1 |
************************************************************ |
2 |
* The following subroutines |
3 |
* - track_finding >> hough transform |
4 |
* - track_fitting >> bob golden fitting |
5 |
* all the procedures to create LEVEL2 data, starting from LEVEL1 data. |
6 |
* |
7 |
* |
8 |
* |
9 |
* (This subroutine and all the dependent subroutines |
10 |
* will be included in the flight software) |
11 |
************************************************************ |
12 |
subroutine track_finding(iflag) |
13 |
|
14 |
include 'commontracker.f' |
15 |
include 'level1.f' |
16 |
include 'common_momanhough.f' |
17 |
include 'common_mech.f' |
18 |
include 'common_xyzPAM.f' |
19 |
include 'common_mini_2.f' |
20 |
include 'calib.f' |
21 |
include 'level2.f' |
22 |
|
23 |
c include 'momanhough_init.f' |
24 |
|
25 |
*------------------------------------------------------------------------------- |
26 |
* STEP 1 |
27 |
*------------------------------------------------------------------------------- |
28 |
* X-Y cluster association |
29 |
* |
30 |
* Clusters are associated to form COUPLES |
31 |
* Clusters not associated in any couple are called SINGLETS |
32 |
* |
33 |
* Track identification (Hough transform) and fitting is first done on couples. |
34 |
* Hence singlets are possibly added to the track. |
35 |
* |
36 |
* Variables assigned by the routine "cl_to_couples" are those in the |
37 |
* common blocks: |
38 |
* - common/clusters/cl_good |
39 |
* - common/couples/clx,cly,ncp_plane,ncp_tot,cp_useds1,cp_useds2 |
40 |
* - common/singlets/ncls,cls,cl_single |
41 |
*------------------------------------------------------------------------------- |
42 |
*------------------------------------------------------------------------------- |
43 |
|
44 |
c iflag=0 |
45 |
call cl_to_couples(iflag) |
46 |
if(iflag.eq.1)then !bad event |
47 |
goto 880 !go to next event |
48 |
endif |
49 |
|
50 |
*----------------------------------------------------- |
51 |
*----------------------------------------------------- |
52 |
* HOUGH TRASFORM |
53 |
*----------------------------------------------------- |
54 |
*----------------------------------------------------- |
55 |
|
56 |
|
57 |
*------------------------------------------------------------------------------- |
58 |
* STEP 2 |
59 |
*------------------------------------------------------------------------------- |
60 |
* |
61 |
* Association of couples to form |
62 |
* - DOUBLETS in YZ view |
63 |
* - TRIPLETS in XZ view |
64 |
* |
65 |
* Variables assigned by the routine "cp_to_doubtrip" are those in the |
66 |
* common blocks: |
67 |
* - common/hough_param/ |
68 |
* $ alfayz1, !Y0 |
69 |
* $ alfayz2, !tg theta-yz |
70 |
* $ alfaxz1, !X0 |
71 |
* $ alfaxz2, !tg theta-xz |
72 |
* $ alfaxz3 !1/r |
73 |
* - common/doublets/ndblt,cpyz1,cpyz2 |
74 |
* - common/triplets/ntrpt,cpxz1,cpxz2,cpxz3 |
75 |
*------------------------------------------------------------------------------- |
76 |
*------------------------------------------------------------------------------- |
77 |
|
78 |
c iflag=0 |
79 |
call cp_to_doubtrip(iflag) |
80 |
if(iflag.eq.1)then !bad event |
81 |
goto 880 !go to next event |
82 |
endif |
83 |
|
84 |
|
85 |
*------------------------------------------------------------------------------- |
86 |
* STEP 3 |
87 |
*------------------------------------------------------------------------------- |
88 |
* |
89 |
* Classification of doublets and triplets to form CLOUDS, |
90 |
* according to distance in parameter space. |
91 |
* |
92 |
* cloud = cluster of points (doublets/triplets) in parameter space |
93 |
* |
94 |
* |
95 |
* |
96 |
* Variables assigned by the routine "doub_to_YZcloud" are those in the |
97 |
* common blocks: |
98 |
* - common/clouds_yz/ |
99 |
* $ nclouds_yz |
100 |
* $ ,alfayz1_av,alfayz2_av |
101 |
* $ ,ptcloud_yz,db_cloud,cpcloud_yz |
102 |
* |
103 |
* Variables assigned by the routine "trip_to_XZcloud" are those in the |
104 |
* common blocks: |
105 |
* common/clouds_xz/ |
106 |
* $ nclouds_xz xz2_av,alfaxz3_av |
107 |
* $ ,ptcloud_xz,tr_cloud,cpcloud_xz |
108 |
*------------------------------------------------------------------------------- |
109 |
*------------------------------------------------------------------------------- |
110 |
* count number of hit planes |
111 |
planehit=0 |
112 |
do np=1,nplanes |
113 |
if(ncp_plane(np).ne.0)then |
114 |
planehit=planehit+1 |
115 |
endif |
116 |
enddo |
117 |
if(planehit.lt.3) goto 880 ! exit |
118 |
|
119 |
nptxz_min=x_min_start |
120 |
nplxz_min=x_min_start |
121 |
|
122 |
nptyz_min=y_min_start |
123 |
nplyz_min=y_min_start |
124 |
|
125 |
cutdistyz=cutystart |
126 |
cutdistxz=cutxstart |
127 |
|
128 |
878 continue |
129 |
call doub_to_YZcloud(iflag) |
130 |
if(iflag.eq.1)then !bad event |
131 |
goto 880 !fill ntp and go to next event |
132 |
endif |
133 |
if(nclouds_yz.eq.0.and.cutdistyz.lt.maxcuty)then |
134 |
if(cutdistyz.lt.maxcuty/2)then |
135 |
cutdistyz=cutdistyz+cutystep |
136 |
else |
137 |
cutdistyz=cutdistyz+(3*cutystep) |
138 |
endif |
139 |
goto 878 |
140 |
endif |
141 |
|
142 |
if(planehit.eq.3) goto 881 |
143 |
|
144 |
879 continue |
145 |
call trip_to_XZcloud(iflag) |
146 |
if(iflag.eq.1)then !bad event |
147 |
goto 880 !fill ntp and go to next event |
148 |
endif |
149 |
|
150 |
if(nclouds_xz.eq.0.and.cutdistxz.lt.maxcutx)then |
151 |
cutdistxz=cutdistxz+cutxstep |
152 |
goto 879 |
153 |
endif |
154 |
|
155 |
|
156 |
881 continue |
157 |
* if there is at least three planes on the Y view decreases cuts on X view |
158 |
if(nclouds_xz.eq.0.and.nclouds_yz.gt.0.and. |
159 |
$ nplxz_min.ne.y_min_start)then |
160 |
nptxz_min=x_min_step |
161 |
nplxz_min=x_min_start-x_min_step |
162 |
goto 879 |
163 |
endif |
164 |
|
165 |
880 return |
166 |
end |
167 |
|
168 |
************************************************************ |
169 |
|
170 |
|
171 |
subroutine track_fitting(iflag) |
172 |
|
173 |
include 'commontracker.f' |
174 |
include 'level1.f' |
175 |
include 'common_momanhough.f' |
176 |
include 'common_mech.f' |
177 |
include 'common_xyzPAM.f' |
178 |
include 'common_mini_2.f' |
179 |
include 'calib.f' |
180 |
include 'level2.f' |
181 |
|
182 |
c include 'momanhough_init.f' |
183 |
|
184 |
logical FIMAGE ! |
185 |
real*8 AL_GUESS(5) |
186 |
|
187 |
*------------------------------------------------------------------------------- |
188 |
* STEP 4 (ITERATED until any other physical track isn't found) |
189 |
*------------------------------------------------------------------------------- |
190 |
* |
191 |
* YZ and XZ clouds are combined in order to obtain the initial guess |
192 |
* of the candidate-track parameters. |
193 |
* A minimum number of matching couples between YZ and XZ clouds is required. |
194 |
* |
195 |
* A TRACK CANDIDATE is defined by |
196 |
* - the couples resulting from the INTERSECTION of the two clouds, and |
197 |
* - the associated track parameters (evaluated by performing a zero-order |
198 |
* track fitting) |
199 |
* |
200 |
* The NTRACKS candidate-track parameters are stored in common block: |
201 |
* |
202 |
* - common/track_candidates/NTRACKS,AL_STORE |
203 |
* $ ,XV_STORE,YV_STORE,ZV_STORE |
204 |
* $ ,XM_STORE,YM_STORE,ZM_STORE |
205 |
* $ ,RESX_STORE,RESY_STORE |
206 |
* $ ,AXV_STORE,AYV_STORE |
207 |
* $ ,XGOOD_STORE,YGOOD_STORE |
208 |
* $ ,CP_STORE,RCHI2_STORE |
209 |
* |
210 |
*------------------------------------------------------------------------------- |
211 |
*------------------------------------------------------------------------------- |
212 |
ntrk=0 !counter of identified physical tracks |
213 |
|
214 |
11111 continue !<<<<<<< come here when performing a new search |
215 |
|
216 |
c iflag=0 |
217 |
call clouds_to_ctrack(iflag) |
218 |
if(iflag.eq.1)then !no candidate tracks found |
219 |
goto 880 !fill ntp and go to next event |
220 |
endif |
221 |
|
222 |
FIMAGE=.false. !processing best track (not track image) |
223 |
ibest=0 !best track among candidates |
224 |
iimage=0 !track image |
225 |
* ------------- select the best track ------------- |
226 |
c$$$ rchi2best=1000000000. |
227 |
c$$$ do i=1,ntracks |
228 |
c$$$ if(RCHI2_STORE(i).lt.rchi2best.and. |
229 |
c$$$ $ RCHI2_STORE(i).gt.0)then |
230 |
c$$$ ibest=i |
231 |
c$$$ rchi2best=RCHI2_STORE(i) |
232 |
c$$$ endif |
233 |
c$$$ enddo |
234 |
c$$$ if(ibest.eq.0)goto 880 !>> no good candidates |
235 |
|
236 |
* ------------------------------------------------------- |
237 |
* order track-candidates according to: |
238 |
* 1st) decreasing n.points |
239 |
* 2nd) increasing chi**2 |
240 |
* ------------------------------------------------------- |
241 |
rchi2best=1000000000. |
242 |
ndofbest=0 !(1) |
243 |
do i=1,ntracks |
244 |
ndof=0 !(1) |
245 |
do ii=1,nplanes !(1) |
246 |
ndof=ndof !(1) |
247 |
$ +int(xgood_store(ii,i)) !(1) |
248 |
$ +int(ygood_store(ii,i)) !(1) |
249 |
enddo !(1) |
250 |
if(ndof.gt.ndofbest)then !(1) |
251 |
ibest=i |
252 |
rchi2best=RCHI2_STORE(i) |
253 |
ndofbest=ndof !(1) |
254 |
elseif(ndof.eq.ndofbest)then !(1) |
255 |
if(RCHI2_STORE(i).lt.rchi2best.and. |
256 |
$ RCHI2_STORE(i).gt.0)then |
257 |
ibest=i |
258 |
rchi2best=RCHI2_STORE(i) |
259 |
ndofbest=ndof !(1) |
260 |
endif !(1) |
261 |
endif |
262 |
enddo |
263 |
|
264 |
c$$$ rchi2best=1000000000. |
265 |
c$$$ ndofbest=0 !(1) |
266 |
c$$$ do i=1,ntracks |
267 |
c$$$ if(RCHI2_STORE(i).lt.rchi2best.and. |
268 |
c$$$ $ RCHI2_STORE(i).gt.0)then |
269 |
c$$$ ndof=0 !(1) |
270 |
c$$$ do ii=1,nplanes !(1) |
271 |
c$$$ ndof=ndof !(1) |
272 |
c$$$ $ +int(xgood_store(ii,i)) !(1) |
273 |
c$$$ $ +int(ygood_store(ii,i)) !(1) |
274 |
c$$$ enddo !(1) |
275 |
c$$$ if(ndof.ge.ndofbest)then !(1) |
276 |
c$$$ ibest=i |
277 |
c$$$ rchi2best=RCHI2_STORE(i) |
278 |
c$$$ ndofbest=ndof !(1) |
279 |
c$$$ endif !(1) |
280 |
c$$$ endif |
281 |
c$$$ enddo |
282 |
|
283 |
if(ibest.eq.0)goto 880 !>> no good candidates |
284 |
*------------------------------------------------------------------------------- |
285 |
* The best track candidate (ibest) is selected and a new fitting is performed. |
286 |
* Previous to this, the track is refined by: |
287 |
* - possibly adding new COUPLES or SINGLETS from the missing planes |
288 |
* - evaluating the coordinates with improved PFAs |
289 |
* ( angle-dependent ETA algorithms ) |
290 |
*------------------------------------------------------------------------------- |
291 |
|
292 |
1212 continue !<<<<< come here to fit track-image |
293 |
|
294 |
if(.not.FIMAGE)then !processing best candidate |
295 |
icand=ibest |
296 |
else !processing image |
297 |
icand=iimage |
298 |
iimage=0 |
299 |
endif |
300 |
if(icand.eq.0)then |
301 |
print*,'HAI FATTO UN CASINO!!!!!! icand = ',icand |
302 |
$ ,ibest,iimage |
303 |
return |
304 |
endif |
305 |
|
306 |
* *-*-*-*-*-*-*-*-*-*-*-*-*-*-* |
307 |
call refine_track(icand) |
308 |
* *-*-*-*-*-*-*-*-*-*-*-*-*-*-* |
309 |
|
310 |
* ********************************************************** |
311 |
* ************************** FIT *** FIT *** FIT *** FIT *** |
312 |
* ********************************************************** |
313 |
call guess() |
314 |
do i=1,5 |
315 |
AL_GUESS(i)=AL(i) |
316 |
enddo |
317 |
c print*,'## guess: ',al |
318 |
|
319 |
do i=1,5 |
320 |
AL(i)=dble(AL_STORE(i,icand)) |
321 |
enddo |
322 |
|
323 |
IDCAND = icand !fitted track-candidate |
324 |
ifail=0 !error flag in chi2 computation |
325 |
jstep=0 !# minimization steps |
326 |
|
327 |
iprint=0 |
328 |
c if(DEBUG)iprint=1 |
329 |
if(VERBOSE)iprint=1 |
330 |
if(DEBUG)iprint=2 |
331 |
call mini2(jstep,ifail,iprint) |
332 |
if(ifail.ne.0) then |
333 |
if(VERBOSE)then |
334 |
print *, |
335 |
$ '*** MINIMIZATION FAILURE *** (after refinement) ' |
336 |
$ ,iev |
337 |
|
338 |
c$$$ print*,'guess: ',(al_guess(i),i=1,5) |
339 |
c$$$ print*,'previous: ',(al_store(i,icand),i=1,5) |
340 |
c$$$ print*,'result: ',(al(i),i=1,5) |
341 |
c$$$ print*,'xgood ',xgood |
342 |
c$$$ print*,'ygood ',ygood |
343 |
c$$$ print*,'----------------------------------------------' |
344 |
endif |
345 |
c chi2=-chi2 |
346 |
endif |
347 |
|
348 |
if(DEBUG)then |
349 |
print*,'----------------------------- improved track coord' |
350 |
22222 format(i2,' * ',3f10.4,' --- ',4f10.4,' --- ',2f4.0,2f10.5) |
351 |
do ip=1,6 |
352 |
write(*,22222)ip,zm(ip),xm(ip),ym(ip) |
353 |
$ ,xm_A(ip),ym_A(ip),xm_B(ip),ym_B(ip) |
354 |
$ ,xgood(ip),ygood(ip),resx(ip),resy(ip) |
355 |
enddo |
356 |
endif |
357 |
|
358 |
c rchi2=chi2/dble(ndof) |
359 |
if(DEBUG)then |
360 |
print*,' ' |
361 |
print*,'****** SELECTED TRACK *************' |
362 |
print*,'# R. chi2 RIG' |
363 |
print*,' --- ',chi2,' --- ' |
364 |
$ ,1./abs(AL(5)) |
365 |
print*,'***********************************' |
366 |
endif |
367 |
* ********************************************************** |
368 |
* ************************** FIT *** FIT *** FIT *** FIT *** |
369 |
* ********************************************************** |
370 |
|
371 |
|
372 |
* ------------- search if the track has an IMAGE ------------- |
373 |
* ------------- (also this is stored ) ------------- |
374 |
if(FIMAGE)goto 122 !>>> jump! (this is already an image) |
375 |
* now search for track-image, by comparing couples IDs |
376 |
do i=1,ntracks |
377 |
iimage=i |
378 |
do ip=1,nplanes |
379 |
if( CP_STORE(nplanes-ip+1,icand).ne. |
380 |
$ -1*CP_STORE(nplanes-ip+1,i) )iimage=0 |
381 |
enddo |
382 |
if( iimage.ne.0.and. |
383 |
c $ RCHI2_STORE(i).le.CHI2MAX.and. |
384 |
c $ RCHI2_STORE(i).gt.0.and. |
385 |
$ .true.)then |
386 |
if(DEBUG)print*,'Track candidate ',iimage |
387 |
$ ,' >>> TRACK IMAGE >>> of' |
388 |
$ ,ibest |
389 |
goto 122 !image track found |
390 |
endif |
391 |
enddo |
392 |
122 continue |
393 |
|
394 |
* --- and store the results -------------------------------- |
395 |
ntrk = ntrk + 1 !counter of found tracks |
396 |
if(.not.FIMAGE |
397 |
$ .and.iimage.eq.0) image(ntrk)= 0 |
398 |
if(.not.FIMAGE |
399 |
$ .and.iimage.ne.0)image(ntrk)=ntrk+1 !this is the image of the next |
400 |
if(FIMAGE) image(ntrk)=ntrk-1 !this is the image of the previous |
401 |
call fill_level2_tracks(ntrk) !==> good2=.true. |
402 |
c print*,'++++++++++ iimage,fimage,ntrk,image ' |
403 |
c $ ,iimage,fimage,ntrk,image(ntrk) |
404 |
|
405 |
if(ntrk.eq.NTRKMAX)then |
406 |
if(verbose) |
407 |
$ print*, |
408 |
$ '** warning ** number of identified '// |
409 |
$ 'tracks exceeds vector dimension ' |
410 |
$ ,'( ',NTRKMAX,' )' |
411 |
cc good2=.false. |
412 |
goto 880 !fill ntp and go to next event |
413 |
endif |
414 |
if(iimage.ne.0)then |
415 |
FIMAGE=.true. ! |
416 |
goto 1212 !>>> fit image-track |
417 |
endif |
418 |
|
419 |
* --- then remove selected clusters (ibest+iimage) from clouds ---- |
420 |
call clean_XYclouds(ibest,iflag) |
421 |
if(iflag.eq.1)then !bad event |
422 |
goto 880 !fill ntp and go to next event |
423 |
endif |
424 |
|
425 |
* ********************************************************** |
426 |
* condition to start a new search |
427 |
* ********************************************************** |
428 |
ixznew=0 |
429 |
do ixz=1,nclouds_xz |
430 |
if(ptcloud_xz(ixz).ge.nptxz_min)ixznew=1 |
431 |
enddo |
432 |
iyznew=0 |
433 |
do iyz=1,nclouds_yz |
434 |
if(ptcloud_yz(iyz).ge.nptyz_min)iyznew=1 |
435 |
enddo |
436 |
|
437 |
if(ixznew.ne.0.and. |
438 |
$ iyznew.ne.0.and. |
439 |
$ rchi2best.le.CHI2MAX.and. |
440 |
c $ rchi2best.lt.15..and. |
441 |
$ .true.)then |
442 |
if(DEBUG)then |
443 |
print*,'***** NEW SEARCH ****' |
444 |
endif |
445 |
goto 11111 !try new search |
446 |
|
447 |
endif |
448 |
* ********************************************** |
449 |
|
450 |
|
451 |
|
452 |
880 return |
453 |
end |
454 |
|
455 |
|
456 |
|
457 |
************************************************************ |
458 |
************************************************************ |
459 |
************************************************************ |
460 |
************************************************************ |
461 |
* |
462 |
* This routine provides the coordinates (in cm) in the PAMELA reference system: |
463 |
* - of the point associated with a COUPLE ---> (xPAM,yPAM,zPAM) |
464 |
* - of the extremes of the segment |
465 |
* associated with a SINGLET ---------------> (xPAM_A,yPAM_A,zPAM_A) |
466 |
* ---> (xPAM_B,yPAM_B,zPAM_B) |
467 |
* |
468 |
* It also assigns the spatial resolution to the evaluated coordinates, |
469 |
* as a function (in principle) of the multiplicity, the angle, the PFA etc... |
470 |
* |
471 |
* |
472 |
* To call the routine you must pass the arguments: |
473 |
* icx - ID of cluster x |
474 |
* icy - ID of cluster y |
475 |
* sensor - sensor (1,2) |
476 |
* PFAx - Position Finding Algorithm in x (COG2,ETA2,...) |
477 |
* PFAy - Position Finding Algorithm in y (COG2,ETA2,...) |
478 |
* angx - Projected angle in x |
479 |
* angy - Projected angle in y |
480 |
* bfx - x-component of magnetci field |
481 |
* bfy - y-component of magnetic field |
482 |
* |
483 |
* --------- COUPLES ------------------------------------------------------- |
484 |
* The couple defines a point in the space. |
485 |
* The coordinates of the point are evaluated as follows: |
486 |
* 1 - the corrected coordinates relative to the sensor are evaluated |
487 |
* according to the chosen PFA --> (xi,yi,0) |
488 |
* 2 - coordinates are rotated and traslated, according to the aligmnet |
489 |
* parameters, and expressed in the reference system of the mechanical |
490 |
* sensor --> (xrt,yrt,zrt) |
491 |
* 3 - coordinates are finally converted to the PAMELA reference system |
492 |
* --> (xPAM,yPAM,zPAM) |
493 |
* |
494 |
* --------- SINGLETS ------------------------------------------------------- |
495 |
* Since a coordinate is missing, the singlet defines not a point |
496 |
* in the space but a segment AB (parallel to the strips). |
497 |
* In this case the routine returns the coordinates in the PAMELA reference |
498 |
* system of the two extremes A and B of the segment: |
499 |
* --> (xPAM_A,yPAM_A,zPAM_A) |
500 |
* --> (xPAM_B,yPAM_B,zPAM_B) |
501 |
* |
502 |
* ========================================================== |
503 |
* |
504 |
* The output of the routine is stored in the commons: |
505 |
* |
506 |
* double precision xPAM,yPAM,zPAM |
507 |
* common/coord_xyz_PAM/xPAM,yPAM,zPAM |
508 |
* |
509 |
* double precision xPAM_A,yPAM_A,zPAM_A |
510 |
* double precision xPAM_B,yPAM_B,zPAM_B |
511 |
* common/coord_AB_PAM/xPAM_A,yPAM_A,zPAM_A,xPAM_B,yPAM_B,zPAM_B |
512 |
* |
513 |
* double precision resxPAM,resyPAM |
514 |
* common/resolution_PAM/resxPAM,resyPAM |
515 |
* |
516 |
* (in file common_xyzPAM.f) |
517 |
* |
518 |
* |
519 |
|
520 |
subroutine xyz_PAM(icx,icy,sensor,PFAx,PFAy,ax,ay,bfx,bfy) |
521 |
|
522 |
|
523 |
include 'commontracker.f' |
524 |
include 'level1.f' |
525 |
include 'calib.f' |
526 |
c include 'level1.f' |
527 |
include 'common_align.f' |
528 |
include 'common_mech.f' |
529 |
include 'common_xyzPAM.f' |
530 |
c include 'common_resxy.f' |
531 |
|
532 |
c logical DEBUG |
533 |
c common/dbg/DEBUG |
534 |
|
535 |
integer icx,icy !X-Y cluster ID |
536 |
integer sensor |
537 |
integer viewx,viewy |
538 |
character*4 PFAx,PFAy !PFA to be used |
539 |
real ax,ay !X-Y geometric angle |
540 |
real angx,angy !X-Y effective angle |
541 |
real bfx,bfy !X-Y b-field components |
542 |
|
543 |
real stripx,stripy |
544 |
|
545 |
double precision xrt,yrt,zrt |
546 |
double precision xrt_A,yrt_A,zrt_A |
547 |
double precision xrt_B,yrt_B,zrt_B |
548 |
c double precision xi,yi,zi |
549 |
c double precision xi_A,yi_A,zi_A |
550 |
c double precision xi_B,yi_B,zi_B |
551 |
|
552 |
|
553 |
parameter (ndivx=30) |
554 |
|
555 |
resxPAM = 0 |
556 |
resyPAM = 0 |
557 |
|
558 |
xPAM = 0. |
559 |
yPAM = 0. |
560 |
zPAM = 0. |
561 |
xPAM_A = 0. |
562 |
yPAM_A = 0. |
563 |
zPAM_A = 0. |
564 |
xPAM_B = 0. |
565 |
yPAM_B = 0. |
566 |
zPAM_B = 0. |
567 |
c print*,'## xyz_PAM: ',icx,icy,sensor,PFAx,PFAy,angx,angy |
568 |
* ----------------- |
569 |
* CLUSTER X |
570 |
* ----------------- |
571 |
|
572 |
if(icx.ne.0)then |
573 |
|
574 |
viewx = VIEW(icx) |
575 |
nldx = nld(MAXS(icx),VIEW(icx)) |
576 |
nplx = npl(VIEW(icx)) |
577 |
resxPAM = RESXAV |
578 |
stripx = float(MAXS(icx)) |
579 |
* -------------------------- |
580 |
* magnetic-field corrections |
581 |
* -------------------------- |
582 |
c$$$ print*,nplx,ax,bfy/10. |
583 |
angtemp = ax |
584 |
bfytemp = bfy |
585 |
if(nplx.eq.6) angtemp = -1. * ax |
586 |
if(nplx.eq.6) bfytemp = -1. * bfy |
587 |
tgtemp = tan(angtemp*acos(-1.)/180.) + pmuH_h*bfytemp*0.00001 |
588 |
angx = 180.*atan(tgtemp)/acos(-1.) |
589 |
stripx = stripx - 0.5*pmuH_h*bfytemp*0.00001*SiDimZ/pitchX |
590 |
c$$$ print*,angx,0.5*pmuH_h*bfytemp*0.00001*SiDimZ/pitchX |
591 |
c$$$ print*,'========================' |
592 |
* -------------------------- |
593 |
|
594 |
if(PFAx.eq.'COG1')then |
595 |
stripx = stripx |
596 |
resxPAM = resxPAM |
597 |
elseif(PFAx.eq.'COG2')then |
598 |
stripx = stripx + cog(2,icx) |
599 |
resxPAM = resxPAM*fbad_cog(2,icx) |
600 |
elseif(PFAx.eq.'COG3')then |
601 |
stripx = stripx + cog(3,icx) |
602 |
resxPAM = resxPAM*fbad_cog(3,icx) |
603 |
elseif(PFAx.eq.'COG4')then |
604 |
c print*,'COG4' |
605 |
stripx = stripx + cog(4,icx) |
606 |
resxPAM = resxPAM*fbad_cog(4,icx) |
607 |
elseif(PFAx.eq.'ETA2')then |
608 |
stripx = stripx + pfaeta2(icx,angx) |
609 |
resxPAM = risx_eta2(abs(angx)) |
610 |
if(DEBUG.and.fbad_cog(2,icx).ne.1) |
611 |
$ print*,'BAD icx >>> ',viewx,fbad_cog(2,icx) |
612 |
resxPAM = resxPAM*fbad_cog(2,icx) |
613 |
elseif(PFAx.eq.'ETA3')then |
614 |
stripx = stripx + pfaeta3(icx,angx) |
615 |
resxPAM = risx_eta3(abs(angx)) |
616 |
if(DEBUG.and.fbad_cog(3,icx).ne.1) |
617 |
$ print*,'BAD icx >>> ',viewx,fbad_cog(3,icx) |
618 |
resxPAM = resxPAM*fbad_cog(3,icx) |
619 |
elseif(PFAx.eq.'ETA4')then |
620 |
stripx = stripx + pfaeta4(icx,angx) |
621 |
resxPAM = risx_eta4(abs(angx)) |
622 |
if(DEBUG.and.fbad_cog(4,icx).ne.1) |
623 |
$ print*,'BAD icx >>> ',viewx,fbad_cog(4,icx) |
624 |
resxPAM = resxPAM*fbad_cog(4,icx) |
625 |
elseif(PFAx.eq.'ETA')then |
626 |
c print*,'ETA' |
627 |
stripx = stripx + pfaeta(icx,angx) |
628 |
resxPAM = ris_eta(icx,angx) |
629 |
if(DEBUG.and.fbad_cog(2,icx).ne.1) |
630 |
$ print*,'BAD icx >>> ',viewx,fbad_cog(2,icx) |
631 |
resxPAM = resxPAM*fbad_eta(icx,angx) |
632 |
elseif(PFAx.eq.'COG')then |
633 |
stripx = stripx + cog(0,icx) |
634 |
resxPAM = risx_cog(abs(angx)) |
635 |
resxPAM = resxPAM*fbad_cog(0,icx) |
636 |
else |
637 |
print*,'*** Non valid p.f.a. (x) --> ',PFAx |
638 |
endif |
639 |
|
640 |
c print*,'%%%%%%%%%%%%' |
641 |
|
642 |
endif |
643 |
|
644 |
* ----------------- |
645 |
* CLUSTER Y |
646 |
* ----------------- |
647 |
|
648 |
if(icy.ne.0)then |
649 |
|
650 |
viewy = VIEW(icy) |
651 |
nldy = nld(MAXS(icy),VIEW(icy)) |
652 |
nply = npl(VIEW(icy)) |
653 |
resyPAM = RESYAV |
654 |
stripy = float(MAXS(icy)) |
655 |
|
656 |
if(icx.ne.0.and.(nply.ne.nplx.or.nldy.ne.nldx))then |
657 |
print*,'xyz_PAM ***ERROR*** invalid cluster couple!!! ' |
658 |
$ ,icx,icy |
659 |
goto 100 |
660 |
endif |
661 |
* -------------------------- |
662 |
* magnetic-field corrections |
663 |
* -------------------------- |
664 |
tgtemp = tan(ay*acos(-1.)/180.)+pmuH_e*bfx*0.00001 |
665 |
angy = 180.*atan(tgtemp)/acos(-1.) |
666 |
stripy = stripy + 0.5*pmuH_e*bfx*0.00001*SiDimZ/pitchY |
667 |
* -------------------------- |
668 |
|
669 |
if(PFAy.eq.'COG1')then !(1) |
670 |
stripy = stripy !(1) |
671 |
resyPAM = resyPAM !(1) |
672 |
elseif(PFAy.eq.'COG2')then |
673 |
stripy = stripy + cog(2,icy) |
674 |
resyPAM = resyPAM*fbad_cog(2,icy) |
675 |
elseif(PFAy.eq.'COG3')then |
676 |
stripy = stripy + cog(3,icy) |
677 |
resyPAM = resyPAM*fbad_cog(3,icy) |
678 |
elseif(PFAy.eq.'COG4')then |
679 |
stripy = stripy + cog(4,icy) |
680 |
resyPAM = resyPAM*fbad_cog(4,icy) |
681 |
elseif(PFAy.eq.'ETA2')then |
682 |
c cog2 = cog(2,icy) |
683 |
c etacorr = pfaeta2(cog2,viewy,nldy,angy) |
684 |
c stripy = stripy + etacorr |
685 |
stripy = stripy + pfaeta2(icy,angy) !(3) |
686 |
resyPAM = risy_eta2(abs(angy)) ! (4) |
687 |
resyPAM = resyPAM*fbad_cog(2,icy) |
688 |
if(DEBUG.and.fbad_cog(2,icy).ne.1) |
689 |
$ print*,'BAD icy >>> ',viewy,fbad_cog(2,icy) |
690 |
elseif(PFAy.eq.'ETA3')then !(3) |
691 |
stripy = stripy + pfaeta3(icy,angy) !(3) |
692 |
resyPAM = resyPAM*fbad_cog(3,icy) !(3) |
693 |
if(DEBUG.and.fbad_cog(3,icy).ne.1) !(3) |
694 |
$ print*,'BAD icy >>> ',viewy,fbad_cog(3,icy)!(3) |
695 |
elseif(PFAy.eq.'ETA4')then !(3) |
696 |
stripy = stripy + pfaeta4(icy,angy) !(3) |
697 |
resyPAM = resyPAM*fbad_cog(4,icy) !(3) |
698 |
if(DEBUG.and.fbad_cog(4,icy).ne.1) !(3) |
699 |
$ print*,'BAD icy >>> ',viewy,fbad_cog(4,icy)!(3) |
700 |
elseif(PFAy.eq.'ETA')then !(3) |
701 |
stripy = stripy + pfaeta(icy,angy) !(3) |
702 |
resyPAM = ris_eta(icy,angy) ! (4) |
703 |
c resyPAM = resyPAM*fbad_cog(2,icy) !(3)TEMPORANEO |
704 |
resyPAM = resyPAM*fbad_eta(icy,angy) ! (4) |
705 |
if(DEBUG.and.fbad_cog(2,icy).ne.1) !(3) |
706 |
$ print*,'BAD icy >>> ',viewy,fbad_cog(2,icy)!(3) |
707 |
elseif(PFAy.eq.'COG')then |
708 |
stripy = stripy + cog(0,icy) |
709 |
resyPAM = risy_cog(abs(angy)) ! (4) |
710 |
c resyPAM = ris_eta(icy,angy) ! (4) |
711 |
resyPAM = resyPAM*fbad_cog(0,icy) |
712 |
else |
713 |
print*,'*** Non valid p.f.a. (x) --> ',PFAx |
714 |
endif |
715 |
|
716 |
endif |
717 |
|
718 |
c print*,'## stripx,stripy ',stripx,stripy |
719 |
|
720 |
c=========================================================== |
721 |
C COUPLE |
722 |
C=========================================================== |
723 |
if(icx.ne.0.and.icy.ne.0)then |
724 |
|
725 |
c------------------------------------------------------------------------ |
726 |
c (xi,yi,zi) = mechanical coordinates in the silicon sensor frame |
727 |
c------------------------------------------------------------------------ |
728 |
if(((mod(int(stripx+0.5)-1,1024)+1).le.3) |
729 |
$ .or.((mod(int(stripx+0.5)-1,1024)+1).ge.1022)) then !X has 1018 strips... |
730 |
print*,'xyz_PAM (couple):', |
731 |
$ ' WARNING: false X strip: strip ',stripx |
732 |
endif |
733 |
xi = acoordsi(stripx,viewx) |
734 |
yi = acoordsi(stripy,viewy) |
735 |
zi = 0. |
736 |
|
737 |
|
738 |
c------------------------------------------------------------------------ |
739 |
c (xrt,yrt,zrt) = rototranslated coordinates in the silicon sensor frame |
740 |
c------------------------------------------------------------------------ |
741 |
c N.B. I convert angles from microradiants to radiants |
742 |
|
743 |
xrt = xi |
744 |
$ - omega(nplx,nldx,sensor)*yi |
745 |
$ + gamma(nplx,nldx,sensor)*zi |
746 |
$ + dx(nplx,nldx,sensor) |
747 |
|
748 |
yrt = omega(nplx,nldx,sensor)*xi |
749 |
$ + yi |
750 |
$ - beta(nplx,nldx,sensor)*zi |
751 |
$ + dy(nplx,nldx,sensor) |
752 |
|
753 |
zrt = -gamma(nplx,nldx,sensor)*xi |
754 |
$ + beta(nplx,nldx,sensor)*yi |
755 |
$ + zi |
756 |
$ + dz(nplx,nldx,sensor) |
757 |
|
758 |
c xrt = xi |
759 |
c yrt = yi |
760 |
c zrt = zi |
761 |
|
762 |
c------------------------------------------------------------------------ |
763 |
c (xPAM,yPAM,zPAM) = measured coordinates (in cm) |
764 |
c in PAMELA reference system |
765 |
c------------------------------------------------------------------------ |
766 |
|
767 |
xPAM = dcoord(xrt,viewx,nldx,sensor) / 1.d4 |
768 |
yPAM = dcoord(yrt,viewy,nldy,sensor) / 1.d4 |
769 |
zPAM = ( zrt + z_mech_sensor(nplx,nldx,sensor)*1000. ) / 1.d4 |
770 |
|
771 |
xPAM_A = 0. |
772 |
yPAM_A = 0. |
773 |
zPAM_A = 0. |
774 |
|
775 |
xPAM_B = 0. |
776 |
yPAM_B = 0. |
777 |
zPAM_B = 0. |
778 |
|
779 |
elseif( |
780 |
$ (icx.ne.0.and.icy.eq.0).or. |
781 |
$ (icx.eq.0.and.icy.ne.0).or. |
782 |
$ .false. |
783 |
$ )then |
784 |
|
785 |
c------------------------------------------------------------------------ |
786 |
c (xi,yi,zi) = mechanical coordinates in the silicon sensor frame |
787 |
c------------------------------------------------------------------------ |
788 |
|
789 |
if(icy.ne.0)then |
790 |
c=========================================================== |
791 |
C Y-SINGLET |
792 |
C=========================================================== |
793 |
nplx = nply |
794 |
nldx = nldy |
795 |
viewx = viewy + 1 |
796 |
|
797 |
yi = acoordsi(stripy,viewy) |
798 |
|
799 |
xi_A = edgeY_d - SiDimX/2 |
800 |
yi_A = yi |
801 |
zi_A = 0. |
802 |
|
803 |
xi_B = SiDimX/2 - edgeY_u |
804 |
yi_B = yi |
805 |
zi_B = 0. |
806 |
|
807 |
c print*,'Y-cl ',icy,stripy,' --> ',yi |
808 |
c print*,xi_A,' <--> ',xi_B |
809 |
|
810 |
elseif(icx.ne.0)then |
811 |
c=========================================================== |
812 |
C X-SINGLET |
813 |
C=========================================================== |
814 |
|
815 |
nply = nplx |
816 |
nldy = nldx |
817 |
viewy = viewx - 1 |
818 |
|
819 |
c print*,'X-singlet ',icx,nplx,nldx,viewx,stripx |
820 |
c if((stripx.le.3).or.(stripx.ge.1022)) then !X has 1018 strips... |
821 |
if(((mod(int(stripx+0.5)-1,1024)+1).le.3) |
822 |
$ .or.((mod(int(stripx+0.5)-1,1024)+1).ge.1022)) then !X has 1018 strips... |
823 |
print*,'xyz_PAM (X-singlet):', |
824 |
$ ' WARNING: false X strip: strip ',stripx |
825 |
endif |
826 |
xi = acoordsi(stripx,viewx) |
827 |
|
828 |
xi_A = xi |
829 |
yi_A = edgeX_d - SiDimY/2 |
830 |
zi_A = 0. |
831 |
|
832 |
xi_B = xi |
833 |
yi_B = SiDimY/2 - edgeX_u |
834 |
zi_B = 0. |
835 |
|
836 |
if(viewy.eq.11)then |
837 |
yi = yi_A |
838 |
yi_A = yi_B |
839 |
yi_B = yi |
840 |
endif |
841 |
|
842 |
c print*,'X-cl ',icx,stripx,' --> ',xi |
843 |
c print*,yi_A,' <--> ',yi_B |
844 |
|
845 |
else |
846 |
|
847 |
print *,'routine xyz_PAM ---> not properly used !!!' |
848 |
print *,'icx = ',icx |
849 |
print *,'icy = ',icy |
850 |
goto 100 |
851 |
|
852 |
endif |
853 |
c------------------------------------------------------------------------ |
854 |
c (xrt,yrt,zrt) = rototranslated coordinates in the silicon sensor frame |
855 |
c------------------------------------------------------------------------ |
856 |
c N.B. I convert angles from microradiants to radiants |
857 |
|
858 |
xrt_A = xi_A |
859 |
$ - omega(nplx,nldx,sensor)*yi_A |
860 |
$ + gamma(nplx,nldx,sensor)*zi_A |
861 |
$ + dx(nplx,nldx,sensor) |
862 |
|
863 |
yrt_A = omega(nplx,nldx,sensor)*xi_A |
864 |
$ + yi_A |
865 |
$ - beta(nplx,nldx,sensor)*zi_A |
866 |
$ + dy(nplx,nldx,sensor) |
867 |
|
868 |
zrt_A = -gamma(nplx,nldx,sensor)*xi_A |
869 |
$ + beta(nplx,nldx,sensor)*yi_A |
870 |
$ + zi_A |
871 |
$ + dz(nplx,nldx,sensor) |
872 |
|
873 |
xrt_B = xi_B |
874 |
$ - omega(nplx,nldx,sensor)*yi_B |
875 |
$ + gamma(nplx,nldx,sensor)*zi_B |
876 |
$ + dx(nplx,nldx,sensor) |
877 |
|
878 |
yrt_B = omega(nplx,nldx,sensor)*xi_B |
879 |
$ + yi_B |
880 |
$ - beta(nplx,nldx,sensor)*zi_B |
881 |
$ + dy(nplx,nldx,sensor) |
882 |
|
883 |
zrt_B = -gamma(nplx,nldx,sensor)*xi_B |
884 |
$ + beta(nplx,nldx,sensor)*yi_B |
885 |
$ + zi_B |
886 |
$ + dz(nplx,nldx,sensor) |
887 |
|
888 |
|
889 |
c xrt = xi |
890 |
c yrt = yi |
891 |
c zrt = zi |
892 |
|
893 |
c------------------------------------------------------------------------ |
894 |
c (xPAM,yPAM,zPAM) = measured coordinates (in cm) |
895 |
c in PAMELA reference system |
896 |
c------------------------------------------------------------------------ |
897 |
|
898 |
xPAM = 0. |
899 |
yPAM = 0. |
900 |
zPAM = 0. |
901 |
|
902 |
xPAM_A = dcoord(xrt_A,viewx,nldx,sensor) / 1.d4 |
903 |
yPAM_A = dcoord(yrt_A,viewy,nldy,sensor) / 1.d4 |
904 |
zPAM_A = ( zrt_A + z_mech_sensor(nplx,nldx,sensor)*1000.)/ 1.d4 |
905 |
|
906 |
xPAM_B = dcoord(xrt_B,viewx,nldx,sensor) / 1.d4 |
907 |
yPAM_B = dcoord(yrt_B,viewy,nldy,sensor) / 1.d4 |
908 |
zPAM_B = ( zrt_B + z_mech_sensor(nplx,nldx,sensor)*1000.)/ 1.d4 |
909 |
|
910 |
|
911 |
c print*,'A-(',xPAM_A,yPAM_A,') B-(',xPAM_B,yPAM_B,')' |
912 |
|
913 |
else |
914 |
|
915 |
print *,'routine xyz_PAM ---> not properly used !!!' |
916 |
print *,'icx = ',icx |
917 |
print *,'icy = ',icy |
918 |
|
919 |
endif |
920 |
|
921 |
|
922 |
c print*,'## xPAM,yPAM,zPAM ',xPAM,yPAM,zPAM |
923 |
c print*,'## xPAM_A,yPAM_A,zPAM_A ',xPAM_A,yPAM_A,zPAM_A |
924 |
c print*,'## xPAM_B,yPAM_B,zPAM_B ',xPAM_B,yPAM_B,zPAM_B |
925 |
|
926 |
100 continue |
927 |
end |
928 |
|
929 |
|
930 |
******************************************************************************** |
931 |
******************************************************************************** |
932 |
******************************************************************************** |
933 |
* |
934 |
* The function distance_to(XP,YP) should be used after |
935 |
* a call to the xyz_PAM routine and it evaluate the |
936 |
* NORMALIZED distance (PROJECTED on the XY plane) between |
937 |
* the point (XP,YP), argument of the function, |
938 |
* and: |
939 |
* |
940 |
* - the point (xPAM,yPAM,zPAM), in the case of a COUPLE |
941 |
* or |
942 |
* - the segment (xPAM_A,yPAM_A,zPAM_A)-(xPAM_B,yPAM_B,zPAM_B), |
943 |
* in the case of a SINGLET. |
944 |
* |
945 |
* ( The routine xyz_PAM fills the common defined in "common_xyzPAM.f", |
946 |
* which stores the coordinates of the couple/singlet ) |
947 |
* |
948 |
******************************************************************************** |
949 |
|
950 |
real function distance_to(XPP,YPP) |
951 |
|
952 |
include 'common_xyzPAM.f' |
953 |
|
954 |
* ----------------------------------- |
955 |
* it computes the normalized distance |
956 |
* ( i.e. distance/resolution ) |
957 |
* ----------------------------------- |
958 |
|
959 |
double precision distance,RE |
960 |
double precision BETA,ALFA,xmi,ymi |
961 |
|
962 |
* ---------------------- |
963 |
if ( |
964 |
+ xPAM.eq.0.and. |
965 |
+ yPAM.eq.0.and. |
966 |
+ zPAM.eq.0.and. |
967 |
+ xPAM_A.ne.0.and. |
968 |
+ yPAM_A.ne.0.and. |
969 |
+ zPAM_A.ne.0.and. |
970 |
+ xPAM_B.ne.0.and. |
971 |
+ yPAM_B.ne.0.and. |
972 |
+ zPAM_B.ne.0.and. |
973 |
+ .true.)then |
974 |
* ----------------------- |
975 |
* DISTANCE TO --- SINGLET |
976 |
* ----------------------- |
977 |
if(abs(sngl(xPAM_B-xPAM_A)).lt.abs(sngl(yPAM_B-yPAM_A)))then |
978 |
* |||---------- X CLUSTER |
979 |
|
980 |
BETA = (xPAM_B-xPAM_A)/(yPAM_B-yPAM_A) |
981 |
ALFA = xPAM_A - BETA * yPAM_A |
982 |
|
983 |
ymi = ( YPP + BETA*XPP - BETA*ALFA )/(1+BETA**2) |
984 |
if(ymi.lt.dmin1(yPAM_A,yPAM_B))ymi=dmin1(yPAM_A,yPAM_B) |
985 |
if(ymi.gt.dmax1(yPAM_A,yPAM_B))ymi=dmax1(yPAM_A,yPAM_B) |
986 |
xmi = ALFA + BETA * ymi |
987 |
RE = resxPAM |
988 |
|
989 |
else |
990 |
* |||---------- Y CLUSTER |
991 |
|
992 |
BETA = (yPAM_B-yPAM_A)/(xPAM_B-xPAM_A) |
993 |
ALFA = yPAM_A - BETA * xPAM_A |
994 |
|
995 |
xmi = ( XPP + BETA*YPP - BETA*ALFA )/(1+BETA**2) |
996 |
if(xmi.lt.dmin1(xPAM_A,xPAM_B))xmi=dmin1(xPAM_A,xPAM_B) |
997 |
if(xmi.gt.dmax1(xPAM_A,xPAM_B))xmi=dmax1(xPAM_A,xPAM_B) |
998 |
ymi = ALFA + BETA * xmi |
999 |
RE = resyPAM |
1000 |
|
1001 |
endif |
1002 |
|
1003 |
distance= |
1004 |
$ ((xmi-XPP)**2+(ymi-YPP)**2)/RE**2 |
1005 |
distance=dsqrt(distance) |
1006 |
|
1007 |
c$$$ print*,xPAM_A,yPAM_A,zPAM_A,xPAM_b,yPAM_b,zPAM_b |
1008 |
c$$$ $ ,' --- distance_to --- ',xpp,ypp |
1009 |
c$$$ print*,' resolution ',re |
1010 |
|
1011 |
|
1012 |
* ---------------------- |
1013 |
elseif( |
1014 |
+ xPAM.ne.0.and. |
1015 |
+ yPAM.ne.0.and. |
1016 |
+ zPAM.ne.0.and. |
1017 |
+ xPAM_A.eq.0.and. |
1018 |
+ yPAM_A.eq.0.and. |
1019 |
+ zPAM_A.eq.0.and. |
1020 |
+ xPAM_B.eq.0.and. |
1021 |
+ yPAM_B.eq.0.and. |
1022 |
+ zPAM_B.eq.0.and. |
1023 |
+ .true.)then |
1024 |
* ---------------------- |
1025 |
* DISTANCE TO --- COUPLE |
1026 |
* ---------------------- |
1027 |
|
1028 |
distance= |
1029 |
$ ((xPAM-XPP)/resxPAM)**2 |
1030 |
$ + |
1031 |
$ ((yPAM-YPP)/resyPAM)**2 |
1032 |
distance=dsqrt(distance) |
1033 |
|
1034 |
c$$$ print*,xPAM,yPAM,zPAM |
1035 |
c$$$ $ ,' --- distance_to --- ',xpp,ypp |
1036 |
c$$$ print*,' resolution ',resxPAM,resyPAM |
1037 |
|
1038 |
else |
1039 |
|
1040 |
print* |
1041 |
$ ,' function distance_to ---> wrong usage!!!' |
1042 |
print*,' xPAM,yPAM,zPAM ',xPAM,yPAM,zPAM |
1043 |
print*,' xPAM_A,yPAM_A,zPAM_A,xPAM_b,yPAM_b,zPAM_b ' |
1044 |
$ ,xPAM_A,yPAM_A,zPAM_A,xPAM_b,yPAM_b,zPAM_b |
1045 |
endif |
1046 |
|
1047 |
distance_to = sngl(distance) |
1048 |
|
1049 |
return |
1050 |
end |
1051 |
|
1052 |
******************************************************************************** |
1053 |
******************************************************************************** |
1054 |
******************************************************************************** |
1055 |
******************************************************************************** |
1056 |
|
1057 |
subroutine whichsensor(nplPAM,xPAM,yPAM,ladder,sensor) |
1058 |
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * |
1059 |
* Given the plane (1-6 from BOTTOM to TOP!!) and the (xPAM,yPAM) |
1060 |
* coordinates (in the PAMELA reference system), it returns |
1061 |
* the ladder and the sensor which the point belongs to. |
1062 |
* |
1063 |
* The method to assign a point to a sensor consists in |
1064 |
* - calculating the sum of the distances between the point |
1065 |
* and the sensor edges |
1066 |
* - requiring that it is less-equal than (SiDimX+SiDimY) |
1067 |
* |
1068 |
* NB -- SiDimX and SiDimY are not the dimentions of the SENSITIVE volume |
1069 |
* but of the whole silicon sensor |
1070 |
* |
1071 |
* CONVENTION: |
1072 |
* - sensor 1 is the one closest to the hybrid |
1073 |
* - ladder 1 is the first to be read out (strips from 1 to 1024) |
1074 |
* |
1075 |
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * |
1076 |
include 'commontracker.f' |
1077 |
include 'common_align.f' |
1078 |
|
1079 |
integer ladder,sensor,viewx,viewy |
1080 |
real c1(4),c2(4),c3(4) |
1081 |
data c1/1.,0.,0.,1./ |
1082 |
data c2/1.,-1.,-1.,1./ |
1083 |
data c3/1.,1.,0.,0./ |
1084 |
real*8 yvvv,xvvv |
1085 |
double precision xi,yi,zi |
1086 |
double precision xrt,yrt,zrt |
1087 |
real AA,BB |
1088 |
real yvv(4),xvv(4) |
1089 |
|
1090 |
* tollerance to consider the track inside the sensitive area |
1091 |
real ptoll |
1092 |
data ptoll/150./ !um |
1093 |
|
1094 |
external nviewx,nviewy,acoordsi,dcoord |
1095 |
|
1096 |
nplpt = nplPAM !plane |
1097 |
viewx = nviewx(nplpt) |
1098 |
viewy = nviewy(nplpt) |
1099 |
|
1100 |
do il=1,nladders_view |
1101 |
do is=1,2 |
1102 |
|
1103 |
do iv=1,4 !loop on sensor vertexes |
1104 |
stripx = (il-c1(iv))*1024 + c1(iv) + c2(iv)*3 |
1105 |
stripy = (il-c3(iv))*1024 + c3(iv) |
1106 |
c------------------------------------------------------------------------ |
1107 |
c (xi,yi,zi) = mechanical coordinates in the silicon sensor frame |
1108 |
c------------------------------------------------------------------------ |
1109 |
if(((mod(int(stripx+0.5)-1,1024)+1).le.3) |
1110 |
$ .or.((mod(int(stripx+0.5)-1,1024)+1).ge.1022)) then !X has 1018 strips... |
1111 |
c if((stripx.le.3).or.(stripx.ge.1022)) then !X has 1018 strips... |
1112 |
print*,'whichsensor: ', |
1113 |
$ ' WARNING: false X strip: strip ',stripx |
1114 |
endif |
1115 |
xi = acoordsi(stripx,viewx) |
1116 |
yi = acoordsi(stripy,viewy) |
1117 |
zi = 0. |
1118 |
c------------------------------------------------------------------------ |
1119 |
c (xrt,yrt,zrt) = rototranslated coordinates in the silicon sensor frame |
1120 |
c------------------------------------------------------------------------ |
1121 |
c N.B. I convert angles from microradiants to radiants |
1122 |
xrt = xi |
1123 |
$ - omega(nplpt,il,is)*yi |
1124 |
$ + gamma(nplpt,il,is)*zi |
1125 |
$ + dx(nplpt,il,is) |
1126 |
yrt = omega(nplpt,il,is)*xi |
1127 |
$ + yi |
1128 |
$ - beta(nplpt,il,is)*zi |
1129 |
$ + dy(nplpt,il,is) |
1130 |
zrt = -gamma(nplpt,il,is)*xi |
1131 |
$ + beta(nplpt,il,is)*yi |
1132 |
$ + zi |
1133 |
$ + dz(nplpt,il,is) |
1134 |
c------------------------------------------------------------------------ |
1135 |
c measured coordinates (in cm) in PAMELA reference system |
1136 |
c------------------------------------------------------------------------ |
1137 |
yvvv = dcoord(yrt,viewy,il,is) / 1.d4 |
1138 |
xvvv = dcoord(xrt,viewx,il,is) / 1.d4 |
1139 |
|
1140 |
yvv(iv)=sngl(yvvv) |
1141 |
xvv(iv)=sngl(xvvv) |
1142 |
c print*,'LADDER ',il,' SENSOR ',is,' vertexes >> ' |
1143 |
c $ ,iv,xvv(iv),yvv(iv) |
1144 |
enddo !end loop on sensor vertexes |
1145 |
|
1146 |
dtot=0. |
1147 |
do iside=1,4,2 !loop on sensor edges X |
1148 |
iv1=iside |
1149 |
iv2=mod(iside,4)+1 |
1150 |
* straight line passing trhough two consecutive vertexes |
1151 |
AA = (yvv(iv1)-yvv(iv2))/(xvv(iv1)-xvv(iv2)) |
1152 |
BB = yvv(iv1) - AA*xvv(iv1) |
1153 |
* point along the straight line closer to the track |
1154 |
xoo = (xPAM+AA*yPAM-AA*BB)/(1+AA**2) |
1155 |
yoo = AA*xoo + BB |
1156 |
* sum of the distances |
1157 |
dtot = dtot + |
1158 |
$ sqrt((xPAM-xoo)**2+(yPAM-yoo)**2) |
1159 |
enddo !end loop on sensor edges |
1160 |
do iside=2,4,2 !loop on sensor edges Y |
1161 |
iv1=iside |
1162 |
iv2=mod(iside,4)+1 |
1163 |
* straight line passing trhough two consecutive vertexes |
1164 |
AA = (xvv(iv1)-xvv(iv2))/(yvv(iv1)-yvv(iv2)) |
1165 |
BB = xvv(iv1) - AA*yvv(iv1) |
1166 |
* point along the straight line closer to the track |
1167 |
yoo = (yPAM+AA*xPAM-AA*BB)/(1+AA**2) |
1168 |
xoo = AA*yoo + BB |
1169 |
* sum of the distances |
1170 |
dtot = dtot + |
1171 |
$ sqrt((xPAM-xoo)**2+(yPAM-yoo)**2) |
1172 |
enddo !end loop on sensor edges |
1173 |
|
1174 |
|
1175 |
* half-perimeter of sensitive area |
1176 |
Perim = |
1177 |
$ SiDimX - edgeX_l - edgeX_r |
1178 |
$ +SiDimY - edgeY_l - edgeY_r |
1179 |
Perim = (Perim + ptoll)/1.e4 |
1180 |
if(dtot.le.Perim)goto 100 |
1181 |
|
1182 |
|
1183 |
enddo |
1184 |
enddo |
1185 |
|
1186 |
ladder = 0 |
1187 |
sensor = 0 |
1188 |
goto 200 |
1189 |
|
1190 |
100 continue |
1191 |
ladder = il |
1192 |
sensor = is |
1193 |
|
1194 |
|
1195 |
200 return |
1196 |
end |
1197 |
|
1198 |
|
1199 |
|
1200 |
************************************************************************* |
1201 |
|
1202 |
subroutine reverse(v,n,temp) !invert the order of the components of v(n) vector |
1203 |
|
1204 |
implicit double precision (A-H,O-Z) |
1205 |
|
1206 |
dimension v(*) |
1207 |
dimension temp(*) |
1208 |
integer i,n |
1209 |
|
1210 |
do i=1,n |
1211 |
temp(i)=v(n+1-i) |
1212 |
enddo |
1213 |
|
1214 |
do i=1,n |
1215 |
v(i)=temp(i) |
1216 |
enddo |
1217 |
|
1218 |
return |
1219 |
end |
1220 |
|
1221 |
************************************************************************* |
1222 |
************************************************************************* |
1223 |
************************************************************************* |
1224 |
************************************************************************* |
1225 |
************************************************************************* |
1226 |
************************************************************************* |
1227 |
************************************************************************* |
1228 |
************************************************************************* |
1229 |
************************************************************************* |
1230 |
************************************************************************* |
1231 |
************************************************************************* |
1232 |
************************************************************************* |
1233 |
************************************************************************* |
1234 |
************************************************************************* |
1235 |
************************************************************************* |
1236 |
integer function ip_cp(id) |
1237 |
* |
1238 |
* given the couple id, |
1239 |
* it returns the plane number |
1240 |
* |
1241 |
include 'commontracker.f' |
1242 |
include 'level1.f' |
1243 |
c include 'common_analysis.f' |
1244 |
include 'common_momanhough.f' |
1245 |
|
1246 |
ip_cp=0 |
1247 |
ncpp=0 |
1248 |
do ip=1,nplanes |
1249 |
ncpp=ncpp+ncp_plane(ip) |
1250 |
if(ncpp.ge.abs(id))then |
1251 |
ip_cp=ip |
1252 |
goto 100 |
1253 |
endif |
1254 |
enddo |
1255 |
100 continue |
1256 |
return |
1257 |
end |
1258 |
|
1259 |
|
1260 |
integer function is_cp(id) |
1261 |
* |
1262 |
* given the couple id, |
1263 |
* it returns the sensor number |
1264 |
* |
1265 |
is_cp=0 |
1266 |
if(id.lt.0)is_cp=1 |
1267 |
if(id.gt.0)is_cp=2 |
1268 |
if(id.eq.0)print*,'IS_CP ===> wrong couple id !!!' |
1269 |
|
1270 |
return |
1271 |
end |
1272 |
|
1273 |
|
1274 |
integer function icp_cp(id) |
1275 |
* |
1276 |
* given the couple id, |
1277 |
* it returns the id number ON THE PLANE |
1278 |
* |
1279 |
include 'commontracker.f' |
1280 |
include 'level1.f' |
1281 |
c include 'common_analysis.f' |
1282 |
include 'common_momanhough.f' |
1283 |
|
1284 |
icp_cp=0 |
1285 |
|
1286 |
ncpp=0 |
1287 |
do ip=1,nplanes |
1288 |
ncppold=ncpp |
1289 |
ncpp=ncpp+ncp_plane(ip) |
1290 |
if(ncpp.ge.abs(id))then |
1291 |
icp_cp=abs(id)-ncppold |
1292 |
goto 100 |
1293 |
endif |
1294 |
enddo |
1295 |
100 continue |
1296 |
return |
1297 |
end |
1298 |
|
1299 |
|
1300 |
|
1301 |
integer function id_cp(ip,icp,is) |
1302 |
* |
1303 |
* given a plane, a couple and the sensor |
1304 |
* it returns the absolute couple id |
1305 |
* negative if sensor =1 |
1306 |
* positive if sensor =2 |
1307 |
* |
1308 |
include 'commontracker.f' |
1309 |
include 'level1.f' |
1310 |
c include 'calib.f' |
1311 |
c include 'level1.f' |
1312 |
c include 'common_analysis.f' |
1313 |
include 'common_momanhough.f' |
1314 |
|
1315 |
id_cp=0 |
1316 |
|
1317 |
if(ip.gt.1)then |
1318 |
do i=1,ip-1 |
1319 |
id_cp = id_cp + ncp_plane(i) |
1320 |
enddo |
1321 |
endif |
1322 |
|
1323 |
id_cp = id_cp + icp |
1324 |
|
1325 |
if(is.eq.1) id_cp = -id_cp |
1326 |
|
1327 |
return |
1328 |
end |
1329 |
|
1330 |
|
1331 |
|
1332 |
|
1333 |
************************************************************************* |
1334 |
************************************************************************* |
1335 |
************************************************************************* |
1336 |
************************************************************************* |
1337 |
************************************************************************* |
1338 |
************************************************************************* |
1339 |
|
1340 |
|
1341 |
*************************************************** |
1342 |
* * |
1343 |
* * |
1344 |
* * |
1345 |
* * |
1346 |
* * |
1347 |
* * |
1348 |
************************************************** |
1349 |
|
1350 |
subroutine cl_to_couples(iflag) |
1351 |
|
1352 |
include 'commontracker.f' |
1353 |
include 'level1.f' |
1354 |
include 'common_momanhough.f' |
1355 |
c include 'momanhough_init.f' |
1356 |
include 'calib.f' |
1357 |
c include 'level1.f' |
1358 |
|
1359 |
* output flag |
1360 |
* -------------- |
1361 |
* 0 = good event |
1362 |
* 1 = bad event |
1363 |
* -------------- |
1364 |
integer iflag |
1365 |
|
1366 |
integer badseed,badclx,badcly |
1367 |
|
1368 |
* init variables |
1369 |
ncp_tot=0 |
1370 |
do ip=1,nplanes |
1371 |
do ico=1,ncouplemax |
1372 |
clx(ip,ico)=0 |
1373 |
cly(ip,ico)=0 |
1374 |
enddo |
1375 |
ncp_plane(ip)=0 |
1376 |
do icl=1,nclstrmax_level2 |
1377 |
cls(ip,icl)=1 |
1378 |
enddo |
1379 |
ncls(ip)=0 |
1380 |
enddo |
1381 |
do icl=1,nclstrmax_level2 |
1382 |
cl_single(icl) = 1 |
1383 |
cl_good(icl) = 0 |
1384 |
enddo |
1385 |
do iv=1,nviews |
1386 |
ncl_view(iv) = 0 |
1387 |
mask_view(iv) = 0 !all included |
1388 |
enddo |
1389 |
|
1390 |
* count number of cluster per view |
1391 |
do icl=1,nclstr1 |
1392 |
ncl_view(VIEW(icl)) = ncl_view(VIEW(icl)) + 1 |
1393 |
enddo |
1394 |
* mask views with too many clusters |
1395 |
do iv=1,nviews |
1396 |
if( ncl_view(iv).gt. nclusterlimit)then |
1397 |
mask_view(iv) = 1 |
1398 |
if(DEBUG)print*,' * WARNING * cl_to_couple: n.clusters > ' |
1399 |
$ ,nclusterlimit,' on view ', iv,' --> masked!' |
1400 |
endif |
1401 |
enddo |
1402 |
|
1403 |
|
1404 |
* start association |
1405 |
ncouples=0 |
1406 |
do icx=1,nclstr1 !loop on cluster (X) |
1407 |
if(mod(VIEW(icx),2).eq.1)goto 10 |
1408 |
|
1409 |
* ---------------------------------------------------- |
1410 |
* jump masked views (X VIEW) |
1411 |
* ---------------------------------------------------- |
1412 |
if( mask_view(VIEW(icx)).ne.0 ) goto 10 |
1413 |
* ---------------------------------------------------- |
1414 |
* cut on charge (X VIEW) |
1415 |
* ---------------------------------------------------- |
1416 |
if(sgnl(icx).lt.dedx_x_min)then |
1417 |
cl_single(icx)=0 |
1418 |
goto 10 |
1419 |
endif |
1420 |
* ---------------------------------------------------- |
1421 |
* cut BAD (X VIEW) |
1422 |
* ---------------------------------------------------- |
1423 |
badseed=BAD(VIEW(icx),nvk(MAXS(icx)),nst(MAXS(icx))) |
1424 |
ifirst=INDSTART(icx) |
1425 |
if(icx.ne.nclstr1) then |
1426 |
ilast=INDSTART(icx+1)-1 |
1427 |
else |
1428 |
ilast=TOTCLLENGTH |
1429 |
endif |
1430 |
badclx=badseed |
1431 |
do igood=-ngoodstr,ngoodstr |
1432 |
ibad=1 |
1433 |
if((INDMAX(icx)+igood).gt.ifirst.and. |
1434 |
$ (INDMAX(icx)+igood).lt.ilast.and. |
1435 |
$ .true.)then |
1436 |
ibad=BAD(VIEW(icx), |
1437 |
$ nvk(MAXS(icx)+igood), |
1438 |
$ nst(MAXS(icx)+igood)) |
1439 |
endif |
1440 |
badclx=badclx*ibad |
1441 |
enddo |
1442 |
* ---------------------------------------------------- |
1443 |
* >>> eliminato il taglio sulle BAD <<< |
1444 |
* ---------------------------------------------------- |
1445 |
c if(badcl.eq.0)then |
1446 |
c cl_single(icx)=0 |
1447 |
c goto 10 |
1448 |
c endif |
1449 |
* ---------------------------------------------------- |
1450 |
|
1451 |
cl_good(icx)=1 |
1452 |
nplx=npl(VIEW(icx)) |
1453 |
nldx=nld(MAXS(icx),VIEW(icx)) |
1454 |
|
1455 |
do icy=1,nclstr1 !loop on cluster (Y) |
1456 |
if(mod(VIEW(icy),2).eq.0)goto 20 |
1457 |
|
1458 |
* ---------------------------------------------------- |
1459 |
* jump masked views (Y VIEW) |
1460 |
* ---------------------------------------------------- |
1461 |
if( mask_view(VIEW(icy)).ne.0 ) goto 20 |
1462 |
|
1463 |
* ---------------------------------------------------- |
1464 |
* cut on charge (Y VIEW) |
1465 |
* ---------------------------------------------------- |
1466 |
if(sgnl(icy).lt.dedx_y_min)then |
1467 |
cl_single(icy)=0 |
1468 |
goto 20 |
1469 |
endif |
1470 |
* ---------------------------------------------------- |
1471 |
* cut BAD (Y VIEW) |
1472 |
* ---------------------------------------------------- |
1473 |
badseed=BAD(VIEW(icy),nvk(MAXS(icy)),nst(MAXS(icy))) |
1474 |
ifirst=INDSTART(icy) |
1475 |
if(icy.ne.nclstr1) then |
1476 |
ilast=INDSTART(icy+1)-1 |
1477 |
else |
1478 |
ilast=TOTCLLENGTH |
1479 |
endif |
1480 |
badcly=badseed |
1481 |
do igood=-ngoodstr,ngoodstr |
1482 |
ibad=1 |
1483 |
if((INDMAX(icy)+igood).gt.ifirst.and. |
1484 |
$ (INDMAX(icy)+igood).lt.ilast.and. |
1485 |
$ .true.) |
1486 |
$ ibad=BAD(VIEW(icy), |
1487 |
$ nvk(MAXS(icy)+igood), |
1488 |
$ nst(MAXS(icy)+igood)) |
1489 |
badcly=badcly*ibad |
1490 |
enddo |
1491 |
* ---------------------------------------------------- |
1492 |
* >>> eliminato il taglio sulle BAD <<< |
1493 |
* ---------------------------------------------------- |
1494 |
c if(badcl.eq.0)then |
1495 |
c cl_single(icy)=0 |
1496 |
c goto 20 |
1497 |
c endif |
1498 |
* ---------------------------------------------------- |
1499 |
|
1500 |
cl_good(icy)=1 |
1501 |
nply=npl(VIEW(icy)) |
1502 |
nldy=nld(MAXS(icy),VIEW(icy)) |
1503 |
|
1504 |
* ---------------------------------------------- |
1505 |
* CONDITION TO FORM A COUPLE |
1506 |
* ---------------------------------------------- |
1507 |
* geometrical consistency (same plane and ladder) |
1508 |
if(nply.eq.nplx.and.nldy.eq.nldx)then |
1509 |
* charge correlation |
1510 |
* (modified to be applied only below saturation... obviously) |
1511 |
|
1512 |
if( .not.(sgnl(icy).gt.chsaty.and.sgnl(icx).gt.chsatx) |
1513 |
$ .and. |
1514 |
$ .not.(sgnl(icy).lt.chmipy.and.sgnl(icx).lt.chmipx) |
1515 |
$ .and. |
1516 |
$ (badclx.eq.1.and.badcly.eq.1) |
1517 |
$ .and. |
1518 |
$ .true.)then |
1519 |
|
1520 |
ddd=(sgnl(icy) |
1521 |
$ -kch(nplx,nldx)*sgnl(icx)-cch(nplx,nldx)) |
1522 |
ddd=ddd/sqrt(kch(nplx,nldx)**2+1) |
1523 |
|
1524 |
c cut = chcut * sch(nplx,nldx) |
1525 |
|
1526 |
sss=(kch(nplx,nldx)*sgnl(icy)+sgnl(icx) |
1527 |
$ -kch(nplx,nldx)*cch(nplx,nldx)) |
1528 |
sss=sss/sqrt(kch(nplx,nldx)**2+1) |
1529 |
cut = chcut * (16 + sss/50.) |
1530 |
|
1531 |
if(abs(ddd).gt.cut)then |
1532 |
goto 20 !charge not consistent |
1533 |
endif |
1534 |
endif |
1535 |
|
1536 |
if(ncp_plane(nplx).gt.ncouplemax)then |
1537 |
if(verbose)print*, |
1538 |
$ '** warning ** number of identified '// |
1539 |
$ 'couples on plane ',nplx, |
1540 |
$ 'exceeds vector dimention ' |
1541 |
$ ,'( ',ncouplemax,' ) --> masked!' |
1542 |
mask_view(nviewx(nplx)) = 2 |
1543 |
mask_view(nviewy(nply)) = 2 |
1544 |
goto 10 |
1545 |
endif |
1546 |
|
1547 |
* ------------------> COUPLE <------------------ |
1548 |
ncp_plane(nplx) = ncp_plane(nplx) + 1 |
1549 |
clx(nplx,ncp_plane(nplx))=icx |
1550 |
cly(nply,ncp_plane(nplx))=icy |
1551 |
cl_single(icx)=0 |
1552 |
cl_single(icy)=0 |
1553 |
* ---------------------------------------------- |
1554 |
|
1555 |
endif |
1556 |
|
1557 |
20 continue |
1558 |
enddo !end loop on clusters(Y) |
1559 |
|
1560 |
10 continue |
1561 |
enddo !end loop on clusters(X) |
1562 |
|
1563 |
|
1564 |
do icl=1,nclstr1 |
1565 |
if(cl_single(icl).eq.1)then |
1566 |
ip=npl(VIEW(icl)) |
1567 |
ncls(ip)=ncls(ip)+1 |
1568 |
cls(ip,ncls(ip))=icl |
1569 |
endif |
1570 |
enddo |
1571 |
|
1572 |
|
1573 |
if(DEBUG)then |
1574 |
print*,'clusters ',nclstr1 |
1575 |
print*,'good ',(cl_good(i),i=1,nclstr1) |
1576 |
print*,'singles ',(cl_single(i),i=1,nclstr1) |
1577 |
print*,'couples per plane: ',(ncp_plane(ip),ip=1,nplanes) |
1578 |
endif |
1579 |
|
1580 |
do ip=1,6 |
1581 |
ncp_tot = ncp_tot + ncp_plane(ip) |
1582 |
enddo |
1583 |
|
1584 |
return |
1585 |
end |
1586 |
|
1587 |
*************************************************** |
1588 |
* * |
1589 |
* * |
1590 |
* * |
1591 |
* * |
1592 |
* * |
1593 |
* * |
1594 |
************************************************** |
1595 |
|
1596 |
subroutine cp_to_doubtrip(iflag) |
1597 |
|
1598 |
include 'commontracker.f' |
1599 |
include 'level1.f' |
1600 |
include 'common_momanhough.f' |
1601 |
include 'common_xyzPAM.f' |
1602 |
include 'common_mini_2.f' |
1603 |
include 'calib.f' |
1604 |
|
1605 |
|
1606 |
* output flag |
1607 |
* -------------- |
1608 |
* 0 = good event |
1609 |
* 1 = bad event |
1610 |
* -------------- |
1611 |
integer iflag |
1612 |
|
1613 |
|
1614 |
* ----------------------------- |
1615 |
* DOUBLETS/TRIPLETS coordinates |
1616 |
c double precision xm1,ym1,zm1 |
1617 |
c double precision xm2,ym2,zm2 |
1618 |
c double precision xm3,ym3,zm3 |
1619 |
|
1620 |
real xm1,ym1,zm1 |
1621 |
real xm2,ym2,zm2 |
1622 |
real xm3,ym3,zm3 |
1623 |
* ----------------------------- |
1624 |
* variable needed for tricircle: |
1625 |
real xp(3),zp(3)!TRIPLETS coordinates, to find a circle |
1626 |
EQUIVALENCE (xm1,xp(1)) |
1627 |
EQUIVALENCE (xm2,xp(2)) |
1628 |
EQUIVALENCE (xm3,xp(3)) |
1629 |
EQUIVALENCE (zm1,zp(1)) |
1630 |
EQUIVALENCE (zm2,zp(2)) |
1631 |
EQUIVALENCE (zm3,zp(3)) |
1632 |
real angp(3),resp(3),chi |
1633 |
real xc,zc,radius |
1634 |
* ----------------------------- |
1635 |
|
1636 |
|
1637 |
* -------------------------------------------- |
1638 |
* put a limit to the maximum number of couples |
1639 |
* per plane, in order to apply hough transform |
1640 |
* (couples recovered during track refinement) |
1641 |
* -------------------------------------------- |
1642 |
do ip=1,nplanes |
1643 |
if(ncp_plane(ip).gt.ncouplelimit)then |
1644 |
mask_view(nviewx(ip)) = 8 |
1645 |
mask_view(nviewy(ip)) = 8 |
1646 |
endif |
1647 |
enddo |
1648 |
|
1649 |
|
1650 |
ndblt=0 !number of doublets |
1651 |
ntrpt=0 !number of triplets |
1652 |
|
1653 |
do ip1=1,(nplanes-1) !loop on planes - COPPIA 1 |
1654 |
if( mask_view(nviewx(ip1)).ne.0 .or. |
1655 |
$ mask_view(nviewy(ip1)).ne.0 )goto 10 !skip plane |
1656 |
do is1=1,2 !loop on sensors - COPPIA 1 |
1657 |
do icp1=1,ncp_plane(ip1) !loop on COPPIA 1 |
1658 |
icx1=clx(ip1,icp1) |
1659 |
icy1=cly(ip1,icp1) |
1660 |
c call xyz_PAM(icx1,icy1,is1,'COG2','COG2',0.,0.)!(1) |
1661 |
c call xyz_PAM(icx1,icy1,is1,PFAdef,PFAdef,0.,0.) !(1) |
1662 |
call xyz_PAM(icx1,icy1,is1,PFAdef,PFAdef,0.,0.,0.,0.) |
1663 |
xm1=xPAM |
1664 |
ym1=yPAM |
1665 |
zm1=zPAM |
1666 |
c print*,'***',is1,xm1,ym1,zm1 |
1667 |
|
1668 |
do ip2=(ip1+1),nplanes !loop on planes - COPPIA 2 |
1669 |
if( mask_view(nviewx(ip2)).ne.0 .or. |
1670 |
$ mask_view(nviewy(ip2)).ne.0 )goto 20 !skip plane |
1671 |
do is2=1,2 !loop on sensors -ndblt COPPIA 2 |
1672 |
|
1673 |
do icp2=1,ncp_plane(ip2) !loop on COPPIA 2 |
1674 |
icx2=clx(ip2,icp2) |
1675 |
icy2=cly(ip2,icp2) |
1676 |
c call xyz_PAM |
1677 |
c $ (icx2,icy2,is2,'COG2','COG2',0.,0.)!(1) |
1678 |
c call xyz_PAM |
1679 |
c $ (icx2,icy2,is2,PFAdef,PFAdef,0.,0.) !(1) |
1680 |
call xyz_PAM |
1681 |
$ (icx2,icy2,is2,PFAdef,PFAdef,0.,0.,0.,0.) |
1682 |
xm2=xPAM |
1683 |
ym2=yPAM |
1684 |
zm2=zPAM |
1685 |
|
1686 |
* - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
1687 |
* track parameters on Y VIEW |
1688 |
* (2 couples needed) |
1689 |
* - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
1690 |
if(ndblt.eq.ndblt_max)then |
1691 |
if(verbose)print*, |
1692 |
$ '** warning ** number of identified '// |
1693 |
$ 'doublets exceeds vector dimention ' |
1694 |
$ ,'( ',ndblt_max,' )' |
1695 |
c good2=.false. |
1696 |
c goto 880 !fill ntp and go to next event |
1697 |
do iv=1,12 |
1698 |
mask_view(iv) = 3 |
1699 |
enddo |
1700 |
iflag=1 |
1701 |
return |
1702 |
endif |
1703 |
ndblt = ndblt + 1 |
1704 |
* store doublet info |
1705 |
cpyz1(ndblt)=id_cp(ip1,icp1,is1) |
1706 |
cpyz2(ndblt)=id_cp(ip2,icp2,is2) |
1707 |
* tg(th_yz) |
1708 |
alfayz2(ndblt)=(ym1-ym2)/(zm1-zm2) |
1709 |
* y0 (cm) |
1710 |
alfayz1(ndblt)=alfayz2(ndblt)*(zini-zm1)+ym1 |
1711 |
|
1712 |
**** -----------------------------------------------**** |
1713 |
**** reject non phisical couples **** |
1714 |
**** -----------------------------------------------**** |
1715 |
if( |
1716 |
$ abs(alfayz2(ndblt)).gt.alfyz2_max |
1717 |
$ .or. |
1718 |
$ abs(alfayz1(ndblt)).gt.alfyz1_max |
1719 |
$ )ndblt = ndblt-1 |
1720 |
|
1721 |
c$$$ if(iev.eq.33)then |
1722 |
c$$$ print*,'********* ',ndblt,' -- ',icp1,icp2,is1,is2 |
1723 |
c$$$ $ ,' || ',icx1,icy1,icx2,icy2 |
1724 |
c$$$ $ ,' || ',xm1,ym1,xm2,ym2 |
1725 |
c$$$ $ ,' || ',alfayz2(ndblt),alfayz1(ndblt) |
1726 |
c$$$ endif |
1727 |
c$$$ |
1728 |
* - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
1729 |
* track parameters on Y VIEW - end |
1730 |
* - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
1731 |
|
1732 |
|
1733 |
if(ip2.eq.nplanes)goto 31 !no possible combination with 3 couples |
1734 |
|
1735 |
do ip3=(ip2+1),nplanes !loop on planes - COPPIA 3 |
1736 |
if( mask_view(nviewx(ip3)).ne.0 .or. |
1737 |
$ mask_view(nviewy(ip3)).ne.0 )goto 30 !skip plane |
1738 |
do is3=1,2 !loop on sensors - COPPIA 3 |
1739 |
|
1740 |
do icp3=1,ncp_plane(ip3) !loop on COPPIA 3 |
1741 |
icx3=clx(ip3,icp3) |
1742 |
icy3=cly(ip3,icp3) |
1743 |
c call xyz_PAM |
1744 |
c $ (icx3,icy3,is3,'COG2','COG2',0.,0.)!(1) |
1745 |
c call xyz_PAM |
1746 |
c $ (icx3,icy3,is3,PFAdef,PFAdef,0.,0.) !(1) |
1747 |
call xyz_PAM |
1748 |
$ (icx3,icy3,is3,PFAdef,PFAdef |
1749 |
$ ,0.,0.,0.,0.) |
1750 |
xm3=xPAM |
1751 |
ym3=yPAM |
1752 |
zm3=zPAM |
1753 |
* find the circle passing through the three points |
1754 |
call tricircle(3,xp,zp,angp,resp,chi |
1755 |
$ ,xc,zc,radius,iflag) |
1756 |
c print*,xc,zc,radius |
1757 |
* the circle must intersect the reference plane |
1758 |
if( |
1759 |
c $ (xc.le.-1.*xclimit.or. |
1760 |
c $ xc.ge.xclimit).and. |
1761 |
$ radius**2.ge.(ZINI-zc)**2.and. |
1762 |
$ iflag.eq.0.and. |
1763 |
$ .true.)then |
1764 |
|
1765 |
* - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
1766 |
* track parameters on X VIEW |
1767 |
* (3 couples needed) |
1768 |
* - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
1769 |
if(ntrpt.eq.ntrpt_max)then |
1770 |
if(verbose)print*, |
1771 |
$ '** warning ** number of identified '// |
1772 |
$ 'triplets exceeds vector dimention ' |
1773 |
$ ,'( ',ntrpt_max,' )' |
1774 |
c good2=.false. |
1775 |
c goto 880 !fill ntp and go to next event |
1776 |
do iv=1,nviews |
1777 |
mask_view(iv) = 4 |
1778 |
enddo |
1779 |
iflag=1 |
1780 |
return |
1781 |
endif |
1782 |
ntrpt = ntrpt +1 |
1783 |
* store triplet info |
1784 |
cpxz1(ntrpt)=id_cp(ip1,icp1,is1) |
1785 |
cpxz2(ntrpt)=id_cp(ip2,icp2,is2) |
1786 |
cpxz3(ntrpt)=id_cp(ip3,icp3,is3) |
1787 |
|
1788 |
if(xc.lt.0)then |
1789 |
*************POSITIVE DEFLECTION |
1790 |
alfaxz1(ntrpt) = xc+sqrt(radius**2-(ZINI-zc)**2) |
1791 |
alfaxz2(ntrpt) = (ZINI-zc)/sqrt(radius**2-(ZINI-zc)**2) |
1792 |
alfaxz3(ntrpt) = 1/radius |
1793 |
else |
1794 |
*************NEGATIVE DEFLECTION |
1795 |
alfaxz1(ntrpt) = xc-sqrt(radius**2-(ZINI-zc)**2) |
1796 |
alfaxz2(ntrpt) = -(ZINI-zc)/sqrt(radius**2-(ZINI-zc)**2) |
1797 |
alfaxz3(ntrpt) = -1/radius |
1798 |
endif |
1799 |
|
1800 |
**** -----------------------------------------------**** |
1801 |
**** reject non phisical triplets **** |
1802 |
**** -----------------------------------------------**** |
1803 |
if( |
1804 |
$ abs(alfaxz2(ntrpt)).gt.alfxz2_max |
1805 |
$ .or. |
1806 |
$ abs(alfaxz1(ntrpt)).gt.alfxz1_max |
1807 |
$ )ntrpt = ntrpt-1 |
1808 |
|
1809 |
|
1810 |
c print*,alfaxz1(ntrpt),alfaxz2(ntrpt),alfaxz3(ntrpt) |
1811 |
* - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
1812 |
* track parameters on X VIEW - end |
1813 |
* - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
1814 |
endif |
1815 |
enddo !end loop on COPPIA 3 |
1816 |
enddo !end loop on sensors - COPPIA 3 |
1817 |
30 continue |
1818 |
enddo !end loop on planes - COPPIA 3 |
1819 |
31 continue |
1820 |
|
1821 |
1 enddo !end loop on COPPIA 2 |
1822 |
enddo !end loop on sensors - COPPIA 2 |
1823 |
20 continue |
1824 |
enddo !end loop on planes - COPPIA 2 |
1825 |
|
1826 |
enddo !end loop on COPPIA1 |
1827 |
enddo !end loop on sensors - COPPIA 1 |
1828 |
10 continue |
1829 |
enddo !end loop on planes - COPPIA 1 |
1830 |
|
1831 |
if(DEBUG)then |
1832 |
print*,'--- doublets ',ndblt |
1833 |
print*,'--- triplets ',ntrpt |
1834 |
endif |
1835 |
|
1836 |
c goto 880 !ntp fill |
1837 |
|
1838 |
|
1839 |
return |
1840 |
end |
1841 |
|
1842 |
|
1843 |
|
1844 |
*************************************************** |
1845 |
* * |
1846 |
* * |
1847 |
* * |
1848 |
* * |
1849 |
* * |
1850 |
* * |
1851 |
************************************************** |
1852 |
|
1853 |
subroutine doub_to_YZcloud(iflag) |
1854 |
|
1855 |
include 'commontracker.f' |
1856 |
include 'level1.f' |
1857 |
include 'common_momanhough.f' |
1858 |
c include 'momanhough_init.f' |
1859 |
|
1860 |
|
1861 |
* output flag |
1862 |
* -------------- |
1863 |
* 0 = good event |
1864 |
* 1 = bad event |
1865 |
* -------------- |
1866 |
integer iflag |
1867 |
|
1868 |
integer db_used(ndblt_max) |
1869 |
integer db_temp(ndblt_max) |
1870 |
integer db_all(ndblt_max) !stores db ID in each cloud |
1871 |
|
1872 |
integer hit_plane(nplanes) |
1873 |
|
1874 |
* mask for used couples |
1875 |
integer cp_useds1(ncouplemaxtot) ! sensor 1 |
1876 |
integer cp_useds2(ncouplemaxtot) ! sensor 2 |
1877 |
|
1878 |
|
1879 |
*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
1880 |
* classification of DOUBLETS |
1881 |
* according to distance in parameter space |
1882 |
* (cloud = group of points (doublets) in parameter space) |
1883 |
*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
1884 |
do idb=1,ndblt |
1885 |
db_used(idb)=0 |
1886 |
enddo |
1887 |
|
1888 |
distance=0 |
1889 |
nclouds_yz=0 !number of clouds |
1890 |
npt_tot=0 |
1891 |
nloop=0 |
1892 |
90 continue |
1893 |
do idb1=1,ndblt !loop (1) on DOUBLETS |
1894 |
if(db_used(idb1).eq.1)goto 2228 !db already included in a cloud |
1895 |
|
1896 |
c print*,'--------------' |
1897 |
c print*,'** ',idb1,' **' |
1898 |
|
1899 |
do icp=1,ncp_tot |
1900 |
cp_useds1(icp)=0 !init |
1901 |
cp_useds2(icp)=0 !init |
1902 |
enddo |
1903 |
do idb=1,ndblt |
1904 |
db_all(idb)=0 |
1905 |
enddo |
1906 |
if(cpyz1(idb1).gt.0)cp_useds2(cpyz1(idb1))=1 |
1907 |
if(cpyz1(idb1).lt.0)cp_useds1(-cpyz1(idb1))=1 |
1908 |
if(cpyz2(idb1).gt.0)cp_useds2(cpyz2(idb1))=1 |
1909 |
if(cpyz2(idb1).lt.0)cp_useds1(-cpyz2(idb1))=1 |
1910 |
temp1 = alfayz1(idb1) |
1911 |
temp2 = alfayz2(idb1) |
1912 |
npt=1 !counter of points in the cloud |
1913 |
|
1914 |
db_all(npt) = idb1 |
1915 |
|
1916 |
nptloop=1 |
1917 |
db_temp(1)=idb1 |
1918 |
|
1919 |
88 continue |
1920 |
|
1921 |
npv=0 !# new points inlcuded |
1922 |
do iloop=1,nptloop |
1923 |
idbref=db_temp(iloop) !local point of reference |
1924 |
ccccc if(db_used(idbref).eq.1)goto 1188 !next |
1925 |
|
1926 |
do idb2=1,ndblt !loop (2) on DOUBLETS |
1927 |
if(idb2.eq.idbref)goto 1118 !next doublet |
1928 |
if(db_used(idb2).eq.1)goto 1118 |
1929 |
|
1930 |
|
1931 |
* doublet distance in parameter space |
1932 |
distance= |
1933 |
$ ((alfayz1(idbref)-alfayz1(idb2))/Dalfayz1)**2 |
1934 |
$ +((alfayz2(idbref)-alfayz2(idb2))/Dalfayz2)**2 |
1935 |
distance = sqrt(distance) |
1936 |
|
1937 |
c$$$ if(iev.eq.33)then |
1938 |
c$$$ if(distance.lt.100) |
1939 |
c$$$ $ print*,'********* ',idb1,idbref,idb2,distance |
1940 |
c$$$ if(distance.lt.100) |
1941 |
c$$$ $ print*,'********* ',alfayz1(idbref),alfayz1(idb2) |
1942 |
c$$$ $ ,alfayz2(idbref),alfayz2(idb2) |
1943 |
c$$$ endif |
1944 |
if(distance.lt.cutdistyz)then |
1945 |
|
1946 |
c print*,idb1,idb2,distance,' cloud ',nclouds_yz |
1947 |
if(cpyz1(idb2).gt.0)cp_useds2(cpyz1(idb2))=1 |
1948 |
if(cpyz1(idb2).lt.0)cp_useds1(-cpyz1(idb2))=1 |
1949 |
if(cpyz2(idb2).gt.0)cp_useds2(cpyz2(idb2))=1 |
1950 |
if(cpyz2(idb2).lt.0)cp_useds1(-cpyz2(idb2))=1 |
1951 |
npt = npt + 1 !counter of points in the cloud |
1952 |
|
1953 |
npv = npv +1 |
1954 |
db_temp(npv) = idb2 |
1955 |
db_used(idbref) = 1 |
1956 |
db_used(idb2) = 1 |
1957 |
|
1958 |
db_all(npt) = idb2 |
1959 |
|
1960 |
temp1 = temp1 + alfayz1(idb2) |
1961 |
temp2 = temp2 + alfayz2(idb2) |
1962 |
c print*,'* idbref,idb2 ',idbref,idb2 |
1963 |
endif |
1964 |
|
1965 |
1118 continue |
1966 |
enddo !end loop (2) on DOUBLETS |
1967 |
|
1968 |
1188 continue |
1969 |
enddo !end loop on... bo? |
1970 |
|
1971 |
nptloop=npv |
1972 |
if(nptloop.ne.0)goto 88 |
1973 |
|
1974 |
* ------------------------------------------ |
1975 |
* stores the cloud only if |
1976 |
* 1) it includes a minimum number of REAL couples |
1977 |
* 1bis) it inlcudes a minimum number of doublets |
1978 |
* 2) it is not already stored |
1979 |
* ------------------------------------------ |
1980 |
do ip=1,nplanes |
1981 |
hit_plane(ip)=0 |
1982 |
enddo |
1983 |
ncpused=0 |
1984 |
do icp=1,ncp_tot |
1985 |
if(cp_useds1(icp).ne.0.or.cp_useds2(icp).ne.0)then |
1986 |
ncpused=ncpused+1 |
1987 |
ip=ip_cp(icp) |
1988 |
hit_plane(ip)=1 |
1989 |
endif |
1990 |
enddo |
1991 |
nplused=0 |
1992 |
do ip=1,nplanes |
1993 |
nplused=nplused+ hit_plane(ip) |
1994 |
enddo |
1995 |
c print*,'>>>> ',ncpused,npt,nplused |
1996 |
c if(ncpused.lt.ncpyz_min)goto 2228 !next doublet |
1997 |
if(npt.lt.nptyz_min)goto 2228 !next doublet |
1998 |
if(nplused.lt.nplyz_min)goto 2228 !next doublet |
1999 |
|
2000 |
* ~~~~~~~~~~~~~~~~~ |
2001 |
* >>> NEW CLOUD <<< |
2002 |
|
2003 |
if(nclouds_yz.ge.ncloyz_max)then |
2004 |
if(verbose)print*, |
2005 |
$ '** warning ** number of identified '// |
2006 |
$ 'YZ clouds exceeds vector dimention ' |
2007 |
$ ,'( ',ncloyz_max,' )' |
2008 |
c good2=.false. |
2009 |
c goto 880 !fill ntp and go to next event |
2010 |
do iv=1,nviews |
2011 |
mask_view(iv) = 5 |
2012 |
enddo |
2013 |
iflag=1 |
2014 |
return |
2015 |
endif |
2016 |
|
2017 |
nclouds_yz = nclouds_yz + 1 !increase counter |
2018 |
alfayz1_av(nclouds_yz) = temp1/npt !store average parameter |
2019 |
alfayz2_av(nclouds_yz) = temp2/npt ! " |
2020 |
do icp=1,ncp_tot |
2021 |
cpcloud_yz(nclouds_yz,icp)= |
2022 |
$ cp_useds1(icp)+2*cp_useds2(icp) !store cp info |
2023 |
enddo |
2024 |
ptcloud_yz(nclouds_yz)=npt |
2025 |
c ptcloud_yz_nt(nclouds_yz)=npt |
2026 |
do ipt=1,npt |
2027 |
db_cloud(npt_tot+ipt) = db_all(ipt) |
2028 |
c print*,'>> ',ipt,db_all(ipt) |
2029 |
enddo |
2030 |
npt_tot=npt_tot+npt |
2031 |
if(DEBUG)then |
2032 |
print*,'-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~' |
2033 |
print*,'>>>> cloud ',nclouds_yz,' --- ',npt,' points' |
2034 |
print*,'- alfayz1 ',alfayz1_av(nclouds_yz) |
2035 |
print*,'- alfayz2 ',alfayz2_av(nclouds_yz) |
2036 |
print*,'cp_useds1 ',(cp_useds1(icp),icp=1,ncp_tot) |
2037 |
print*,'cp_useds2 ',(cp_useds2(icp),icp=1,ncp_tot) |
2038 |
print*,'hit_plane ',(hit_plane(ip),ip=1,nplanes) |
2039 |
c$$$ print*,'nt-uple: ptcloud_yz(',nclouds_yz,') = ' |
2040 |
c$$$ $ ,ptcloud_yz(nclouds_yz) |
2041 |
c$$$ print*,'nt-uple: db_cloud(...) = ' |
2042 |
c$$$ $ ,(db_cloud(iii),iii=npt_tot-npt+1,npt_tot) |
2043 |
endif |
2044 |
* >>> NEW CLOUD <<< |
2045 |
* ~~~~~~~~~~~~~~~~~ |
2046 |
2228 continue |
2047 |
enddo !end loop (1) on DOUBLETS |
2048 |
|
2049 |
|
2050 |
if(nloop.lt.nstepy)then |
2051 |
cutdistyz = cutdistyz+cutystep |
2052 |
nloop = nloop+1 |
2053 |
goto 90 |
2054 |
endif |
2055 |
|
2056 |
if(DEBUG)then |
2057 |
print*,'---------------------- ' |
2058 |
print*,'Y-Z total clouds ',nclouds_yz |
2059 |
print*,' ' |
2060 |
endif |
2061 |
|
2062 |
|
2063 |
return |
2064 |
end |
2065 |
|
2066 |
|
2067 |
|
2068 |
|
2069 |
|
2070 |
*************************************************** |
2071 |
* * |
2072 |
* * |
2073 |
* * |
2074 |
* * |
2075 |
* * |
2076 |
* * |
2077 |
************************************************** |
2078 |
|
2079 |
subroutine trip_to_XZcloud(iflag) |
2080 |
|
2081 |
include 'commontracker.f' |
2082 |
include 'level1.f' |
2083 |
include 'common_momanhough.f' |
2084 |
c include 'momanhough_init.f' |
2085 |
|
2086 |
|
2087 |
* output flag |
2088 |
* -------------- |
2089 |
* 0 = good event |
2090 |
* 1 = bad event |
2091 |
* -------------- |
2092 |
integer iflag |
2093 |
|
2094 |
integer tr_used(ntrpt_max) |
2095 |
integer tr_temp(ntrpt_max) |
2096 |
integer tr_incl(ntrpt_max) |
2097 |
integer tr_all(ntrpt_max) !stores tr ID in each cloud |
2098 |
|
2099 |
integer hit_plane(nplanes) |
2100 |
|
2101 |
* mask for used couples |
2102 |
integer cp_useds1(ncouplemaxtot) ! sensor 1 |
2103 |
integer cp_useds2(ncouplemaxtot) ! sensor 2 |
2104 |
|
2105 |
*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
2106 |
* classification of TRIPLETS |
2107 |
* according to distance in parameter space |
2108 |
*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
2109 |
do itr=1,ntrpt |
2110 |
tr_used(itr)=0 |
2111 |
enddo |
2112 |
|
2113 |
distance=0 |
2114 |
nclouds_xz=0 !number of clouds |
2115 |
npt_tot=0 !total number of selected triplets |
2116 |
nloop=0 |
2117 |
91 continue |
2118 |
do itr1=1,ntrpt !loop (1) on TRIPLETS |
2119 |
if(tr_used(itr1).eq.1)goto 22288 !already included in a cloud |
2120 |
c print*,'--------------' |
2121 |
c print*,'** ',itr1,' **' |
2122 |
|
2123 |
do icp=1,ncp_tot |
2124 |
cp_useds1(icp)=0 |
2125 |
cp_useds2(icp)=0 |
2126 |
enddo |
2127 |
do itr=1,ntrpt |
2128 |
tr_all(itr)=0 !list of included triplets |
2129 |
enddo |
2130 |
if(cpxz1(itr1).gt.0)cp_useds2(cpxz1(itr1))=1 |
2131 |
if(cpxz1(itr1).lt.0)cp_useds1(-cpxz1(itr1))=1 |
2132 |
if(cpxz2(itr1).gt.0)cp_useds2(cpxz2(itr1))=1 |
2133 |
if(cpxz2(itr1).lt.0)cp_useds1(-cpxz2(itr1))=1 |
2134 |
if(cpxz3(itr1).gt.0)cp_useds2(cpxz3(itr1))=1 |
2135 |
if(cpxz3(itr1).lt.0)cp_useds1(-cpxz3(itr1))=1 |
2136 |
temp1 = alfaxz1(itr1) |
2137 |
temp2 = alfaxz2(itr1) |
2138 |
temp3 = alfaxz3(itr1) |
2139 |
npt=1 !counter of points in the cloud |
2140 |
|
2141 |
tr_all(npt) = itr1 |
2142 |
|
2143 |
nptloop=1 |
2144 |
c tr_temp(1)=itr1 |
2145 |
tr_incl(1)=itr1 |
2146 |
|
2147 |
8881 continue |
2148 |
|
2149 |
npv=0 !# new points inlcuded |
2150 |
do iloop=1,nptloop |
2151 |
itrref=tr_incl(iloop) !local point of reference |
2152 |
do itr2=1,ntrpt !loop (2) on TRIPLETS |
2153 |
if(itr2.eq.itr1)goto 11188 !next triplet |
2154 |
if(tr_used(itr2).eq.1)goto 11188 !next triplet |
2155 |
* triplet distance in parameter space |
2156 |
* solo i due parametri spaziali per il momemnto |
2157 |
distance= |
2158 |
$ ((alfaxz1(itrref)-alfaxz1(itr2))/Dalfaxz1)**2 |
2159 |
$ +((alfaxz2(itrref)-alfaxz2(itr2))/Dalfaxz2)**2 |
2160 |
distance = sqrt(distance) |
2161 |
|
2162 |
if(distance.lt.cutdistxz)then |
2163 |
c print*,idb1,idb2,distance,' cloud ',nclouds_yz |
2164 |
if(cpxz1(itr2).gt.0)cp_useds2(cpxz1(itr2))=1 |
2165 |
if(cpxz1(itr2).lt.0)cp_useds1(-cpxz1(itr2))=1 |
2166 |
if(cpxz2(itr2).gt.0)cp_useds2(cpxz2(itr2))=1 |
2167 |
if(cpxz2(itr2).lt.0)cp_useds1(-cpxz2(itr2))=1 |
2168 |
if(cpxz3(itr2).gt.0)cp_useds2(cpxz3(itr2))=1 |
2169 |
if(cpxz3(itr2).lt.0)cp_useds1(-cpxz3(itr2))=1 |
2170 |
npt = npt + 1 !counter of points in the cloud |
2171 |
|
2172 |
npv = npv +1 |
2173 |
tr_temp(npv) = itr2 |
2174 |
tr_used(itrref) = 1 |
2175 |
tr_used(itr2) = 1 |
2176 |
|
2177 |
tr_all(npt) = itr2 |
2178 |
|
2179 |
temp1 = temp1 + alfaxz1(itr2) |
2180 |
temp2 = temp2 + alfaxz2(itr2) |
2181 |
temp3 = temp3 + alfaxz3(itr2) |
2182 |
c print*,'* itrref,itr2 ',itrref,itr2,distance |
2183 |
endif |
2184 |
|
2185 |
11188 continue |
2186 |
enddo !end loop (2) on TRIPLETS |
2187 |
|
2188 |
11888 continue |
2189 |
enddo !end loop on... bo? |
2190 |
|
2191 |
nptloop=npv |
2192 |
do i=1,npv |
2193 |
tr_incl(i)=tr_temp(i) |
2194 |
enddo |
2195 |
if(nptloop.ne.0)goto 8881 |
2196 |
|
2197 |
* ------------------------------------------ |
2198 |
* stores the cloud only if |
2199 |
* 1) it includes a minimum number of REAL couples |
2200 |
* 1bis) |
2201 |
* 2) it is not already stored |
2202 |
* ------------------------------------------ |
2203 |
c print*,'check cp_used' |
2204 |
do ip=1,nplanes |
2205 |
hit_plane(ip)=0 |
2206 |
enddo |
2207 |
ncpused=0 |
2208 |
do icp=1,ncp_tot |
2209 |
if(cp_useds1(icp).ne.0.or.cp_useds2(icp).ne.0)then |
2210 |
ncpused=ncpused+1 |
2211 |
ip=ip_cp(icp) |
2212 |
hit_plane(ip)=1 |
2213 |
endif |
2214 |
enddo |
2215 |
nplused=0 |
2216 |
do ip=1,nplanes |
2217 |
nplused=nplused+ hit_plane(ip) |
2218 |
enddo |
2219 |
c if(ncpused.lt.ncpxz_min)goto 22288 !next triplet |
2220 |
if(npt.lt.nptxz_min)goto 22288 !next triplet |
2221 |
if(nplused.lt.nplxz_min)goto 22288 !next doublet |
2222 |
|
2223 |
* ~~~~~~~~~~~~~~~~~ |
2224 |
* >>> NEW CLOUD <<< |
2225 |
if(nclouds_xz.ge.ncloxz_max)then |
2226 |
if(verbose)print*, |
2227 |
$ '** warning ** number of identified '// |
2228 |
$ 'XZ clouds exceeds vector dimention ' |
2229 |
$ ,'( ',ncloxz_max,' )' |
2230 |
c good2=.false. |
2231 |
c goto 880 !fill ntp and go to next event |
2232 |
do iv=1,nviews |
2233 |
mask_view(iv) = 6 |
2234 |
enddo |
2235 |
iflag=1 |
2236 |
return |
2237 |
endif |
2238 |
nclouds_xz = nclouds_xz + 1 !increase counter |
2239 |
alfaxz1_av(nclouds_xz) = temp1/npt !store average parameter |
2240 |
alfaxz2_av(nclouds_xz) = temp2/npt ! " |
2241 |
alfaxz3_av(nclouds_xz) = temp3/npt ! " |
2242 |
do icp=1,ncp_tot |
2243 |
cpcloud_xz(nclouds_xz,icp)= |
2244 |
$ cp_useds1(icp)+2*cp_useds2(icp) !store cp info |
2245 |
enddo |
2246 |
ptcloud_xz(nclouds_xz)=npt |
2247 |
do ipt=1,npt |
2248 |
tr_cloud(npt_tot+ipt) = tr_all(ipt) |
2249 |
enddo |
2250 |
npt_tot=npt_tot+npt |
2251 |
|
2252 |
if(DEBUG)then |
2253 |
print*,'-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~' |
2254 |
print*,'>>>> cloud ',nclouds_xz,' --- ',npt,' points' |
2255 |
print*,'- alfaxz1 ',alfaxz1_av(nclouds_xz) |
2256 |
print*,'- alfaxz2 ',alfaxz2_av(nclouds_xz) |
2257 |
print*,'- alfaxz3 ',alfaxz3_av(nclouds_xz) |
2258 |
print*,'cp_useds1 ',(cp_useds1(icp),icp=1,ncp_tot) |
2259 |
print*,'cp_useds2 ',(cp_useds2(icp),icp=1,ncp_tot) |
2260 |
print*,'hit_plane ',(hit_plane(ip),ip=1,nplanes) |
2261 |
c$$$ print*,'nt-uple: ptcloud_xz(',nclouds_xz,') = ' |
2262 |
c$$$ $ ,ptcloud_xz(nclouds_xz) |
2263 |
c$$$ print*,'nt-uple: tr_cloud(...) = ' |
2264 |
c$$$ $ ,(tr_cloud(iii),iii=npt_tot-npt+1,npt_tot) |
2265 |
endif |
2266 |
* >>> NEW CLOUD <<< |
2267 |
* ~~~~~~~~~~~~~~~~~ |
2268 |
22288 continue |
2269 |
enddo !end loop (1) on DOUBLETS |
2270 |
|
2271 |
if(nloop.lt.nstepx)then |
2272 |
cutdistxz=cutdistxz+cutxstep |
2273 |
nloop=nloop+1 |
2274 |
goto 91 |
2275 |
endif |
2276 |
|
2277 |
if(DEBUG)then |
2278 |
print*,'---------------------- ' |
2279 |
print*,'X-Z total clouds ',nclouds_xz |
2280 |
print*,' ' |
2281 |
endif |
2282 |
|
2283 |
|
2284 |
return |
2285 |
end |
2286 |
|
2287 |
|
2288 |
*************************************************** |
2289 |
* * |
2290 |
* * |
2291 |
* * |
2292 |
* * |
2293 |
* * |
2294 |
* * |
2295 |
************************************************** |
2296 |
|
2297 |
subroutine clouds_to_ctrack(iflag) |
2298 |
c***************************************************** |
2299 |
c 02/02/2006 modified by Elena Vannuccini --> (1) |
2300 |
c***************************************************** |
2301 |
|
2302 |
include 'commontracker.f' |
2303 |
include 'level1.f' |
2304 |
include 'common_momanhough.f' |
2305 |
include 'common_xyzPAM.f' |
2306 |
include 'common_mini_2.f' |
2307 |
include 'common_mech.f' |
2308 |
c include 'momanhough_init.f' |
2309 |
|
2310 |
|
2311 |
* output flag |
2312 |
* -------------- |
2313 |
* 0 = good event |
2314 |
* 1 = bad event |
2315 |
* -------------- |
2316 |
integer iflag |
2317 |
|
2318 |
* ----------------------------------------------------------- |
2319 |
* mask to store (locally) the couples included |
2320 |
* in the intersection bewteen a XZ and YZ cloud |
2321 |
integer cpintersec(ncouplemaxtot) |
2322 |
* ----------------------------------------------------------- |
2323 |
* list of matching couples in the combination |
2324 |
* between a XZ and YZ cloud |
2325 |
integer cp_match(nplanes,2*ncouplemax) |
2326 |
integer ncp_match(nplanes) |
2327 |
* ----------------------------------------------------------- |
2328 |
integer hit_plane(nplanes) |
2329 |
* ----------------------------------------------------------- |
2330 |
* variables for track fitting |
2331 |
double precision AL_INI(5) |
2332 |
c double precision tath |
2333 |
* ----------------------------------------------------------- |
2334 |
c real fitz(nplanes) !z coordinates of the planes in cm |
2335 |
|
2336 |
|
2337 |
|
2338 |
ntracks=0 !counter of track candidates |
2339 |
|
2340 |
do iyz=1,nclouds_yz !loop on YZ couds |
2341 |
do ixz=1,nclouds_xz !loop on XZ couds |
2342 |
|
2343 |
* -------------------------------------------------- |
2344 |
* check of consistency of the clouds |
2345 |
* ---> required a minimum number of matching couples |
2346 |
* the track fit will be performed on the INTERSECTION |
2347 |
* of the two clouds |
2348 |
* -------------------------------------------------- |
2349 |
do ip=1,nplanes |
2350 |
hit_plane(ip)=0 |
2351 |
ncp_match(ip)=0 |
2352 |
do icpp=1,ncouplemax |
2353 |
cp_match(ip,icpp)=0 !init couple list |
2354 |
enddo |
2355 |
enddo |
2356 |
ncp_ok=0 |
2357 |
do icp=1,ncp_tot !loop on couples |
2358 |
* get info on |
2359 |
cpintersec(icp)=min( |
2360 |
$ cpcloud_yz(iyz,icp), |
2361 |
$ cpcloud_xz(ixz,icp)) |
2362 |
if( |
2363 |
$ (cpcloud_yz(iyz,icp).eq.1.and.cpcloud_xz(ixz,icp).eq.2).or. |
2364 |
$ (cpcloud_yz(iyz,icp).eq.2.and.cpcloud_xz(ixz,icp).eq.1).or. |
2365 |
$ .false.)cpintersec(icp)=0 |
2366 |
if(cpintersec(icp).ne.0)then |
2367 |
ncp_ok=ncp_ok+1 |
2368 |
|
2369 |
ip=ip_cp(icp) |
2370 |
hit_plane(ip)=1 |
2371 |
if(cpintersec(icp).eq.1)then |
2372 |
* 1) only the couple image in sensor 1 matches |
2373 |
id=-icp |
2374 |
ncp_match(ip)=ncp_match(ip)+1 |
2375 |
cp_match(ip,ncp_match(ip))=id |
2376 |
elseif(cpintersec(icp).eq.2)then |
2377 |
* 2) only the couple image in sensor 2 matches |
2378 |
id=icp |
2379 |
ncp_match(ip)=ncp_match(ip)+1 |
2380 |
cp_match(ip,ncp_match(ip))=id |
2381 |
else |
2382 |
* 3) both couple images match |
2383 |
id=icp |
2384 |
do is=1,2 |
2385 |
id=-id |
2386 |
ncp_match(ip)=ncp_match(ip)+1 |
2387 |
cp_match(ip,ncp_match(ip))=id |
2388 |
enddo |
2389 |
endif |
2390 |
endif !end matching condition |
2391 |
enddo !end loop on couples |
2392 |
|
2393 |
nplused=0 |
2394 |
do ip=1,nplanes |
2395 |
nplused=nplused+ hit_plane(ip) |
2396 |
enddo |
2397 |
|
2398 |
c if(nplused.lt.nplxz_min)goto 888 !next doublet |
2399 |
if(nplused.lt.nplyz_min)goto 888 !next doublet |
2400 |
if(ncp_ok.lt.ncpok)goto 888 !next cloud |
2401 |
|
2402 |
if(DEBUG)then |
2403 |
print*,'Combination ',iyz,ixz |
2404 |
$ ,' db ',ptcloud_yz(iyz) |
2405 |
$ ,' tr ',ptcloud_xz(ixz) |
2406 |
$ ,' -----> # matching couples ',ncp_ok |
2407 |
endif |
2408 |
c$$$ print*,'~~~~~~~~~~~~~~~~~~~~~~~~~' |
2409 |
c$$$ print*,'Configurazione cluster XZ' |
2410 |
c$$$ print*,'1 -- ',(clx(1,i),i=1,ncp_plane(1)) |
2411 |
c$$$ print*,'2 -- ',(clx(2,i),i=1,ncp_plane(1)) |
2412 |
c$$$ print*,'3 -- ',(clx(3,i),i=1,ncp_plane(1)) |
2413 |
c$$$ print*,'4 -- ',(clx(4,i),i=1,ncp_plane(1)) |
2414 |
c$$$ print*,'5 -- ',(clx(5,i),i=1,ncp_plane(1)) |
2415 |
c$$$ print*,'6 -- ',(clx(6,i),i=1,ncp_plane(1)) |
2416 |
c$$$ print*,'Configurazione cluster YZ' |
2417 |
c$$$ print*,'1 -- ',(cly(1,i),i=1,ncp_plane(1)) |
2418 |
c$$$ print*,'2 -- ',(cly(2,i),i=1,ncp_plane(1)) |
2419 |
c$$$ print*,'3 -- ',(cly(3,i),i=1,ncp_plane(1)) |
2420 |
c$$$ print*,'4 -- ',(cly(4,i),i=1,ncp_plane(1)) |
2421 |
c$$$ print*,'5 -- ',(cly(5,i),i=1,ncp_plane(1)) |
2422 |
c$$$ print*,'6 -- ',(cly(6,i),i=1,ncp_plane(1)) |
2423 |
c$$$ print*,'~~~~~~~~~~~~~~~~~~~~~~~~~' |
2424 |
|
2425 |
* -------> INITIAL GUESS <------- |
2426 |
cccc SBAGLIATO |
2427 |
c$$$ AL_INI(1) = dreal(alfaxz1_av(ixz)) |
2428 |
c$$$ AL_INI(2) = dreal(alfayz1_av(iyz)) |
2429 |
c$$$ AL_INI(4) = PIGR + datan(dreal(alfayz2_av(iyz)) |
2430 |
c$$$ $ /dreal(alfaxz2_av(ixz))) |
2431 |
c$$$ tath = -dreal(alfaxz2_av(ixz))/dcos(AL_INI(4)) |
2432 |
c$$$ AL_INI(3) = tath/sqrt(1+tath**2) |
2433 |
c$$$ AL_INI(5) = (1.e2*alfaxz3_av(ixz))/(0.3*0.43) !0. |
2434 |
cccc GIUSTO (ma si sua guess()) |
2435 |
c$$$ AL_INI(1) = dreal(alfaxz1_av(ixz)) |
2436 |
c$$$ AL_INI(2) = dreal(alfayz1_av(iyz)) |
2437 |
c$$$ tath = -dreal(alfaxz2_av(ixz))/dcos(AL_INI(4)) |
2438 |
c$$$ AL_INI(3) = tath/sqrt(1+tath**2) |
2439 |
c$$$ IF(alfaxz2_av(ixz).NE.0)THEN |
2440 |
c$$$ AL_INI(4) = PIGR + datan(dreal(alfayz2_av(iyz)) |
2441 |
c$$$ $ /dreal(alfaxz2_av(ixz))) |
2442 |
c$$$ ELSE |
2443 |
c$$$ AL_INI(4) = acos(-1.)/2 |
2444 |
c$$$ IF(alfayz2_av(iyz).LT.0)AL_INI(4) = AL_INI(4)+acos(-1.) |
2445 |
c$$$ ENDIF |
2446 |
c$$$ IF(alfaxz2_av(ixz).LT.0)AL_INI(4)= acos(-1.)+ AL_INI(4) |
2447 |
c$$$ AL_INI(4) = -acos(-1.) + AL_INI(4) !from incidence direction to tracking rs |
2448 |
c$$$ |
2449 |
c$$$ AL_INI(5) = (1.e2*alfaxz3_av(ixz))/(0.3*0.43) !0. |
2450 |
c$$$ |
2451 |
c$$$ if(AL_INI(5).gt.defmax)goto 888 !next cloud |
2452 |
|
2453 |
if(DEBUG)then |
2454 |
print*,'1 >>> ',(cp_match(6,i),i=1,ncp_match(6)) |
2455 |
print*,'2 >>> ',(cp_match(5,i),i=1,ncp_match(5)) |
2456 |
print*,'3 >>> ',(cp_match(4,i),i=1,ncp_match(4)) |
2457 |
print*,'4 >>> ',(cp_match(3,i),i=1,ncp_match(3)) |
2458 |
print*,'5 >>> ',(cp_match(2,i),i=1,ncp_match(2)) |
2459 |
print*,'6 >>> ',(cp_match(1,i),i=1,ncp_match(1)) |
2460 |
endif |
2461 |
|
2462 |
do icp1=1,max(1,ncp_match(1)) |
2463 |
hit_plane(1)=icp1 |
2464 |
if(ncp_match(1).eq.0)hit_plane(1)=0 !-icp1 |
2465 |
|
2466 |
do icp2=1,max(1,ncp_match(2)) |
2467 |
hit_plane(2)=icp2 |
2468 |
if(ncp_match(2).eq.0)hit_plane(2)=0 !-icp2 |
2469 |
|
2470 |
do icp3=1,max(1,ncp_match(3)) |
2471 |
hit_plane(3)=icp3 |
2472 |
if(ncp_match(3).eq.0)hit_plane(3)=0 !-icp3 |
2473 |
|
2474 |
do icp4=1,max(1,ncp_match(4)) |
2475 |
hit_plane(4)=icp4 |
2476 |
if(ncp_match(4).eq.0)hit_plane(4)=0 !-icp4 |
2477 |
|
2478 |
do icp5=1,max(1,ncp_match(5)) |
2479 |
hit_plane(5)=icp5 |
2480 |
if(ncp_match(5).eq.0)hit_plane(5)=0 !-icp5 |
2481 |
|
2482 |
do icp6=1,max(1,ncp_match(6)) |
2483 |
hit_plane(6)=icp6 |
2484 |
if(ncp_match(6).eq.0)hit_plane(6)=0 !-icp6 |
2485 |
|
2486 |
|
2487 |
call track_init !init TRACK common |
2488 |
|
2489 |
do ip=1,nplanes !loop on planes |
2490 |
if(hit_plane(ip).ne.0)then |
2491 |
id=cp_match(ip,hit_plane(ip)) |
2492 |
is=is_cp(id) |
2493 |
icp=icp_cp(id) |
2494 |
if(ip_cp(id).ne.ip) |
2495 |
$ print*,'OKKIO!!' |
2496 |
$ ,'id ',id,is,icp |
2497 |
$ ,ip_cp(id),ip |
2498 |
icx=clx(ip,icp) |
2499 |
icy=cly(ip,icp) |
2500 |
* ************************* |
2501 |
c call xyz_PAM(icx,icy,is, |
2502 |
c $ 'COG2','COG2',0.,0.) |
2503 |
c call xyz_PAM(icx,icy,is, !(1) |
2504 |
c $ PFAdef,PFAdef,0.,0.) !(1) |
2505 |
call xyz_PAM(icx,icy,is, !(1) |
2506 |
$ PFAdef,PFAdef,0.,0.,0.,0.) |
2507 |
* ************************* |
2508 |
* ----------------------------- |
2509 |
xgood(nplanes-ip+1)=1. |
2510 |
ygood(nplanes-ip+1)=1. |
2511 |
xm(nplanes-ip+1)=xPAM |
2512 |
ym(nplanes-ip+1)=yPAM |
2513 |
zm(nplanes-ip+1)=zPAM |
2514 |
resx(nplanes-ip+1)=resxPAM |
2515 |
resy(nplanes-ip+1)=resyPAM |
2516 |
* ----------------------------- |
2517 |
endif |
2518 |
enddo !end loop on planes |
2519 |
* ********************************************************** |
2520 |
* ************************** FIT *** FIT *** FIT *** FIT *** |
2521 |
* ********************************************************** |
2522 |
cccc scommentare se si usa al_ini della nuvola |
2523 |
c$$$ do i=1,5 |
2524 |
c$$$ AL(i)=AL_INI(i) |
2525 |
c$$$ enddo |
2526 |
call guess() |
2527 |
do i=1,5 |
2528 |
AL_INI(i)=AL(i) |
2529 |
enddo |
2530 |
ifail=0 !error flag in chi^2 computation |
2531 |
jstep=0 !number of minimization steps |
2532 |
iprint=0 |
2533 |
c if(DEBUG)iprint=1 |
2534 |
if(DEBUG)iprint=2 |
2535 |
call mini2(jstep,ifail,iprint) |
2536 |
if(ifail.ne.0) then |
2537 |
if(DEBUG)then |
2538 |
print *, |
2539 |
$ '*** MINIMIZATION FAILURE *** ' |
2540 |
$ //'(clouds_to_ctrack)' |
2541 |
print*,'initial guess: ' |
2542 |
|
2543 |
print*,'AL_INI(1) = ',AL_INI(1) |
2544 |
print*,'AL_INI(2) = ',AL_INI(2) |
2545 |
print*,'AL_INI(3) = ',AL_INI(3) |
2546 |
print*,'AL_INI(4) = ',AL_INI(4) |
2547 |
print*,'AL_INI(5) = ',AL_INI(5) |
2548 |
endif |
2549 |
c chi2=-chi2 |
2550 |
endif |
2551 |
* ********************************************************** |
2552 |
* ************************** FIT *** FIT *** FIT *** FIT *** |
2553 |
* ********************************************************** |
2554 |
|
2555 |
if(chi2.le.0.)goto 666 |
2556 |
|
2557 |
* -------------------------- |
2558 |
* STORE candidate TRACK INFO |
2559 |
* -------------------------- |
2560 |
if(ntracks.eq.NTRACKSMAX)then |
2561 |
|
2562 |
if(verbose)print*, |
2563 |
$ '** warning ** number of candidate tracks '// |
2564 |
$ ' exceeds vector dimension ' |
2565 |
$ ,'( ',NTRACKSMAX,' )' |
2566 |
c good2=.false. |
2567 |
c goto 880 !fill ntp and go to next event |
2568 |
do iv=1,nviews |
2569 |
mask_view(iv) = 7 |
2570 |
enddo |
2571 |
iflag=1 |
2572 |
return |
2573 |
endif |
2574 |
|
2575 |
ntracks = ntracks + 1 |
2576 |
|
2577 |
c$$$ ndof=0 |
2578 |
do ip=1,nplanes |
2579 |
c$$$ ndof=ndof |
2580 |
c$$$ $ +int(xgood(ip)) |
2581 |
c$$$ $ +int(ygood(ip)) |
2582 |
XV_STORE(ip,ntracks)=sngl(xv(ip)) |
2583 |
YV_STORE(ip,ntracks)=sngl(yv(ip)) |
2584 |
ZV_STORE(ip,ntracks)=sngl(zv(ip)) |
2585 |
XM_STORE(ip,ntracks)=sngl(xm(ip)) |
2586 |
YM_STORE(ip,ntracks)=sngl(ym(ip)) |
2587 |
ZM_STORE(ip,ntracks)=sngl(zm(ip)) |
2588 |
RESX_STORE(ip,ntracks)=sngl(resx(ip)) |
2589 |
RESY_STORE(ip,ntracks)=sngl(resy(ip)) |
2590 |
XV_STORE(ip,ntracks)=sngl(xv(ip)) |
2591 |
YV_STORE(ip,ntracks)=sngl(yv(ip)) |
2592 |
ZV_STORE(ip,ntracks)=sngl(zv(ip)) |
2593 |
AXV_STORE(ip,ntracks)=sngl(axv(ip)) |
2594 |
AYV_STORE(ip,ntracks)=sngl(ayv(ip)) |
2595 |
XGOOD_STORE(ip,ntracks)=sngl(xgood(ip)) |
2596 |
YGOOD_STORE(ip,ntracks)=sngl(ygood(ip)) |
2597 |
if(hit_plane(ip).ne.0)then |
2598 |
CP_STORE(nplanes-ip+1,ntracks)= |
2599 |
$ cp_match(ip,hit_plane(ip)) |
2600 |
else |
2601 |
CP_STORE(nplanes-ip+1,ntracks)=0 |
2602 |
endif |
2603 |
CLS_STORE(nplanes-ip+1,ntracks)=0 |
2604 |
do i=1,5 |
2605 |
AL_STORE(i,ntracks)=sngl(AL(i)) |
2606 |
enddo |
2607 |
enddo |
2608 |
|
2609 |
c$$$ * Number of Degree Of Freedom |
2610 |
c$$$ ndof=ndof-5 |
2611 |
c$$$ * reduced chi^2 |
2612 |
c$$$ rchi2=chi2/dble(ndof) |
2613 |
RCHI2_STORE(ntracks)=chi2 |
2614 |
|
2615 |
* -------------------------------- |
2616 |
* STORE candidate TRACK INFO - end |
2617 |
* -------------------------------- |
2618 |
|
2619 |
666 continue |
2620 |
enddo !end loop on cp in plane 6 |
2621 |
enddo !end loop on cp in plane 5 |
2622 |
enddo !end loop on cp in plane 4 |
2623 |
enddo !end loop on cp in plane 3 |
2624 |
enddo !end loop on cp in plane 2 |
2625 |
enddo !end loop on cp in plane 1 |
2626 |
|
2627 |
888 continue |
2628 |
enddo !end loop on XZ couds |
2629 |
enddo !end loop on YZ couds |
2630 |
|
2631 |
if(ntracks.eq.0)then |
2632 |
iflag=1 |
2633 |
return |
2634 |
endif |
2635 |
|
2636 |
if(DEBUG)then |
2637 |
print*,'****** TRACK CANDIDATES ***********' |
2638 |
print*,'# R. chi2 RIG' |
2639 |
do i=1,ntracks |
2640 |
print*,i,' --- ',rchi2_store(i),' --- ' |
2641 |
$ ,1./abs(AL_STORE(5,i)) |
2642 |
enddo |
2643 |
print*,'***********************************' |
2644 |
endif |
2645 |
|
2646 |
|
2647 |
return |
2648 |
end |
2649 |
|
2650 |
|
2651 |
*************************************************** |
2652 |
* * |
2653 |
* * |
2654 |
* * |
2655 |
* * |
2656 |
* * |
2657 |
* * |
2658 |
************************************************** |
2659 |
|
2660 |
subroutine refine_track(ibest) |
2661 |
|
2662 |
c****************************************************** |
2663 |
cccccc 06/10/2005 modified by elena vannuccini ---> (1) |
2664 |
cccccc 31/01/2006 modified by elena vannuccini ---> (2) |
2665 |
cccccc 12/08/2006 modified by elena vannucicni ---> (3) |
2666 |
c****************************************************** |
2667 |
|
2668 |
include 'commontracker.f' |
2669 |
include 'level1.f' |
2670 |
include 'common_momanhough.f' |
2671 |
include 'common_xyzPAM.f' |
2672 |
include 'common_mini_2.f' |
2673 |
include 'common_mech.f' |
2674 |
c include 'momanhough_init.f' |
2675 |
c include 'level1.f' |
2676 |
include 'calib.f' |
2677 |
|
2678 |
* flag to chose PFA |
2679 |
character*10 PFA |
2680 |
common/FINALPFA/PFA |
2681 |
|
2682 |
real xp,yp,zp |
2683 |
real xyzp(3),bxyz(3) |
2684 |
equivalence (xp,xyzp(1)),(yp,xyzp(2)),(zp,xyzp(3)) |
2685 |
|
2686 |
* ================================================= |
2687 |
* new estimate of positions using ETA algorithm |
2688 |
* and |
2689 |
* search for new couples and single clusters to add |
2690 |
* ================================================= |
2691 |
call track_init |
2692 |
do ip=1,nplanes !loop on planes |
2693 |
|
2694 |
xP=XV_STORE(nplanes-ip+1,ibest) |
2695 |
yP=YV_STORE(nplanes-ip+1,ibest) |
2696 |
zP=ZV_STORE(nplanes-ip+1,ibest) |
2697 |
call gufld(xyzp,bxyz) |
2698 |
c$$$ bxyz(1)=0 |
2699 |
c$$$ bxyz(2)=0 |
2700 |
c$$$ bxyz(3)=0 |
2701 |
* ||||||||||||||||||||||||||||||||||||||||||||||||| |
2702 |
* ------------------------------------------------- |
2703 |
* If the plane has been already included, it just |
2704 |
* computes again the coordinates of the x-y couple |
2705 |
* using improved PFAs |
2706 |
* ------------------------------------------------- |
2707 |
* ||||||||||||||||||||||||||||||||||||||||||||||||| |
2708 |
if(XGOOD_STORE(nplanes-ip+1,ibest).eq.1..and. |
2709 |
$ YGOOD_STORE(nplanes-ip+1,ibest).eq.1. )then |
2710 |
|
2711 |
id=CP_STORE(nplanes-ip+1,ibest) |
2712 |
|
2713 |
is=is_cp(id) |
2714 |
icp=icp_cp(id) |
2715 |
if(ip_cp(id).ne.ip) |
2716 |
$ print*,'OKKIO!!' |
2717 |
$ ,'id ',id,is,icp |
2718 |
$ ,ip_cp(id),ip |
2719 |
icx=clx(ip,icp) |
2720 |
icy=cly(ip,icp) |
2721 |
c call xyz_PAM(icx,icy,is, |
2722 |
c $ PFA,PFA, |
2723 |
c $ AXV_STORE(nplanes-ip+1,ibest), |
2724 |
c $ AYV_STORE(nplanes-ip+1,ibest)) |
2725 |
call xyz_PAM(icx,icy,is, |
2726 |
$ PFA,PFA, |
2727 |
$ AXV_STORE(nplanes-ip+1,ibest), |
2728 |
$ AYV_STORE(nplanes-ip+1,ibest), |
2729 |
$ bxyz(1), |
2730 |
$ bxyz(2) |
2731 |
$ ) |
2732 |
c$$$ call xyz_PAM(icx,icy,is, |
2733 |
c$$$ $ 'COG2','COG2', |
2734 |
c$$$ $ 0., |
2735 |
c$$$ $ 0.) |
2736 |
xm(nplanes-ip+1) = xPAM |
2737 |
ym(nplanes-ip+1) = yPAM |
2738 |
zm(nplanes-ip+1) = zPAM |
2739 |
xgood(nplanes-ip+1) = 1 |
2740 |
ygood(nplanes-ip+1) = 1 |
2741 |
resx(nplanes-ip+1) = resxPAM |
2742 |
resy(nplanes-ip+1) = resyPAM |
2743 |
|
2744 |
c dedxtrk(nplanes-ip+1) = (sgnl(icx)+sgnl(icy))/2. !(1) |
2745 |
dedxtrk_x(nplanes-ip+1)=sgnl(icx)/mip(VIEW(icx),LADDER(icx)) !(1)(2) |
2746 |
dedxtrk_y(nplanes-ip+1)=sgnl(icy)/mip(VIEW(icy),LADDER(icy)) !(1)(2) |
2747 |
|
2748 |
* ||||||||||||||||||||||||||||||||||||||||||||||||| |
2749 |
* ------------------------------------------------- |
2750 |
* If the plane has NOT been already included, |
2751 |
* it tries to include a COUPLE or a single cluster |
2752 |
* ------------------------------------------------- |
2753 |
* ||||||||||||||||||||||||||||||||||||||||||||||||| |
2754 |
else |
2755 |
|
2756 |
xgood(nplanes-ip+1)=0 |
2757 |
ygood(nplanes-ip+1)=0 |
2758 |
|
2759 |
* -------------------------------------------------------------- |
2760 |
* determine which ladder and sensor are intersected by the track |
2761 |
c$$$ xP=XV_STORE(nplanes-ip+1,ibest) |
2762 |
c$$$ yP=YV_STORE(nplanes-ip+1,ibest) |
2763 |
c$$$ zP=ZV_STORE(nplanes-ip+1,ibest) |
2764 |
call whichsensor(ip,xP,yP,nldt,ist) |
2765 |
* if the track hit the plane in a dead area, go to the next plane |
2766 |
if(nldt.eq.0.or.ist.eq.0)goto 133 |
2767 |
* -------------------------------------------------------------- |
2768 |
|
2769 |
if(DEBUG)then |
2770 |
print*, |
2771 |
$ '------ Plane ',ip,' intersected on LADDER ',nldt |
2772 |
$ ,' SENSOR ',ist |
2773 |
print*, |
2774 |
$ '------ coord: ',XP,YP |
2775 |
endif |
2776 |
|
2777 |
* =========================================== |
2778 |
* STEP 1 >>>>>>> try to include a new couple |
2779 |
* =========================================== |
2780 |
c if(DEBUG)print*,'>>>> try to include a new couple' |
2781 |
distmin=1000000. |
2782 |
xmm = 0. |
2783 |
ymm = 0. |
2784 |
zmm = 0. |
2785 |
rxmm = 0. |
2786 |
rymm = 0. |
2787 |
dedxmmx = 0. !(1) |
2788 |
dedxmmy = 0. !(1) |
2789 |
idm = 0 !ID of the closer couple |
2790 |
distance=0. |
2791 |
do icp=1,ncp_plane(ip) !loop on couples on plane icp |
2792 |
icx=clx(ip,icp) |
2793 |
icy=cly(ip,icp) |
2794 |
if(LADDER(icx).ne.nldt.or. !If the ladder number does not match |
2795 |
c $ cl_used(icx).eq.1.or. !or the X cluster is already used |
2796 |
c $ cl_used(icy).eq.1.or. !or the Y cluster is already used |
2797 |
$ cl_used(icx).ne.0.or. !or the X cluster is already used !(3) |
2798 |
$ cl_used(icy).ne.0.or. !or the Y cluster is already used !(3) |
2799 |
$ .false.)goto 1188 !then jump to next couple. |
2800 |
* |
2801 |
c call xyz_PAM(icx,icy,ist, |
2802 |
c $ PFA,PFA, |
2803 |
c $ AXV_STORE(nplanes-ip+1,ibest), |
2804 |
c $ AYV_STORE(nplanes-ip+1,ibest)) |
2805 |
call xyz_PAM(icx,icy,ist, |
2806 |
$ PFA,PFA, |
2807 |
$ AXV_STORE(nplanes-ip+1,ibest), |
2808 |
$ AYV_STORE(nplanes-ip+1,ibest), |
2809 |
$ bxyz(1), |
2810 |
$ bxyz(2) |
2811 |
$ ) |
2812 |
|
2813 |
distance = distance_to(XP,YP) |
2814 |
distance = distance / RCHI2_STORE(ibest)!<<< MS |
2815 |
id=id_cp(ip,icp,ist) |
2816 |
if(DEBUG)print*,'( couple ',id |
2817 |
$ ,' ) normalized distance ',distance |
2818 |
if(distance.lt.distmin)then |
2819 |
xmm = xPAM |
2820 |
ymm = yPAM |
2821 |
zmm = zPAM |
2822 |
rxmm = resxPAM |
2823 |
rymm = resyPAM |
2824 |
distmin = distance |
2825 |
idm = id |
2826 |
c dedxmm = (sgnl(icx)+sgnl(icy))/2. !(1) |
2827 |
dedxmmx = sgnl(icx)/mip(VIEW(icx),LADDER(icx)) !(1)(2) |
2828 |
dedxmmy = sgnl(icy)/mip(VIEW(icy),LADDER(icy)) !(1)(2) |
2829 |
endif |
2830 |
1188 continue |
2831 |
enddo !end loop on couples on plane icp |
2832 |
if(distmin.le.clinc)then |
2833 |
* ----------------------------------- |
2834 |
xm(nplanes-ip+1) = xmm !<<< |
2835 |
ym(nplanes-ip+1) = ymm !<<< |
2836 |
zm(nplanes-ip+1) = zmm !<<< |
2837 |
xgood(nplanes-ip+1) = 1 !<<< |
2838 |
ygood(nplanes-ip+1) = 1 !<<< |
2839 |
resx(nplanes-ip+1)=rxmm !<<< |
2840 |
resy(nplanes-ip+1)=rymm !<<< |
2841 |
c dedxtrk(nplanes-ip+1) = dedxmm !<<< !(1) |
2842 |
dedxtrk_x(nplanes-ip+1) = dedxmmx !(1) |
2843 |
dedxtrk_y(nplanes-ip+1) = dedxmmy !(1) |
2844 |
* ----------------------------------- |
2845 |
CP_STORE(nplanes-ip+1,ibest)=idm |
2846 |
if(DEBUG)print*,'%%%% included couple ',idm |
2847 |
$ ,' (norm.dist.= ',distmin,', cut ',clinc,' )' |
2848 |
goto 133 !next plane |
2849 |
endif |
2850 |
* ================================================ |
2851 |
* STEP 2 >>>>>>> try to include a single cluster |
2852 |
* either from a couple or single |
2853 |
* ================================================ |
2854 |
c if(DEBUG)print*,'>>>> try to include a new cluster' |
2855 |
distmin=1000000. |
2856 |
xmm_A = 0. !--------------------------- |
2857 |
ymm_A = 0. ! init variables that |
2858 |
zmm_A = 0. ! define the SINGLET |
2859 |
xmm_B = 0. ! |
2860 |
ymm_B = 0. ! |
2861 |
zmm_B = 0. ! |
2862 |
rxmm = 0. ! |
2863 |
rymm = 0. ! |
2864 |
dedxmmx = 0. !(1) |
2865 |
dedxmmy = 0. !(1) |
2866 |
iclm=0 !--------------------------- |
2867 |
distance=0. |
2868 |
|
2869 |
*----- clusters inside couples ------------------------------------- |
2870 |
do icp=1,ncp_plane(ip) !loop on cluster inside couples |
2871 |
icx=clx(ip,icp) |
2872 |
icy=cly(ip,icp) |
2873 |
id=id_cp(ip,icp,ist) |
2874 |
if(LADDER(icx).ne.nldt)goto 11882 !if the ladder number does not match |
2875 |
* !jump to the next couple |
2876 |
*----- try cluster x ----------------------------------------------- |
2877 |
c if(cl_used(icx).eq.1)goto 11881 !if the X cluster is already used |
2878 |
if(cl_used(icx).ne.0)goto 11881 !if the X cluster is already used !(3) |
2879 |
* !jump to the Y cluster |
2880 |
c call xyz_PAM(icx,0,ist, |
2881 |
c $ PFA,PFA, |
2882 |
c $ AXV_STORE(nplanes-ip+1,ibest),0.) |
2883 |
call xyz_PAM(icx,0,ist, |
2884 |
$ PFA,PFA, |
2885 |
$ AXV_STORE(nplanes-ip+1,ibest),0., |
2886 |
$ bxyz(1), |
2887 |
$ bxyz(2) |
2888 |
$ ) |
2889 |
distance = distance_to(XP,YP) |
2890 |
distance = distance / RCHI2_STORE(ibest)!<<< MS |
2891 |
if(DEBUG)print*,'( cl-X ',icx |
2892 |
$ ,' in cp ',id,' ) normalized distance ',distance |
2893 |
if(distance.lt.distmin)then |
2894 |
xmm_A = xPAM_A |
2895 |
ymm_A = yPAM_A |
2896 |
zmm_A = zPAM_A |
2897 |
xmm_B = xPAM_B |
2898 |
ymm_B = yPAM_B |
2899 |
zmm_B = zPAM_B |
2900 |
rxmm = resxPAM |
2901 |
rymm = resyPAM |
2902 |
distmin = distance |
2903 |
iclm = icx |
2904 |
c dedxmm = sgnl(icx) !(1) |
2905 |
dedxmmx = sgnl(icx)/mip(VIEW(icx),LADDER(icx)) !(1)(2) |
2906 |
dedxmmy = 0. !(1) |
2907 |
endif |
2908 |
11881 continue |
2909 |
*----- try cluster y ----------------------------------------------- |
2910 |
c if(cl_used(icy).eq.1)goto 11882 !if the Y cluster is already used |
2911 |
if(cl_used(icy).ne.0)goto 11882 !if the Y cluster is already used !(3) |
2912 |
* !jump to the next couple |
2913 |
c call xyz_PAM(0,icy,ist, |
2914 |
c $ PFA,PFA, |
2915 |
c $ 0.,AYV_STORE(nplanes-ip+1,ibest)) |
2916 |
call xyz_PAM(0,icy,ist, |
2917 |
$ PFA,PFA, |
2918 |
$ 0.,AYV_STORE(nplanes-ip+1,ibest), |
2919 |
$ bxyz(1), |
2920 |
$ bxyz(2) |
2921 |
$ ) |
2922 |
distance = distance_to(XP,YP) |
2923 |
distance = distance / RCHI2_STORE(ibest)!<<< MS |
2924 |
if(DEBUG)print*,'( cl-Y ',icy |
2925 |
$ ,' in cp ',id,' ) normalized distance ',distance |
2926 |
if(distance.lt.distmin)then |
2927 |
xmm_A = xPAM_A |
2928 |
ymm_A = yPAM_A |
2929 |
zmm_A = zPAM_A |
2930 |
xmm_B = xPAM_B |
2931 |
ymm_B = yPAM_B |
2932 |
zmm_B = zPAM_B |
2933 |
rxmm = resxPAM |
2934 |
rymm = resyPAM |
2935 |
distmin = distance |
2936 |
iclm = icy |
2937 |
c dedxmm = sgnl(icy) !(1) |
2938 |
dedxmmx = 0. !(1) |
2939 |
dedxmmy = sgnl(icy)/mip(VIEW(icy),LADDER(icy)) !(1)(2) |
2940 |
endif |
2941 |
11882 continue |
2942 |
enddo !end loop on cluster inside couples |
2943 |
*----- single clusters ----------------------------------------------- |
2944 |
c print*,'## ncls(',ip,') ',ncls(ip) |
2945 |
do ic=1,ncls(ip) !loop on single clusters |
2946 |
icl=cls(ip,ic) |
2947 |
c print*,'## ic ',ic,' ist ',ist |
2948 |
c if(cl_used(icl).eq.1.or. !if the cluster is already used |
2949 |
if(cl_used(icl).ne.0.or. !if the cluster is already used !(3) |
2950 |
$ LADDER(icl).ne.nldt.or. !or the ladder number does not match |
2951 |
$ .false.)goto 18882 !jump to the next singlet |
2952 |
if(mod(VIEW(icl),2).eq.0)then!<---- X view |
2953 |
c call xyz_PAM(icl,0,ist, |
2954 |
c $ PFA,PFA, |
2955 |
c $ AXV_STORE(nplanes-ip+1,ibest),0.) |
2956 |
call xyz_PAM(icl,0,ist, |
2957 |
$ PFA,PFA, |
2958 |
$ AXV_STORE(nplanes-ip+1,ibest),0., |
2959 |
$ bxyz(1), |
2960 |
$ bxyz(2) |
2961 |
$ ) |
2962 |
else !<---- Y view |
2963 |
c call xyz_PAM(0,icl,ist, |
2964 |
c $ PFA,PFA, |
2965 |
c $ 0.,AYV_STORE(nplanes-ip+1,ibest)) |
2966 |
call xyz_PAM(0,icl,ist, |
2967 |
$ PFA,PFA, |
2968 |
$ 0.,AYV_STORE(nplanes-ip+1,ibest), |
2969 |
$ bxyz(1), |
2970 |
$ bxyz(2) |
2971 |
$ ) |
2972 |
endif |
2973 |
|
2974 |
distance = distance_to(XP,YP) |
2975 |
distance = distance / RCHI2_STORE(ibest)!<<< MS |
2976 |
if(DEBUG)print*,'( cl-s ',icl |
2977 |
$ ,' ) normalized distance ',distance,'<',distmin,' ?' |
2978 |
if(distance.lt.distmin)then |
2979 |
if(DEBUG)print*,'YES' |
2980 |
xmm_A = xPAM_A |
2981 |
ymm_A = yPAM_A |
2982 |
zmm_A = zPAM_A |
2983 |
xmm_B = xPAM_B |
2984 |
ymm_B = yPAM_B |
2985 |
zmm_B = zPAM_B |
2986 |
rxmm = resxPAM |
2987 |
rymm = resyPAM |
2988 |
distmin = distance |
2989 |
iclm = icl |
2990 |
c dedxmm = sgnl(icl) !(1) |
2991 |
if(mod(VIEW(icl),2).eq.0)then !<---- X view |
2992 |
dedxmmx = sgnl(icl)/mip(VIEW(icl),LADDER(icl)) !(1)(2) |
2993 |
dedxmmy = 0. !(1) |
2994 |
else !<---- Y view |
2995 |
dedxmmx = 0. !(1) |
2996 |
dedxmmy = sgnl(icl)/mip(VIEW(icl),LADDER(icl)) !(1)(2) |
2997 |
endif |
2998 |
endif |
2999 |
18882 continue |
3000 |
enddo !end loop on single clusters |
3001 |
c print*,'## distmin ', distmin,' clinc ',clinc |
3002 |
if(distmin.le.clinc)then |
3003 |
|
3004 |
CLS_STORE(nplanes-ip+1,ibest)=iclm !<<<< |
3005 |
* ---------------------------- |
3006 |
c print*,'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~' |
3007 |
if(mod(VIEW(iclm),2).eq.0)then |
3008 |
XGOOD(nplanes-ip+1)=1. |
3009 |
resx(nplanes-ip+1)=rxmm |
3010 |
if(DEBUG)print*,'%%%% included X-cl ',iclm |
3011 |
c if(.true.)print*,'%%%% included X-cl ',iclm |
3012 |
$ ,'( chi^2, ',RCHI2_STORE(ibest) |
3013 |
$ ,', norm.dist.= ',distmin |
3014 |
$ ,', cut ',clinc,' )' |
3015 |
else |
3016 |
YGOOD(nplanes-ip+1)=1. |
3017 |
resy(nplanes-ip+1)=rymm |
3018 |
if(DEBUG)print*,'%%%% included Y-cl ',iclm |
3019 |
c if(.true.)print*,'%%%% included Y-cl ',iclm |
3020 |
$ ,'( chi^2, ',RCHI2_STORE(ibest) |
3021 |
$ ,', norm.dist.= ', distmin |
3022 |
$ ,', cut ',clinc,' )' |
3023 |
endif |
3024 |
c print*,'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~' |
3025 |
* ---------------------------- |
3026 |
xm_A(nplanes-ip+1) = xmm_A |
3027 |
ym_A(nplanes-ip+1) = ymm_A |
3028 |
xm_B(nplanes-ip+1) = xmm_B |
3029 |
ym_B(nplanes-ip+1) = ymm_B |
3030 |
zm(nplanes-ip+1) = (zmm_A+zmm_B)/2. |
3031 |
c dedxtrk(nplanes-ip+1) = dedxmm !<<< !(1) |
3032 |
dedxtrk_x(nplanes-ip+1) = dedxmmx !<<< !(1) |
3033 |
dedxtrk_y(nplanes-ip+1) = dedxmmy !<<< !(1) |
3034 |
* ---------------------------- |
3035 |
endif |
3036 |
endif |
3037 |
133 continue |
3038 |
enddo !end loop on planes |
3039 |
|
3040 |
|
3041 |
|
3042 |
return |
3043 |
end |
3044 |
|
3045 |
*************************************************** |
3046 |
* * |
3047 |
* * |
3048 |
* * |
3049 |
* * |
3050 |
* * |
3051 |
* * |
3052 |
************************************************** |
3053 |
cccccc 12/08/2006 modified by elena ---> (1) |
3054 |
* |
3055 |
subroutine clean_XYclouds(ibest,iflag) |
3056 |
|
3057 |
include 'commontracker.f' |
3058 |
include 'level1.f' |
3059 |
include 'common_momanhough.f' |
3060 |
c include 'momanhough_init.f' |
3061 |
include 'level2.f' !(1) |
3062 |
c include 'calib.f' |
3063 |
c include 'level1.f' |
3064 |
|
3065 |
|
3066 |
|
3067 |
do ip=1,nplanes !loop on planes |
3068 |
|
3069 |
id=CP_STORE(nplanes-ip+1,ibest) |
3070 |
icl=CLS_STORE(nplanes-ip+1,ibest) |
3071 |
if(id.ne.0.or.icl.ne.0)then |
3072 |
if(id.ne.0)then |
3073 |
iclx=clx(ip,icp_cp(id)) |
3074 |
icly=cly(ip,icp_cp(id)) |
3075 |
c cl_used(iclx)=1 !tag used clusters |
3076 |
c cl_used(icly)=1 !tag used clusters |
3077 |
cl_used(iclx)=ntrk !tag used clusters !(1) |
3078 |
cl_used(icly)=ntrk !tag used clusters !(1) |
3079 |
elseif(icl.ne.0)then |
3080 |
c cl_used(icl)=1 !tag used clusters |
3081 |
cl_used(icl)=ntrk !tag used clusters !1) |
3082 |
endif |
3083 |
|
3084 |
c if(DEBUG)then |
3085 |
c print*,ip,' <<< ',id |
3086 |
c endif |
3087 |
* ----------------------------- |
3088 |
* remove the couple from clouds |
3089 |
* remove also vitual couples containing the |
3090 |
* selected clusters |
3091 |
* ----------------------------- |
3092 |
do icp=1,ncp_plane(ip) |
3093 |
if( |
3094 |
$ clx(ip,icp).eq.iclx |
3095 |
$ .or. |
3096 |
$ clx(ip,icp).eq.icl |
3097 |
$ .or. |
3098 |
$ cly(ip,icp).eq.icly |
3099 |
$ .or. |
3100 |
$ cly(ip,icp).eq.icl |
3101 |
$ )then |
3102 |
id=id_cp(ip,icp,1) |
3103 |
if(DEBUG)then |
3104 |
print*,ip,' <<< cp ',id |
3105 |
$ ,' ( cl-x ' |
3106 |
$ ,clx(ip,icp) |
3107 |
$ ,' cl-y ' |
3108 |
$ ,cly(ip,icp),' ) --> removed' |
3109 |
endif |
3110 |
* ----------------------------- |
3111 |
* remove the couple from clouds |
3112 |
do iyz=1,nclouds_yz |
3113 |
if(cpcloud_yz(iyz,abs(id)).ne.0)then |
3114 |
ptcloud_yz(iyz)=ptcloud_yz(iyz)-1 |
3115 |
cpcloud_yz(iyz,abs(id))=0 |
3116 |
endif |
3117 |
enddo |
3118 |
do ixz=1,nclouds_xz |
3119 |
if(cpcloud_xz(ixz,abs(id)).ne.0)then |
3120 |
ptcloud_xz(ixz)=ptcloud_xz(ixz)-1 |
3121 |
cpcloud_xz(ixz,abs(id))=0 |
3122 |
endif |
3123 |
enddo |
3124 |
* ----------------------------- |
3125 |
endif |
3126 |
enddo |
3127 |
|
3128 |
endif |
3129 |
enddo !end loop on planes |
3130 |
|
3131 |
return |
3132 |
end |
3133 |
|
3134 |
|
3135 |
|
3136 |
|
3137 |
|
3138 |
|
3139 |
* **************************************************** |
3140 |
|
3141 |
subroutine init_level2 |
3142 |
|
3143 |
include 'commontracker.f' |
3144 |
include 'level1.f' |
3145 |
include 'common_momanhough.f' |
3146 |
include 'level2.f' |
3147 |
c include 'level1.f' |
3148 |
|
3149 |
do i=1,nviews |
3150 |
good2(i)=good1(i) |
3151 |
enddo |
3152 |
|
3153 |
|
3154 |
NTRK = 0 |
3155 |
do it=1,NTRKMAX |
3156 |
IMAGE(IT)=0 |
3157 |
CHI2_nt(IT) = -100000. |
3158 |
do ip=1,nplanes |
3159 |
XM_nt(IP,IT) = 0 |
3160 |
YM_nt(IP,IT) = 0 |
3161 |
ZM_nt(IP,IT) = 0 |
3162 |
RESX_nt(IP,IT) = 0 |
3163 |
RESY_nt(IP,IT) = 0 |
3164 |
XGOOD_nt(IP,IT) = 0 |
3165 |
YGOOD_nt(IP,IT) = 0 |
3166 |
DEDX_X(IP,IT) = 0 |
3167 |
DEDX_Y(IP,IT) = 0 |
3168 |
CLTRX(IP,IT) = 0 |
3169 |
CLTRY(IP,IT) = 0 |
3170 |
enddo |
3171 |
do ipa=1,5 |
3172 |
AL_nt(IPA,IT) = 0 |
3173 |
do ipaa=1,5 |
3174 |
coval(ipa,ipaa,IT)=0 |
3175 |
enddo |
3176 |
enddo |
3177 |
enddo |
3178 |
nclsx=0 |
3179 |
nclsy=0 |
3180 |
do ip=1,NSINGMAX |
3181 |
planex(ip)=0 |
3182 |
xs(1,ip)=0 |
3183 |
xs(2,ip)=0 |
3184 |
sgnlxs(ip)=0 |
3185 |
planey(ip)=0 |
3186 |
ys(1,ip)=0 |
3187 |
ys(2,ip)=0 |
3188 |
sgnlys(ip)=0 |
3189 |
enddo |
3190 |
end |
3191 |
|
3192 |
|
3193 |
************************************************************ |
3194 |
* |
3195 |
* |
3196 |
* |
3197 |
* |
3198 |
* |
3199 |
* |
3200 |
* |
3201 |
************************************************************ |
3202 |
|
3203 |
|
3204 |
subroutine init_hough |
3205 |
|
3206 |
include 'commontracker.f' |
3207 |
include 'level1.f' |
3208 |
include 'common_momanhough.f' |
3209 |
include 'common_hough.f' |
3210 |
include 'level2.f' |
3211 |
|
3212 |
ntrpt_nt=0 |
3213 |
ndblt_nt=0 |
3214 |
NCLOUDS_XZ_nt=0 |
3215 |
NCLOUDS_YZ_nt=0 |
3216 |
do idb=1,ndblt_max_nt |
3217 |
db_cloud_nt(idb)=0 |
3218 |
alfayz1_nt(idb)=0 |
3219 |
alfayz2_nt(idb)=0 |
3220 |
enddo |
3221 |
do itr=1,ntrpt_max_nt |
3222 |
tr_cloud_nt(itr)=0 |
3223 |
alfaxz1_nt(itr)=0 |
3224 |
alfaxz2_nt(itr)=0 |
3225 |
alfaxz3_nt(itr)=0 |
3226 |
enddo |
3227 |
do idb=1,ncloyz_max |
3228 |
ptcloud_yz_nt(idb)=0 |
3229 |
alfayz1_av_nt(idb)=0 |
3230 |
alfayz2_av_nt(idb)=0 |
3231 |
enddo |
3232 |
do itr=1,ncloxz_max |
3233 |
ptcloud_xz_nt(itr)=0 |
3234 |
alfaxz1_av_nt(itr)=0 |
3235 |
alfaxz2_av_nt(itr)=0 |
3236 |
alfaxz3_av_nt(itr)=0 |
3237 |
enddo |
3238 |
|
3239 |
ntrpt=0 |
3240 |
ndblt=0 |
3241 |
NCLOUDS_XZ=0 |
3242 |
NCLOUDS_YZ=0 |
3243 |
do idb=1,ndblt_max |
3244 |
db_cloud(idb)=0 |
3245 |
cpyz1(idb)=0 |
3246 |
cpyz2(idb)=0 |
3247 |
alfayz1(idb)=0 |
3248 |
alfayz2(idb)=0 |
3249 |
enddo |
3250 |
do itr=1,ntrpt_max |
3251 |
tr_cloud(itr)=0 |
3252 |
cpxz1(itr)=0 |
3253 |
cpxz2(itr)=0 |
3254 |
cpxz3(itr)=0 |
3255 |
alfaxz1(itr)=0 |
3256 |
alfaxz2(itr)=0 |
3257 |
alfaxz3(itr)=0 |
3258 |
enddo |
3259 |
do idb=1,ncloyz_max |
3260 |
ptcloud_yz(idb)=0 |
3261 |
alfayz1_av(idb)=0 |
3262 |
alfayz2_av(idb)=0 |
3263 |
do idbb=1,ncouplemaxtot |
3264 |
cpcloud_yz(idb,idbb)=0 |
3265 |
enddo |
3266 |
enddo |
3267 |
do itr=1,ncloxz_max |
3268 |
ptcloud_xz(itr)=0 |
3269 |
alfaxz1_av(itr)=0 |
3270 |
alfaxz2_av(itr)=0 |
3271 |
alfaxz3_av(itr)=0 |
3272 |
do itrr=1,ncouplemaxtot |
3273 |
cpcloud_xz(itr,itrr)=0 |
3274 |
enddo |
3275 |
enddo |
3276 |
end |
3277 |
************************************************************ |
3278 |
* |
3279 |
* |
3280 |
* |
3281 |
* |
3282 |
* |
3283 |
* |
3284 |
* |
3285 |
************************************************************ |
3286 |
|
3287 |
|
3288 |
subroutine fill_level2_tracks(ntr) |
3289 |
|
3290 |
* ------------------------------------------------------- |
3291 |
* This routine fills the ntr-th element of the variables |
3292 |
* inside the level2_tracks common, which correspond |
3293 |
* to the ntr-th track info. |
3294 |
* ------------------------------------------------------- |
3295 |
|
3296 |
|
3297 |
include 'commontracker.f' |
3298 |
c include 'level1.f' |
3299 |
include 'level1.f' |
3300 |
include 'common_momanhough.f' |
3301 |
include 'level2.f' |
3302 |
include 'common_mini_2.f' |
3303 |
real sinth,phi,pig |
3304 |
pig=acos(-1.) |
3305 |
|
3306 |
chi2_nt(ntr) = sngl(chi2) |
3307 |
nstep_nt(ntr) = nstep |
3308 |
|
3309 |
phi = al(4) |
3310 |
sinth = al(3) |
3311 |
if(sinth.lt.0)then |
3312 |
sinth = -sinth |
3313 |
phi = phi + pig |
3314 |
endif |
3315 |
npig = aint(phi/(2*pig)) |
3316 |
phi = phi - npig*2*pig |
3317 |
if(phi.lt.0) |
3318 |
$ phi = phi + 2*pig |
3319 |
al(4) = phi |
3320 |
al(3) = sinth |
3321 |
|
3322 |
do i=1,5 |
3323 |
al_nt(i,ntr) = sngl(al(i)) |
3324 |
do j=1,5 |
3325 |
coval(i,j,ntr) = sngl(cov(i,j)) |
3326 |
enddo |
3327 |
enddo |
3328 |
|
3329 |
do ip=1,nplanes ! loop on planes |
3330 |
xgood_nt(ip,ntr) = int(xgood(ip)) |
3331 |
ygood_nt(ip,ntr) = int(ygood(ip)) |
3332 |
xm_nt(ip,ntr) = sngl(xm(ip)) |
3333 |
ym_nt(ip,ntr) = sngl(ym(ip)) |
3334 |
zm_nt(ip,ntr) = sngl(zm(ip)) |
3335 |
RESX_nt(IP,ntr) = sngl(resx(ip)) |
3336 |
RESY_nt(IP,ntr) = sngl(resy(ip)) |
3337 |
xv_nt(ip,ntr) = sngl(xv(ip)) |
3338 |
yv_nt(ip,ntr) = sngl(yv(ip)) |
3339 |
zv_nt(ip,ntr) = sngl(zv(ip)) |
3340 |
axv_nt(ip,ntr) = sngl(axv(ip)) |
3341 |
ayv_nt(ip,ntr) = sngl(ayv(ip)) |
3342 |
c l'avevo dimenticato!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
3343 |
factor = sqrt( |
3344 |
$ sin( acos(-1.) * sngl(axv(ip)) /180. )**2 + |
3345 |
$ sin( acos(-1.) * sngl(ayv(ip)) /180. )**2 + |
3346 |
$ 1. ) |
3347 |
c !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
3348 |
dedx_x(ip,ntr) = sngl(dedxtrk_x(ip)/factor) |
3349 |
dedx_y(ip,ntr) = sngl(dedxtrk_y(ip)/factor) |
3350 |
|
3351 |
id = CP_STORE(ip,IDCAND) |
3352 |
icl = CLS_STORE(ip,IDCAND) |
3353 |
if(id.ne.0)then |
3354 |
cltrx(ip,ntr) = clx(nplanes-ip+1,icp_cp(id)) |
3355 |
cltry(ip,ntr) = cly(nplanes-ip+1,icp_cp(id)) |
3356 |
c print*,ip,' ',cltrx(ip,ntr),cltry(ip,ntr) |
3357 |
elseif(icl.ne.0)then |
3358 |
if(mod(VIEW(icl),2).eq.0)cltrx(ip,ntr)=icl |
3359 |
if(mod(VIEW(icl),2).eq.1)cltry(ip,ntr)=icl |
3360 |
c print*,ip,' ',cltrx(ip,ntr),cltry(ip,ntr) |
3361 |
endif |
3362 |
|
3363 |
enddo |
3364 |
|
3365 |
|
3366 |
end |
3367 |
|
3368 |
subroutine fill_level2_siglets |
3369 |
|
3370 |
* ------------------------------------------------------- |
3371 |
* This routine fills the elements of the variables |
3372 |
* inside the level2_singletsx and level2_singletsy commons, |
3373 |
* which store info on clusters outside the tracks |
3374 |
* ------------------------------------------------------- |
3375 |
|
3376 |
include 'commontracker.f' |
3377 |
c include 'level1.f' |
3378 |
include 'calib.f' |
3379 |
include 'level1.f' |
3380 |
include 'common_momanhough.f' |
3381 |
include 'level2.f' |
3382 |
include 'common_xyzPAM.f' |
3383 |
|
3384 |
* count #cluster per plane not associated to any track |
3385 |
c good2=1!.true. |
3386 |
nclsx = 0 |
3387 |
nclsy = 0 |
3388 |
|
3389 |
do iv = 1,nviews |
3390 |
if( mask_view(iv).ne.0 )good2(iv) = 20+mask_view(iv) |
3391 |
enddo |
3392 |
|
3393 |
do icl=1,nclstr1 |
3394 |
if(cl_used(icl).eq.0)then !cluster not included in any track |
3395 |
ip=nplanes-npl(VIEW(icl))+1 |
3396 |
if(mod(VIEW(icl),2).eq.0)then !=== X views |
3397 |
nclsx = nclsx + 1 |
3398 |
planex(nclsx) = ip |
3399 |
sgnlxs(nclsx) = sgnl(icl)/mip(VIEW(icl),LADDER(icl))!(2) |
3400 |
clsx(nclsx) = icl |
3401 |
do is=1,2 |
3402 |
c call xyz_PAM(icl,0,is,'COG1',' ',0.,0.) |
3403 |
c call xyz_PAM(icl,0,is,PFAdef,' ',0.,0.) |
3404 |
call xyz_PAM(icl,0,is,PFAdef,' ',0.,0.,0.,0.) |
3405 |
xs(is,nclsx) = (xPAM_A+xPAM_B)/2 |
3406 |
enddo |
3407 |
c$$$ print*,'nclsx ',nclsx |
3408 |
c$$$ print*,'planex(nclsx) ',planex(nclsx) |
3409 |
c$$$ print*,'sgnlxs(nclsx) ',sgnlxs(nclsx) |
3410 |
c$$$ print*,'xs(1,nclsx) ',xs(1,nclsx) |
3411 |
c$$$ print*,'xs(2,nclsx) ',xs(2,nclsx) |
3412 |
else !=== Y views |
3413 |
nclsy = nclsy + 1 |
3414 |
planey(nclsy) = ip |
3415 |
sgnlys(nclsy) = sgnl(icl)/mip(VIEW(icl),LADDER(icl))!(2) |
3416 |
clsy(nclsy) = icl |
3417 |
do is=1,2 |
3418 |
c call xyz_PAM(0,icl,is,' ','COG1',0.,0.) |
3419 |
c call xyz_PAM(0,icl,is,' ',PFAdef,0.,0.) |
3420 |
call xyz_PAM(0,icl,is,' ',PFAdef,0.,0.,0.,0.) |
3421 |
ys(is,nclsy) = (yPAM_A+yPAM_B)/2 |
3422 |
enddo |
3423 |
c$$$ print*,'nclsy ',nclsy |
3424 |
c$$$ print*,'planey(nclsy) ',planey(nclsy) |
3425 |
c$$$ print*,'sgnlys(nclsy) ',sgnlys(nclsy) |
3426 |
c$$$ print*,'ys(1,nclsy) ',ys(1,nclsy) |
3427 |
c$$$ print*,'ys(2,nclsy) ',ys(2,nclsy) |
3428 |
endif |
3429 |
endif |
3430 |
c print*,icl,cl_used(icl),cl_good(icl),ip,VIEW(icl)!nclsx(ip),nclsy(ip) |
3431 |
|
3432 |
***** LO METTO QUI PERCHE` NON SO DOVE METTERLO |
3433 |
whichtrack(icl) = cl_used(icl) |
3434 |
|
3435 |
enddo |
3436 |
end |
3437 |
|
3438 |
*************************************************** |
3439 |
* * |
3440 |
* * |
3441 |
* * |
3442 |
* * |
3443 |
* * |
3444 |
* * |
3445 |
************************************************** |
3446 |
|
3447 |
subroutine fill_hough |
3448 |
|
3449 |
* ------------------------------------------------------- |
3450 |
* This routine fills the variables related to the hough |
3451 |
* transform, for the debig n-tuple |
3452 |
* ------------------------------------------------------- |
3453 |
|
3454 |
include 'commontracker.f' |
3455 |
include 'level1.f' |
3456 |
include 'common_momanhough.f' |
3457 |
include 'common_hough.f' |
3458 |
include 'level2.f' |
3459 |
|
3460 |
if(.false. |
3461 |
$ .or.ntrpt.gt.ntrpt_max_nt |
3462 |
$ .or.ndblt.gt.ndblt_max_nt |
3463 |
$ .or.NCLOUDS_XZ.gt.ncloxz_max |
3464 |
$ .or.NCLOUDS_yZ.gt.ncloyz_max |
3465 |
$ )then |
3466 |
ntrpt_nt=0 |
3467 |
ndblt_nt=0 |
3468 |
NCLOUDS_XZ_nt=0 |
3469 |
NCLOUDS_YZ_nt=0 |
3470 |
else |
3471 |
ndblt_nt=ndblt |
3472 |
ntrpt_nt=ntrpt |
3473 |
if(ndblt.ne.0)then |
3474 |
do id=1,ndblt |
3475 |
alfayz1_nt(id)=alfayz1(id) !Y0 |
3476 |
alfayz2_nt(id)=alfayz2(id) !tg theta-yz |
3477 |
enddo |
3478 |
endif |
3479 |
if(ndblt.ne.0)then |
3480 |
do it=1,ntrpt |
3481 |
alfaxz1_nt(it)=alfaxz1(it) !X0 |
3482 |
alfaxz2_nt(it)=alfaxz2(it) !tg theta-xz |
3483 |
alfaxz3_nt(it)=alfaxz3(it) !1/r |
3484 |
enddo |
3485 |
endif |
3486 |
nclouds_yz_nt=nclouds_yz |
3487 |
nclouds_xz_nt=nclouds_xz |
3488 |
if(nclouds_yz.ne.0)then |
3489 |
nnn=0 |
3490 |
do iyz=1,nclouds_yz |
3491 |
ptcloud_yz_nt(iyz)=ptcloud_yz(iyz) |
3492 |
alfayz1_av_nt(iyz)=alfayz1_av(iyz) |
3493 |
alfayz2_av_nt(iyz)=alfayz2_av(iyz) |
3494 |
nnn=nnn+ptcloud_yz(iyz) |
3495 |
enddo |
3496 |
do ipt=1,nnn |
3497 |
db_cloud_nt(ipt)=db_cloud(ipt) |
3498 |
enddo |
3499 |
endif |
3500 |
if(nclouds_xz.ne.0)then |
3501 |
nnn=0 |
3502 |
do ixz=1,nclouds_xz |
3503 |
ptcloud_xz_nt(ixz)=ptcloud_xz(ixz) |
3504 |
alfaxz1_av_nt(ixz)=alfaxz1_av(ixz) |
3505 |
alfaxz2_av_nt(ixz)=alfaxz2_av(ixz) |
3506 |
alfaxz3_av_nt(ixz)=alfaxz3_av(ixz) |
3507 |
nnn=nnn+ptcloud_xz(ixz) |
3508 |
enddo |
3509 |
do ipt=1,nnn |
3510 |
tr_cloud_nt(ipt)=tr_cloud(ipt) |
3511 |
enddo |
3512 |
endif |
3513 |
endif |
3514 |
end |
3515 |
|