************ |
1227 |
|
1228 |
c print*,sl2,sl1,sc,sr1,sr2 |
1229 |
|
1230 |
vCOG = cog(ncog,ic)!0. |
1231 |
|
1232 |
if(ncog.eq.2)then |
1233 |
if(sl1.gt.sr1)then |
1234 |
c COG = -sl1/(sl1+sc) |
1235 |
fbad_cog = (fsl1*(-1-vCOG)**2+fsc*(-vCOG)**2) |
1236 |
fbad_cog = fbad_cog / ((-1-vCOG)**2+(-vCOG)**2) |
1237 |
elseif(sl1.le.sr1)then |
1238 |
c COG = sr1/(sc+sr1) |
1239 |
fbad_cog = (fsc*(-vCOG)**2+fsr1*(1-vCOG)**2) |
1240 |
fbad_cog = fbad_cog / ((-vCOG)**2+(1-vCOG)**2) |
1241 |
endif |
1242 |
elseif(ncog.eq.3)then |
1243 |
c COG = (sr1-sl1)/(sl1+sc+sr1) |
1244 |
fbad_cog = |
1245 |
$ (fsl1*(-1-vCOG)**2+fsc*(-vCOG)**2+fsr1*(1-vCOG)**2) |
1246 |
fbad_cog = |
1247 |
$ fbad_cog / ((-1-vCOG)**2+(-vCOG)**2+(1-vCOG)**2) |
1248 |
elseif(ncog.eq.4)then |
1249 |
if(sl2.gt.sr2)then |
1250 |
c COG = (sr1-sl1-2*sl2)/(sl2+sl1+sc+sr1) |
1251 |
fbad_cog = |
1252 |
$ (fsl2*(-2-vCOG)**2+fsl1*(-1-vCOG)**2 |
1253 |
$ +fsc*(-vCOG)**2+fsr1*(1-vCOG)**2) |
1254 |
fbad_cog = |
1255 |
$ fbad_cog / ((-2-vCOG)**2+(-1-vCOG)**2 |
1256 |
$ +(-vCOG)**2+(1-vCOG)**2) |
1257 |
elseif(sl2.le.sr2)then |
1258 |
c COG = (2*sr2+sr1-sl1)/(sl2+sl1+sc+sr1) |
1259 |
fbad_cog = |
1260 |
$ (fsl1*(-1-vCOG)**2 |
1261 |
$ +fsc*(-vCOG)**2+fsr1*(1-vCOG)**2+fsr2*(2-vCOG)**2) |
1262 |
fbad_cog = |
1263 |
$ fbad_cog / ((-1-vCOG)**2 |
1264 |
$ +(-vCOG)**2+(1-vCOG)**2+(2-vCOG)**2) |
1265 |
endif |
1266 |
else |
1267 |
print*,'function FBAD_COG(NCOG,IC) ==> WARNING!! NCOG=',NCOG |
1268 |
print*,' (NCOG must be <= 4)' |
1269 |
c COG = 0. |
1270 |
endif |
1271 |
|
1272 |
elseif(ncog.eq.0)then |
1273 |
* ========================= |
1274 |
* COG computation |
1275 |
* ========================= |
1276 |
|
1277 |
vCOG = cog(0,ic) |
1278 |
|
1279 |
iv = VIEW(ic) |
1280 |
istart = INDSTART(IC) |
1281 |
istop = TOTCLLENGTH |
1282 |
if(ic.lt.NCLSTR1)istop = INDSTART(IC+1)-1 |
1283 |
SGN = 0. |
1284 |
SNU = 0. |
1285 |
SDE = 0. |
1286 |
|
1287 |
do i=INDMAX(IC),istart,-1 |
1288 |
ipos = i-INDMAX(ic) |
1289 |
cut = incut*CLSIGMA(i) |
1290 |
if(CLSIGNAL(i).gt.cut)then |
1291 |
fs = clsigma(i)/si |
1292 |
SNU = SNU + fs*(ipos-vCOG)**2 |
1293 |
SDE = SDE + (ipos-vCOG)**2 |
1294 |
else |
1295 |
goto 10 |
1296 |
endif |
1297 |
enddo |
1298 |
10 continue |
1299 |
do i=INDMAX(IC)+1,istop |
1300 |
ipos = i-INDMAX(ic) |
1301 |
cut = incut*CLSIGMA(i) |
1302 |
if(CLSIGNAL(i).gt.cut)then |
1303 |
fs = clsigma(i)/si |
1304 |
SNU = SNU + fs*(ipos-vCOG)**2 |
1305 |
SDE = SDE + (ipos-vCOG)**2 |
1306 |
else |
1307 |
goto 20 |
1308 |
endif |
1309 |
enddo |
1310 |
20 continue |
1311 |
if(SDE.ne.0)then |
1312 |
FBAD_COG=SNU/SDE |
1313 |
else |
1314 |
|
1315 |
endif |
1316 |
|
1317 |
else |
1318 |
|
1319 |
FBAD_COG=0 |
1320 |
print*,'function FBAD_COG(NCOG,IC) ==> WARNING!! NCOG=',NCOG |
1321 |
print*,' (NCOG must be >= 0)' |
1322 |
|
1323 |
|
1324 |
endif |
1325 |
|
1326 |
|
1327 |
fbad_cog = sqrt(fbad_cog) |
1328 |
|
1329 |
return |
1330 |
end |
1331 |
|
1332 |
|
1333 |
c$$$*** * * * *** * * * *** * * * *** * * * *** * * * *** * * * *** |
1334 |
c$$$ real function fbad_cog0(ncog,ic) |
1335 |
c$$$*------------------------------------------------------- |
1336 |
c$$$* this function returns a factor that takes into |
1337 |
c$$$* account deterioration of the spatial resolution |
1338 |
c$$$* in the case BAD strips are included in the cluster. |
1339 |
c$$$* This factor should multiply the nominal spatial |
1340 |
c$$$* resolution. |
1341 |
c$$$* |
1342 |
c$$$* NB!!! |
1343 |
c$$$* (this is the old version. It consider only the two |
1344 |
c$$$* strips with the greatest signal. The new one is |
1345 |
c$$$* fbad_cog(ncog,ic) ) |
1346 |
c$$$* |
1347 |
c$$$*------------------------------------------------------- |
1348 |
c$$$ |
1349 |
c$$$ include 'commontracker.f' |
1350 |
c$$$ include 'level1.f' |
1351 |
c$$$ include 'calib.f' |
1352 |
c$$$ |
1353 |
c$$$* --> signal of the central strip |
1354 |
c$$$ sc = CLSIGNAL(INDMAX(ic)) !center |
1355 |
c$$$ |
1356 |
c$$$* signal of adjacent strips |
1357 |
c$$$* --> left |
1358 |
c$$$ sl1 = 0 !left 1 |
1359 |
c$$$ if( |
1360 |
c$$$ $ (INDMAX(ic)-1).ge.INDSTART(ic) |
1361 |
c$$$ $ ) |
1362 |
c$$$ $ sl1 = max(0.,CLSIGNAL(INDMAX(ic)-1)) |
1363 |
c$$$ |
1364 |
c$$$ sl2 = 0 !left 2 |
1365 |
c$$$ if( |
1366 |
c$$$ $ (INDMAX(ic)-2).ge.INDSTART(ic) |
1367 |
c$$$ $ ) |
1368 |
c$$$ $ sl2 = max(0.,CLSIGNAL(INDMAX(ic)-2)) |
1369 |
c$$$ |
1370 |
c$$$* --> right |
1371 |
c$$$ sr1 = 0 !right 1 |
1372 |
c$$$ if( |
1373 |
c$$$ $ (ic.ne.NCLSTR1.and.(INDMAX(ic)+1).lt.INDSTART(ic+1)) |
1374 |
c$$$ $ .or. |
1375 |
c$$$ $ (ic.eq.NCLSTR1.and.(INDMAX(ic)+1).le.TOTCLLENGTH) |
1376 |
c$$$ $ ) |
1377 |
c$$$ $ sr1 = max(0.,CLSIGNAL(INDMAX(ic)+1)) |
1378 |
c$$$ |
1379 |
c$$$ sr2 = 0 !right 2 |
1380 |
c$$$ if( |
1381 |
c$$$ $ (ic.ne.NCLSTR1.and.(INDMAX(ic)+2).lt.INDSTART(ic+1)) |
1382 |
c$$$ $ .or. |
1383 |
c$$$ $ (ic.eq.NCLSTR1.and.(INDMAX(ic)+2).le.TOTCLLENGTH) |
1384 |
c$$$ $ ) |
1385 |
c$$$ $ sr2 = max(0.,CLSIGNAL(INDMAX(ic)+2)) |
1386 |
c$$$ |
1387 |
c$$$ |
1388 |
c$$$ if(mod(int(VIEW(ic)),2).eq.1)then !Y-view |
1389 |
c$$$ f = 4. |
1390 |
c$$$ si = 8.4 |
1391 |
c$$$ else !X-view |
1392 |
c$$$ f = 6. |
1393 |
c$$$ si = 3.9 |
1394 |
c$$$ endif |
1395 |
c$$$ |
1396 |
c$$$ fbad_cog = 1. |
1397 |
c$$$ f0 = 1 |
1398 |
c$$$ f1 = 1 |
1399 |
c$$$ f2 = 1 |
1400 |
c$$$ f3 = 1 |
1401 |
c$$$ if(sl1.gt.sr1.and.sl1.gt.0.)then |
1402 |
c$$$ |
1403 |
c$$$ if(BAD(VIEW(ic),nvk(MAXS(ic)),nst(MAXS(ic)) ).eq.0)f0=f |
1404 |
c$$$ if(BAD(VIEW(ic),nvk(MAXS(ic)),nst(MAXS(ic)-1)).eq.0)f1=f |
1405 |
c$$$c if(BAD(VIEW(ic),nvk(MAXS(ic)),nst(MAXS(ic)+1)).eq.0)f3=f |
1406 |
c$$$ |
1407 |
c$$$ if(ncog.eq.2.and.sl1.ne.0)then |
1408 |
c$$$ fbad_cog = (f1**2*sc**2/sl1**2+f0**2)/(sc**2/sl1**2+1.) |
1409 |
c$$$ elseif(ncog.eq.3.and.sl1.ne.0.and.sr1.ne.0)then |
1410 |
c$$$ fbad_cog = 1. |
1411 |
c$$$ elseif(ncog.eq.4.and.sl1.ne.0.and.sr1.ne.0.and.sl2.ne.0)then |
1412 |
c$$$ fbad_cog = 1. |
1413 |
c$$$ else |
1414 |
c$$$ fbad_cog = 1. |
1415 |
c$$$ endif |
1416 |
c$$$ |
1417 |
c$$$ elseif(sl1.le.sr1.and.sr1.gt.0.)then |
1418 |
c$$$ |
1419 |
c$$$ |
1420 |
c$$$ if(BAD(VIEW(ic),nvk(MAXS(ic)),nst(MAXS(ic)) ).eq.0)f0=f |
1421 |
c$$$ if(BAD(VIEW(ic),nvk(MAXS(ic)),nst(MAXS(ic)+1)).eq.0)f1=f |
1422 |
c$$$c if(BAD(VIEW(ic),nvk(MAXS(ic)),nst(MAXS(ic)-1)).eq.0)f3=f |
1423 |
c$$$ |
1424 |
c$$$ if(ncog.eq.2.and.sr1.ne.0)then |
1425 |
c$$$ fbad_cog = (f1**2*sc**2/sr1**2+f0**2)/(sc**2/sr1**2+1.) |
1426 |
c$$$ elseif(ncog.eq.3.and.sr1.ne.0.and.sl1.ne.0)then |
1427 |
c$$$ fbad_cog = 1. |
1428 |
c$$$ elseif(ncog.eq.4.and.sr1.ne.0.and.sl1.ne.0.and.sr2.ne.0)then |
1429 |
c$$$ fbad_cog = 1. |
1430 |
c$$$ else |
1431 |
c$$$ fbad_cog = 1. |
1432 |
c$$$ endif |
1433 |
c$$$ |
1434 |
c$$$ endif |
1435 |
c$$$ |
1436 |
c$$$ fbad_cog0 = sqrt(fbad_cog) |
1437 |
c$$$ |
1438 |
c$$$ return |
1439 |
c$$$ end |
1440 |
c$$$ |
1441 |
c$$$ |
1442 |
c$$$ |
1443 |
|
1444 |
*** * * * *** * * * *** * * * *** * * * *** * * * *** * * * *** |
1445 |
|
1446 |
FUNCTION risxeta2(x) |
1447 |
|
1448 |
DOUBLE PRECISION V( 1) |
1449 |
INTEGER NPAR, NDIM, IMQFUN, I, J |
1450 |
DOUBLE PRECISION HQDJ, VV, VCONST |
1451 |
DOUBLE PRECISION SIGVMI( 1), SIGVT( 1) |
1452 |
DOUBLE PRECISION SIGV( 18, 1) |
1453 |
DOUBLE PRECISION SIGDEL( 18) |
1454 |
DOUBLE PRECISION SIGA( 18) |
1455 |
DATA NPAR, NDIM, IMQFUN / 18, 1, 1/ |
1456 |
DATA VCONST / 0.000000000000 / |
1457 |
DATA SIGVMI / -20.50000000000 / |
1458 |
DATA SIGVT / 41.00000000000 / |
1459 |
DATA SIGV / 0.6097560748458E-01 |
1460 |
+, 0.1097560971975 |
1461 |
+, 0.1341463327408 |
1462 |
+, 0.1829268187284 |
1463 |
+, 0.2317073047161 |
1464 |
+, 0.4268292486668 |
1465 |
+, 0.4756097495556 |
1466 |
+, 0.4999999701977 |
1467 |
+, 0.5243902206421 |
1468 |
+, 0.5731707215309 |
1469 |
+, 0.7682926654816 |
1470 |
+, 0.8170731663704 |
1471 |
+, 0.8658536076546 |
1472 |
+, 0.8902438879013 |
1473 |
+, 0.9390243291855 |
1474 |
+, 0.000000000000 |
1475 |
+, 1.000000000000 |
1476 |
+, 0.3658536374569 |
1477 |
+/ |
1478 |
DATA SIGDEL / 0.4878048598766E-01 |
1479 |
+, 0.4878048598766E-01 |
1480 |
+, 0.4878048598766E-01 |
1481 |
+, 0.4878048598766E-01 |
1482 |
+, 0.4878048598766E-01 |
1483 |
+, 0.4878048598766E-01 |
1484 |
+, 0.4878048598766E-01 |
1485 |
+, 0.4878048598766E-01 |
1486 |
+, 0.4878048598766E-01 |
1487 |
+, 0.4878048598766E-01 |
1488 |
+, 0.4878048598766E-01 |
1489 |
+, 0.4878048598766E-01 |
1490 |
+, 0.4878048598766E-01 |
1491 |
+, 0.4878048598766E-01 |
1492 |
+, 0.4878048598766E-01 |
1493 |
+, 0.1999999994950E-05 |
1494 |
+, 0.1999999994950E-05 |
1495 |
+, 0.9756097197533E-01 |
1496 |
+/ |
1497 |
DATA SIGA / 51.65899502118 |
1498 |
+, -150.4733247841 |
1499 |
+, 143.0468613786 |
1500 |
+, -16.56096738997 |
1501 |
+, 5.149319798083 |
1502 |
+, 21.57149712673 |
1503 |
+, -39.46652322782 |
1504 |
+, 47.13181632948 |
1505 |
+, -32.93197883680 |
1506 |
+, 16.38645317092 |
1507 |
+, 1.453688482992 |
1508 |
+, -10.00547244421 |
1509 |
+, 131.3517670587 |
1510 |
+, -140.6351538257 |
1511 |
+, 49.05515749582 |
1512 |
+, -23.00028974788 |
1513 |
+, -22.58470403729 |
1514 |
+, -3.824682486418 |
1515 |
+/ |
1516 |
|
1517 |
V(1)= abs(x) |
1518 |
if(V(1).gt.20.)V(1)=20. |
1519 |
|
1520 |
HQUADF = 0. |
1521 |
DO 20 J = 1, NPAR |
1522 |
HQDJ = 0. |
1523 |
DO 10 I = 1, NDIM |
1524 |
VV = (V (I) - SIGVMI (I)) / SIGVT (I) |
1525 |
HQDJ = HQDJ + (VV - SIGV (J, I)) ** 2 |
1526 |
10 CONTINUE |
1527 |
HQDJ = HQDJ + SIGDEL (J) ** 2 |
1528 |
HQDJ = SQRT (HQDJ) |
1529 |
HQUADF = HQUADF + SIGA (J) * HQDJ |
1530 |
20 CONTINUE |
1531 |
IF (IMQFUN .EQ. 2) HQUADF = VCONST * EXP (HQUADF) |
1532 |
|
1533 |
risxeta2=HQUADF* 1e-4 |
1534 |
|
1535 |
END |
1536 |
|
1537 |
*** * * * *** * * * *** * * * *** * * * *** * * * *** * * * *** |
1538 |
FUNCTION risxeta3(x) |
1539 |
DOUBLE PRECISION V( 1) |
1540 |
INTEGER NPAR, NDIM, IMQFUN, I, J |
1541 |
DOUBLE PRECISION HQDJ, VV, VCONST |
1542 |
DOUBLE PRECISION SIGVMI( 1), SIGVT( 1) |
1543 |
DOUBLE PRECISION SIGV( 18, 1) |
1544 |
DOUBLE PRECISION SIGDEL( 18) |
1545 |
DOUBLE PRECISION SIGA( 18) |
1546 |
DATA NPAR, NDIM, IMQFUN / 18, 1, 1/ |
1547 |
DATA VCONST / 0.000000000000 / |
1548 |
DATA SIGVMI / -20.50000000000 / |
1549 |
DATA SIGVT / 41.00000000000 / |
1550 |
DATA SIGV / 0.6097560748458E-01 |
1551 |
+, 0.1097560971975 |
1552 |
+, 0.1341463327408 |
1553 |
+, 0.1829268187284 |
1554 |
+, 0.2317073047161 |
1555 |
+, 0.4756097495556 |
1556 |
+, 0.4999999701977 |
1557 |
+, 0.5243902206421 |
1558 |
+, 0.7682926654816 |
1559 |
+, 0.8170731663704 |
1560 |
+, 0.8658536076546 |
1561 |
+, 0.8902438879013 |
1562 |
+, 0.9390243291855 |
1563 |
+, 0.000000000000 |
1564 |
+, 1.000000000000 |
1565 |
+, 0.3658536374569 |
1566 |
+, 0.4146341383457 |
1567 |
+, 0.6097560524940 |
1568 |
+/ |
1569 |
DATA SIGDEL / 0.4878048598766E-01 |
1570 |
+, 0.4878048598766E-01 |
1571 |
+, 0.4878048598766E-01 |
1572 |
+, 0.4878048598766E-01 |
1573 |
+, 0.4878048598766E-01 |
1574 |
+, 0.4878048598766E-01 |
1575 |
+, 0.4878048598766E-01 |
1576 |
+, 0.4878048598766E-01 |
1577 |
+, 0.4878048598766E-01 |
1578 |
+, 0.4878048598766E-01 |
1579 |
+, 0.4878048598766E-01 |
1580 |
+, 0.4878048598766E-01 |
1581 |
+, 0.4878048598766E-01 |
1582 |
+, 0.1999999994950E-05 |
1583 |
+, 0.1999999994950E-05 |
1584 |
+, 0.9756097197533E-01 |
1585 |
+, 0.9756097197533E-01 |
1586 |
+, 0.9756097197533E-01 |
1587 |
+/ |
1588 |
DATA SIGA / 55.18284054458 |
1589 |
+, -160.3358431242 |
1590 |
+, 144.6939185763 |
1591 |
+, -20.45200854118 |
1592 |
+, 5.223570087108 |
1593 |
+,-0.4171476953945 |
1594 |
+, -27.67911907462 |
1595 |
+, 17.70327157495 |
1596 |
+, -1.867165491707 |
1597 |
+, -8.884458169181 |
1598 |
+, 124.3526608791 |
1599 |
+, -143.3309398345 |
1600 |
+, 50.80345027122 |
1601 |
+, -16.44454904415 |
1602 |
+, -15.73785568450 |
1603 |
+, -22.71810502561 |
1604 |
+, 36.86170101430 |
1605 |
+, 2.437918198452 |
1606 |
+/ |
1607 |
|
1608 |
V(1) = abs(x) |
1609 |
if(V(1).gt.20.)V(1)=20. |
1610 |
|
1611 |
HQUADF = 0. |
1612 |
DO 20 J = 1, NPAR |
1613 |
HQDJ = 0. |
1614 |
DO 10 I = 1, NDIM |
1615 |
VV = (V (I) - SIGVMI (I)) / SIGVT (I) |
1616 |
HQDJ = HQDJ + (VV - SIGV (J, I)) ** 2 |
1617 |
10 CONTINUE |
1618 |
HQDJ = HQDJ + SIGDEL (J) ** 2 |
1619 |
HQDJ = SQRT (HQDJ) |
1620 |
HQUADF = HQUADF + SIGA (J) * HQDJ |
1621 |
20 CONTINUE |
1622 |
IF (IMQFUN .EQ. 2) HQUADF = VCONST * EXP (HQUADF) |
1623 |
|
1624 |
risxeta3 = HQUADF* 1e-4 |
1625 |
|
1626 |
END |
1627 |
*** * * * *** * * * *** * * * *** * * * *** * * * *** * * * *** |
1628 |
FUNCTION risxeta4(x) |
1629 |
DOUBLE PRECISION V( 1) |
1630 |
INTEGER NPAR, NDIM, IMQFUN, I, J |
1631 |
DOUBLE PRECISION HQDJ, VV, VCONST |
1632 |
DOUBLE PRECISION SIGVMI( 1), SIGVT( 1) |
1633 |
DOUBLE PRECISION SIGV( 18, 1) |
1634 |
DOUBLE PRECISION SIGDEL( 18) |
1635 |
DOUBLE PRECISION SIGA( 18) |
1636 |
DATA NPAR, NDIM, IMQFUN / 18, 1, 1/ |
1637 |
DATA VCONST / 0.000000000000 / |
1638 |
DATA SIGVMI / -20.50000000000 / |
1639 |
DATA SIGVT / 41.00000000000 / |
1640 |
DATA SIGV / 0.3658536449075E-01 |
1641 |
+, 0.6097560748458E-01 |
1642 |
+, 0.1097560971975 |
1643 |
+, 0.1341463327408 |
1644 |
+, 0.4756097495556 |
1645 |
+, 0.5243902206421 |
1646 |
+, 0.8658536076546 |
1647 |
+, 0.8902438879013 |
1648 |
+, 0.9390243291855 |
1649 |
+, 0.9634146094322 |
1650 |
+, 0.000000000000 |
1651 |
+, 1.000000000000 |
1652 |
+, 0.3658536374569 |
1653 |
+, 0.4146341383457 |
1654 |
+, 0.6097560524940 |
1655 |
+, 0.6585365533829 |
1656 |
+, 0.7560975551605 |
1657 |
+, 0.2439024299383 |
1658 |
+/ |
1659 |
DATA SIGDEL / 0.4878048598766E-01 |
1660 |
+, 0.4878048598766E-01 |
1661 |
+, 0.4878048598766E-01 |
1662 |
+, 0.4878048598766E-01 |
1663 |
+, 0.4878048598766E-01 |
1664 |
+, 0.4878048598766E-01 |
1665 |
+, 0.4878048598766E-01 |
1666 |
+, 0.4878048598766E-01 |
1667 |
+, 0.4878048598766E-01 |
1668 |
+, 0.4878048598766E-01 |
1669 |
+, 0.1999999994950E-05 |
1670 |
+, 0.1999999994950E-05 |
1671 |
+, 0.9756097197533E-01 |
1672 |
+, 0.9756097197533E-01 |
1673 |
+, 0.9756097197533E-01 |
1674 |
+, 0.9756097197533E-01 |
1675 |
+, 0.9756097197533E-01 |
1676 |
+, 0.1951219439507 |
1677 |
+/ |
1678 |
DATA SIGA / -43.61551887895 |
1679 |
+, 57.88466995373 |
1680 |
+, -92.04113299504 |
1681 |
+, 74.08166649890 |
1682 |
+, -9.768686062558 |
1683 |
+, -4.304496875334 |
1684 |
+, 72.62237333937 |
1685 |
+, -91.21920840618 |
1686 |
+, 56.75519978630 |
1687 |
+, -43.21115751243 |
1688 |
+, 12.79984505413 |
1689 |
+, 12.10074868595 |
1690 |
+, -6.238587250860 |
1691 |
+, 23.43447356326 |
1692 |
+, 17.98221401495 |
1693 |
+, -7.980332610975 |
1694 |
+, -3.426733307051 |
1695 |
+, -8.683439558751 |
1696 |
+/ |
1697 |
|
1698 |
V(1)=abs(x) |
1699 |
if(V(1).gt.20.)V(1)=20. |
1700 |
|
1701 |
HQUADF = 0. |
1702 |
DO 20 J = 1, NPAR |
1703 |
HQDJ = 0. |
1704 |
DO 10 I = 1, NDIM |
1705 |
VV = (V (I) - SIGVMI (I)) / SIGVT (I) |
1706 |
HQDJ = HQDJ + (VV - SIGV (J, I)) ** 2 |
1707 |
10 CONTINUE |
1708 |
HQDJ = HQDJ + SIGDEL (J) ** 2 |
1709 |
HQDJ = SQRT (HQDJ) |
1710 |
HQUADF = HQUADF + SIGA (J) * HQDJ |
1711 |
20 CONTINUE |
1712 |
IF (IMQFUN .EQ. 2) HQUADF = VCONST * EXP (HQUADF) |
1713 |
|
1714 |
risxeta4=HQUADF* 1e-4 |
1715 |
|
1716 |
END |
1717 |
*** * * * *** * * * *** * * * *** * * * *** * * * *** * * * *** |
1718 |
FUNCTION risyeta2(x) |
1719 |
DOUBLE PRECISION V( 1) |
1720 |
INTEGER NPAR, NDIM, IMQFUN, I, J |
1721 |
DOUBLE PRECISION HQDJ, VV, VCONST |
1722 |
DOUBLE PRECISION SIGVMI( 1), SIGVT( 1) |
1723 |
DOUBLE PRECISION SIGV( 12, 1) |
1724 |
DOUBLE PRECISION SIGDEL( 12) |
1725 |
DOUBLE PRECISION SIGA( 12) |
1726 |
DATA NPAR, NDIM, IMQFUN / 12, 1, 1/ |
1727 |
DATA VCONST / 0.000000000000 / |
1728 |
DATA SIGVMI / -20.50000000000 / |
1729 |
DATA SIGVT / 41.00000000000 / |
1730 |
DATA SIGV / 0.1585365831852 |
1731 |
+, 0.4024389982224 |
1732 |
+, 0.4756097495556 |
1733 |
+, 0.5243902206421 |
1734 |
+, 0.5975609421730 |
1735 |
+, 0.8414633870125 |
1736 |
+, 0.000000000000 |
1737 |
+, 1.000000000000 |
1738 |
+, 0.2682926654816 |
1739 |
+, 0.3170731663704 |
1740 |
+, 0.7073170542717 |
1741 |
+, 0.7560975551605 |
1742 |
+/ |
1743 |
DATA SIGDEL / 0.4878048598766E-01 |
1744 |
+, 0.4878048598766E-01 |
1745 |
+, 0.4878048598766E-01 |
1746 |
+, 0.4878048598766E-01 |
1747 |
+, 0.4878048598766E-01 |
1748 |
+, 0.4878048598766E-01 |
1749 |
+, 0.1999999994950E-05 |
1750 |
+, 0.1999999994950E-05 |
1751 |
+, 0.9756097197533E-01 |
1752 |
+, 0.9756097197533E-01 |
1753 |
+, 0.9756097197533E-01 |
1754 |
+, 0.9756097197533E-01 |
1755 |
+/ |
1756 |
DATA SIGA / 14.57433603529 |
1757 |
+, -15.93532436156 |
1758 |
+, -13.24628335221 |
1759 |
+, -14.31193855410 |
1760 |
+, -12.67339684488 |
1761 |
+, 18.19876051780 |
1762 |
+, -5.270493486725 |
1763 |
+, -5.107670990828 |
1764 |
+, -9.553262933901 |
1765 |
+, 43.34150727448 |
1766 |
+, 55.91366786432 |
1767 |
+, -29.38037318563 |
1768 |
+/ |
1769 |
|
1770 |
v(1)= abs(x) |
1771 |
if(V(1).gt.20.)V(1)=20. |
1772 |
|
1773 |
HQUADF = 0. |
1774 |
DO 20 J = 1, NPAR |
1775 |
HQDJ = 0. |
1776 |
DO 10 I = 1, NDIM |
1777 |
VV = (V (I) - SIGVMI (I)) / SIGVT (I) |
1778 |
HQDJ = HQDJ + (VV - SIGV (J, I)) ** 2 |
1779 |
10 CONTINUE |
1780 |
HQDJ = HQDJ + SIGDEL (J) ** 2 |
1781 |
HQDJ = SQRT (HQDJ) |
1782 |
HQUADF = HQUADF + SIGA (J) * HQDJ |
1783 |
20 CONTINUE |
1784 |
IF (IMQFUN .EQ. 2) HQUADF = VCONST * EXP (HQUADF) |
1785 |
|
1786 |
risyeta2=HQUADF* 1e-4 |
1787 |
|
1788 |
END |
1789 |
*** * * * *** * * * *** * * * *** * * * *** * * * *** * * * *** |
1790 |
|
1791 |
FUNCTION risy_cog(x) |
1792 |
DOUBLE PRECISION V( 1) |
1793 |
INTEGER NPAR, NDIM, IMQFUN, I, J |
1794 |
DOUBLE PRECISION HQDJ, VV, VCONST |
1795 |
DOUBLE PRECISION SIGVMI( 1), SIGVT( 1) |
1796 |
DOUBLE PRECISION SIGV( 10, 1) |
1797 |
DOUBLE PRECISION SIGDEL( 10) |
1798 |
DOUBLE PRECISION SIGA( 10) |
1799 |
DATA NPAR, NDIM, IMQFUN / 10, 1, 1/ |
1800 |
DATA VCONST / 0.000000000000 / |
1801 |
DATA SIGVMI / -20.50000000000 / |
1802 |
DATA SIGVT / 41.00000000000 / |
1803 |
DATA SIGV / 0.1585365831852 |
1804 |
+, 0.8414633870125 |
1805 |
+, 0.000000000000 |
1806 |
+, 1.000000000000 |
1807 |
+, 0.4634146094322 |
1808 |
+, 0.5121951103210 |
1809 |
+, 0.5609756112099 |
1810 |
+, 0.6585365533829 |
1811 |
+, 0.7073170542717 |
1812 |
+, 0.3414633870125 |
1813 |
+/ |
1814 |
DATA SIGDEL / 0.4878048598766E-01 |
1815 |
+, 0.4878048598766E-01 |
1816 |
+, 0.1999999994950E-05 |
1817 |
+, 0.1999999994950E-05 |
1818 |
+, 0.9756097197533E-01 |
1819 |
+, 0.9756097197533E-01 |
1820 |
+, 0.9756097197533E-01 |
1821 |
+, 0.9756097197533E-01 |
1822 |
+, 0.9756097197533E-01 |
1823 |
+, 0.1951219439507 |
1824 |
+/ |
1825 |
DATA SIGA / 23.73833445988 |
1826 |
+, 24.10182100013 |
1827 |
+, 1.865894323190 |
1828 |
+, 1.706006262931 |
1829 |
+, -1.075607857202 |
1830 |
+, -22.11489493403 |
1831 |
+, 1.663100707801 |
1832 |
+, 4.089852595440 |
1833 |
+, -4.314993873697 |
1834 |
+, -2.174479487744 |
1835 |
+/ |
1836 |
|
1837 |
V(1)=abs(x) |
1838 |
if(V(1).gt.20.)V(1)=20. |
1839 |
|
1840 |
HQUADF = 0. |
1841 |
DO 20 J = 1, NPAR |
1842 |
HQDJ = 0. |
1843 |
DO 10 I = 1, NDIM |
1844 |
VV = (V (I) - SIGVMI (I)) / SIGVT (I) |
1845 |
HQDJ = HQDJ + (VV - SIGV (J, I)) ** 2 |
1846 |
10 CONTINUE |
1847 |
HQDJ = HQDJ + SIGDEL (J) ** 2 |
1848 |
HQDJ = SQRT (HQDJ) |
1849 |
HQUADF = HQUADF + SIGA (J) * HQDJ |
1850 |
20 CONTINUE |
1851 |
IF (IMQFUN .EQ. 2) HQUADF = VCONST * EXP (HQUADF) |
1852 |
|
1853 |
risy_cog=HQUADF* 1e-4 |
1854 |
|
1855 |
END |
1856 |
*** * * * *** * * * *** * * * *** * * * *** * * * *** * * * *** |
1857 |
FUNCTION risx_cog(x) |
1858 |
DOUBLE PRECISION V( 1) |
1859 |
INTEGER NPAR, NDIM, IMQFUN, I, J |
1860 |
DOUBLE PRECISION HQDJ, VV, VCONST |
1861 |
DOUBLE PRECISION SIGVMI( 1), SIGVT( 1) |
1862 |
DOUBLE PRECISION SIGV( 15, 1) |
1863 |
DOUBLE PRECISION SIGDEL( 15) |
1864 |
DOUBLE PRECISION SIGA( 15) |
1865 |
DATA NPAR, NDIM, IMQFUN / 15, 1, 1/ |
1866 |
DATA VCONST / 0.000000000000 / |
1867 |
DATA SIGVMI / -20.50000000000 / |
1868 |
DATA SIGVT / 41.00000000000 / |
1869 |
DATA SIGV / 0.6097560748458E-01 |
1870 |
+, 0.8536584675312E-01 |
1871 |
+, 0.1341463327408 |
1872 |
+, 0.2317073047161 |
1873 |
+, 0.2804878056049 |
1874 |
+, 0.3780487775803 |
1875 |
+, 0.6219512224197 |
1876 |
+, 0.7195121645927 |
1877 |
+, 0.7682926654816 |
1878 |
+, 0.8658536076546 |
1879 |
+, 0.9146341085434 |
1880 |
+, 0.9390243291855 |
1881 |
+, 0.000000000000 |
1882 |
+, 1.000000000000 |
1883 |
+, 0.5121951103210 |
1884 |
+/ |
1885 |
DATA SIGDEL / 0.4878048598766E-01 |
1886 |
+, 0.4878048598766E-01 |
1887 |
+, 0.4878048598766E-01 |
1888 |
+, 0.4878048598766E-01 |
1889 |
+, 0.4878048598766E-01 |
1890 |
+, 0.4878048598766E-01 |
1891 |
+, 0.4878048598766E-01 |
1892 |
+, 0.4878048598766E-01 |
1893 |
+, 0.4878048598766E-01 |
1894 |
+, 0.4878048598766E-01 |
1895 |
+, 0.4878048598766E-01 |
1896 |
+, 0.4878048598766E-01 |
1897 |
+, 0.1999999994950E-05 |
1898 |
+, 0.1999999994950E-05 |
1899 |
+, 0.9756097197533E-01 |
1900 |
+/ |
1901 |
DATA SIGA / 31.95672945139 |
1902 |
+, -34.23286209245 |
1903 |
+, -6.298459168211 |
1904 |
+, 10.98847700545 |
1905 |
+,-0.3052213535054 |
1906 |
+, 13.10517991464 |
1907 |
+, 15.60290821679 |
1908 |
+, -1.956118448507 |
1909 |
+, 12.41453816720 |
1910 |
+, -7.354056408553 |
1911 |
+, -32.32512668778 |
1912 |
+, 30.61116178966 |
1913 |
+, 1.418505329236 |
1914 |
+, 1.583492573619 |
1915 |
+, -18.48799977042 |
1916 |
+/ |
1917 |
|
1918 |
V(1)=abs(x) |
1919 |
if(V(1).gt.20.)V(1)=20. |
1920 |
|
1921 |
HQUADF = 0. |
1922 |
DO 20 J = 1, NPAR |
1923 |
HQDJ = 0. |
1924 |
DO 10 I = 1, NDIM |
1925 |
VV = (V (I) - SIGVMI (I)) / SIGVT (I) |
1926 |
HQDJ = HQDJ + (VV - SIGV (J, I)) ** 2 |
1927 |
10 CONTINUE |
1928 |
HQDJ = HQDJ + SIGDEL (J) ** 2 |
1929 |
HQDJ = SQRT (HQDJ) |
1930 |
HQUADF = HQUADF + SIGA (J) * HQDJ |
1931 |
20 CONTINUE |
1932 |
IF (IMQFUN .EQ. 2) HQUADF = VCONST * EXP (HQUADF) |
1933 |
|
1934 |
risx_cog = HQUADF * 1e-4 |
1935 |
|
1936 |
END |
1937 |
|
1938 |
|
1939 |
*** * * * *** * * * *** * * * *** * * * *** * * * *** * * * *** |
1940 |
real function pfacorr(ic,angle) |
1941 |
*-------------------------------------------------------------- |
1942 |
* this function returns the landi correction for this cluster |
1943 |
*-------------------------------------------------------------- |
1944 |
include 'commontracker.f' |
1945 |
include 'calib.f' |
1946 |
include 'level1.f' |
1947 |
|
1948 |
real angle |
1949 |
integer iview,lad |
1950 |
|
1951 |
iview = VIEW(ic) |
1952 |
lad = nld(MAXS(ic),VIEW(ic)) |
1953 |
|
1954 |
* find angular bin |
1955 |
* (in futuro possiamo pensare di interpolare anche sull'angolo) |
1956 |
do iang=1,nangbin |
1957 |
if(angL(iang).lt.angle.and.angR(iang).ge.angle)then |
1958 |
iangle=iang |
1959 |
goto 98 |
1960 |
endif |
1961 |
enddo |
1962 |
if(DEBUG.eq.1) |
1963 |
$ print*,'pfacorr *** warning *** angle out of range: ',angle |
1964 |
if(angle.le.angL(1))iang=1 |
1965 |
if(angle.ge.angR(nangbin))iang=nangbin |
1966 |
98 continue !jump here if ok |
1967 |
|
1968 |
pfacorr = fcorr(iview,lad,iang) |
1969 |
|
1970 |
if(DEBUG.eq.1)print*,'CORR (ic ',ic,' ang',angle,') -->',pfacorr |
1971 |
|
1972 |
|
1973 |
100 return |
1974 |
end |