| 1 |
*** * * * *** * * * *** * * * *** * * * *** * * * *** * * * *** |
| 2 |
* this file contains all subroutines and functions |
| 3 |
* that are needed for position finding algorithms: |
| 4 |
* |
| 5 |
* subroutine idtoc(ipfa,cpfa) |
| 6 |
* |
| 7 |
* subroutine applypfa(PFAtt,ic,ang,corr,res) |
| 8 |
* |
| 9 |
* integer function npfastrips(ic,angle) |
| 10 |
* |
| 11 |
* ----------------------------------------------------------------- |
| 12 |
* p.f.a. |
| 13 |
* ----------------------------------------------------------------- |
| 14 |
* real function pfaeta(ic,angle) |
| 15 |
* real function pfaetal(ic,angle) |
| 16 |
* real function pfaeta2(ic,angle) |
| 17 |
* real function pfaeta3(ic,angle) |
| 18 |
* real function pfaeta4(ic,angle) |
| 19 |
* real function cog(ncog,ic) |
| 20 |
* |
| 21 |
* ----------------------------------------------------------------- |
| 22 |
* risoluzione spaziale media, stimata dalla simulazione (samuele) |
| 23 |
* ----------------------------------------------------------------- |
| 24 |
* FUNCTION risxeta2(angle) |
| 25 |
* FUNCTION risxeta3(angle) |
| 26 |
* FUNCTION risxeta4(angle) |
| 27 |
* FUNCTION risyeta2(angle) |
| 28 |
* FUNCTION risy_cog(angle) |
| 29 |
* FUNCTION risx_cog(angle) |
| 30 |
* real function riseta(iview,angle) |
| 31 |
* ----------------------------------------------------------------- |
| 32 |
* fattore moltiplicativo per tenere conto della dipendenza della |
| 33 |
* risoluzione dal rumore delle strip |
| 34 |
* ----------------------------------------------------------------- |
| 35 |
* real function fbad_cog(ncog,ic) |
| 36 |
* real function fbad_eta(ic,angle) |
| 37 |
* |
| 38 |
* ----------------------------------------------------------------- |
| 39 |
* NUOVO APPROCCIO PER LA STIMA DELLA RISOLUZIONE |
| 40 |
* ----------------------------------------------------------------- |
| 41 |
* real function riscogtheor(ncog,ic) |
| 42 |
* real function risetatheor(ncog,ic,angle) |
| 43 |
* |
| 44 |
* ----------------------------------------------------------------- |
| 45 |
* correzione landi |
| 46 |
* ----------------------------------------------------------------- |
| 47 |
* real function pfacorr(ic,angle) |
| 48 |
* |
| 49 |
* real function effectiveangle(ang,iview,bbb) |
| 50 |
* real function fieldcorr(iview,bbb) |
| 51 |
* |
| 52 |
* NB - The angle is the "effective angle", which is relative |
| 53 |
* to the sensor and it takes into account the magnetic field |
| 54 |
* |
| 55 |
*** * * * *** * * * *** * * * *** * * * *** * * * *** * * * *** |
| 56 |
|
| 57 |
subroutine idtoc(ipfa,cpfa) |
| 58 |
|
| 59 |
integer ipfa |
| 60 |
c character*10 cpfa |
| 61 |
character*4 cpfa ! EM GCC4.7 |
| 62 |
|
| 63 |
CPFA='COG4' |
| 64 |
if(ipfa.eq.0)CPFA='ETA' |
| 65 |
if(ipfa.eq.2)CPFA='ETA2' |
| 66 |
if(ipfa.eq.3)CPFA='ETA3' |
| 67 |
if(ipfa.eq.4)CPFA='ETA4' |
| 68 |
if(ipfa.eq.5)CPFA='ETAL' |
| 69 |
if(ipfa.eq.10)CPFA='COG' |
| 70 |
if(ipfa.eq.11)CPFA='COG1' |
| 71 |
if(ipfa.eq.12)CPFA='COG2' |
| 72 |
if(ipfa.eq.13)CPFA='COG3' |
| 73 |
if(ipfa.eq.14)CPFA='COG4' |
| 74 |
|
| 75 |
end |
| 76 |
*** * * * *** * * * *** * * * *** * * * *** * * * *** * * * *** |
| 77 |
real function effectiveangle(ang,iview,bbb) |
| 78 |
|
| 79 |
include 'commontracker.f' |
| 80 |
real tgtemp |
| 81 |
|
| 82 |
effectiveangle = 0. |
| 83 |
|
| 84 |
if(mod(iview,2).eq.0)then |
| 85 |
c ================================================= |
| 86 |
c X view |
| 87 |
c ================================================= |
| 88 |
c here bbb is the y component of the m.field |
| 89 |
angx = ang |
| 90 |
by = bbb |
| 91 |
if(iview.eq.12) angx = -1. * ang |
| 92 |
if(iview.eq.12) by = -1. * bbb |
| 93 |
cc tgtemp = tan(ang*acos(-1.)/180.) + pmuH_h*by*0.00001 !ORRORE!! |
| 94 |
tgtemp = tan(angx*acos(-1.)/180.) + REAL(pmuH_h*by*0.00001) ! EM GCC4.7 pmuH_h is double precision but all the others are real... |
| 95 |
|
| 96 |
elseif(mod(iview,2).eq.1)then |
| 97 |
c ================================================= |
| 98 |
c Y view |
| 99 |
c ================================================= |
| 100 |
c here bbb is the x component of the m.filed |
| 101 |
angy = ang |
| 102 |
bx = bbb |
| 103 |
tgtemp = tan(angy*acos(-1.)/180.)+real(pmuH_e*bx*0.00001) ! EM GCC4.7 pmuH_h is double precision but all the others are real... |
| 104 |
|
| 105 |
endif |
| 106 |
effectiveangle = 180.*atan(tgtemp)/acos(-1.) |
| 107 |
|
| 108 |
return |
| 109 |
end |
| 110 |
*** * * * *** * * * *** * * * *** * * * *** * * * *** * * * *** |
| 111 |
real function fieldcorr(iview,bbb) |
| 112 |
|
| 113 |
include 'commontracker.f' |
| 114 |
|
| 115 |
fieldcorr = 0. |
| 116 |
|
| 117 |
if(mod(iview,2).eq.0)then |
| 118 |
|
| 119 |
c ================================================= |
| 120 |
c X view |
| 121 |
c ================================================= |
| 122 |
c here bbb is the y component of the m.field |
| 123 |
by = bbb |
| 124 |
if(iview.eq.12) by = -1. * bbb |
| 125 |
fieldcorr = -1. * 0.5*REAL(pmuH_h*by*0.00001*SiDimZ/pitchX)! EM GCC4.7 pmuH_h is double precision but all the others are real... |
| 126 |
|
| 127 |
elseif(mod(iview,2).eq.1)then |
| 128 |
c ================================================= |
| 129 |
c Y view |
| 130 |
c ================================================= |
| 131 |
c here bbb is the x component of the m.filed |
| 132 |
bx = bbb |
| 133 |
fieldcorr = 0.5*real(pmuH_e*bx*0.00001*SiDimZ/pitchY) ! EM GCC4.7 pmuH_h is double precision but all the others are real... |
| 134 |
|
| 135 |
endif |
| 136 |
|
| 137 |
return |
| 138 |
end |
| 139 |
*** * * * *** * * * *** * * * *** * * * *** * * * *** * * * *** |
| 140 |
|
| 141 |
subroutine applypfa(PFAtt,ic,ang,corr,res) |
| 142 |
*--------------------------------------------------------------- |
| 143 |
* this subroutine calculate the coordinate of cluster ic (in |
| 144 |
* strip units), relative to the strip with the maximum signal, |
| 145 |
* and its spatial resolution (in cm), applying PFAtt. |
| 146 |
* ang is the effective angle, relative to the sensor |
| 147 |
*--------------------------------------------------------------- |
| 148 |
|
| 149 |
character*4 PFAtt |
| 150 |
include 'commontracker.f' |
| 151 |
include 'level1.f' |
| 152 |
real corr, res ! EM GCC4.7 |
| 153 |
corr = 0. |
| 154 |
res = 0. |
| 155 |
|
| 156 |
if(ic.le.0)return |
| 157 |
|
| 158 |
iview = VIEW(ic) |
| 159 |
|
| 160 |
if(mod(iview,2).eq.0)then |
| 161 |
c ================================================= |
| 162 |
c X view |
| 163 |
c ================================================= |
| 164 |
|
| 165 |
res = RESXAV |
| 166 |
|
| 167 |
if(PFAtt.eq.'COG1')then |
| 168 |
|
| 169 |
corr = 0. |
| 170 |
res = REAL(1e-4*pitchX/sqrt(12.))!!res EM GCC4.7 |
| 171 |
|
| 172 |
elseif(PFAtt.eq.'COG2')then |
| 173 |
|
| 174 |
corr = cog(2,ic) |
| 175 |
res = risx_cog(abs(ang))!TEMPORANEO |
| 176 |
res = res*fbad_cog(2,ic) |
| 177 |
|
| 178 |
elseif(PFAtt.eq.'COG3')then |
| 179 |
|
| 180 |
corr = cog(3,ic) |
| 181 |
res = risx_cog(abs(ang))!TEMPORANEO |
| 182 |
res = res*fbad_cog(3,ic) |
| 183 |
|
| 184 |
elseif(PFAtt.eq.'COG4')then |
| 185 |
|
| 186 |
corr = cog(4,ic) |
| 187 |
res = risx_cog(abs(ang))!TEMPORANEO |
| 188 |
res = res*fbad_cog(4,ic) |
| 189 |
|
| 190 |
elseif(PFAtt.eq.'ETA2')then |
| 191 |
|
| 192 |
corr = pfaeta2(ic,ang) |
| 193 |
res = risxeta2(abs(ang)) |
| 194 |
res = res*fbad_cog(2,ic) |
| 195 |
|
| 196 |
elseif(PFAtt.eq.'ETA3')then |
| 197 |
|
| 198 |
corr = pfaeta3(ic,ang) |
| 199 |
res = risxeta3(abs(ang)) |
| 200 |
res = res*fbad_cog(3,ic) |
| 201 |
|
| 202 |
elseif(PFAtt.eq.'ETA4')then |
| 203 |
|
| 204 |
corr = pfaeta4(ic,ang) |
| 205 |
res = risxeta4(abs(ang)) |
| 206 |
res = res*fbad_cog(4,ic) |
| 207 |
|
| 208 |
elseif(PFAtt.eq.'ETA')then |
| 209 |
|
| 210 |
corr = pfaeta(ic,ang) |
| 211 |
c res = riseta(ic,ang) |
| 212 |
res = riseta(iview,ang) |
| 213 |
res = res*fbad_eta(ic,ang) |
| 214 |
|
| 215 |
elseif(PFAtt.eq.'ETAL')then |
| 216 |
|
| 217 |
corr = pfaetal(ic,ang) |
| 218 |
res = riseta(iview,ang) |
| 219 |
res = res*fbad_eta(ic,ang) |
| 220 |
|
| 221 |
elseif(PFAtt.eq.'COG')then |
| 222 |
|
| 223 |
corr = cog(0,ic) |
| 224 |
res = risx_cog(abs(ang)) |
| 225 |
res = res*fbad_cog(0,ic) |
| 226 |
|
| 227 |
else |
| 228 |
if(DEBUG.EQ.1) print*,'*** Non valid p.f.a. (x) --> ',PFAtt |
| 229 |
endif |
| 230 |
|
| 231 |
|
| 232 |
* ====================================== |
| 233 |
* temporary patch for saturated clusters |
| 234 |
* ====================================== |
| 235 |
if( nsatstrips(ic).gt.0 )then |
| 236 |
c corr = cog(4,ic) |
| 237 |
corr = digsat(ic) |
| 238 |
res = REAL(pitchX*1e-4/sqrt(12.)) !EM GCC4.7 |
| 239 |
cc cc=cog(4,ic) |
| 240 |
c$$$ print*,ic,' *** ',cc |
| 241 |
c$$$ print*,ic,' *** ',res |
| 242 |
endif |
| 243 |
|
| 244 |
|
| 245 |
elseif(mod(iview,2).eq.1)then |
| 246 |
c ================================================= |
| 247 |
c Y view |
| 248 |
c ================================================= |
| 249 |
|
| 250 |
res = RESYAV |
| 251 |
|
| 252 |
if(PFAtt.eq.'COG1')then |
| 253 |
|
| 254 |
corr = 0 |
| 255 |
res = REAL(1e-4*pitchY/sqrt(12.))!res EM GCC4.7 |
| 256 |
|
| 257 |
elseif(PFAtt.eq.'COG2')then |
| 258 |
|
| 259 |
corr = cog(2,ic) |
| 260 |
res = risy_cog(abs(ang))!TEMPORANEO |
| 261 |
res = res*fbad_cog(2,ic) |
| 262 |
|
| 263 |
elseif(PFAtt.eq.'COG3')then |
| 264 |
|
| 265 |
corr = cog(3,ic) |
| 266 |
res = risy_cog(abs(ang))!TEMPORANEO |
| 267 |
res = res*fbad_cog(3,ic) |
| 268 |
|
| 269 |
elseif(PFAtt.eq.'COG4')then |
| 270 |
|
| 271 |
corr = cog(4,ic) |
| 272 |
res = risy_cog(abs(ang))!TEMPORANEO |
| 273 |
res = res*fbad_cog(4,ic) |
| 274 |
|
| 275 |
elseif(PFAtt.eq.'ETA2')then |
| 276 |
|
| 277 |
corr = pfaeta2(ic,ang) |
| 278 |
res = risyeta2(abs(ang)) |
| 279 |
res = res*fbad_cog(2,ic) |
| 280 |
|
| 281 |
elseif(PFAtt.eq.'ETA3')then |
| 282 |
|
| 283 |
corr = pfaeta3(ic,ang) |
| 284 |
res = res*fbad_cog(3,ic) |
| 285 |
|
| 286 |
elseif(PFAtt.eq.'ETA4')then |
| 287 |
|
| 288 |
corr = pfaeta4(ic,ang) |
| 289 |
res = res*fbad_cog(4,ic) |
| 290 |
|
| 291 |
elseif(PFAtt.eq.'ETA')then |
| 292 |
|
| 293 |
corr = pfaeta(ic,ang) |
| 294 |
c res = riseta(ic,ang) |
| 295 |
res = riseta(iview,ang) |
| 296 |
res = res*fbad_eta(ic,ang) |
| 297 |
|
| 298 |
elseif(PFAtt.eq.'ETAL')then |
| 299 |
|
| 300 |
corr = pfaetal(ic,ang) |
| 301 |
res = riseta(iview,ang) |
| 302 |
res = res*fbad_eta(ic,ang) |
| 303 |
|
| 304 |
elseif(PFAtt.eq.'COG')then |
| 305 |
|
| 306 |
corr = cog(0,ic) |
| 307 |
res = risy_cog(abs(ang)) |
| 308 |
res = res*fbad_cog(0,ic) |
| 309 |
|
| 310 |
else |
| 311 |
if(DEBUG.EQ.1) print*,'*** Non valid p.f.a. (y) --> ',PFAtt |
| 312 |
endif |
| 313 |
|
| 314 |
|
| 315 |
* ====================================== |
| 316 |
* temporary patch for saturated clusters |
| 317 |
* ====================================== |
| 318 |
if( nsatstrips(ic).gt.0 )then |
| 319 |
c corr = cog(4,ic) |
| 320 |
corr = digsat(ic) |
| 321 |
res = REAL(pitchY*1e-4/sqrt(12.)) ! EM GCC4.7 |
| 322 |
cc cc=cog(4,ic) |
| 323 |
c$$$ print*,ic,' *** ',cc |
| 324 |
c$$$ print*,ic,' *** ',res |
| 325 |
endif |
| 326 |
|
| 327 |
endif |
| 328 |
end |
| 329 |
|
| 330 |
*** * * * *** * * * *** * * * *** * * * *** * * * *** * * * *** |
| 331 |
integer function npfastrips(ic,angle) |
| 332 |
*-------------------------------------------------------------- |
| 333 |
* thid function returns the number of strips used |
| 334 |
* to evaluate the position of a cluster, according to the p.f.a. |
| 335 |
*-------------------------------------------------------------- |
| 336 |
include 'commontracker.f' |
| 337 |
include 'level1.f' |
| 338 |
include 'calib.f' |
| 339 |
|
| 340 |
character*4 usedPFA |
| 341 |
|
| 342 |
|
| 343 |
|
| 344 |
call idtoc(pfaid,usedPFA) |
| 345 |
|
| 346 |
npfastrips=-1 |
| 347 |
|
| 348 |
if(usedPFA.eq.'COG1')npfastrips=1 |
| 349 |
if(usedPFA.eq.'COG2')npfastrips=2 |
| 350 |
if(usedPFA.eq.'COG3')npfastrips=3 |
| 351 |
if(usedPFA.eq.'COG4')npfastrips=4 |
| 352 |
if(usedPFA.eq.'ETA2')npfastrips=2 |
| 353 |
if(usedPFA.eq.'ETA3')npfastrips=3 |
| 354 |
if(usedPFA.eq.'ETA4')npfastrips=4 |
| 355 |
* ---------------------------------------------------------------- |
| 356 |
if(usedPFA.eq.'ETA'.or.usedPFA.eq.'ETAL')then |
| 357 |
c print*,VIEW(ic),angle |
| 358 |
if(mod(int(VIEW(ic)),2).eq.1)then !Y-view |
| 359 |
if( abs(angle).ge.e2fay.and.abs(angle).lt.e2tay )then |
| 360 |
npfastrips=2 |
| 361 |
elseif( abs(angle).ge.e3fay.and.abs(angle).lt.e3tay )then |
| 362 |
npfastrips=3 |
| 363 |
elseif( abs(angle).ge.e4fay.and.abs(angle).lt.e4tay )then |
| 364 |
npfastrips=4 |
| 365 |
else |
| 366 |
npfastrips=4 !COG4 |
| 367 |
endif |
| 368 |
else !X-view |
| 369 |
if( abs(angle).ge.e2fax.and.abs(angle).lt.e2tax )then |
| 370 |
npfastrips=2 |
| 371 |
elseif( abs(angle).ge.e3fax.and.abs(angle).lt.e3tax )then |
| 372 |
npfastrips=3 |
| 373 |
elseif( abs(angle).ge.e4fax.and.abs(angle).lt.e4tax )then |
| 374 |
npfastrips=4 |
| 375 |
else |
| 376 |
npfastrips=4 !COG4 |
| 377 |
endif |
| 378 |
endif |
| 379 |
endif |
| 380 |
* ---------------------------------------------------------------- |
| 381 |
if(usedPFA.eq.'COG')then |
| 382 |
|
| 383 |
npfastrips=0 |
| 384 |
|
| 385 |
c$$$ iv=VIEW(ic) |
| 386 |
c$$$ if(mod(iv,2).eq.1)incut=incuty |
| 387 |
c$$$ if(mod(iv,2).eq.0)incut=incutx |
| 388 |
c$$$ istart = INDSTART(IC) |
| 389 |
c$$$ istop = TOTCLLENGTH |
| 390 |
c$$$ if(ic.lt.NCLSTR1)istop=INDSTART(IC+1)-1 |
| 391 |
c$$$ mu = 0 |
| 392 |
c$$$ do i = INDMAX(IC),istart,-1 |
| 393 |
c$$$ ipos = i-INDMAX(ic) |
| 394 |
c$$$ cut = incut*CLSIGMA(i) |
| 395 |
c$$$ if(CLSIGNAL(i).ge.cut)then |
| 396 |
c$$$ mu = mu + 1 |
| 397 |
c$$$ print*,i,mu |
| 398 |
c$$$ else |
| 399 |
c$$$ goto 10 |
| 400 |
c$$$ endif |
| 401 |
c$$$ enddo |
| 402 |
c$$$ 10 continue |
| 403 |
c$$$ do i = INDMAX(IC)+1,istop |
| 404 |
c$$$ ipos = i-INDMAX(ic) |
| 405 |
c$$$ cut = incut*CLSIGMA(i) |
| 406 |
c$$$ if(CLSIGNAL(i).ge.cut)then |
| 407 |
c$$$ mu = mu + 1 |
| 408 |
c$$$ print*,i,mu |
| 409 |
c$$$ else |
| 410 |
c$$$ goto 20 |
| 411 |
c$$$ endif |
| 412 |
c$$$ enddo |
| 413 |
c$$$ 20 continue |
| 414 |
c$$$ npfastrips=mu |
| 415 |
|
| 416 |
endif |
| 417 |
* ---------------------------------------------------------------- |
| 418 |
|
| 419 |
c print*,pfaid,usedPFA,angle,npfastrips |
| 420 |
|
| 421 |
return |
| 422 |
end |
| 423 |
|
| 424 |
*** * * * *** * * * *** * * * *** * * * *** * * * *** * * * *** |
| 425 |
real function pfaeta(ic,angle) |
| 426 |
*-------------------------------------------------------------- |
| 427 |
* this function returns the position (in strip units) |
| 428 |
* it calls: |
| 429 |
* - pfaeta2(ic,angle) |
| 430 |
* - pfaeta3(ic,angle) |
| 431 |
* - pfaeta4(ic,angle) |
| 432 |
* according to the angle |
| 433 |
*-------------------------------------------------------------- |
| 434 |
include 'commontracker.f' |
| 435 |
include 'level1.f' |
| 436 |
include 'calib.f' |
| 437 |
|
| 438 |
pfaeta = 0 |
| 439 |
|
| 440 |
if(mod(int(VIEW(ic)),2).eq.1)then !Y-view |
| 441 |
|
| 442 |
if( abs(angle).ge.e2fay.and.abs(angle).lt.e2tay )then |
| 443 |
pfaeta = pfaeta2(ic,angle) |
| 444 |
cc print*,pfaeta2(ic,angle) |
| 445 |
elseif( abs(angle).ge.e3fay.and.abs(angle).lt.e3tay )then |
| 446 |
pfaeta = pfaeta3(ic,angle) |
| 447 |
elseif( abs(angle).ge.e4fay.and.abs(angle).lt.e4tay )then |
| 448 |
pfaeta = pfaeta4(ic,angle) |
| 449 |
else |
| 450 |
pfaeta = cog(4,ic) |
| 451 |
endif |
| 452 |
|
| 453 |
else !X-view |
| 454 |
|
| 455 |
if( abs(angle).ge.e2fax.and.abs(angle).lt.e2tax )then |
| 456 |
pfaeta = pfaeta2(ic,angle) |
| 457 |
elseif( abs(angle).ge.e3fax.and.abs(angle).lt.e3tax )then |
| 458 |
pfaeta = pfaeta3(ic,angle) |
| 459 |
elseif( abs(angle).ge.e4fax.and.abs(angle).lt.e4tax )then |
| 460 |
pfaeta = pfaeta4(ic,angle) |
| 461 |
else |
| 462 |
pfaeta = cog(4,ic) |
| 463 |
endif |
| 464 |
|
| 465 |
endif |
| 466 |
|
| 467 |
c 100 return |
| 468 |
return |
| 469 |
end |
| 470 |
|
| 471 |
*** * * * *** * * * *** * * * *** * * * *** * * * *** * * * *** |
| 472 |
real function pfaetal(ic,angle) |
| 473 |
*-------------------------------------------------------------- |
| 474 |
* this function returns the position (in strip units) |
| 475 |
* it calls: |
| 476 |
* - pfaeta2(ic,angle)+pfcorr(ic,angle) |
| 477 |
* - pfaeta3(ic,angle)+pfcorr(ic,angle) |
| 478 |
* - pfaeta4(ic,angle)+pfcorr(ic,angle) |
| 479 |
* according to the angle |
| 480 |
*-------------------------------------------------------------- |
| 481 |
include 'commontracker.f' |
| 482 |
include 'level1.f' |
| 483 |
include 'calib.f' |
| 484 |
|
| 485 |
pfaetal = 0 |
| 486 |
|
| 487 |
if(mod(int(VIEW(ic)),2).eq.1)then !Y-view |
| 488 |
|
| 489 |
if( abs(angle).ge.e2fay.and.abs(angle).lt.e2tay )then |
| 490 |
pfaetal = pfaeta2(ic,angle)+pfacorr(ic,angle) |
| 491 |
cc print*,VIEW(ic),angle,pfaeta2(ic,angle),pfacorr(ic,angle) |
| 492 |
elseif( abs(angle).ge.e3fay.and.abs(angle).lt.e3tay )then |
| 493 |
pfaetal = pfaeta3(ic,angle)+pfacorr(ic,angle) |
| 494 |
elseif( abs(angle).ge.e4fay.and.abs(angle).lt.e4tay )then |
| 495 |
pfaetal = pfaeta4(ic,angle)+pfacorr(ic,angle) |
| 496 |
else |
| 497 |
pfaetal = cog(4,ic) |
| 498 |
endif |
| 499 |
|
| 500 |
else !X-view |
| 501 |
|
| 502 |
if( abs(angle).ge.e2fax.and.abs(angle).lt.e2tax )then |
| 503 |
pfaetal = pfaeta2(ic,angle)+pfacorr(ic,angle) |
| 504 |
cc print*,VIEW(ic),angle,pfaeta2(ic,angle),pfacorr(ic,angle) |
| 505 |
elseif( abs(angle).ge.e3fax.and.abs(angle).lt.e3tax )then |
| 506 |
pfaetal = pfaeta3(ic,angle)+pfacorr(ic,angle) |
| 507 |
elseif( abs(angle).ge.e4fax.and.abs(angle).lt.e4tax )then |
| 508 |
pfaetal = pfaeta4(ic,angle)+pfacorr(ic,angle) |
| 509 |
else |
| 510 |
pfaetal = cog(4,ic) |
| 511 |
endif |
| 512 |
|
| 513 |
endif |
| 514 |
|
| 515 |
c 100 return |
| 516 |
return |
| 517 |
end |
| 518 |
*** * * * *** * * * *** * * * *** * * * *** * * * *** * * * *** |
| 519 |
c real function riseta(ic,angle) |
| 520 |
real function riseta(iview,angle) |
| 521 |
*-------------------------------------------------------------- |
| 522 |
* this function returns the average spatial resolution |
| 523 |
* (in cm) for the ETA algorithm (function pfaeta(ic,angle)) |
| 524 |
* it calls: |
| 525 |
* - risxeta2(angle) |
| 526 |
* - risyeta2(angle) |
| 527 |
* - risxeta3(angle) |
| 528 |
* - risxeta4(angle) |
| 529 |
* according to the angle |
| 530 |
*-------------------------------------------------------------- |
| 531 |
include 'commontracker.f' |
| 532 |
include 'level1.f' |
| 533 |
include 'calib.f' |
| 534 |
|
| 535 |
riseta = 0. |
| 536 |
|
| 537 |
c if(mod(int(VIEW(ic)),2).eq.1)then !Y-view |
| 538 |
if(mod(iview,2).eq.1)then !Y-view |
| 539 |
|
| 540 |
|
| 541 |
if( abs(angle).ge.e2fay.and.abs(angle).le.e2tay )then |
| 542 |
riseta = risyeta2(angle) |
| 543 |
elseif( abs(angle).ge.e3fay.and.abs(angle).le.e3tay )then |
| 544 |
riseta = risy_cog(angle) !ATTENZIONE!! |
| 545 |
elseif( abs(angle).ge.e4fay.and.abs(angle).le.e4tay )then |
| 546 |
riseta = risy_cog(angle) !ATTENZIONE!! |
| 547 |
else |
| 548 |
riseta = risy_cog(angle) |
| 549 |
endif |
| 550 |
|
| 551 |
else !X-view |
| 552 |
|
| 553 |
if( abs(angle).ge.e2fax.and.abs(angle).le.e2tax )then |
| 554 |
riseta = risxeta2(angle) |
| 555 |
elseif( abs(angle).ge.e3fax.and.abs(angle).le.e3tax )then |
| 556 |
riseta = risxeta3(angle) |
| 557 |
elseif( abs(angle).ge.e4fax.and.abs(angle).le.e4tax )then |
| 558 |
riseta = risxeta4(angle) |
| 559 |
else |
| 560 |
riseta = risx_cog(angle) |
| 561 |
endif |
| 562 |
|
| 563 |
endif |
| 564 |
|
| 565 |
|
| 566 |
c 100 return |
| 567 |
return |
| 568 |
end |
| 569 |
|
| 570 |
*** * * * *** * * * *** * * * *** * * * *** * * * *** * * * *** |
| 571 |
real function fbad_eta(ic,angle) |
| 572 |
*------------------------------------------------------- |
| 573 |
* this function returns a factor that takes into |
| 574 |
* account deterioration of the spatial resolution |
| 575 |
* in the case BAD strips are included in the cluster. |
| 576 |
* This factor should multiply the nominal spatial |
| 577 |
* resolution. |
| 578 |
* It calls the function FBAD_COG(NCOG,IC), |
| 579 |
* accordingto the angle |
| 580 |
* |
| 581 |
* >>> cosi` non e` corretto!! |
| 582 |
* >>> l'errore sulla coordinata eta si ottiene moltiplicando |
| 583 |
* >>> l'errore sulla coordinata cog per la derivata della |
| 584 |
* >>> distribuzione eta... pur sapendolo l'ho sempre ignorato... |
| 585 |
* >>> deve essere modificato!!!! |
| 586 |
* |
| 587 |
*------------------------------------------------------- |
| 588 |
|
| 589 |
include 'commontracker.f' |
| 590 |
include 'level1.f' |
| 591 |
include 'calib.f' |
| 592 |
fbad_eta = 0 |
| 593 |
|
| 594 |
if(mod(int(VIEW(ic)),2).eq.1)then !Y-view |
| 595 |
|
| 596 |
if( abs(angle).ge.e2fay.and.abs(angle).le.e2tay )then |
| 597 |
fbad_eta = fbad_cog(2,ic) |
| 598 |
elseif( abs(angle).ge.e3fay.and.abs(angle).le.e3tay )then |
| 599 |
fbad_eta = fbad_cog(3,ic) |
| 600 |
elseif( abs(angle).ge.e4fay.and.abs(angle).le.e4tay )then |
| 601 |
fbad_eta = fbad_cog(4,ic) |
| 602 |
else |
| 603 |
fbad_eta = fbad_cog(4,ic) |
| 604 |
endif |
| 605 |
|
| 606 |
else !X-view |
| 607 |
|
| 608 |
if( abs(angle).ge.e2fax.and.abs(angle).le.e2tax )then |
| 609 |
fbad_eta = fbad_cog(2,ic) |
| 610 |
elseif( abs(angle).ge.e3fax.and.abs(angle).le.e3tax )then |
| 611 |
fbad_eta = fbad_cog(3,ic) |
| 612 |
elseif( abs(angle).ge.e4fax.and.abs(angle).le.e4tax )then |
| 613 |
fbad_eta = fbad_cog(4,ic) |
| 614 |
else |
| 615 |
fbad_eta = fbad_cog(4,ic) |
| 616 |
endif |
| 617 |
|
| 618 |
endif |
| 619 |
|
| 620 |
return |
| 621 |
end |
| 622 |
|
| 623 |
*** * * * *** * * * *** * * * *** * * * *** * * * *** * * * *** |
| 624 |
real function pfaeta2(ic,angle) |
| 625 |
*-------------------------------------------------------------- |
| 626 |
* this function returns |
| 627 |
* |
| 628 |
* - the position (in strip units) |
| 629 |
* corrected according to the ETA2 Position Finding Algorithm. |
| 630 |
* The function performs an interpolation of FETA2%ETA2 |
| 631 |
* |
| 632 |
* - if the angle is out of range, the calibration parameters |
| 633 |
* of the lowest or higher bin are used |
| 634 |
* |
| 635 |
*-------------------------------------------------------------- |
| 636 |
include 'commontracker.f' |
| 637 |
include 'calib.f' |
| 638 |
include 'level1.f' |
| 639 |
|
| 640 |
real cog2,angle |
| 641 |
integer iview,lad |
| 642 |
|
| 643 |
iview = VIEW(ic) |
| 644 |
lad = nld(MAXS(ic),VIEW(ic)) |
| 645 |
cog2 = cog(2,ic) |
| 646 |
pfaeta2 = cog2 |
| 647 |
|
| 648 |
* ---------------- |
| 649 |
* find angular bin |
| 650 |
* ---------------- |
| 651 |
* (in futuro possiamo pensare di interpolare anche sull'angolo) |
| 652 |
do iang=1,nangbin |
| 653 |
if(angL(iang).lt.angle.and.angR(iang).ge.angle)then |
| 654 |
iangle=iang |
| 655 |
goto 98 |
| 656 |
endif |
| 657 |
enddo |
| 658 |
if(DEBUG.EQ.1) |
| 659 |
$ print*,'pfaeta2 *** warning *** angle out of range: ',angle |
| 660 |
if(angle.le.angL(1))iang=1 |
| 661 |
if(angle.ge.angR(nangbin))iang=nangbin |
| 662 |
98 continue !jump here if ok |
| 663 |
|
| 664 |
* ------------- |
| 665 |
* within +/-0.5 |
| 666 |
* ------------- |
| 667 |
|
| 668 |
iaddmax=10 |
| 669 |
iadd=0 |
| 670 |
10 continue |
| 671 |
if(cog2.lt.eta2(1,iang))then |
| 672 |
cog2 = cog2 + 1 |
| 673 |
iadd = iadd + 1 |
| 674 |
if(iadd>iaddmax)goto 111 |
| 675 |
goto 10 |
| 676 |
endif |
| 677 |
20 continue |
| 678 |
if(cog2.gt.eta2(netaval,iang))then |
| 679 |
cog2 = cog2 - 1 |
| 680 |
iadd = iadd - 1 |
| 681 |
if(iadd<-1*iaddmax)goto 111 |
| 682 |
goto 20 |
| 683 |
endif |
| 684 |
goto 1111 |
| 685 |
111 continue |
| 686 |
if(DEBUG.eq.1)print*,'pfaeta2 *** warning *** anomalous cluster' |
| 687 |
if(DEBUG.eq.1)print*,'--> COG(2) = ',cog2-iadd,' (set to zero)' |
| 688 |
cog2=0 |
| 689 |
1111 continue |
| 690 |
|
| 691 |
* -------------------------------- |
| 692 |
c print*,'*****',i,view,lad,iang,'------> cog2 ',cog2 |
| 693 |
do i=2,netaval |
| 694 |
if(eta2(i,iang).gt.cog2)then |
| 695 |
|
| 696 |
x1 = eta2(i-1,iang) |
| 697 |
x2 = eta2(i,iang) |
| 698 |
y1 = feta2(i-1,iview,lad,iang) |
| 699 |
y2 = feta2(i,iview,lad,iang) |
| 700 |
|
| 701 |
c print*,'*****',i,view,lad,iang |
| 702 |
c print*,'-----',x1,x2,y1,y2 |
| 703 |
goto 99 |
| 704 |
endif |
| 705 |
enddo |
| 706 |
99 continue |
| 707 |
|
| 708 |
|
| 709 |
AA=(y2-y1)/(x2-x1) |
| 710 |
BB=y1-AA*x1 |
| 711 |
|
| 712 |
pfaeta2 = AA*cog2+BB |
| 713 |
pfaeta2 = pfaeta2 - iadd |
| 714 |
|
| 715 |
c$$$ if(iflag.eq.1)then |
| 716 |
c$$$ pfaeta2=pfaeta2-1. !temp |
| 717 |
c$$$ cog2=cog2-1. !temp |
| 718 |
c$$$ endif |
| 719 |
c$$$ if(iflag.eq.-1)then |
| 720 |
c$$$ pfaeta2=pfaeta2+1. !temp |
| 721 |
c$$$ cog2=cog2+1. !temp |
| 722 |
c$$$ endif |
| 723 |
|
| 724 |
if(DEBUG.EQ.1)print*,'ETA2 (ic ',ic,' ang',angle,')' |
| 725 |
$ ,cog2-iadd,' -->',pfaeta2 |
| 726 |
|
| 727 |
|
| 728 |
c 100 return |
| 729 |
return |
| 730 |
end |
| 731 |
|
| 732 |
*** * * * *** * * * *** * * * *** * * * *** * * * *** * * * *** |
| 733 |
real function pfaeta3(ic,angle) !(1) |
| 734 |
*-------------------------------------------------------------- |
| 735 |
* this function returns |
| 736 |
* |
| 737 |
* - the position (in strip units) |
| 738 |
* corrected according to the ETA3 Position Finding Algorithm. |
| 739 |
* The function performs an interpolation of FETA3%ETA3 |
| 740 |
* |
| 741 |
* - if the angle is out of range, the calibration parameters |
| 742 |
* of the lowest or higher bin are used |
| 743 |
* |
| 744 |
*-------------------------------------------------------------- |
| 745 |
include 'commontracker.f' |
| 746 |
include 'calib.f' |
| 747 |
include 'level1.f' |
| 748 |
|
| 749 |
real cog3,angle |
| 750 |
integer iview,lad |
| 751 |
|
| 752 |
|
| 753 |
iview = VIEW(ic) |
| 754 |
lad = nld(MAXS(ic),VIEW(ic)) |
| 755 |
cog3 = cog(3,ic) |
| 756 |
cc = cog3 |
| 757 |
cog3 = cc |
| 758 |
pfaeta3=cog3 |
| 759 |
|
| 760 |
* ---------------- |
| 761 |
* find angular bin |
| 762 |
* ---------------- |
| 763 |
* (in futuro possiamo pensare di interpolare anche sull'angolo) |
| 764 |
do iang=1,nangbin |
| 765 |
c print*,'~~~~~~~~~~~~ ',iang,angL(iang),angR(iang),angle |
| 766 |
if(angL(iang).lt.angle.and.angR(iang).ge.angle)then |
| 767 |
iangle=iang |
| 768 |
goto 98 |
| 769 |
endif |
| 770 |
enddo |
| 771 |
if(DEBUG.EQ.1) |
| 772 |
$ print*,'pfaeta3 *** warning *** angle out of range: ',angle |
| 773 |
if(angle.le.angL(1))iang=1 |
| 774 |
if(angle.ge.angR(nangbin))iang=nangbin |
| 775 |
98 continue !jump here if ok |
| 776 |
|
| 777 |
* ------------- |
| 778 |
* within +/-0.5 |
| 779 |
* ------------- |
| 780 |
|
| 781 |
iaddmax=10 |
| 782 |
iadd=0 |
| 783 |
10 continue |
| 784 |
if(cog3.lt.eta3(1,iang))then |
| 785 |
cog3 = cog3 + 1. |
| 786 |
iadd = iadd + 1 |
| 787 |
if(iadd>iaddmax) goto 111 |
| 788 |
goto 10 |
| 789 |
endif |
| 790 |
20 continue |
| 791 |
if(cog3.gt.eta3(netaval,iang))then |
| 792 |
cog3 = cog3 - 1. |
| 793 |
iadd = iadd - 1 |
| 794 |
if(iadd<-1*iaddmax) goto 111 |
| 795 |
goto 20 |
| 796 |
endif |
| 797 |
goto 1111 |
| 798 |
111 continue |
| 799 |
if(DEBUG.eq.1)print*,'pfaeta3 *** warning *** anomalous cluster' |
| 800 |
if(DEBUG.eq.1)print*,'--> COG(3) = ',cog3-iadd,' (set to zero)' |
| 801 |
cog3=0 |
| 802 |
1111 continue |
| 803 |
|
| 804 |
* -------------------------------- |
| 805 |
c print*,'*****',i,view,lad,iang,'------> cog2 ',cog2 |
| 806 |
do i=2,netaval |
| 807 |
if(eta3(i,iang).gt.cog3)then |
| 808 |
|
| 809 |
x1 = eta3(i-1,iang) |
| 810 |
x2 = eta3(i,iang) |
| 811 |
y1 = feta3(i-1,iview,lad,iang) |
| 812 |
y2 = feta3(i,iview,lad,iang) |
| 813 |
|
| 814 |
c print*,'*****',i,view,lad,iang |
| 815 |
c print*,'-----',x1,x2,y1,y2 |
| 816 |
goto 99 |
| 817 |
endif |
| 818 |
enddo |
| 819 |
99 continue |
| 820 |
|
| 821 |
|
| 822 |
AA=(y2-y1)/(x2-x1) |
| 823 |
BB=y1-AA*x1 |
| 824 |
|
| 825 |
pfaeta3 = AA*cog3+BB |
| 826 |
pfaeta3 = pfaeta3 - iadd |
| 827 |
|
| 828 |
|
| 829 |
if(DEBUG.EQ.1)print*,'ETA3 (ic ',ic,' ang',angle,')' |
| 830 |
$ ,cog3-iadd,' -->',pfaeta3 |
| 831 |
|
| 832 |
c 100 return |
| 833 |
return |
| 834 |
end |
| 835 |
|
| 836 |
*** * * * *** * * * *** * * * *** * * * *** * * * *** * * * *** |
| 837 |
real function pfaeta4(ic,angle) |
| 838 |
*-------------------------------------------------------------- |
| 839 |
* this function returns |
| 840 |
* |
| 841 |
* - the position (in strip units) |
| 842 |
* corrected according to the ETA4 Position Finding Algorithm. |
| 843 |
* The function performs an interpolation of FETA3%ETA3 |
| 844 |
* |
| 845 |
* - if the angle is out of range, the calibration parameters |
| 846 |
* of the lowest or higher bin are used |
| 847 |
* |
| 848 |
*-------------------------------------------------------------- |
| 849 |
include 'commontracker.f' |
| 850 |
include 'calib.f' |
| 851 |
include 'level1.f' |
| 852 |
|
| 853 |
real cog4,angle |
| 854 |
integer iview,lad |
| 855 |
|
| 856 |
|
| 857 |
iview = VIEW(ic) |
| 858 |
lad = nld(MAXS(ic),VIEW(ic)) |
| 859 |
cog4=cog(4,ic) |
| 860 |
pfaeta4=cog4 |
| 861 |
|
| 862 |
* ---------------- |
| 863 |
* find angular bin |
| 864 |
* ---------------- |
| 865 |
* (in futuro possiamo pensare di interpolare anche sull'angolo) |
| 866 |
do iang=1,nangbin |
| 867 |
c print*,'~~~~~~~~~~~~ ',iang,angL(iang),angR(iang),angle |
| 868 |
if(angL(iang).lt.angle.and.angR(iang).ge.angle)then |
| 869 |
iangle=iang |
| 870 |
goto 98 |
| 871 |
endif |
| 872 |
enddo |
| 873 |
if(DEBUG.EQ.1) |
| 874 |
$ print*,'pfaeta4 *** warning *** angle out of range: ',angle |
| 875 |
if(angle.le.angL(1))iang=1 |
| 876 |
if(angle.ge.angR(nangbin))iang=nangbin |
| 877 |
98 continue !jump here if ok |
| 878 |
|
| 879 |
* ------------- |
| 880 |
* within +/-0.5 |
| 881 |
* ------------- |
| 882 |
|
| 883 |
iaddmax=10 |
| 884 |
iadd=0 |
| 885 |
10 continue |
| 886 |
if(cog4.lt.eta4(1,iang))then |
| 887 |
cog4 = cog4 + 1 |
| 888 |
iadd = iadd + 1 |
| 889 |
if(iadd>iaddmax)goto 111 |
| 890 |
goto 10 |
| 891 |
endif |
| 892 |
20 continue |
| 893 |
if(cog4.gt.eta4(netaval,iang))then |
| 894 |
cog4 = cog4 - 1 |
| 895 |
iadd = iadd - 1 |
| 896 |
if(iadd<-1*iaddmax)goto 111 |
| 897 |
goto 20 |
| 898 |
endif |
| 899 |
goto 1111 |
| 900 |
111 continue |
| 901 |
if(DEBUG.eq.1)print*,'pfaeta4 *** warning *** anomalous cluster' |
| 902 |
if(DEBUG.eq.1)print*,'--> COG(4) = ',cog4-iadd,' (set to zero)' |
| 903 |
cog4=0 |
| 904 |
1111 continue |
| 905 |
|
| 906 |
* -------------------------------- |
| 907 |
c print*,'*****',i,view,lad,iang,'------> cog2 ',cog2 |
| 908 |
do i=2,netaval |
| 909 |
if(eta4(i,iang).gt.cog4)then |
| 910 |
|
| 911 |
x1 = eta4(i-1,iang) |
| 912 |
x2 = eta4(i,iang) |
| 913 |
y1 = feta4(i-1,iview,lad,iang) |
| 914 |
y2 = feta4(i,iview,lad,iang) |
| 915 |
|
| 916 |
c print*,'*****',i,view,lad,iang |
| 917 |
c print*,'-----',x1,x2,y1,y2 |
| 918 |
goto 99 |
| 919 |
endif |
| 920 |
enddo |
| 921 |
99 continue |
| 922 |
|
| 923 |
|
| 924 |
AA=(y2-y1)/(x2-x1) |
| 925 |
BB=y1-AA*x1 |
| 926 |
|
| 927 |
pfaeta4 = AA*cog4+BB |
| 928 |
pfaeta4 = pfaeta4 - iadd |
| 929 |
|
| 930 |
c$$$ if(iflag.eq.1)then |
| 931 |
c$$$ pfaeta2=pfaeta2-1. !temp |
| 932 |
c$$$ cog2=cog2-1. !temp |
| 933 |
c$$$ endif |
| 934 |
c$$$ if(iflag.eq.-1)then |
| 935 |
c$$$ pfaeta2=pfaeta2+1. !temp |
| 936 |
c$$$ cog2=cog2+1. !temp |
| 937 |
c$$$ endif |
| 938 |
|
| 939 |
if(DEBUG.EQ.1)print*,'ETA4 (ic ',ic,' ang',angle,')' |
| 940 |
$ ,cog4-iadd,' -->',pfaeta4 |
| 941 |
|
| 942 |
c 100 return |
| 943 |
return |
| 944 |
end |
| 945 |
|
| 946 |
*** * * * *** * * * *** * * * *** * * * *** * * * *** * * * *** |
| 947 |
real function digsat(ic) |
| 948 |
*------------------------------------------------- |
| 949 |
* |
| 950 |
* |
| 951 |
*------------------------------------------------- |
| 952 |
include 'commontracker.f' |
| 953 |
include 'calib.f' |
| 954 |
include 'level1.f' |
| 955 |
|
| 956 |
integer nsat |
| 957 |
real pitchsat |
| 958 |
|
| 959 |
nsat = 0 |
| 960 |
pitchsat = 0. |
| 961 |
iv=VIEW(ic) |
| 962 |
istart = INDSTART(IC) |
| 963 |
istop = TOTCLLENGTH |
| 964 |
if(ic.lt.NCLSTR1)istop=INDSTART(IC+1)-1 |
| 965 |
do i = INDMAX(IC),istart,-1 |
| 966 |
if( (mod(iv,2).eq.1.and.CLADC(i).lt.ADCsatx) |
| 967 |
$ .or. |
| 968 |
$ (mod(iv,2).eq.0.and.CLADC(i).gt.ADCsaty) )then |
| 969 |
nsat = nsat + 1 |
| 970 |
pitchsat = pitchsat + i - INDMAX(IC) |
| 971 |
else |
| 972 |
goto 10 |
| 973 |
endif |
| 974 |
enddo |
| 975 |
10 continue |
| 976 |
do i = INDMAX(IC)+1,istop |
| 977 |
if( (mod(iv,2).eq.1.and.CLADC(i).lt.ADCsatx) |
| 978 |
$ .or. |
| 979 |
$ (mod(iv,2).eq.0.and.CLADC(i).gt.ADCsaty) )then |
| 980 |
nsat = nsat + 1 |
| 981 |
pitchsat = pitchsat + i - INDMAX(IC) |
| 982 |
else |
| 983 |
goto 20 |
| 984 |
endif |
| 985 |
enddo |
| 986 |
20 continue |
| 987 |
|
| 988 |
digsat = 0 |
| 989 |
if (nsat.gt.0) digsat = pitchsat / nsat |
| 990 |
|
| 991 |
return |
| 992 |
end |
| 993 |
|
| 994 |
|
| 995 |
*** * * * *** * * * *** * * * *** * * * *** * * * *** * * * *** |
| 996 |
real function cog(ncog,ic) |
| 997 |
*------------------------------------------------- |
| 998 |
* this function returns |
| 999 |
* |
| 1000 |
* - if NCOG=0, the Center-Of-Gravity of the |
| 1001 |
* cluster IC, relative to MAXS(IC), according to |
| 1002 |
* the cluster multiplicity |
| 1003 |
* |
| 1004 |
* - if NCOG>0, the Center-Of-Gravity of the cluster IC |
| 1005 |
* evaluated using NCOG strips, even if they have a |
| 1006 |
* negative signal (according to Landi) |
| 1007 |
* |
| 1008 |
*------------------------------------------------- |
| 1009 |
|
| 1010 |
|
| 1011 |
include 'commontracker.f' |
| 1012 |
include 'calib.f' |
| 1013 |
include 'level1.f' |
| 1014 |
|
| 1015 |
|
| 1016 |
|
| 1017 |
if (ncog.gt.0) then |
| 1018 |
* =========================== |
| 1019 |
* ETA2 ETA3 ETA4 computation |
| 1020 |
* =========================== |
| 1021 |
|
| 1022 |
* --> signal of the central strip |
| 1023 |
sc = CLSIGNAL(INDMAX(ic)) !center |
| 1024 |
* signal of adjacent strips |
| 1025 |
sl1 = -9999. !left 1 |
| 1026 |
if( |
| 1027 |
$ (INDMAX(ic)-1).ge.INDSTART(ic) |
| 1028 |
$ ) |
| 1029 |
$ sl1 = CLSIGNAL(INDMAX(ic)-1) |
| 1030 |
|
| 1031 |
sl2 = -9999. !left 2 |
| 1032 |
if( |
| 1033 |
$ (INDMAX(ic)-2).ge.INDSTART(ic) |
| 1034 |
$ ) |
| 1035 |
$ sl2 = CLSIGNAL(INDMAX(ic)-2) |
| 1036 |
|
| 1037 |
sr1 = -9999. !right 1 |
| 1038 |
if( |
| 1039 |
$ (ic.ne.NCLSTR1.and.(INDMAX(ic)+1).lt.INDSTART(ic+1)) |
| 1040 |
$ .or. |
| 1041 |
$ (ic.eq.NCLSTR1.and.(INDMAX(ic)+1).le.TOTCLLENGTH) |
| 1042 |
$ ) |
| 1043 |
$ sr1 = CLSIGNAL(INDMAX(ic)+1) |
| 1044 |
|
| 1045 |
sr2 = -9999. !right 2 |
| 1046 |
if( |
| 1047 |
$ (ic.ne.NCLSTR1.and.(INDMAX(ic)+2).lt.INDSTART(ic+1)) |
| 1048 |
$ .or. |
| 1049 |
$ (ic.eq.NCLSTR1.and.(INDMAX(ic)+2).le.TOTCLLENGTH) |
| 1050 |
$ ) |
| 1051 |
$ sr2 = CLSIGNAL(INDMAX(ic)+2) |
| 1052 |
|
| 1053 |
COG = 0. |
| 1054 |
|
| 1055 |
c print *,'## ',sl2,sl1,sc,sr1,sr2 |
| 1056 |
|
| 1057 |
c ============================================================== |
| 1058 |
if(ncog.eq.1)then |
| 1059 |
COG = 0. |
| 1060 |
if(sr1.gt.sc)cog=1. |
| 1061 |
if(sl1.gt.sc.and.sl1.gt.sr1)cog=-1. |
| 1062 |
c ============================================================== |
| 1063 |
elseif(ncog.eq.2)then |
| 1064 |
COG = 0. |
| 1065 |
if(sl1.gt.sr1)then |
| 1066 |
if((sl1+sc).ne.0)COG = -sl1/(sl1+sc) |
| 1067 |
elseif(sl1.lt.sr1)then |
| 1068 |
if((sc+sr1).ne.0)COG = sr1/(sc+sr1) |
| 1069 |
elseif( sl1.eq.sr1.and.sl1.ne.-9999.)then |
| 1070 |
if( clsigma(indmax(ic)-1).lt.clsigma(indmax(ic)+1) |
| 1071 |
$ .and.(sl1+sc).ne.0 )cog = -sl1/(sl1+sc) |
| 1072 |
if( clsigma(indmax(ic)-1).gt.clsigma(indmax(ic)+1) |
| 1073 |
$ .and.(sc+sr1).ne.0 )cog = sr1/(sc+sr1) |
| 1074 |
endif |
| 1075 |
c if(cog==0)print*,'Strange cluster (2) - @maxs ',MAXS(ic) |
| 1076 |
c $ ,' : ',sl2,sl1,sc,sr1,sr2 |
| 1077 |
c ============================================================== |
| 1078 |
elseif(ncog.eq.3)then |
| 1079 |
COG = 0 |
| 1080 |
sss = sc |
| 1081 |
if( sl1.ne.-9999. )COG = COG-sl1 |
| 1082 |
if( sl1.ne.-9999. )sss = sss+sl1 |
| 1083 |
if( sr1.ne.-9999. )COG = COG+sr1 |
| 1084 |
if( sr1.ne.-9999. )sss = sss+sr1 |
| 1085 |
if(sss.ne.0)COG=COG/sss |
| 1086 |
|
| 1087 |
c if( (sl1+sc+sr1).ne.0 )COG = (sr1-sl1)/(sl1+sc+sr1) |
| 1088 |
c if(cog==0)print*,'Strange cluster (3) - @maxs ',MAXS(ic) |
| 1089 |
c $ ,' : ',sl2,sl1,sc,sr1,sr2 |
| 1090 |
c ============================================================== |
| 1091 |
elseif(ncog.eq.4)then |
| 1092 |
|
| 1093 |
COG = 0 |
| 1094 |
sss = sc |
| 1095 |
if( sl1.ne.-9999. )COG = COG-sl1 |
| 1096 |
if( sl1.ne.-9999. )sss = sss+sl1 |
| 1097 |
if( sr1.ne.-9999. )COG = COG+sr1 |
| 1098 |
if( sr1.ne.-9999. )sss = sss+sr1 |
| 1099 |
if(sl2.gt.sr2)then |
| 1100 |
if((sl2+sss).ne.0) |
| 1101 |
$ COG = (COG-2*sl2)/(sl2+sss) |
| 1102 |
elseif(sl2.lt.sr2)then |
| 1103 |
if((sr2+sss).ne.0) |
| 1104 |
$ COG = (2*sr2+COG)/(sr2+sss) |
| 1105 |
elseif(sl2.eq.sr2.and.sl2.ne.-9999.)then |
| 1106 |
if( clsigma(indmax(ic)-2).lt.clsigma(indmax(ic)+2) |
| 1107 |
$ .and.(sl2+sss).ne.0 ) |
| 1108 |
$ cog = (cog-2*sl2)/(sl2+sss) |
| 1109 |
if( clsigma(indmax(ic)-2).gt.clsigma(indmax(ic)+2) |
| 1110 |
$ .and.(sr2+sss).ne.0 ) |
| 1111 |
$ cog = (2*sr2+cog)/(sr2+sss) |
| 1112 |
endif |
| 1113 |
c ============================================================== |
| 1114 |
elseif(ncog.eq.5)then |
| 1115 |
COG = 0 |
| 1116 |
sss = sc |
| 1117 |
if( sl1.ne.-9999. )COG = COG-sl1 |
| 1118 |
if( sl1.ne.-9999. )sss = sss+sl1 |
| 1119 |
if( sr1.ne.-9999. )COG = COG+sr1 |
| 1120 |
if( sr1.ne.-9999. )sss = sss+sr1 |
| 1121 |
if( sl2.ne.-9999. )COG = COG-2*sl2 |
| 1122 |
if( sl2.ne.-9999. )sss = sss+sl2 |
| 1123 |
if( sr2.ne.-9999. )COG = COG+2*sr2 |
| 1124 |
if( sr2.ne.-9999. )sss = sss+sr2 |
| 1125 |
if(sss.ne.0)COG=COG/sss |
| 1126 |
else |
| 1127 |
print*,'function COG(NCOG,IC) ==> WARNING!! NCOG=',NCOG |
| 1128 |
$ ,' not implemented' |
| 1129 |
COG = 0. |
| 1130 |
endif |
| 1131 |
|
| 1132 |
c print*,'NCOG ',ncog,ic,' @@@ ',sl1,sc,sr1,' @@@ ',cog |
| 1133 |
|
| 1134 |
elseif(ncog.eq.0)then |
| 1135 |
* ========================= |
| 1136 |
* COG computation |
| 1137 |
* ========================= |
| 1138 |
|
| 1139 |
iv=VIEW(ic) |
| 1140 |
if(mod(iv,2).eq.1)incut=NINT(incuty) ! incut is implicitly INTEGER, incuty is REAL |
| 1141 |
if(mod(iv,2).eq.0)incut=NINT(incutx) ! incut is implicitly INTEGER, incutx is REAL |
| 1142 |
istart = INDSTART(IC) |
| 1143 |
istop = TOTCLLENGTH |
| 1144 |
if(ic.lt.NCLSTR1)istop=INDSTART(IC+1)-1 |
| 1145 |
COG = 0 |
| 1146 |
SGN = 0. |
| 1147 |
mu = 0 |
| 1148 |
c print*,'-------' |
| 1149 |
do i = INDMAX(IC),istart,-1 |
| 1150 |
ipos = i-INDMAX(ic) |
| 1151 |
cut = incut*CLSIGMA(i) |
| 1152 |
if(CLSIGNAL(i).ge.cut)then |
| 1153 |
COG = COG + ipos*CLSIGNAL(i) |
| 1154 |
SGN = SGN + CLSIGNAL(i) |
| 1155 |
mu = mu + 1 |
| 1156 |
c print*,ipos,CLSIGNAL(i) |
| 1157 |
else |
| 1158 |
goto 10 |
| 1159 |
endif |
| 1160 |
enddo |
| 1161 |
10 continue |
| 1162 |
do i = INDMAX(IC)+1,istop |
| 1163 |
ipos = i-INDMAX(ic) |
| 1164 |
cut = incut*CLSIGMA(i) |
| 1165 |
if(CLSIGNAL(i).ge.cut)then |
| 1166 |
COG = COG + ipos*CLSIGNAL(i) |
| 1167 |
SGN = SGN + CLSIGNAL(i) |
| 1168 |
mu = mu + 1 |
| 1169 |
c print*,ipos,CLSIGNAL(i) |
| 1170 |
else |
| 1171 |
goto 20 |
| 1172 |
endif |
| 1173 |
enddo |
| 1174 |
20 continue |
| 1175 |
if(SGN.le.0)then |
| 1176 |
print*,'cog(0,ic) --> ic, dedx ',ic,SGN |
| 1177 |
print*,(CLSIGNAL(i)/CLSIGMA(i),i=istart,istop) |
| 1178 |
print*,(CLSIGNAL(i),i=istart,istop) |
| 1179 |
c print*,'cog(0,ic) --> NOT EVALUATED ' |
| 1180 |
else |
| 1181 |
COG=COG/SGN |
| 1182 |
endif |
| 1183 |
c print*,'-------' |
| 1184 |
|
| 1185 |
else |
| 1186 |
|
| 1187 |
COG=0 |
| 1188 |
print*,'function COG(NCOG,IC) ==> WARNING!! NCOG=',NCOG |
| 1189 |
print*,' (NCOG must be >= 0)' |
| 1190 |
|
| 1191 |
|
| 1192 |
endif |
| 1193 |
|
| 1194 |
c print *,'## cog ',ncog,ic,cog,'/////////////' |
| 1195 |
|
| 1196 |
if(COG.lt.-0.75.or.COG.gt.+0.75)then |
| 1197 |
if(DEBUG.eq.1) |
| 1198 |
$ print*,'cog *** warning *** anomalous cluster ??? --> ' |
| 1199 |
if(DEBUG.eq.1) |
| 1200 |
$ print*,sl2,sl1,sc,sr1,sr2,' --> COG(',ncog,') = ',COG |
| 1201 |
endif |
| 1202 |
|
| 1203 |
|
| 1204 |
return |
| 1205 |
end |
| 1206 |
|
| 1207 |
*** * * * *** * * * *** * * * *** * * * *** * * * *** * * * *** |
| 1208 |
|
| 1209 |
real function fbad_cog(ncog,ic) |
| 1210 |
*------------------------------------------------------- |
| 1211 |
* this function returns a factor that takes into |
| 1212 |
* account deterioration of the spatial resolution |
| 1213 |
* in the case BAD strips are included in the cluster. |
| 1214 |
* This factor should multiply the nominal spatial |
| 1215 |
* resolution. |
| 1216 |
* |
| 1217 |
*------------------------------------------------------- |
| 1218 |
|
| 1219 |
include 'commontracker.f' |
| 1220 |
include 'level1.f' |
| 1221 |
include 'calib.f' |
| 1222 |
|
| 1223 |
if(mod(int(VIEW(ic)),2).eq.1)then !Y-view |
| 1224 |
si = 8.4 !average good-strip noise |
| 1225 |
f = 4. !average bad-strip noise: f*si |
| 1226 |
incut=NINT(incuty) |
| 1227 |
else !X-view |
| 1228 |
si = 3.9 !average good-strip noise |
| 1229 |
f = 6. !average bad-strip noise: f*si |
| 1230 |
incut=NINT(incutx) |
| 1231 |
endif |
| 1232 |
|
| 1233 |
fbad_cog = 1. |
| 1234 |
|
| 1235 |
if (ncog.gt.0) then |
| 1236 |
|
| 1237 |
* --> signal of the central strip |
| 1238 |
sc = CLSIGNAL(INDMAX(ic)) !center |
| 1239 |
fsc = 1 |
| 1240 |
c if( CLBAD(INDMAX(ic)).eq.0 )fsc=f |
| 1241 |
fsc = clsigma(INDMAX(ic))/si |
| 1242 |
* --> signal of adjacent strips |
| 1243 |
sl1 = 0 !left 1 |
| 1244 |
fsl1 = 1 !left 1 |
| 1245 |
if( |
| 1246 |
$ (INDMAX(ic)-1).ge.INDSTART(ic) |
| 1247 |
$ )then |
| 1248 |
sl1 = CLSIGNAL(INDMAX(ic)-1) |
| 1249 |
c if( CLBAD(INDMAX(ic)-1).eq.0)fsl1=f |
| 1250 |
fsl1 = clsigma(INDMAX(ic)-1)/si |
| 1251 |
endif |
| 1252 |
|
| 1253 |
sl2 = 0 !left 2 |
| 1254 |
fsl2 = 1 !left 2 |
| 1255 |
if( |
| 1256 |
$ (INDMAX(ic)-2).ge.INDSTART(ic) |
| 1257 |
$ )then |
| 1258 |
sl2 = CLSIGNAL(INDMAX(ic)-2) |
| 1259 |
c if(CLBAD(INDMAX(ic)-2).eq.0)fsl2=f |
| 1260 |
fsl2 = clsigma(INDMAX(ic)-2)/si |
| 1261 |
endif |
| 1262 |
sr1 = 0 !right 1 |
| 1263 |
fsr1 = 1 !right 1 |
| 1264 |
if( |
| 1265 |
$ (ic.ne.NCLSTR1.and.(INDMAX(ic)+1).lt.INDSTART(ic+1)) |
| 1266 |
$ .or. |
| 1267 |
$ (ic.eq.NCLSTR1.and.(INDMAX(ic)+1).le.TOTCLLENGTH) |
| 1268 |
$ )then |
| 1269 |
sr1 = CLSIGNAL(INDMAX(ic)+1) |
| 1270 |
c if(CLBAD(INDMAX(ic)+1).eq.0)fsr1=f |
| 1271 |
fsr1 = clsigma(INDMAX(ic)+1)/si |
| 1272 |
endif |
| 1273 |
sr2 = 0 !right 2 |
| 1274 |
fsr2 = 1 !right 2 |
| 1275 |
if( |
| 1276 |
$ (ic.ne.NCLSTR1.and.(INDMAX(ic)+2).lt.INDSTART(ic+1)) |
| 1277 |
$ .or. |
| 1278 |
$ (ic.eq.NCLSTR1.and.(INDMAX(ic)+2).le.TOTCLLENGTH) |
| 1279 |
$ )then |
| 1280 |
sr2 = CLSIGNAL(INDMAX(ic)+2) |
| 1281 |
c if(CLBAD(INDMAX(ic)+2).eq.0)fsr2=f |
| 1282 |
fsr2 = clsigma(INDMAX(ic)+2)/si |
| 1283 |
endif |
| 1284 |
|
| 1285 |
|
| 1286 |
|
| 1287 |
************************************************************ |
| 1288 |
* COG2-3-4 computation |
| 1289 |
************************************************************ |
| 1290 |
|
| 1291 |
c print*,sl2,sl1,sc,sr1,sr2 |
| 1292 |
|
| 1293 |
vCOG = cog(ncog,ic)!0. |
| 1294 |
|
| 1295 |
if(ncog.eq.2)then |
| 1296 |
if(sl1.gt.sr1)then |
| 1297 |
c COG = -sl1/(sl1+sc) |
| 1298 |
fbad_cog = (fsl1*(-1-vCOG)**2+fsc*(-vCOG)**2) |
| 1299 |
fbad_cog = fbad_cog / ((-1-vCOG)**2+(-vCOG)**2) |
| 1300 |
elseif(sl1.le.sr1)then |
| 1301 |
c COG = sr1/(sc+sr1) |
| 1302 |
fbad_cog = (fsc*(-vCOG)**2+fsr1*(1-vCOG)**2) |
| 1303 |
fbad_cog = fbad_cog / ((-vCOG)**2+(1-vCOG)**2) |
| 1304 |
endif |
| 1305 |
elseif(ncog.eq.3)then |
| 1306 |
c COG = (sr1-sl1)/(sl1+sc+sr1) |
| 1307 |
fbad_cog = |
| 1308 |
$ (fsl1*(-1-vCOG)**2+fsc*(-vCOG)**2+fsr1*(1-vCOG)**2) |
| 1309 |
fbad_cog = |
| 1310 |
$ fbad_cog / ((-1-vCOG)**2+(-vCOG)**2+(1-vCOG)**2) |
| 1311 |
elseif(ncog.eq.4)then |
| 1312 |
if(sl2.gt.sr2)then |
| 1313 |
c COG = (sr1-sl1-2*sl2)/(sl2+sl1+sc+sr1) |
| 1314 |
fbad_cog = |
| 1315 |
$ (fsl2*(-2-vCOG)**2+fsl1*(-1-vCOG)**2 |
| 1316 |
$ +fsc*(-vCOG)**2+fsr1*(1-vCOG)**2) |
| 1317 |
fbad_cog = |
| 1318 |
$ fbad_cog / ((-2-vCOG)**2+(-1-vCOG)**2 |
| 1319 |
$ +(-vCOG)**2+(1-vCOG)**2) |
| 1320 |
elseif(sl2.le.sr2)then |
| 1321 |
c COG = (2*sr2+sr1-sl1)/(sl2+sl1+sc+sr1) |
| 1322 |
fbad_cog = |
| 1323 |
$ (fsl1*(-1-vCOG)**2 |
| 1324 |
$ +fsc*(-vCOG)**2+fsr1*(1-vCOG)**2+fsr2*(2-vCOG)**2) |
| 1325 |
fbad_cog = |
| 1326 |
$ fbad_cog / ((-1-vCOG)**2 |
| 1327 |
$ +(-vCOG)**2+(1-vCOG)**2+(2-vCOG)**2) |
| 1328 |
endif |
| 1329 |
else |
| 1330 |
print*,'function FBAD_COG(NCOG,IC) ==> WARNING!! NCOG=',NCOG |
| 1331 |
print*,' (NCOG must be <= 4)' |
| 1332 |
c COG = 0. |
| 1333 |
endif |
| 1334 |
|
| 1335 |
elseif(ncog.eq.0)then |
| 1336 |
* ========================= |
| 1337 |
* COG computation |
| 1338 |
* ========================= |
| 1339 |
|
| 1340 |
vCOG = cog(0,ic) |
| 1341 |
|
| 1342 |
iv = VIEW(ic) |
| 1343 |
istart = INDSTART(IC) |
| 1344 |
istop = TOTCLLENGTH |
| 1345 |
if(ic.lt.NCLSTR1)istop = INDSTART(IC+1)-1 |
| 1346 |
SGN = 0. |
| 1347 |
SNU = 0. |
| 1348 |
SDE = 0. |
| 1349 |
|
| 1350 |
do i=INDMAX(IC),istart,-1 |
| 1351 |
ipos = i-INDMAX(ic) |
| 1352 |
cut = incut*CLSIGMA(i) |
| 1353 |
if(CLSIGNAL(i).gt.cut)then |
| 1354 |
fs = clsigma(i)/si |
| 1355 |
SNU = SNU + fs*(ipos-vCOG)**2 |
| 1356 |
SDE = SDE + (ipos-vCOG)**2 |
| 1357 |
else |
| 1358 |
goto 10 |
| 1359 |
endif |
| 1360 |
enddo |
| 1361 |
10 continue |
| 1362 |
do i=INDMAX(IC)+1,istop |
| 1363 |
ipos = i-INDMAX(ic) |
| 1364 |
cut = incut*CLSIGMA(i) |
| 1365 |
if(CLSIGNAL(i).gt.cut)then |
| 1366 |
fs = clsigma(i)/si |
| 1367 |
SNU = SNU + fs*(ipos-vCOG)**2 |
| 1368 |
SDE = SDE + (ipos-vCOG)**2 |
| 1369 |
else |
| 1370 |
goto 20 |
| 1371 |
endif |
| 1372 |
enddo |
| 1373 |
20 continue |
| 1374 |
if(SDE.ne.0)then |
| 1375 |
FBAD_COG=SNU/SDE |
| 1376 |
else |
| 1377 |
|
| 1378 |
endif |
| 1379 |
|
| 1380 |
else |
| 1381 |
|
| 1382 |
FBAD_COG=0 |
| 1383 |
print*,'function FBAD_COG(NCOG,IC) ==> WARNING!! NCOG=',NCOG |
| 1384 |
print*,' (NCOG must be >= 0)' |
| 1385 |
|
| 1386 |
|
| 1387 |
endif |
| 1388 |
|
| 1389 |
|
| 1390 |
fbad_cog = sqrt(fbad_cog) |
| 1391 |
|
| 1392 |
return |
| 1393 |
end |
| 1394 |
|
| 1395 |
|
| 1396 |
*** * * * *** * * * *** * * * *** * * * *** * * * *** * * * *** |
| 1397 |
|
| 1398 |
real function riscogtheor(ncog,ic) |
| 1399 |
*------------------------------------------------------- |
| 1400 |
* |
| 1401 |
* this function returns the expected resolution |
| 1402 |
* obtained by propagating the strip noise |
| 1403 |
* to the center-of-gravity coordinate |
| 1404 |
* |
| 1405 |
* ncog = n.strip used in the coordinate evaluation |
| 1406 |
* (ncog=0 => all strips above threshold) |
| 1407 |
* |
| 1408 |
*------------------------------------------------------- |
| 1409 |
|
| 1410 |
include 'commontracker.f' |
| 1411 |
include 'level1.f' |
| 1412 |
include 'calib.f' |
| 1413 |
|
| 1414 |
if(mod(int(VIEW(ic)),2).eq.1)then !Y-view |
| 1415 |
incut = NINT(incuty) ! EM GCC4.7 |
| 1416 |
pitch = REAL(pitchY / 1.e4) |
| 1417 |
else !X-view |
| 1418 |
incut = NINT(incutx) ! EM GCC4.7 |
| 1419 |
pitch = REAL(pitchX / 1.e4) |
| 1420 |
endif |
| 1421 |
|
| 1422 |
func = 100000. |
| 1423 |
stot = 0. |
| 1424 |
|
| 1425 |
if (ncog.gt.0) then |
| 1426 |
|
| 1427 |
* --> signal of the central strip |
| 1428 |
sc = CLSIGNAL(INDMAX(ic)) !center |
| 1429 |
fsc = clsigma(INDMAX(ic)) |
| 1430 |
* --> signal of adjacent strips |
| 1431 |
sl1 = 0 !left 1 |
| 1432 |
fsl1 = 1 !left 1 |
| 1433 |
if( |
| 1434 |
$ (INDMAX(ic)-1).ge.INDSTART(ic) |
| 1435 |
$ )then |
| 1436 |
sl1 = CLSIGNAL(INDMAX(ic)-1) |
| 1437 |
fsl1 = clsigma(INDMAX(ic)-1) |
| 1438 |
endif |
| 1439 |
|
| 1440 |
sl2 = 0 !left 2 |
| 1441 |
fsl2 = 1 !left 2 |
| 1442 |
if( |
| 1443 |
$ (INDMAX(ic)-2).ge.INDSTART(ic) |
| 1444 |
$ )then |
| 1445 |
sl2 = CLSIGNAL(INDMAX(ic)-2) |
| 1446 |
fsl2 = clsigma(INDMAX(ic)-2) |
| 1447 |
endif |
| 1448 |
sr1 = 0 !right 1 |
| 1449 |
fsr1 = 1 !right 1 |
| 1450 |
if( |
| 1451 |
$ (ic.ne.NCLSTR1.and.(INDMAX(ic)+1).lt.INDSTART(ic+1)) |
| 1452 |
$ .or. |
| 1453 |
$ (ic.eq.NCLSTR1.and.(INDMAX(ic)+1).le.TOTCLLENGTH) |
| 1454 |
$ )then |
| 1455 |
sr1 = CLSIGNAL(INDMAX(ic)+1) |
| 1456 |
fsr1 = clsigma(INDMAX(ic)+1) |
| 1457 |
endif |
| 1458 |
sr2 = 0 !right 2 |
| 1459 |
fsr2 = 1 !right 2 |
| 1460 |
if( |
| 1461 |
$ (ic.ne.NCLSTR1.and.(INDMAX(ic)+2).lt.INDSTART(ic+1)) |
| 1462 |
$ .or. |
| 1463 |
$ (ic.eq.NCLSTR1.and.(INDMAX(ic)+2).le.TOTCLLENGTH) |
| 1464 |
$ )then |
| 1465 |
sr2 = CLSIGNAL(INDMAX(ic)+2) |
| 1466 |
fsr2 = clsigma(INDMAX(ic)+2) |
| 1467 |
endif |
| 1468 |
|
| 1469 |
|
| 1470 |
|
| 1471 |
************************************************************ |
| 1472 |
* COG2-3-4 computation |
| 1473 |
************************************************************ |
| 1474 |
|
| 1475 |
c print*,sl2,sl1,sc,sr1,sr2 |
| 1476 |
|
| 1477 |
vCOG = cog(ncog,ic)!0. |
| 1478 |
|
| 1479 |
if(ncog.eq.1)then |
| 1480 |
func = 1./12. |
| 1481 |
stot = 1. |
| 1482 |
elseif(ncog.eq.2)then |
| 1483 |
if(sl1.gt.sr1)then |
| 1484 |
func = (fsl1*(-1-vCOG)**2+fsc*(-vCOG)**2) |
| 1485 |
stot = sl1+sc |
| 1486 |
elseif(sl1.le.sr1)then |
| 1487 |
func = (fsc*(-vCOG)**2+fsr1*(1-vCOG)**2) |
| 1488 |
stot = sc+sr1 |
| 1489 |
endif |
| 1490 |
elseif(ncog.eq.3)then |
| 1491 |
func = |
| 1492 |
$ (fsl1*(-1-vCOG)**2+fsc*(-vCOG)**2+fsr1*(1-vCOG)**2) |
| 1493 |
stot = sl1+sc+sr1 |
| 1494 |
elseif(ncog.eq.4)then |
| 1495 |
if(sl2.gt.sr2)then |
| 1496 |
func = |
| 1497 |
$ (fsl2*(-2-vCOG)**2+fsl1*(-1-vCOG)**2 |
| 1498 |
$ +fsc*(-vCOG)**2+fsr1*(1-vCOG)**2) |
| 1499 |
stot = sl2+sl1+sc+sr1 |
| 1500 |
elseif(sl2.le.sr2)then |
| 1501 |
func = |
| 1502 |
$ (fsl1*(-1-vCOG)**2 |
| 1503 |
$ +fsc*(-vCOG)**2+fsr1*(1-vCOG)**2+fsr2*(2-vCOG)**2) |
| 1504 |
stot = sl2+sl1+sc+sr1 |
| 1505 |
endif |
| 1506 |
else |
| 1507 |
print*,'function riscogtheor(NCOG,IC) ==> NCOG=',NCOG |
| 1508 |
$ ,' not implemented' |
| 1509 |
endif |
| 1510 |
|
| 1511 |
elseif(ncog.eq.0)then |
| 1512 |
* ========================= |
| 1513 |
* COG computation |
| 1514 |
* ========================= |
| 1515 |
|
| 1516 |
vCOG = cog(0,ic) |
| 1517 |
|
| 1518 |
iv = VIEW(ic) |
| 1519 |
istart = INDSTART(IC) |
| 1520 |
istop = TOTCLLENGTH |
| 1521 |
if(ic.lt.NCLSTR1)istop = INDSTART(IC+1)-1 |
| 1522 |
ccc SGN = 0. |
| 1523 |
SNU = 0. |
| 1524 |
ccc SDE = 0. |
| 1525 |
|
| 1526 |
do i=INDMAX(IC),istart,-1 |
| 1527 |
ipos = i-INDMAX(ic) |
| 1528 |
cut = incut*CLSIGMA(i) |
| 1529 |
if(CLSIGNAL(i).gt.cut)then |
| 1530 |
fs = clsigma(i) |
| 1531 |
SNU = SNU + fs*(ipos-vCOG)**2 |
| 1532 |
stot = stot + CLSIGNAL(i) |
| 1533 |
else |
| 1534 |
goto 10 |
| 1535 |
endif |
| 1536 |
enddo |
| 1537 |
10 continue |
| 1538 |
do i=INDMAX(IC)+1,istop |
| 1539 |
ipos = i-INDMAX(ic) |
| 1540 |
cut = incut*CLSIGMA(i) |
| 1541 |
if(CLSIGNAL(i).gt.cut)then |
| 1542 |
fs = clsigma(i) |
| 1543 |
SNU = SNU + fs*(ipos-vCOG)**2 |
| 1544 |
stot = stot + CLSIGNAL(i) |
| 1545 |
else |
| 1546 |
goto 20 |
| 1547 |
endif |
| 1548 |
enddo |
| 1549 |
20 continue |
| 1550 |
if(SDE.ne.0)then |
| 1551 |
FUNC=SNU |
| 1552 |
else |
| 1553 |
|
| 1554 |
endif |
| 1555 |
|
| 1556 |
else |
| 1557 |
|
| 1558 |
FUNC=0 |
| 1559 |
print*,'function FUNC(NCOG,IC) ==> WARNING!! NCOG=',NCOG |
| 1560 |
print*,' (NCOG must be >= 0)' |
| 1561 |
|
| 1562 |
|
| 1563 |
endif |
| 1564 |
|
| 1565 |
|
| 1566 |
if(stot.gt.0..and.func.gt.0.)then |
| 1567 |
func = sqrt(func) |
| 1568 |
func = pitch * func/stot |
| 1569 |
endif |
| 1570 |
|
| 1571 |
riscogtheor = func |
| 1572 |
|
| 1573 |
return |
| 1574 |
end |
| 1575 |
|
| 1576 |
|
| 1577 |
|
| 1578 |
*** * * * *** * * * *** * * * *** * * * *** * * * *** * * * *** |
| 1579 |
|
| 1580 |
real function risetatheor(ncog,ic,angle) |
| 1581 |
*------------------------------------------------------- |
| 1582 |
* |
| 1583 |
* this function returns the expected resolution |
| 1584 |
* obtained by propagating the strip noise |
| 1585 |
* to the coordinate evaluated with non-linear eta-function |
| 1586 |
* |
| 1587 |
* ncog = n.strip used in the coordinate evaluation |
| 1588 |
* (ncog=0 => ncog=2,3,4 according to angle) |
| 1589 |
* |
| 1590 |
*------------------------------------------------------- |
| 1591 |
|
| 1592 |
include 'commontracker.f' |
| 1593 |
include 'level1.f' |
| 1594 |
include 'calib.f' |
| 1595 |
|
| 1596 |
|
| 1597 |
func = 1. |
| 1598 |
|
| 1599 |
iview = VIEW(ic) |
| 1600 |
lad = nld(MAXS(ic),VIEW(ic)) |
| 1601 |
|
| 1602 |
* ------------------------------------------------ |
| 1603 |
* number of strip to be used (in case of ncog = 0) |
| 1604 |
* ------------------------------------------------ |
| 1605 |
|
| 1606 |
inoeta = 0 |
| 1607 |
|
| 1608 |
if(mod(int(iview),2).eq.1)then !Y-view |
| 1609 |
|
| 1610 |
pitch = REAL(pitchY / 1.e4) !EM GCC 4.7 |
| 1611 |
|
| 1612 |
if(ncog.eq.0)then |
| 1613 |
if( abs(angle).ge.e2fay.and.abs(angle).le.e2tay )then |
| 1614 |
ncog = 2 |
| 1615 |
elseif( abs(angle).ge.e3fay.and.abs(angle).le.e3tay )then |
| 1616 |
ncog = 3 |
| 1617 |
elseif( abs(angle).ge.e4fay.and.abs(angle).le.e4tay )then |
| 1618 |
ncog = 4 |
| 1619 |
else |
| 1620 |
ncog = 4 |
| 1621 |
inoeta = 1 |
| 1622 |
endif |
| 1623 |
endif |
| 1624 |
|
| 1625 |
else !X-view |
| 1626 |
|
| 1627 |
pitch = REAL(pitchX / 1.e4) ! EM GCC4.7 |
| 1628 |
|
| 1629 |
if(ncog.eq.0)then |
| 1630 |
if( abs(angle).ge.e2fax.and.abs(angle).le.e2tax )then |
| 1631 |
ncog = 2 |
| 1632 |
elseif( abs(angle).ge.e3fax.and.abs(angle).le.e3tax )then |
| 1633 |
ncog = 3 |
| 1634 |
elseif( abs(angle).ge.e4fax.and.abs(angle).le.e4tax )then |
| 1635 |
ncog = 4 |
| 1636 |
else |
| 1637 |
ncog = 4 |
| 1638 |
inoeta = 1 |
| 1639 |
endif |
| 1640 |
endif |
| 1641 |
|
| 1642 |
endif |
| 1643 |
|
| 1644 |
func = riscogtheor(ncog,ic) |
| 1645 |
|
| 1646 |
risetatheor = func |
| 1647 |
|
| 1648 |
if(inoeta.eq.1)return ! no eta correction is applied --> exit |
| 1649 |
if(ncog.lt.1.or.ncog.gt.4)return |
| 1650 |
|
| 1651 |
* ---------------- |
| 1652 |
* find angular bin |
| 1653 |
* ---------------- |
| 1654 |
* (in futuro possiamo pensare di interpolare anche sull'angolo) |
| 1655 |
do iang=1,nangbin |
| 1656 |
if(angL(iang).lt.angle.and.angR(iang).ge.angle)then |
| 1657 |
iangle=iang |
| 1658 |
goto 98 |
| 1659 |
endif |
| 1660 |
enddo |
| 1661 |
if(DEBUG.EQ.1)print* |
| 1662 |
$ ,'risetatheor *** warning *** angle out of range: ',angle |
| 1663 |
if(angle.le.angL(1))iang=1 |
| 1664 |
if(angle.ge.angR(nangbin))iang=nangbin |
| 1665 |
98 continue !jump here if ok |
| 1666 |
|
| 1667 |
* ------------- |
| 1668 |
* within +/-0.5 |
| 1669 |
* ------------- |
| 1670 |
|
| 1671 |
vcog = cog(ncog,ic) |
| 1672 |
|
| 1673 |
etamin = eta2(1,iang) |
| 1674 |
etamax = eta2(netaval,iang) |
| 1675 |
|
| 1676 |
iaddmax=10 |
| 1677 |
iadd=0 |
| 1678 |
10 continue |
| 1679 |
if(vcog.lt.etamin)then |
| 1680 |
vcog = vcog + 1 |
| 1681 |
iadd = iadd + 1 |
| 1682 |
if(iadd>iaddmax)goto 111 |
| 1683 |
goto 10 |
| 1684 |
endif |
| 1685 |
20 continue |
| 1686 |
if(vcog.gt.etamax)then |
| 1687 |
vcog = vcog - 1 |
| 1688 |
iadd = iadd - 1 |
| 1689 |
if(iadd<-1*iaddmax)goto 111 |
| 1690 |
goto 20 |
| 1691 |
endif |
| 1692 |
goto 1111 |
| 1693 |
111 continue |
| 1694 |
if(DEBUG.eq.1) |
| 1695 |
$ print*,'risetatheor *** warning *** anomalous cluster' |
| 1696 |
if(DEBUG.eq.1) |
| 1697 |
$ print*,'--> COG(',ncog,') = ',vcog-iadd,' (set to zero)' |
| 1698 |
vcog=0 |
| 1699 |
1111 continue |
| 1700 |
|
| 1701 |
* ------------------------------------------------ |
| 1702 |
* interpolation |
| 1703 |
* ------------------------------------------------ |
| 1704 |
|
| 1705 |
|
| 1706 |
ibin = netaval |
| 1707 |
do i=2,netaval |
| 1708 |
if(ncog.eq.2)eta=eta2(i,iang) |
| 1709 |
if(ncog.eq.3)eta=eta3(i,iang) |
| 1710 |
if(ncog.eq.4)eta=eta4(i,iang) |
| 1711 |
if(eta.ge.vcog)then |
| 1712 |
ibin = i |
| 1713 |
goto 99 |
| 1714 |
endif |
| 1715 |
enddo |
| 1716 |
99 continue |
| 1717 |
|
| 1718 |
if(ncog.eq.2)then |
| 1719 |
x1 = eta2(ibin-1,iang) |
| 1720 |
x2 = eta2(ibin,iang) |
| 1721 |
y1 = feta2(ibin-1,iview,lad,iang) |
| 1722 |
y2 = feta2(ibin,iview,lad,iang) |
| 1723 |
elseif(ncog.eq.3)then |
| 1724 |
x1 = eta3(ibin-1,iang) |
| 1725 |
x2 = eta3(ibin,iang) |
| 1726 |
y1 = feta3(ibin-1,iview,lad,iang) |
| 1727 |
y2 = feta3(ibin,iview,lad,iang) |
| 1728 |
elseif(ncog.eq.4)then |
| 1729 |
x1 = eta4(ibin-1,iang) |
| 1730 |
x2 = eta4(ibin,iang) |
| 1731 |
y1 = feta4(ibin-1,iview,lad,iang) |
| 1732 |
y2 = feta4(ibin,iview,lad,iang) |
| 1733 |
endif |
| 1734 |
|
| 1735 |
func = func * (y2-y1)/(x2-x1) |
| 1736 |
|
| 1737 |
risetatheor = func |
| 1738 |
|
| 1739 |
return |
| 1740 |
end |
| 1741 |
|
| 1742 |
*** * * * *** * * * *** * * * *** * * * *** * * * *** * * * *** |
| 1743 |
|
| 1744 |
FUNCTION risxeta2(x) |
| 1745 |
|
| 1746 |
DOUBLE PRECISION HQUADF ! EM GCC4.7 |
| 1747 |
DOUBLE PRECISION V( 1) |
| 1748 |
INTEGER NPAR, NDIM, IMQFUN, I, J |
| 1749 |
DOUBLE PRECISION HQDJ, VV, VCONST |
| 1750 |
DOUBLE PRECISION SIGVMI( 1), SIGVT( 1) |
| 1751 |
DOUBLE PRECISION SIGV( 18, 1) |
| 1752 |
DOUBLE PRECISION SIGDEL( 18) |
| 1753 |
DOUBLE PRECISION SIGA( 18) |
| 1754 |
DATA NPAR, NDIM, IMQFUN / 18, 1, 1/ |
| 1755 |
DATA VCONST / 0.000000000000 / |
| 1756 |
DATA SIGVMI / -20.50000000000 / |
| 1757 |
DATA SIGVT / 41.00000000000 / |
| 1758 |
DATA SIGV / 0.6097560748458E-01 |
| 1759 |
+, 0.1097560971975 |
| 1760 |
+, 0.1341463327408 |
| 1761 |
+, 0.1829268187284 |
| 1762 |
+, 0.2317073047161 |
| 1763 |
+, 0.4268292486668 |
| 1764 |
+, 0.4756097495556 |
| 1765 |
+, 0.4999999701977 |
| 1766 |
+, 0.5243902206421 |
| 1767 |
+, 0.5731707215309 |
| 1768 |
+, 0.7682926654816 |
| 1769 |
+, 0.8170731663704 |
| 1770 |
+, 0.8658536076546 |
| 1771 |
+, 0.8902438879013 |
| 1772 |
+, 0.9390243291855 |
| 1773 |
+, 0.000000000000 |
| 1774 |
+, 1.000000000000 |
| 1775 |
+, 0.3658536374569 |
| 1776 |
+/ |
| 1777 |
DATA SIGDEL / 0.4878048598766E-01 |
| 1778 |
+, 0.4878048598766E-01 |
| 1779 |
+, 0.4878048598766E-01 |
| 1780 |
+, 0.4878048598766E-01 |
| 1781 |
+, 0.4878048598766E-01 |
| 1782 |
+, 0.4878048598766E-01 |
| 1783 |
+, 0.4878048598766E-01 |
| 1784 |
+, 0.4878048598766E-01 |
| 1785 |
+, 0.4878048598766E-01 |
| 1786 |
+, 0.4878048598766E-01 |
| 1787 |
+, 0.4878048598766E-01 |
| 1788 |
+, 0.4878048598766E-01 |
| 1789 |
+, 0.4878048598766E-01 |
| 1790 |
+, 0.4878048598766E-01 |
| 1791 |
+, 0.4878048598766E-01 |
| 1792 |
+, 0.1999999994950E-05 |
| 1793 |
+, 0.1999999994950E-05 |
| 1794 |
+, 0.9756097197533E-01 |
| 1795 |
+/ |
| 1796 |
DATA SIGA / 51.65899502118 |
| 1797 |
+, -150.4733247841 |
| 1798 |
+, 143.0468613786 |
| 1799 |
+, -16.56096738997 |
| 1800 |
+, 5.149319798083 |
| 1801 |
+, 21.57149712673 |
| 1802 |
+, -39.46652322782 |
| 1803 |
+, 47.13181632948 |
| 1804 |
+, -32.93197883680 |
| 1805 |
+, 16.38645317092 |
| 1806 |
+, 1.453688482992 |
| 1807 |
+, -10.00547244421 |
| 1808 |
+, 131.3517670587 |
| 1809 |
+, -140.6351538257 |
| 1810 |
+, 49.05515749582 |
| 1811 |
+, -23.00028974788 |
| 1812 |
+, -22.58470403729 |
| 1813 |
+, -3.824682486418 |
| 1814 |
+/ |
| 1815 |
|
| 1816 |
V(1)= abs(x) |
| 1817 |
if(V(1).gt.20.)V(1)=20. |
| 1818 |
|
| 1819 |
HQUADF = 0. |
| 1820 |
DO 20 J = 1, NPAR |
| 1821 |
HQDJ = 0. |
| 1822 |
DO 10 I = 1, NDIM |
| 1823 |
VV = (V (I) - SIGVMI (I)) / SIGVT (I) |
| 1824 |
HQDJ = HQDJ + (VV - SIGV (J, I)) ** 2 |
| 1825 |
10 CONTINUE |
| 1826 |
HQDJ = HQDJ + SIGDEL (J) ** 2 |
| 1827 |
HQDJ = SQRT (HQDJ) |
| 1828 |
HQUADF = HQUADF + SIGA (J) * HQDJ |
| 1829 |
20 CONTINUE |
| 1830 |
IF (IMQFUN .EQ. 2) HQUADF = VCONST * EXP (HQUADF) |
| 1831 |
|
| 1832 |
risxeta2=REAL(HQUADF* 1e-4) ! EM GCC4.7 all computation here are done in double precision but the function returns REAL since it is undefined and it is used in the code in single precision variables |
| 1833 |
|
| 1834 |
END |
| 1835 |
|
| 1836 |
*** * * * *** * * * *** * * * *** * * * *** * * * *** * * * *** |
| 1837 |
FUNCTION risxeta3(x) |
| 1838 |
DOUBLE PRECISION HQUADF ! EM GCC4.7 |
| 1839 |
DOUBLE PRECISION V( 1) |
| 1840 |
INTEGER NPAR, NDIM, IMQFUN, I, J |
| 1841 |
DOUBLE PRECISION HQDJ, VV, VCONST |
| 1842 |
DOUBLE PRECISION SIGVMI( 1), SIGVT( 1) |
| 1843 |
DOUBLE PRECISION SIGV( 18, 1) |
| 1844 |
DOUBLE PRECISION SIGDEL( 18) |
| 1845 |
DOUBLE PRECISION SIGA( 18) |
| 1846 |
DATA NPAR, NDIM, IMQFUN / 18, 1, 1/ |
| 1847 |
DATA VCONST / 0.000000000000 / |
| 1848 |
DATA SIGVMI / -20.50000000000 / |
| 1849 |
DATA SIGVT / 41.00000000000 / |
| 1850 |
DATA SIGV / 0.6097560748458E-01 |
| 1851 |
+, 0.1097560971975 |
| 1852 |
+, 0.1341463327408 |
| 1853 |
+, 0.1829268187284 |
| 1854 |
+, 0.2317073047161 |
| 1855 |
+, 0.4756097495556 |
| 1856 |
+, 0.4999999701977 |
| 1857 |
+, 0.5243902206421 |
| 1858 |
+, 0.7682926654816 |
| 1859 |
+, 0.8170731663704 |
| 1860 |
+, 0.8658536076546 |
| 1861 |
+, 0.8902438879013 |
| 1862 |
+, 0.9390243291855 |
| 1863 |
+, 0.000000000000 |
| 1864 |
+, 1.000000000000 |
| 1865 |
+, 0.3658536374569 |
| 1866 |
+, 0.4146341383457 |
| 1867 |
+, 0.6097560524940 |
| 1868 |
+/ |
| 1869 |
DATA SIGDEL / 0.4878048598766E-01 |
| 1870 |
+, 0.4878048598766E-01 |
| 1871 |
+, 0.4878048598766E-01 |
| 1872 |
+, 0.4878048598766E-01 |
| 1873 |
+, 0.4878048598766E-01 |
| 1874 |
+, 0.4878048598766E-01 |
| 1875 |
+, 0.4878048598766E-01 |
| 1876 |
+, 0.4878048598766E-01 |
| 1877 |
+, 0.4878048598766E-01 |
| 1878 |
+, 0.4878048598766E-01 |
| 1879 |
+, 0.4878048598766E-01 |
| 1880 |
+, 0.4878048598766E-01 |
| 1881 |
+, 0.4878048598766E-01 |
| 1882 |
+, 0.1999999994950E-05 |
| 1883 |
+, 0.1999999994950E-05 |
| 1884 |
+, 0.9756097197533E-01 |
| 1885 |
+, 0.9756097197533E-01 |
| 1886 |
+, 0.9756097197533E-01 |
| 1887 |
+/ |
| 1888 |
DATA SIGA / 55.18284054458 |
| 1889 |
+, -160.3358431242 |
| 1890 |
+, 144.6939185763 |
| 1891 |
+, -20.45200854118 |
| 1892 |
+, 5.223570087108 |
| 1893 |
+,-0.4171476953945 |
| 1894 |
+, -27.67911907462 |
| 1895 |
+, 17.70327157495 |
| 1896 |
+, -1.867165491707 |
| 1897 |
+, -8.884458169181 |
| 1898 |
+, 124.3526608791 |
| 1899 |
+, -143.3309398345 |
| 1900 |
+, 50.80345027122 |
| 1901 |
+, -16.44454904415 |
| 1902 |
+, -15.73785568450 |
| 1903 |
+, -22.71810502561 |
| 1904 |
+, 36.86170101430 |
| 1905 |
+, 2.437918198452 |
| 1906 |
+/ |
| 1907 |
|
| 1908 |
V(1) = abs(x) |
| 1909 |
if(V(1).gt.20.)V(1)=20. |
| 1910 |
|
| 1911 |
HQUADF = 0. |
| 1912 |
DO 20 J = 1, NPAR |
| 1913 |
HQDJ = 0. |
| 1914 |
DO 10 I = 1, NDIM |
| 1915 |
VV = (V (I) - SIGVMI (I)) / SIGVT (I) |
| 1916 |
HQDJ = HQDJ + (VV - SIGV (J, I)) ** 2 |
| 1917 |
10 CONTINUE |
| 1918 |
HQDJ = HQDJ + SIGDEL (J) ** 2 |
| 1919 |
HQDJ = SQRT (HQDJ) |
| 1920 |
HQUADF = HQUADF + SIGA (J) * HQDJ |
| 1921 |
20 CONTINUE |
| 1922 |
IF (IMQFUN .EQ. 2) HQUADF = VCONST * EXP (HQUADF) |
| 1923 |
|
| 1924 |
risxeta3 = REAL(HQUADF* 1e-4) ! EM GCC4.7 all computation here are done in double precision but the function returns REAL since it is undefined and it is used in the code in single precision variables |
| 1925 |
|
| 1926 |
END |
| 1927 |
*** * * * *** * * * *** * * * *** * * * *** * * * *** * * * *** |
| 1928 |
FUNCTION risxeta4(x) |
| 1929 |
DOUBLE PRECISION HQUADF ! EM GCC4.7 |
| 1930 |
DOUBLE PRECISION V( 1) |
| 1931 |
INTEGER NPAR, NDIM, IMQFUN, I, J |
| 1932 |
DOUBLE PRECISION HQDJ, VV, VCONST |
| 1933 |
DOUBLE PRECISION SIGVMI( 1), SIGVT( 1) |
| 1934 |
DOUBLE PRECISION SIGV( 18, 1) |
| 1935 |
DOUBLE PRECISION SIGDEL( 18) |
| 1936 |
DOUBLE PRECISION SIGA( 18) |
| 1937 |
DATA NPAR, NDIM, IMQFUN / 18, 1, 1/ |
| 1938 |
DATA VCONST / 0.000000000000 / |
| 1939 |
DATA SIGVMI / -20.50000000000 / |
| 1940 |
DATA SIGVT / 41.00000000000 / |
| 1941 |
DATA SIGV / 0.3658536449075E-01 |
| 1942 |
+, 0.6097560748458E-01 |
| 1943 |
+, 0.1097560971975 |
| 1944 |
+, 0.1341463327408 |
| 1945 |
+, 0.4756097495556 |
| 1946 |
+, 0.5243902206421 |
| 1947 |
+, 0.8658536076546 |
| 1948 |
+, 0.8902438879013 |
| 1949 |
+, 0.9390243291855 |
| 1950 |
+, 0.9634146094322 |
| 1951 |
+, 0.000000000000 |
| 1952 |
+, 1.000000000000 |
| 1953 |
+, 0.3658536374569 |
| 1954 |
+, 0.4146341383457 |
| 1955 |
+, 0.6097560524940 |
| 1956 |
+, 0.6585365533829 |
| 1957 |
+, 0.7560975551605 |
| 1958 |
+, 0.2439024299383 |
| 1959 |
+/ |
| 1960 |
DATA SIGDEL / 0.4878048598766E-01 |
| 1961 |
+, 0.4878048598766E-01 |
| 1962 |
+, 0.4878048598766E-01 |
| 1963 |
+, 0.4878048598766E-01 |
| 1964 |
+, 0.4878048598766E-01 |
| 1965 |
+, 0.4878048598766E-01 |
| 1966 |
+, 0.4878048598766E-01 |
| 1967 |
+, 0.4878048598766E-01 |
| 1968 |
+, 0.4878048598766E-01 |
| 1969 |
+, 0.4878048598766E-01 |
| 1970 |
+, 0.1999999994950E-05 |
| 1971 |
+, 0.1999999994950E-05 |
| 1972 |
+, 0.9756097197533E-01 |
| 1973 |
+, 0.9756097197533E-01 |
| 1974 |
+, 0.9756097197533E-01 |
| 1975 |
+, 0.9756097197533E-01 |
| 1976 |
+, 0.9756097197533E-01 |
| 1977 |
+, 0.1951219439507 |
| 1978 |
+/ |
| 1979 |
DATA SIGA / -43.61551887895 |
| 1980 |
+, 57.88466995373 |
| 1981 |
+, -92.04113299504 |
| 1982 |
+, 74.08166649890 |
| 1983 |
+, -9.768686062558 |
| 1984 |
+, -4.304496875334 |
| 1985 |
+, 72.62237333937 |
| 1986 |
+, -91.21920840618 |
| 1987 |
+, 56.75519978630 |
| 1988 |
+, -43.21115751243 |
| 1989 |
+, 12.79984505413 |
| 1990 |
+, 12.10074868595 |
| 1991 |
+, -6.238587250860 |
| 1992 |
+, 23.43447356326 |
| 1993 |
+, 17.98221401495 |
| 1994 |
+, -7.980332610975 |
| 1995 |
+, -3.426733307051 |
| 1996 |
+, -8.683439558751 |
| 1997 |
+/ |
| 1998 |
|
| 1999 |
V(1)=abs(x) |
| 2000 |
if(V(1).gt.20.)V(1)=20. |
| 2001 |
|
| 2002 |
HQUADF = 0. |
| 2003 |
DO 20 J = 1, NPAR |
| 2004 |
HQDJ = 0. |
| 2005 |
DO 10 I = 1, NDIM |
| 2006 |
VV = (V (I) - SIGVMI (I)) / SIGVT (I) |
| 2007 |
HQDJ = HQDJ + (VV - SIGV (J, I)) ** 2 |
| 2008 |
10 CONTINUE |
| 2009 |
HQDJ = HQDJ + SIGDEL (J) ** 2 |
| 2010 |
HQDJ = SQRT (HQDJ) |
| 2011 |
HQUADF = HQUADF + SIGA (J) * HQDJ |
| 2012 |
20 CONTINUE |
| 2013 |
IF (IMQFUN .EQ. 2) HQUADF = VCONST * EXP (HQUADF) |
| 2014 |
|
| 2015 |
risxeta4=REAL(HQUADF* 1e-4) ! EM GCC4.7 all computation here are done in double precision but the function returns REAL since it is undefined and it is used in the code in single precision variables |
| 2016 |
|
| 2017 |
END |
| 2018 |
*** * * * *** * * * *** * * * *** * * * *** * * * *** * * * *** |
| 2019 |
FUNCTION risyeta2(x) |
| 2020 |
DOUBLE PRECISION HQUADF ! EM GCC4.7 |
| 2021 |
DOUBLE PRECISION V( 1) |
| 2022 |
INTEGER NPAR, NDIM, IMQFUN, I, J |
| 2023 |
DOUBLE PRECISION HQDJ, VV, VCONST |
| 2024 |
DOUBLE PRECISION SIGVMI( 1), SIGVT( 1) |
| 2025 |
DOUBLE PRECISION SIGV( 12, 1) |
| 2026 |
DOUBLE PRECISION SIGDEL( 12) |
| 2027 |
DOUBLE PRECISION SIGA( 12) |
| 2028 |
DATA NPAR, NDIM, IMQFUN / 12, 1, 1/ |
| 2029 |
DATA VCONST / 0.000000000000 / |
| 2030 |
DATA SIGVMI / -20.50000000000 / |
| 2031 |
DATA SIGVT / 41.00000000000 / |
| 2032 |
DATA SIGV / 0.1585365831852 |
| 2033 |
+, 0.4024389982224 |
| 2034 |
+, 0.4756097495556 |
| 2035 |
+, 0.5243902206421 |
| 2036 |
+, 0.5975609421730 |
| 2037 |
+, 0.8414633870125 |
| 2038 |
+, 0.000000000000 |
| 2039 |
+, 1.000000000000 |
| 2040 |
+, 0.2682926654816 |
| 2041 |
+, 0.3170731663704 |
| 2042 |
+, 0.7073170542717 |
| 2043 |
+, 0.7560975551605 |
| 2044 |
+/ |
| 2045 |
DATA SIGDEL / 0.4878048598766E-01 |
| 2046 |
+, 0.4878048598766E-01 |
| 2047 |
+, 0.4878048598766E-01 |
| 2048 |
+, 0.4878048598766E-01 |
| 2049 |
+, 0.4878048598766E-01 |
| 2050 |
+, 0.4878048598766E-01 |
| 2051 |
+, 0.1999999994950E-05 |
| 2052 |
+, 0.1999999994950E-05 |
| 2053 |
+, 0.9756097197533E-01 |
| 2054 |
+, 0.9756097197533E-01 |
| 2055 |
+, 0.9756097197533E-01 |
| 2056 |
+, 0.9756097197533E-01 |
| 2057 |
+/ |
| 2058 |
DATA SIGA / 14.57433603529 |
| 2059 |
+, -15.93532436156 |
| 2060 |
+, -13.24628335221 |
| 2061 |
+, -14.31193855410 |
| 2062 |
+, -12.67339684488 |
| 2063 |
+, 18.19876051780 |
| 2064 |
+, -5.270493486725 |
| 2065 |
+, -5.107670990828 |
| 2066 |
+, -9.553262933901 |
| 2067 |
+, 43.34150727448 |
| 2068 |
+, 55.91366786432 |
| 2069 |
+, -29.38037318563 |
| 2070 |
+/ |
| 2071 |
|
| 2072 |
v(1)= abs(x) |
| 2073 |
if(V(1).gt.20.)V(1)=20. |
| 2074 |
|
| 2075 |
HQUADF = 0. |
| 2076 |
DO 20 J = 1, NPAR |
| 2077 |
HQDJ = 0. |
| 2078 |
DO 10 I = 1, NDIM |
| 2079 |
VV = (V (I) - SIGVMI (I)) / SIGVT (I) |
| 2080 |
HQDJ = HQDJ + (VV - SIGV (J, I)) ** 2 |
| 2081 |
10 CONTINUE |
| 2082 |
HQDJ = HQDJ + SIGDEL (J) ** 2 |
| 2083 |
HQDJ = SQRT (HQDJ) |
| 2084 |
HQUADF = HQUADF + SIGA (J) * HQDJ |
| 2085 |
20 CONTINUE |
| 2086 |
IF (IMQFUN .EQ. 2) HQUADF = VCONST * EXP (HQUADF) |
| 2087 |
|
| 2088 |
risyeta2=REAL(HQUADF* 1e-4) ! EM GCC4.7 all computation here are done in double precision but the function returns REAL since it is undefined and it is used in the code in single precision variables |
| 2089 |
|
| 2090 |
END |
| 2091 |
*** * * * *** * * * *** * * * *** * * * *** * * * *** * * * *** |
| 2092 |
|
| 2093 |
FUNCTION risy_cog(x) |
| 2094 |
DOUBLE PRECISION HQUADF ! EM GCC4.7 |
| 2095 |
DOUBLE PRECISION V( 1) |
| 2096 |
INTEGER NPAR, NDIM, IMQFUN, I, J |
| 2097 |
DOUBLE PRECISION HQDJ, VV, VCONST |
| 2098 |
DOUBLE PRECISION SIGVMI( 1), SIGVT( 1) |
| 2099 |
DOUBLE PRECISION SIGV( 10, 1) |
| 2100 |
DOUBLE PRECISION SIGDEL( 10) |
| 2101 |
DOUBLE PRECISION SIGA( 10) |
| 2102 |
DATA NPAR, NDIM, IMQFUN / 10, 1, 1/ |
| 2103 |
DATA VCONST / 0.000000000000 / |
| 2104 |
DATA SIGVMI / -20.50000000000 / |
| 2105 |
DATA SIGVT / 41.00000000000 / |
| 2106 |
DATA SIGV / 0.1585365831852 |
| 2107 |
+, 0.8414633870125 |
| 2108 |
+, 0.000000000000 |
| 2109 |
+, 1.000000000000 |
| 2110 |
+, 0.4634146094322 |
| 2111 |
+, 0.5121951103210 |
| 2112 |
+, 0.5609756112099 |
| 2113 |
+, 0.6585365533829 |
| 2114 |
+, 0.7073170542717 |
| 2115 |
+, 0.3414633870125 |
| 2116 |
+/ |
| 2117 |
DATA SIGDEL / 0.4878048598766E-01 |
| 2118 |
+, 0.4878048598766E-01 |
| 2119 |
+, 0.1999999994950E-05 |
| 2120 |
+, 0.1999999994950E-05 |
| 2121 |
+, 0.9756097197533E-01 |
| 2122 |
+, 0.9756097197533E-01 |
| 2123 |
+, 0.9756097197533E-01 |
| 2124 |
+, 0.9756097197533E-01 |
| 2125 |
+, 0.9756097197533E-01 |
| 2126 |
+, 0.1951219439507 |
| 2127 |
+/ |
| 2128 |
DATA SIGA / 23.73833445988 |
| 2129 |
+, 24.10182100013 |
| 2130 |
+, 1.865894323190 |
| 2131 |
+, 1.706006262931 |
| 2132 |
+, -1.075607857202 |
| 2133 |
+, -22.11489493403 |
| 2134 |
+, 1.663100707801 |
| 2135 |
+, 4.089852595440 |
| 2136 |
+, -4.314993873697 |
| 2137 |
+, -2.174479487744 |
| 2138 |
+/ |
| 2139 |
|
| 2140 |
V(1)=abs(x) |
| 2141 |
if(V(1).gt.20.)V(1)=20. |
| 2142 |
|
| 2143 |
HQUADF = 0. |
| 2144 |
DO 20 J = 1, NPAR |
| 2145 |
HQDJ = 0. |
| 2146 |
DO 10 I = 1, NDIM |
| 2147 |
VV = (V (I) - SIGVMI (I)) / SIGVT (I) |
| 2148 |
HQDJ = HQDJ + (VV - SIGV (J, I)) ** 2 |
| 2149 |
10 CONTINUE |
| 2150 |
HQDJ = HQDJ + SIGDEL (J) ** 2 |
| 2151 |
HQDJ = SQRT (HQDJ) |
| 2152 |
HQUADF = HQUADF + SIGA (J) * HQDJ |
| 2153 |
20 CONTINUE |
| 2154 |
IF (IMQFUN .EQ. 2) HQUADF = VCONST * EXP (HQUADF) |
| 2155 |
|
| 2156 |
risy_cog=REAL(HQUADF* 1e-4) ! EM GCC4.7 all computation here are done in double precision but the function returns REAL since it is undefined and it is used in the code in single precision variables |
| 2157 |
|
| 2158 |
END |
| 2159 |
*** * * * *** * * * *** * * * *** * * * *** * * * *** * * * *** |
| 2160 |
FUNCTION risx_cog(x) |
| 2161 |
DOUBLE PRECISION HQUADF ! EM GCC4.7 |
| 2162 |
DOUBLE PRECISION V( 1) |
| 2163 |
INTEGER NPAR, NDIM, IMQFUN, I, J |
| 2164 |
DOUBLE PRECISION HQDJ, VV, VCONST |
| 2165 |
DOUBLE PRECISION SIGVMI( 1), SIGVT( 1) |
| 2166 |
DOUBLE PRECISION SIGV( 15, 1) |
| 2167 |
DOUBLE PRECISION SIGDEL( 15) |
| 2168 |
DOUBLE PRECISION SIGA( 15) |
| 2169 |
DATA NPAR, NDIM, IMQFUN / 15, 1, 1/ |
| 2170 |
DATA VCONST / 0.000000000000 / |
| 2171 |
DATA SIGVMI / -20.50000000000 / |
| 2172 |
DATA SIGVT / 41.00000000000 / |
| 2173 |
DATA SIGV / 0.6097560748458E-01 |
| 2174 |
+, 0.8536584675312E-01 |
| 2175 |
+, 0.1341463327408 |
| 2176 |
+, 0.2317073047161 |
| 2177 |
+, 0.2804878056049 |
| 2178 |
+, 0.3780487775803 |
| 2179 |
+, 0.6219512224197 |
| 2180 |
+, 0.7195121645927 |
| 2181 |
+, 0.7682926654816 |
| 2182 |
+, 0.8658536076546 |
| 2183 |
+, 0.9146341085434 |
| 2184 |
+, 0.9390243291855 |
| 2185 |
+, 0.000000000000 |
| 2186 |
+, 1.000000000000 |
| 2187 |
+, 0.5121951103210 |
| 2188 |
+/ |
| 2189 |
DATA SIGDEL / 0.4878048598766E-01 |
| 2190 |
+, 0.4878048598766E-01 |
| 2191 |
+, 0.4878048598766E-01 |
| 2192 |
+, 0.4878048598766E-01 |
| 2193 |
+, 0.4878048598766E-01 |
| 2194 |
+, 0.4878048598766E-01 |
| 2195 |
+, 0.4878048598766E-01 |
| 2196 |
+, 0.4878048598766E-01 |
| 2197 |
+, 0.4878048598766E-01 |
| 2198 |
+, 0.4878048598766E-01 |
| 2199 |
+, 0.4878048598766E-01 |
| 2200 |
+, 0.4878048598766E-01 |
| 2201 |
+, 0.1999999994950E-05 |
| 2202 |
+, 0.1999999994950E-05 |
| 2203 |
+, 0.9756097197533E-01 |
| 2204 |
+/ |
| 2205 |
DATA SIGA / 31.95672945139 |
| 2206 |
+, -34.23286209245 |
| 2207 |
+, -6.298459168211 |
| 2208 |
+, 10.98847700545 |
| 2209 |
+,-0.3052213535054 |
| 2210 |
+, 13.10517991464 |
| 2211 |
+, 15.60290821679 |
| 2212 |
+, -1.956118448507 |
| 2213 |
+, 12.41453816720 |
| 2214 |
+, -7.354056408553 |
| 2215 |
+, -32.32512668778 |
| 2216 |
+, 30.61116178966 |
| 2217 |
+, 1.418505329236 |
| 2218 |
+, 1.583492573619 |
| 2219 |
+, -18.48799977042 |
| 2220 |
+/ |
| 2221 |
|
| 2222 |
V(1)=abs(x) |
| 2223 |
if(V(1).gt.20.)V(1)=20. |
| 2224 |
|
| 2225 |
HQUADF = 0. |
| 2226 |
DO 20 J = 1, NPAR |
| 2227 |
HQDJ = 0. |
| 2228 |
DO 10 I = 1, NDIM |
| 2229 |
VV = (V (I) - SIGVMI (I)) / SIGVT (I) |
| 2230 |
HQDJ = HQDJ + (VV - SIGV (J, I)) ** 2 |
| 2231 |
10 CONTINUE |
| 2232 |
HQDJ = HQDJ + SIGDEL (J) ** 2 |
| 2233 |
HQDJ = SQRT (HQDJ) |
| 2234 |
HQUADF = HQUADF + SIGA (J) * HQDJ |
| 2235 |
20 CONTINUE |
| 2236 |
IF (IMQFUN .EQ. 2) HQUADF = VCONST * EXP (HQUADF) |
| 2237 |
|
| 2238 |
risx_cog = REAL(HQUADF * 1e-4) ! EM GCC4.7 all computation here are done in double precision but the function returns REAL since it is undefined and it is used in the code in single precision variables |
| 2239 |
|
| 2240 |
END |
| 2241 |
|
| 2242 |
|
| 2243 |
*** * * * *** * * * *** * * * *** * * * *** * * * *** * * * *** |
| 2244 |
real function pfacorr(ic,angle) |
| 2245 |
*-------------------------------------------------------------- |
| 2246 |
* this function returns the landi correction for this cluster |
| 2247 |
*-------------------------------------------------------------- |
| 2248 |
include 'commontracker.f' |
| 2249 |
include 'calib.f' |
| 2250 |
include 'level1.f' |
| 2251 |
|
| 2252 |
real angle |
| 2253 |
integer iview,lad |
| 2254 |
|
| 2255 |
iview = VIEW(ic) |
| 2256 |
lad = nld(MAXS(ic),VIEW(ic)) |
| 2257 |
|
| 2258 |
* find angular bin |
| 2259 |
* (in futuro possiamo pensare di interpolare anche sull'angolo) |
| 2260 |
do iang=1,nangbin |
| 2261 |
if(angL(iang).lt.angle.and.angR(iang).ge.angle)then |
| 2262 |
iangle=iang |
| 2263 |
goto 98 |
| 2264 |
endif |
| 2265 |
enddo |
| 2266 |
if(DEBUG.eq.1) |
| 2267 |
$ print*,'pfacorr *** warning *** angle out of range: ',angle |
| 2268 |
if(angle.le.angL(1))iang=1 |
| 2269 |
if(angle.ge.angR(nangbin))iang=nangbin |
| 2270 |
98 continue !jump here if ok |
| 2271 |
|
| 2272 |
pfacorr = fcorr(iview,lad,iang) |
| 2273 |
|
| 2274 |
if(DEBUG.eq.1)print*,'LANDI (ic ',ic,' ang',angle,') -->',pfacorr |
| 2275 |
|
| 2276 |
|
| 2277 |
c 100 return |
| 2278 |
return |
| 2279 |
end |