************************************************************ * The following subroutines * - track_finding >> hough transform * - track_fitting >> bob golden fitting * all the procedures to create LEVEL2 data, starting from LEVEL1 data. * * * * (This subroutine and all the dependent subroutines * will be included in the flight software) ************************************************************ subroutine track_finding(iflag) include 'commontracker.f' include 'level1.f' include 'common_momanhough.f' include 'common_mech.f' include 'common_xyzPAM.f' include 'common_mini_2.f' include 'calib.f' include 'level2.f' c print*,'======================================================' c$$$ do ic=1,NCLSTR1 c$$$ if(.false. c$$$ $ .or.nsatstrips(ic).gt.0 c$$$c $ .or.nbadstrips(0,ic).gt.0 c$$$c $ .or.nbadstrips(4,ic).gt.0 c$$$c $ .or.nbadstrips(3,ic).gt.0 c$$$ $ .or..false.)then c$$$ print*,'--- cl-',ic,' ------------------------' c$$$ istart = INDSTART(IC) c$$$ istop = TOTCLLENGTH c$$$ if(ic.lt.NCLSTR1)istop=INDSTART(IC+1)-1 c$$$ print*,'ADC ',(CLADC(i),i=istart,istop) c$$$ print*,'s/n ',(CLSIGNAL(i)/CLSIGMA(i),i=istart,istop) c$$$ print*,'sgnl ',(CLSIGNAL(i),i=istart,istop) c$$$ print*,'strip ',(i-INDMAX(ic),i=istart,istop) c$$$ print*,'view ',VIEW(ic) c$$$ print*,'maxs ',MAXS(ic) c$$$ print*,'COG4 ',cog(4,ic) c$$$ ff = fbad_cog(4,ic) c$$$ print*,'fbad ',ff c$$$ print*,(CLBAD(i),i=istart,istop) c$$$ bb=nbadstrips(0,ic) c$$$ print*,'#BAD (tot)',bb c$$$ bb=nbadstrips(4,ic) c$$$ print*,'#BAD (4)',bb c$$$ bb=nbadstrips(3,ic) c$$$ print*,'#BAD (3)',bb c$$$ ss=nsatstrips(ic) c$$$ print*,'#saturated ',ss c$$$ endif c$$$ enddo *------------------------------------------------------------------------------- * STEP 1 *------------------------------------------------------------------------------- * X-Y cluster association * * Clusters are associated to form COUPLES * Clusters not associated in any couple are called SINGLETS * * Track identification (Hough transform) and fitting is first done on couples. * Hence singlets are possibly added to the track. * * Variables assigned by the routine "cl_to_couples" are those in the * common blocks: * - common/clusters/cl_good * - common/couples/clx,cly,ncp_plane,ncp_tot,cp_useds1,cp_useds2 * - common/singlets/ncls,cls,cl_single *------------------------------------------------------------------------------- *------------------------------------------------------------------------------- call cl_to_couples(iflag) if(iflag.eq.1)then !bad event goto 880 !go to next event endif *----------------------------------------------------- *----------------------------------------------------- * HOUGH TRASFORM *----------------------------------------------------- *----------------------------------------------------- *------------------------------------------------------------------------------- * STEP 2 *------------------------------------------------------------------------------- * * Association of couples to form * - DOUBLETS in YZ view * - TRIPLETS in XZ view * * Variables assigned by the routine "cp_to_doubtrip" are those in the * common blocks: * - common/hough_param/ * $ alfayz1, !Y0 * $ alfayz2, !tg theta-yz * $ alfaxz1, !X0 * $ alfaxz2, !tg theta-xz * $ alfaxz3 !1/r * - common/doublets/ndblt,cpyz1,cpyz2 * - common/triplets/ntrpt,cpxz1,cpxz2,cpxz3 *------------------------------------------------------------------------------- *------------------------------------------------------------------------------- call cp_to_doubtrip(iflag) if(iflag.eq.1)then !bad event goto 880 !go to next event endif *------------------------------------------------------------------------------- * STEP 3 *------------------------------------------------------------------------------- * * Classification of doublets and triplets to form CLOUDS, * according to distance in parameter space. * * cloud = cluster of points (doublets/triplets) in parameter space * * * * Variables assigned by the routine "doub_to_YZcloud" are those in the * common blocks: * - common/clouds_yz/ * $ nclouds_yz * $ ,alfayz1_av,alfayz2_av * $ ,ptcloud_yz,db_cloud,cpcloud_yz * * Variables assigned by the routine "trip_to_XZcloud" are those in the * common blocks: * common/clouds_xz/ * $ nclouds_xz xz2_av,alfaxz3_av * $ ,ptcloud_xz,tr_cloud,cpcloud_xz *------------------------------------------------------------------------------- *------------------------------------------------------------------------------- * count number of hit planes planehit=0 do np=1,nplanes if(ncp_plane(np).ne.0)then planehit=planehit+1 endif enddo if(planehit.lt.3) goto 880 ! exit nptxz_min=x_min_start nplxz_min=x_min_start nptyz_min=y_min_start nplyz_min=y_min_start cutdistyz=cutystart cutdistxz=cutxstart 878 continue call doub_to_YZcloud(iflag) if(iflag.eq.1)then !bad event goto 880 !fill ntp and go to next event endif if(nclouds_yz.eq.0.and.cutdistyz.lt.maxcuty)then if(cutdistyz.lt.maxcuty/2)then cutdistyz=cutdistyz+cutystep else cutdistyz=cutdistyz+(3*cutystep) endif goto 878 endif if(planehit.eq.3) goto 881 879 continue call trip_to_XZcloud(iflag) if(iflag.eq.1)then !bad event goto 880 !fill ntp and go to next event endif if(nclouds_xz.eq.0.and.cutdistxz.lt.maxcutx)then cutdistxz=cutdistxz+cutxstep goto 879 endif 881 continue * if there is at least three planes on the Y view decreases cuts on X view if(nclouds_xz.eq.0.and.nclouds_yz.gt.0.and. $ nplxz_min.ne.y_min_start)then nptxz_min=x_min_step nplxz_min=x_min_start-x_min_step goto 879 endif 880 return end ************************************************************ subroutine track_fitting(iflag) include 'commontracker.f' include 'level1.f' include 'common_momanhough.f' include 'common_mech.f' include 'common_xyzPAM.f' include 'common_mini_2.f' include 'calib.f' include 'level2.f' c include 'momanhough_init.f' logical FIMAGE ! real*8 AL_GUESS(5) *------------------------------------------------------------------------------- * STEP 4 (ITERATED until any other physical track isn't found) *------------------------------------------------------------------------------- * * YZ and XZ clouds are combined in order to obtain the initial guess * of the candidate-track parameters. * A minimum number of matching couples between YZ and XZ clouds is required. * * A TRACK CANDIDATE is defined by * - the couples resulting from the INTERSECTION of the two clouds, and * - the associated track parameters (evaluated by performing a zero-order * track fitting) * * The NTRACKS candidate-track parameters are stored in common block: * * - common/track_candidates/NTRACKS,AL_STORE * $ ,XV_STORE,YV_STORE,ZV_STORE * $ ,XM_STORE,YM_STORE,ZM_STORE * $ ,RESX_STORE,RESY_STORE * $ ,AXV_STORE,AYV_STORE * $ ,XGOOD_STORE,YGOOD_STORE * $ ,CP_STORE,RCHI2_STORE * *------------------------------------------------------------------------------- *------------------------------------------------------------------------------- ntrk=0 !counter of identified physical tracks 11111 continue !<<<<<<< come here when performing a new search c iflag=0 call clouds_to_ctrack(iflag) if(iflag.eq.1)then !no candidate tracks found goto 880 !fill ntp and go to next event endif FIMAGE=.false. !processing best track (not track image) ibest=0 !best track among candidates iimage=0 !track image * ------------- select the best track ------------- c$$$ rchi2best=1000000000. c$$$ do i=1,ntracks c$$$ if(RCHI2_STORE(i).lt.rchi2best.and. c$$$ $ RCHI2_STORE(i).gt.0)then c$$$ ibest=i c$$$ rchi2best=RCHI2_STORE(i) c$$$ endif c$$$ enddo c$$$ if(ibest.eq.0)goto 880 !>> no good candidates * ------------------------------------------------------- * order track-candidates according to: * 1st) decreasing n.points * 2nd) increasing chi**2 * ------------------------------------------------------- rchi2best=1000000000. ndofbest=0 do i=1,ntracks ndof=0 do ii=1,nplanes ndof=ndof $ +int(xgood_store(ii,i)) $ +int(ygood_store(ii,i)) enddo if(ndof.gt.ndofbest)then ibest=i rchi2best=RCHI2_STORE(i) ndofbest=ndof elseif(ndof.eq.ndofbest)then if(RCHI2_STORE(i).lt.rchi2best.and. $ RCHI2_STORE(i).gt.0)then ibest=i rchi2best=RCHI2_STORE(i) ndofbest=ndof endif endif enddo c$$$ rchi2best=1000000000. c$$$ ndofbest=0 !(1) c$$$ do i=1,ntracks c$$$ if(RCHI2_STORE(i).lt.rchi2best.and. c$$$ $ RCHI2_STORE(i).gt.0)then c$$$ ndof=0 !(1) c$$$ do ii=1,nplanes !(1) c$$$ ndof=ndof !(1) c$$$ $ +int(xgood_store(ii,i)) !(1) c$$$ $ +int(ygood_store(ii,i)) !(1) c$$$ enddo !(1) c$$$ if(ndof.ge.ndofbest)then !(1) c$$$ ibest=i c$$$ rchi2best=RCHI2_STORE(i) c$$$ ndofbest=ndof !(1) c$$$ endif !(1) c$$$ endif c$$$ enddo if(ibest.eq.0)goto 880 !>> no good candidates *------------------------------------------------------------------------------- * The best track candidate (ibest) is selected and a new fitting is performed. * Previous to this, the track is refined by: * - possibly adding new COUPLES or SINGLETS from the missing planes * - evaluating the coordinates with improved PFAs * ( angle-dependent ETA algorithms ) *------------------------------------------------------------------------------- 1212 continue !<<<<< come here to fit track-image if(.not.FIMAGE)then !processing best candidate icand=ibest else !processing image icand=iimage iimage=0 endif if(icand.eq.0)then if(VERBOSE)then print*,'HAI FATTO UN CASINO!!!!!! icand = ',icand $ ,ibest,iimage endif return endif * *-*-*-*-*-*-*-*-*-*-*-*-*-*-* call refine_track(icand) * *-*-*-*-*-*-*-*-*-*-*-*-*-*-* * ********************************************************** * ************************** FIT *** FIT *** FIT *** FIT *** * ********************************************************** call guess() do i=1,5 AL_GUESS(i)=AL(i) enddo c print*,'## guess: ',al do i=1,5 AL(i)=dble(AL_STORE(i,icand)) enddo IDCAND = icand !fitted track-candidate ifail=0 !error flag in chi2 computation jstep=0 !# minimization steps iprint=0 c if(DEBUG)iprint=1 if(VERBOSE)iprint=1 if(DEBUG)iprint=2 call mini2(jstep,ifail,iprint) if(ifail.ne.0) then if(VERBOSE)then print *, $ '*** MINIMIZATION FAILURE *** (after refinement) ' $ ,iev c$$$ print*,'guess: ',(al_guess(i),i=1,5) c$$$ print*,'previous: ',(al_store(i,icand),i=1,5) c$$$ print*,'result: ',(al(i),i=1,5) c$$$ print*,'xgood ',xgood c$$$ print*,'ygood ',ygood c$$$ print*,'----------------------------------------------' endif c chi2=-chi2 endif if(DEBUG)then print*,'----------------------------- improved track coord' 22222 format(i2,' * ',3f10.4,' --- ',4f10.4,' --- ',2f4.0,2f10.5) do ip=1,6 write(*,22222)ip,zm(ip),xm(ip),ym(ip) $ ,xm_A(ip),ym_A(ip),xm_B(ip),ym_B(ip) $ ,xgood(ip),ygood(ip),resx(ip),resy(ip) enddo endif c rchi2=chi2/dble(ndof) if(DEBUG)then print*,' ' print*,'****** SELECTED TRACK *************' print*,'# R. chi2 RIG' print*,' --- ',chi2,' --- ' $ ,1./abs(AL(5)) print*,'***********************************' endif * ********************************************************** * ************************** FIT *** FIT *** FIT *** FIT *** * ********************************************************** * ------------- search if the track has an IMAGE ------------- * ------------- (also this is stored ) ------------- if(FIMAGE)goto 122 !>>> jump! (this is already an image) * now search for track-image, by comparing couples IDs do i=1,ntracks iimage=i do ip=1,nplanes if( CP_STORE(nplanes-ip+1,icand).ne. $ -1*CP_STORE(nplanes-ip+1,i) )iimage=0 enddo if( iimage.ne.0.and. c $ RCHI2_STORE(i).le.CHI2MAX.and. c $ RCHI2_STORE(i).gt.0.and. $ .true.)then if(DEBUG)print*,'Track candidate ',iimage $ ,' >>> TRACK IMAGE >>> of' $ ,ibest goto 122 !image track found endif enddo 122 continue * --- and store the results -------------------------------- ntrk = ntrk + 1 !counter of found tracks if(.not.FIMAGE $ .and.iimage.eq.0) image(ntrk)= 0 if(.not.FIMAGE $ .and.iimage.ne.0)image(ntrk)=ntrk+1 !this is the image of the next if(FIMAGE) image(ntrk)=ntrk-1 !this is the image of the previous call fill_level2_tracks(ntrk) !==> good2=.true. c print*,'++++++++++ iimage,fimage,ntrk,image ' c $ ,iimage,fimage,ntrk,image(ntrk) if(ntrk.eq.NTRKMAX)then if(verbose) $ print*, $ '** warning ** number of identified '// $ 'tracks exceeds vector dimension ' $ ,'( ',NTRKMAX,' )' cc good2=.false. goto 880 !fill ntp and go to next event endif if(iimage.ne.0)then FIMAGE=.true. ! goto 1212 !>>> fit image-track endif * --- then remove selected clusters (ibest+iimage) from clouds ---- call clean_XYclouds(ibest,iflag) if(iflag.eq.1)then !bad event goto 880 !fill ntp and go to next event endif * ********************************************************** * condition to start a new search * ********************************************************** ixznew=0 do ixz=1,nclouds_xz if(ptcloud_xz(ixz).ge.nptxz_min)ixznew=1 enddo iyznew=0 do iyz=1,nclouds_yz if(ptcloud_yz(iyz).ge.nptyz_min)iyznew=1 enddo if(ixznew.ne.0.and. $ iyznew.ne.0.and. $ rchi2best.le.CHI2MAX.and. c $ rchi2best.lt.15..and. $ .true.)then if(DEBUG)then print*,'***** NEW SEARCH ****' endif goto 11111 !try new search endif * ********************************************** 880 return end ************************************************************ ************************************************************ ************************************************************ ************************************************************ * * This routine provides the coordinates (in cm) in the PAMELA reference system: * - of the point associated with a COUPLE ---> (xPAM,yPAM,zPAM) * - of the extremes of the segment * associated with a SINGLET ---------------> (xPAM_A,yPAM_A,zPAM_A) * ---> (xPAM_B,yPAM_B,zPAM_B) * * It also assigns the spatial resolution to the evaluated coordinates, * as a function (in principle) of the multiplicity, the angle, the PFA etc... * * * To call the routine you must pass the arguments: * icx - ID of cluster x * icy - ID of cluster y * sensor - sensor (1,2) * PFAx - Position Finding Algorithm in x (COG2,ETA2,...) * PFAy - Position Finding Algorithm in y (COG2,ETA2,...) * angx - Projected angle in x * angy - Projected angle in y * bfx - x-component of magnetci field * bfy - y-component of magnetic field * * --------- COUPLES ------------------------------------------------------- * The couple defines a point in the space. * The coordinates of the point are evaluated as follows: * 1 - the corrected coordinates relative to the sensor are evaluated * according to the chosen PFA --> (xi,yi,0) * 2 - coordinates are rotated and traslated, according to the aligmnet * parameters, and expressed in the reference system of the mechanical * sensor --> (xrt,yrt,zrt) * 3 - coordinates are finally converted to the PAMELA reference system * --> (xPAM,yPAM,zPAM) * * --------- SINGLETS ------------------------------------------------------- * Since a coordinate is missing, the singlet defines not a point * in the space but a segment AB (parallel to the strips). * In this case the routine returns the coordinates in the PAMELA reference * system of the two extremes A and B of the segment: * --> (xPAM_A,yPAM_A,zPAM_A) * --> (xPAM_B,yPAM_B,zPAM_B) * * ========================================================== * * The output of the routine is stored in the commons: * * double precision xPAM,yPAM,zPAM * common/coord_xyz_PAM/xPAM,yPAM,zPAM * * double precision xPAM_A,yPAM_A,zPAM_A * double precision xPAM_B,yPAM_B,zPAM_B * common/coord_AB_PAM/xPAM_A,yPAM_A,zPAM_A,xPAM_B,yPAM_B,zPAM_B * * double precision resxPAM,resyPAM * common/resolution_PAM/resxPAM,resyPAM * * (in file common_xyzPAM.f) * * subroutine xyz_PAM(icx,icy,sensor,PFAx,PFAy,ax,ay,bfx,bfy) include 'commontracker.f' include 'level1.f' include 'calib.f' include 'common_align.f' include 'common_mech.f' include 'common_xyzPAM.f' integer icx,icy !X-Y cluster ID integer sensor integer viewx,viewy character*4 PFAx,PFAy !PFA to be used real ax,ay !X-Y geometric angle real angx,angy !X-Y effective angle real bfx,bfy !X-Y b-field components real stripx,stripy double precision xrt,yrt,zrt double precision xrt_A,yrt_A,zrt_A double precision xrt_B,yrt_B,zrt_B parameter (ndivx=30) c$$$ print*,icx,icy,sensor,PFAx,PFAy,ax,ay,bfx,bfy resxPAM = 0 resyPAM = 0 xPAM = 0. yPAM = 0. zPAM = 0. xPAM_A = 0. yPAM_A = 0. zPAM_A = 0. xPAM_B = 0. yPAM_B = 0. zPAM_B = 0. c print*,'## xyz_PAM: ',icx,icy,sensor,PFAx,PFAy,angx,angy * ----------------- * CLUSTER X * ----------------- if(icx.ne.0)then viewx = VIEW(icx) nldx = nld(MAXS(icx),VIEW(icx)) nplx = npl(VIEW(icx)) resxPAM = RESXAV stripx = float(MAXS(icx)) * -------------------------- * magnetic-field corrections * -------------------------- angtemp = ax bfytemp = bfy * ///////////////////////////////// * AAAAHHHHHHHH!!!!!!!!!!!!!!!!!!!!! * *grvzkkjsdgjhhhgngbn###>:( * ///////////////////////////////// c if(nplx.eq.6) angtemp = -1. * ax c if(nplx.eq.6) bfytemp = -1. * bfy if(viewx.eq.12) angtemp = -1. * ax if(viewx.eq.12) bfytemp = -1. * bfy tgtemp = tan(angtemp*acos(-1.)/180.) + pmuH_h*bfytemp*0.00001 angx = 180.*atan(tgtemp)/acos(-1.) stripx = stripx - 0.5*pmuH_h*bfytemp*0.00001*SiDimZ/pitchX c$$$ print*,nplx,ax,bfy/10. c$$$ print*,angx,0.5*pmuH_h*bfytemp*0.00001*SiDimZ/pitchX c$$$ print*,'========================' c$$$ if(bfy.ne.0.)print*,viewx,'-x- ' c$$$ $ ,bfy,-1*0.5*pmuH_h*bfytemp*0.00001*SiDimZ * -------------------------- c$$$ print*,'--- x-cl ---' c$$$ istart = INDSTART(ICX) c$$$ istop = TOTCLLENGTH c$$$ if(icx.lt.NCLSTR1)istop=INDSTART(ICX+1)-1 c$$$ print*,(CLSIGNAL(i)/CLSIGMA(i),i=istart,istop) c$$$ print*,(CLSIGNAL(i),i=istart,istop) c$$$ print*,INDMAX(icx) c$$$ print*,cog(4,icx) c$$$ print*,fbad_cog(4,icx) if(PFAx.eq.'COG1')then stripx = stripx resxPAM = 1e-4*pitchX/sqrt(12.)!!resxPAM elseif(PFAx.eq.'COG2')then stripx = stripx + cog(2,icx) resxPAM = risx_cog(abs(angx))!TEMPORANEO resxPAM = resxPAM*fbad_cog(2,icx) elseif(PFAx.eq.'COG3')then stripx = stripx + cog(3,icx) resxPAM = risx_cog(abs(angx))!TEMPORANEO resxPAM = resxPAM*fbad_cog(3,icx) elseif(PFAx.eq.'COG4')then stripx = stripx + cog(4,icx) resxPAM = risx_cog(abs(angx))!TEMPORANEO resxPAM = resxPAM*fbad_cog(4,icx) elseif(PFAx.eq.'ETA2')then stripx = stripx + pfaeta2(icx,angx) resxPAM = risx_eta2(abs(angx)) resxPAM = resxPAM*fbad_cog(2,icx) if(DEBUG.and.fbad_cog(2,icx).ne.1) $ print*,'BAD icx >>> ',viewx,fbad_cog(2,icx) elseif(PFAx.eq.'ETA3')then stripx = stripx + pfaeta3(icx,angx) resxPAM = risx_eta3(abs(angx)) resxPAM = resxPAM*fbad_cog(3,icx) if(DEBUG.and.fbad_cog(3,icx).ne.1) $ print*,'BAD icx >>> ',viewx,fbad_cog(3,icx) elseif(PFAx.eq.'ETA4')then stripx = stripx + pfaeta4(icx,angx) resxPAM = risx_eta4(abs(angx)) resxPAM = resxPAM*fbad_cog(4,icx) if(DEBUG.and.fbad_cog(4,icx).ne.1) $ print*,'BAD icx >>> ',viewx,fbad_cog(4,icx) elseif(PFAx.eq.'ETA')then stripx = stripx + pfaeta(icx,angx) c resxPAM = riseta(icx,angx) resxPAM = riseta(viewx,angx) resxPAM = resxPAM*fbad_eta(icx,angx) if(DEBUG.and.fbad_cog(2,icx).ne.1) $ print*,'BAD icx >>> ',viewx,fbad_cog(2,icx) elseif(PFAx.eq.'COG')then stripx = stripx + cog(0,icx) resxPAM = risx_cog(abs(angx)) resxPAM = resxPAM*fbad_cog(0,icx) else if(DEBUG) print*,'*** Non valid p.f.a. (x) --> ',PFAx endif * ====================================== * temporary patch for saturated clusters * ====================================== if( nsatstrips(icx).gt.0 )then stripx = stripx + cog(4,icx) resxPAM = pitchX*1e-4/sqrt(12.) cc=cog(4,icx) c$$$ print*,icx,' *** ',cc c$$$ print*,icx,' *** ',resxPAM endif endif * ----------------- * CLUSTER Y * ----------------- if(icy.ne.0)then viewy = VIEW(icy) nldy = nld(MAXS(icy),VIEW(icy)) nply = npl(VIEW(icy)) resyPAM = RESYAV stripy = float(MAXS(icy)) if(icx.ne.0.and.(nply.ne.nplx.or.nldy.ne.nldx))then if(DEBUG) then print*,'xyz_PAM ***ERROR*** invalid cluster couple!!! ' $ ,icx,icy endif goto 100 endif * -------------------------- * magnetic-field corrections * -------------------------- tgtemp = tan(ay*acos(-1.)/180.)+pmuH_e*bfx*0.00001 angy = 180.*atan(tgtemp)/acos(-1.) stripy = stripy + 0.5*pmuH_e*bfx*0.00001*SiDimZ/pitchY c$$$ if(bfx.ne.0.)print*,viewy,'-y- ' c$$$ $ ,bfx,0.5*pmuH_e*bfx*0.00001*SiDimZ * -------------------------- c$$$ print*,'--- y-cl ---' c$$$ istart = INDSTART(ICY) c$$$ istop = TOTCLLENGTH c$$$ if(icy.lt.NCLSTR1)istop=INDSTART(ICY+1)-1 c$$$ print*,(CLSIGNAL(i)/CLSIGMA(i),i=istart,istop) c$$$ print*,(CLSIGNAL(i),i=istart,istop) c$$$ print*,INDMAX(icy) c$$$ print*,cog(4,icy) c$$$ print*,fbad_cog(4,icy) if(PFAy.eq.'COG1')then stripy = stripy resyPAM = 1e-4*pitchY/sqrt(12.)!resyPAM elseif(PFAy.eq.'COG2')then stripy = stripy + cog(2,icy) resyPAM = risy_cog(abs(angy))!TEMPORANEO resyPAM = resyPAM*fbad_cog(2,icy) elseif(PFAy.eq.'COG3')then stripy = stripy + cog(3,icy) resyPAM = risy_cog(abs(angy))!TEMPORANEO resyPAM = resyPAM*fbad_cog(3,icy) elseif(PFAy.eq.'COG4')then stripy = stripy + cog(4,icy) resyPAM = risy_cog(abs(angy))!TEMPORANEO resyPAM = resyPAM*fbad_cog(4,icy) elseif(PFAy.eq.'ETA2')then stripy = stripy + pfaeta2(icy,angy) resyPAM = risy_eta2(abs(angy)) resyPAM = resyPAM*fbad_cog(2,icy) if(DEBUG.and.fbad_cog(2,icy).ne.1) $ print*,'BAD icy >>> ',viewy,fbad_cog(2,icy) elseif(PFAy.eq.'ETA3')then stripy = stripy + pfaeta3(icy,angy) resyPAM = resyPAM*fbad_cog(3,icy) if(DEBUG.and.fbad_cog(3,icy).ne.1) $ print*,'BAD icy >>> ',viewy,fbad_cog(3,icy) elseif(PFAy.eq.'ETA4')then stripy = stripy + pfaeta4(icy,angy) resyPAM = resyPAM*fbad_cog(4,icy) if(DEBUG.and.fbad_cog(4,icy).ne.1) $ print*,'BAD icy >>> ',viewy,fbad_cog(4,icy) elseif(PFAy.eq.'ETA')then stripy = stripy + pfaeta(icy,angy) c resyPAM = riseta(icy,angy) resyPAM = riseta(viewy,angy) resyPAM = resyPAM*fbad_eta(icy,angy) if(DEBUG.and.fbad_cog(2,icy).ne.1) $ print*,'BAD icy >>> ',viewy,fbad_cog(2,icy) elseif(PFAy.eq.'COG')then stripy = stripy + cog(0,icy) resyPAM = risy_cog(abs(angy)) resyPAM = resyPAM*fbad_cog(0,icy) else if(DEBUG) print*,'*** Non valid p.f.a. (x) --> ',PFAx endif * ====================================== * temporary patch for saturated clusters * ====================================== if( nsatstrips(icy).gt.0 )then stripy = stripy + cog(4,icy) resyPAM = pitchY*1e-4/sqrt(12.) cc=cog(4,icy) c$$$ print*,icy,' *** ',cc c$$$ print*,icy,' *** ',resyPAM endif endif c$$$ print*,'## stripx,stripy ',stripx,stripy c=========================================================== C COUPLE C=========================================================== if(icx.ne.0.and.icy.ne.0)then c------------------------------------------------------------------------ c (xi,yi,zi) = mechanical coordinates in the silicon sensor frame c------------------------------------------------------------------------ if(((mod(int(stripx+0.5)-1,1024)+1).le.3) $ .or.((mod(int(stripx+0.5)-1,1024)+1).ge.1022)) then !X has 1018 strips... if(DEBUG) then print*,'xyz_PAM (couple):', $ ' WARNING: false X strip: strip ',stripx endif endif xi = acoordsi(stripx,viewx) yi = acoordsi(stripy,viewy) zi = 0. c------------------------------------------------------------------------ c (xrt,yrt,zrt) = rototranslated coordinates in the silicon sensor frame c------------------------------------------------------------------------ c N.B. I convert angles from microradiants to radiants xrt = xi $ - omega(nplx,nldx,sensor)*yi $ + gamma(nplx,nldx,sensor)*zi $ + dx(nplx,nldx,sensor) yrt = omega(nplx,nldx,sensor)*xi $ + yi $ - beta(nplx,nldx,sensor)*zi $ + dy(nplx,nldx,sensor) zrt = -gamma(nplx,nldx,sensor)*xi $ + beta(nplx,nldx,sensor)*yi $ + zi $ + dz(nplx,nldx,sensor) c xrt = xi c yrt = yi c zrt = zi c------------------------------------------------------------------------ c (xPAM,yPAM,zPAM) = measured coordinates (in cm) c in PAMELA reference system c------------------------------------------------------------------------ xPAM = dcoord(xrt,viewx,nldx,sensor) / 1.d4 yPAM = dcoord(yrt,viewy,nldy,sensor) / 1.d4 zPAM = ( zrt + z_mech_sensor(nplx,nldx,sensor)*1000. ) / 1.d4 xPAM_A = 0. yPAM_A = 0. zPAM_A = 0. xPAM_B = 0. yPAM_B = 0. zPAM_B = 0. elseif( $ (icx.ne.0.and.icy.eq.0).or. $ (icx.eq.0.and.icy.ne.0).or. $ .false. $ )then c------------------------------------------------------------------------ c (xi,yi,zi) = mechanical coordinates in the silicon sensor frame c------------------------------------------------------------------------ if(icy.ne.0)then c=========================================================== C Y-SINGLET C=========================================================== nplx = nply nldx = nldy viewx = viewy + 1 yi = acoordsi(stripy,viewy) xi_A = edgeY_d - SiDimX/2 yi_A = yi zi_A = 0. xi_B = SiDimX/2 - edgeY_u yi_B = yi zi_B = 0. c print*,'Y-cl ',icy,stripy,' --> ',yi c print*,xi_A,' <--> ',xi_B elseif(icx.ne.0)then c=========================================================== C X-SINGLET C=========================================================== nply = nplx nldy = nldx viewy = viewx - 1 c print*,'X-singlet ',icx,nplx,nldx,viewx,stripx c if((stripx.le.3).or.(stripx.ge.1022)) then !X has 1018 strips... if(((mod(int(stripx+0.5)-1,1024)+1).le.3) $ .or.((mod(int(stripx+0.5)-1,1024)+1).ge.1022)) then !X has 1018 strips... if(DEBUG) then print*,'xyz_PAM (X-singlet):', $ ' WARNING: false X strip: strip ',stripx endif endif xi = acoordsi(stripx,viewx) xi_A = xi yi_A = edgeX_d - SiDimY/2 zi_A = 0. xi_B = xi yi_B = SiDimY/2 - edgeX_u zi_B = 0. if(viewy.eq.11)then yi = yi_A yi_A = yi_B yi_B = yi endif c print*,'X-cl ',icx,stripx,' --> ',xi c print*,yi_A,' <--> ',yi_B else if(DEBUG) then print *,'routine xyz_PAM ---> not properly used !!!' print *,'icx = ',icx print *,'icy = ',icy endif goto 100 endif c------------------------------------------------------------------------ c (xrt,yrt,zrt) = rototranslated coordinates in the silicon sensor frame c------------------------------------------------------------------------ c N.B. I convert angles from microradiants to radiants xrt_A = xi_A $ - omega(nplx,nldx,sensor)*yi_A $ + gamma(nplx,nldx,sensor)*zi_A $ + dx(nplx,nldx,sensor) yrt_A = omega(nplx,nldx,sensor)*xi_A $ + yi_A $ - beta(nplx,nldx,sensor)*zi_A $ + dy(nplx,nldx,sensor) zrt_A = -gamma(nplx,nldx,sensor)*xi_A $ + beta(nplx,nldx,sensor)*yi_A $ + zi_A $ + dz(nplx,nldx,sensor) xrt_B = xi_B $ - omega(nplx,nldx,sensor)*yi_B $ + gamma(nplx,nldx,sensor)*zi_B $ + dx(nplx,nldx,sensor) yrt_B = omega(nplx,nldx,sensor)*xi_B $ + yi_B $ - beta(nplx,nldx,sensor)*zi_B $ + dy(nplx,nldx,sensor) zrt_B = -gamma(nplx,nldx,sensor)*xi_B $ + beta(nplx,nldx,sensor)*yi_B $ + zi_B $ + dz(nplx,nldx,sensor) c xrt = xi c yrt = yi c zrt = zi c------------------------------------------------------------------------ c (xPAM,yPAM,zPAM) = measured coordinates (in cm) c in PAMELA reference system c------------------------------------------------------------------------ xPAM = 0. yPAM = 0. zPAM = 0. xPAM_A = dcoord(xrt_A,viewx,nldx,sensor) / 1.d4 yPAM_A = dcoord(yrt_A,viewy,nldy,sensor) / 1.d4 zPAM_A = ( zrt_A + z_mech_sensor(nplx,nldx,sensor)*1000.)/ 1.d4 xPAM_B = dcoord(xrt_B,viewx,nldx,sensor) / 1.d4 yPAM_B = dcoord(yrt_B,viewy,nldy,sensor) / 1.d4 zPAM_B = ( zrt_B + z_mech_sensor(nplx,nldx,sensor)*1000.)/ 1.d4 c print*,'A-(',xPAM_A,yPAM_A,') B-(',xPAM_B,yPAM_B,')' else if(DEBUG) then print *,'routine xyz_PAM ---> not properly used !!!' print *,'icx = ',icx print *,'icy = ',icy endif endif c print*,'## xPAM,yPAM,zPAM ',xPAM,yPAM,zPAM c print*,'## xPAM_A,yPAM_A,zPAM_A ',xPAM_A,yPAM_A,zPAM_A c print*,'## xPAM_B,yPAM_B,zPAM_B ',xPAM_B,yPAM_B,zPAM_B 100 continue end ************************************************************************ * Call xyz_PAM subroutine with default PFA and fill the mini2 common. * (done to be called from c/c++) ************************************************************************ subroutine xyzpam(ip,icx,icy,lad,sensor,ax,ay,bfx,bfy) include 'commontracker.f' include 'level1.f' include 'common_mini_2.f' include 'common_xyzPAM.f' include 'common_mech.f' include 'calib.f' * flag to chose PFA c$$$ character*10 PFA c$$$ common/FINALPFA/PFA integer icx,icy !X-Y cluster ID integer sensor character*4 PFAx,PFAy !PFA to be used real ax,ay !X-Y geometric angle real bfx,bfy !X-Y b-field components ipx=0 ipy=0 c$$$ PFAx = 'COG4'!PFA c$$$ PFAy = 'COG4'!PFA call idtoc(pfaid,PFAx) call idtoc(pfaid,PFAy) call xyz_PAM(icx,icy,sensor,PFAx,PFAy,ax,ay,bfx,bfy) c$$$ print*,icx,icy,sensor,PFAx,PFAy,ax,ay,bfx,bfy if(icx.ne.0.and.icy.ne.0)then ipx=npl(VIEW(icx)) ipy=npl(VIEW(icy)) if( (nplanes-ipx+1).ne.ip.or.(nplanes-ipy+1).ne.ip ) $ print*,'xyzpam: ***WARNING*** clusters ',icx,icy $ ,' does not belong to the correct plane: ',ip,ipx,ipy xgood(ip) = 1. ygood(ip) = 1. resx(ip) = resxPAM resy(ip) = resyPAM xm(ip) = xPAM ym(ip) = yPAM zm(ip) = zPAM xm_A(ip) = 0. ym_A(ip) = 0. xm_B(ip) = 0. ym_B(ip) = 0. c zv(ip) = zPAM elseif(icx.eq.0.and.icy.ne.0)then ipy=npl(VIEW(icy)) if((nplanes-ipy+1).ne.ip) $ print*,'xyzpam: ***WARNING*** clusters ',icx,icy $ ,' does not belong to the correct plane: ',ip,ipx,ipy xgood(ip) = 0. ygood(ip) = 1. resx(ip) = 1000. resy(ip) = resyPAM xm(ip) = -100. ym(ip) = -100. zm(ip) = (zPAM_A+zPAM_B)/2. xm_A(ip) = xPAM_A ym_A(ip) = yPAM_A xm_B(ip) = xPAM_B ym_B(ip) = yPAM_B c zv(ip) = (zPAM_A+zPAM_B)/2. elseif(icx.ne.0.and.icy.eq.0)then ipx=npl(VIEW(icx)) if((nplanes-ipx+1).ne.ip) $ print*,'xyzpam: ***WARNING*** clusters ',icx,icy $ ,' does not belong to the correct plane: ',ip,ipx,ipy xgood(ip) = 1. ygood(ip) = 0. resx(ip) = resxPAM resy(ip) = 1000. xm(ip) = -100. ym(ip) = -100. zm(ip) = (zPAM_A+zPAM_B)/2. xm_A(ip) = xPAM_A ym_A(ip) = yPAM_A xm_B(ip) = xPAM_B ym_B(ip) = yPAM_B c zv(ip) = (zPAM_A+zPAM_B)/2. else il = 2 if(lad.ne.0)il=lad is = 1 if(sensor.ne.0)is=sensor c print*,nplanes-ip+1,il,is xgood(ip) = 0. ygood(ip) = 0. resx(ip) = 1000. resy(ip) = 1000. xm(ip) = -100. ym(ip) = -100. zm(ip) = z_mech_sensor(nplanes-ip+1,il,is)*1000./1.d4 xm_A(ip) = 0. ym_A(ip) = 0. xm_B(ip) = 0. ym_B(ip) = 0. c zv(ip) = z_mech_sensor(nplanes-ip+1,il,is)*1000./1.d4 endif if(DEBUG)then c print*,'----------------------------- track coord' 22222 format(i2,' * ',3f10.4,' --- ',4f10.4,' --- ',2f4.0,2f10.5) write(*,22222)ip,zm(ip),xm(ip),ym(ip) $ ,xm_A(ip),ym_A(ip),xm_B(ip),ym_B(ip) $ ,xgood(ip),ygood(ip),resx(ip),resy(ip) c$$$ print*,'-----------------------------' endif end ******************************************************************************** ******************************************************************************** ******************************************************************************** * * The function distance_to(XP,YP) should be used after * a call to the xyz_PAM routine and it evaluate the * NORMALIZED distance (PROJECTED on the XY plane) between * the point (XP,YP), argument of the function, * and: * * - the point (xPAM,yPAM,zPAM), in the case of a COUPLE * or * - the segment (xPAM_A,yPAM_A,zPAM_A)-(xPAM_B,yPAM_B,zPAM_B), * in the case of a SINGLET. * * ( The routine xyz_PAM fills the common defined in "common_xyzPAM.f", * which stores the coordinates of the couple/singlet ) * ******************************************************************************** real function distance_to(XPP,YPP) include 'common_xyzPAM.f' * ----------------------------------- * it computes the normalized distance * ( i.e. distance/resolution ) * ----------------------------------- double precision distance,RE double precision BETA,ALFA,xmi,ymi * ---------------------- if ( + xPAM.eq.0.and. + yPAM.eq.0.and. + zPAM.eq.0.and. + xPAM_A.ne.0.and. + yPAM_A.ne.0.and. + zPAM_A.ne.0.and. + xPAM_B.ne.0.and. + yPAM_B.ne.0.and. + zPAM_B.ne.0.and. + .true.)then * ----------------------- * DISTANCE TO --- SINGLET * ----------------------- if(abs(sngl(xPAM_B-xPAM_A)).lt.abs(sngl(yPAM_B-yPAM_A)))then * |||---------- X CLUSTER BETA = (xPAM_B-xPAM_A)/(yPAM_B-yPAM_A) ALFA = xPAM_A - BETA * yPAM_A ymi = ( YPP + BETA*XPP - BETA*ALFA )/(1+BETA**2) if(ymi.lt.dmin1(yPAM_A,yPAM_B))ymi=dmin1(yPAM_A,yPAM_B) if(ymi.gt.dmax1(yPAM_A,yPAM_B))ymi=dmax1(yPAM_A,yPAM_B) xmi = ALFA + BETA * ymi RE = resxPAM else * |||---------- Y CLUSTER BETA = (yPAM_B-yPAM_A)/(xPAM_B-xPAM_A) ALFA = yPAM_A - BETA * xPAM_A xmi = ( XPP + BETA*YPP - BETA*ALFA )/(1+BETA**2) if(xmi.lt.dmin1(xPAM_A,xPAM_B))xmi=dmin1(xPAM_A,xPAM_B) if(xmi.gt.dmax1(xPAM_A,xPAM_B))xmi=dmax1(xPAM_A,xPAM_B) ymi = ALFA + BETA * xmi RE = resyPAM endif distance= $ ((xmi-XPP)**2+(ymi-YPP)**2)!QUIQUI cc $ ((xmi-XPP)**2+(ymi-YPP)**2)/RE**2 distance=dsqrt(distance) c$$$ print*,xPAM_A,yPAM_A,zPAM_A,xPAM_b,yPAM_b,zPAM_b c$$$ $ ,' --- distance_to --- ',xpp,ypp c$$$ print*,' resolution ',re * ---------------------- elseif( + xPAM.ne.0.and. + yPAM.ne.0.and. + zPAM.ne.0.and. + xPAM_A.eq.0.and. + yPAM_A.eq.0.and. + zPAM_A.eq.0.and. + xPAM_B.eq.0.and. + yPAM_B.eq.0.and. + zPAM_B.eq.0.and. + .true.)then * ---------------------- * DISTANCE TO --- COUPLE * ---------------------- distance= $ ((xPAM-XPP))**2 !QUIQUI $ + $ ((yPAM-YPP))**2 c$$$ $ ((xPAM-XPP)/resxPAM)**2 c$$$ $ + c$$$ $ ((yPAM-YPP)/resyPAM)**2 distance=dsqrt(distance) c$$$ print*,xPAM,yPAM,zPAM c$$$ $ ,' --- distance_to --- ',xpp,ypp c$$$ print*,' resolution ',resxPAM,resyPAM else c print* c $ ,' function distance_to ---> wrong usage!!!' c print*,' xPAM,yPAM,zPAM ',xPAM,yPAM,zPAM c print*,' xPAM_A,yPAM_A,zPAM_A,xPAM_b,yPAM_b,zPAM_b ' c $ ,xPAM_A,yPAM_A,zPAM_A,xPAM_b,yPAM_b,zPAM_b endif distance_to = sngl(distance) return end ******************************************************************************** ******************************************************************************** ******************************************************************************** ******************************************************************************** subroutine whichsensor(nplPAM,xPAM,yPAM,ladder,sensor) * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * Given the plane (1-6 from BOTTOM to TOP!!) and the (xPAM,yPAM) * coordinates (in the PAMELA reference system), it returns * the ladder and the sensor which the point belongs to. * * The method to assign a point to a sensor consists in * - calculating the sum of the distances between the point * and the sensor edges * - requiring that it is less-equal than (SiDimX+SiDimY) * * NB -- SiDimX and SiDimY are not the dimentions of the SENSITIVE volume * but of the whole silicon sensor * * CONVENTION: * - sensor 1 is the one closest to the hybrid * - ladder 1 is the first to be read out (strips from 1 to 1024) * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * include 'commontracker.f' include 'common_align.f' integer ladder,sensor,viewx,viewy real c1(4),c2(4),c3(4) data c1/1.,0.,0.,1./ data c2/1.,-1.,-1.,1./ data c3/1.,1.,0.,0./ real*8 yvvv,xvvv double precision xi,yi,zi double precision xrt,yrt,zrt real AA,BB real yvv(4),xvv(4) * tollerance to consider the track inside the sensitive area real ptoll data ptoll/150./ !um external nviewx,nviewy,acoordsi,dcoord nplpt = nplPAM !plane viewx = nviewx(nplpt) viewy = nviewy(nplpt) do il=1,nladders_view do is=1,2 do iv=1,4 !loop on sensor vertexes stripx = (il-c1(iv))*1024 + c1(iv) + c2(iv)*3 stripy = (il-c3(iv))*1024 + c3(iv) c------------------------------------------------------------------------ c (xi,yi,zi) = mechanical coordinates in the silicon sensor frame c------------------------------------------------------------------------ if(((mod(int(stripx+0.5)-1,1024)+1).le.3) $ .or.((mod(int(stripx+0.5)-1,1024)+1).ge.1022)) then !X has 1018 strips... c if((stripx.le.3).or.(stripx.ge.1022)) then !X has 1018 strips... c print*,'whichsensor: ', c $ ' WARNING: false X strip: strip ',stripx endif xi = acoordsi(stripx,viewx) yi = acoordsi(stripy,viewy) zi = 0. c------------------------------------------------------------------------ c (xrt,yrt,zrt) = rototranslated coordinates in the silicon sensor frame c------------------------------------------------------------------------ c N.B. I convert angles from microradiants to radiants xrt = xi $ - omega(nplpt,il,is)*yi $ + gamma(nplpt,il,is)*zi $ + dx(nplpt,il,is) yrt = omega(nplpt,il,is)*xi $ + yi $ - beta(nplpt,il,is)*zi $ + dy(nplpt,il,is) zrt = -gamma(nplpt,il,is)*xi $ + beta(nplpt,il,is)*yi $ + zi $ + dz(nplpt,il,is) c------------------------------------------------------------------------ c measured coordinates (in cm) in PAMELA reference system c------------------------------------------------------------------------ yvvv = dcoord(yrt,viewy,il,is) / 1.d4 xvvv = dcoord(xrt,viewx,il,is) / 1.d4 yvv(iv)=sngl(yvvv) xvv(iv)=sngl(xvvv) c print*,'LADDER ',il,' SENSOR ',is,' vertexes >> ' c $ ,iv,xvv(iv),yvv(iv) enddo !end loop on sensor vertexes dtot=0. do iside=1,4,2 !loop on sensor edges X iv1=iside iv2=mod(iside,4)+1 * straight line passing trhough two consecutive vertexes AA = (yvv(iv1)-yvv(iv2))/(xvv(iv1)-xvv(iv2)) BB = yvv(iv1) - AA*xvv(iv1) * point along the straight line closer to the track xoo = (xPAM+AA*yPAM-AA*BB)/(1+AA**2) yoo = AA*xoo + BB * sum of the distances dtot = dtot + $ sqrt((xPAM-xoo)**2+(yPAM-yoo)**2) enddo !end loop on sensor edges do iside=2,4,2 !loop on sensor edges Y iv1=iside iv2=mod(iside,4)+1 * straight line passing trhough two consecutive vertexes AA = (xvv(iv1)-xvv(iv2))/(yvv(iv1)-yvv(iv2)) BB = xvv(iv1) - AA*yvv(iv1) * point along the straight line closer to the track yoo = (yPAM+AA*xPAM-AA*BB)/(1+AA**2) xoo = AA*yoo + BB * sum of the distances dtot = dtot + $ sqrt((xPAM-xoo)**2+(yPAM-yoo)**2) enddo !end loop on sensor edges * half-perimeter of sensitive area Perim = $ SiDimX - edgeX_l - edgeX_r $ +SiDimY - edgeY_l - edgeY_r Perim = (Perim + ptoll)/1.e4 if(dtot.le.Perim)goto 100 enddo enddo ladder = 0 sensor = 0 goto 200 100 continue ladder = il sensor = is 200 return end ************************************************************************* subroutine reverse(v,n,temp) !invert the order of the components of v(n) vector implicit double precision (A-H,O-Z) dimension v(*) dimension temp(*) integer i,n do i=1,n temp(i)=v(n+1-i) enddo do i=1,n v(i)=temp(i) enddo return end ************************************************************************* ************************************************************************* ************************************************************************* ************************************************************************* ************************************************************************* ************************************************************************* ************************************************************************* ************************************************************************* ************************************************************************* ************************************************************************* ************************************************************************* ************************************************************************* ************************************************************************* ************************************************************************* ************************************************************************* integer function ip_cp(id) * * given the couple id, * it returns the plane number * include 'commontracker.f' include 'level1.f' c include 'common_analysis.f' include 'common_momanhough.f' ip_cp=0 ncpp=0 do ip=1,nplanes ncpp=ncpp+ncp_plane(ip) if(ncpp.ge.abs(id))then ip_cp=ip goto 100 endif enddo 100 continue return end integer function is_cp(id) * * given the couple id, * it returns the sensor number * is_cp=0 if(id.lt.0)is_cp=1 if(id.gt.0)is_cp=2 c if(id.eq.0)print*,'IS_CP ===> wrong couple id !!!' return end integer function icp_cp(id) * * given the couple id, * it returns the id number ON THE PLANE * include 'commontracker.f' include 'level1.f' c include 'common_analysis.f' include 'common_momanhough.f' icp_cp=0 ncpp=0 do ip=1,nplanes ncppold=ncpp ncpp=ncpp+ncp_plane(ip) if(ncpp.ge.abs(id))then icp_cp=abs(id)-ncppold goto 100 endif enddo 100 continue return end integer function id_cp(ip,icp,is) * * given a plane, a couple and the sensor * it returns the absolute couple id * negative if sensor =1 * positive if sensor =2 * include 'commontracker.f' include 'level1.f' c include 'calib.f' c include 'level1.f' c include 'common_analysis.f' include 'common_momanhough.f' id_cp=0 if(ip.gt.1)then do i=1,ip-1 id_cp = id_cp + ncp_plane(i) enddo endif id_cp = id_cp + icp if(is.eq.1) id_cp = -id_cp return end ************************************************************************* ************************************************************************* ************************************************************************* ************************************************************************* ************************************************************************* ************************************************************************* *************************************************** * * * * * * * * * * * * ************************************************** subroutine cl_to_couples(iflag) include 'commontracker.f' include 'level1.f' include 'common_momanhough.f' c include 'momanhough_init.f' include 'calib.f' c include 'level1.f' * output flag * -------------- * 0 = good event * 1 = bad event * -------------- integer iflag integer badseed,badclx,badcly * init variables ncp_tot=0 do ip=1,nplanes do ico=1,ncouplemax clx(ip,ico)=0 cly(ip,ico)=0 enddo ncp_plane(ip)=0 do icl=1,nclstrmax_level2 cls(ip,icl)=1 enddo ncls(ip)=0 enddo do icl=1,nclstrmax_level2 cl_single(icl) = 1 cl_good(icl) = 0 enddo do iv=1,nviews ncl_view(iv) = 0 mask_view(iv) = 0 !all included enddo * count number of cluster per view do icl=1,nclstr1 ncl_view(VIEW(icl)) = ncl_view(VIEW(icl)) + 1 enddo * mask views with too many clusters do iv=1,nviews if( ncl_view(iv).gt. nclusterlimit)then mask_view(iv) = 1 if(DEBUG)print*,' * WARNING * cl_to_couple: n.clusters > ' $ ,nclusterlimit,' on view ', iv,' --> masked!' endif enddo * start association ncouples=0 do icx=1,nclstr1 !loop on cluster (X) if(mod(VIEW(icx),2).eq.1)goto 10 * ---------------------------------------------------- * jump masked views (X VIEW) * ---------------------------------------------------- if( mask_view(VIEW(icx)).ne.0 ) goto 10 * ---------------------------------------------------- * cut on charge (X VIEW) * ---------------------------------------------------- if(sgnl(icx).lt.dedx_x_min)then cl_single(icx)=0 goto 10 endif * ---------------------------------------------------- * cut BAD (X VIEW) * ---------------------------------------------------- badseed=BAD(VIEW(icx),nvk(MAXS(icx)),nst(MAXS(icx))) ifirst=INDSTART(icx) if(icx.ne.nclstr1) then ilast=INDSTART(icx+1)-1 else ilast=TOTCLLENGTH endif badclx=badseed do igood=-ngoodstr,ngoodstr ibad=1 if((INDMAX(icx)+igood).gt.ifirst.and. $ (INDMAX(icx)+igood).lt.ilast.and. $ .true.)then ibad=BAD(VIEW(icx), $ nvk(MAXS(icx)+igood), $ nst(MAXS(icx)+igood)) endif badclx=badclx*ibad enddo * ---------------------------------------------------- * >>> eliminato il taglio sulle BAD <<< * ---------------------------------------------------- c if(badcl.eq.0)then c cl_single(icx)=0 c goto 10 c endif * ---------------------------------------------------- cl_good(icx)=1 nplx=npl(VIEW(icx)) nldx=nld(MAXS(icx),VIEW(icx)) do icy=1,nclstr1 !loop on cluster (Y) if(mod(VIEW(icy),2).eq.0)goto 20 * ---------------------------------------------------- * jump masked views (Y VIEW) * ---------------------------------------------------- if( mask_view(VIEW(icy)).ne.0 ) goto 20 * ---------------------------------------------------- * cut on charge (Y VIEW) * ---------------------------------------------------- if(sgnl(icy).lt.dedx_y_min)then cl_single(icy)=0 goto 20 endif * ---------------------------------------------------- * cut BAD (Y VIEW) * ---------------------------------------------------- badseed=BAD(VIEW(icy),nvk(MAXS(icy)),nst(MAXS(icy))) ifirst=INDSTART(icy) if(icy.ne.nclstr1) then ilast=INDSTART(icy+1)-1 else ilast=TOTCLLENGTH endif badcly=badseed do igood=-ngoodstr,ngoodstr ibad=1 if((INDMAX(icy)+igood).gt.ifirst.and. $ (INDMAX(icy)+igood).lt.ilast.and. $ .true.) $ ibad=BAD(VIEW(icy), $ nvk(MAXS(icy)+igood), $ nst(MAXS(icy)+igood)) badcly=badcly*ibad enddo * ---------------------------------------------------- * >>> eliminato il taglio sulle BAD <<< * ---------------------------------------------------- c if(badcl.eq.0)then c cl_single(icy)=0 c goto 20 c endif * ---------------------------------------------------- cl_good(icy)=1 nply=npl(VIEW(icy)) nldy=nld(MAXS(icy),VIEW(icy)) * ---------------------------------------------- * CONDITION TO FORM A COUPLE * ---------------------------------------------- * geometrical consistency (same plane and ladder) if(nply.eq.nplx.and.nldy.eq.nldx)then * charge correlation * (modified to be applied only below saturation... obviously) if( .not.(sgnl(icy).gt.chsaty.and.sgnl(icx).gt.chsatx) $ .and. $ .not.(sgnl(icy).lt.chmipy.and.sgnl(icx).lt.chmipx) $ .and. $ (badclx.eq.1.and.badcly.eq.1) $ .and. $ .true.)then ddd=(sgnl(icy) $ -kch(nplx,nldx)*sgnl(icx)-cch(nplx,nldx)) ddd=ddd/sqrt(kch(nplx,nldx)**2+1) c cut = chcut * sch(nplx,nldx) sss=(kch(nplx,nldx)*sgnl(icy)+sgnl(icx) $ -kch(nplx,nldx)*cch(nplx,nldx)) sss=sss/sqrt(kch(nplx,nldx)**2+1) cut = chcut * (16 + sss/50.) if(abs(ddd).gt.cut)then goto 20 !charge not consistent endif endif if(ncp_plane(nplx).gt.ncouplemax)then if(verbose)print*, $ '** warning ** number of identified '// $ 'couples on plane ',nplx, $ 'exceeds vector dimention ' $ ,'( ',ncouplemax,' ) --> masked!' mask_view(nviewx(nplx)) = 2 mask_view(nviewy(nply)) = 2 goto 10 endif * ------------------> COUPLE <------------------ ncp_plane(nplx) = ncp_plane(nplx) + 1 clx(nplx,ncp_plane(nplx))=icx cly(nply,ncp_plane(nplx))=icy cl_single(icx)=0 cl_single(icy)=0 * ---------------------------------------------- endif 20 continue enddo !end loop on clusters(Y) 10 continue enddo !end loop on clusters(X) do icl=1,nclstr1 if(cl_single(icl).eq.1)then ip=npl(VIEW(icl)) ncls(ip)=ncls(ip)+1 cls(ip,ncls(ip))=icl endif enddo if(DEBUG)then print*,'clusters ',nclstr1 print*,'good ',(cl_good(i),i=1,nclstr1) print*,'singles ',(cl_single(i),i=1,nclstr1) print*,'couples per plane: ',(ncp_plane(ip),ip=1,nplanes) endif do ip=1,6 ncp_tot = ncp_tot + ncp_plane(ip) enddo return end *************************************************** * * * * * * * * * * * * ************************************************** subroutine cp_to_doubtrip(iflag) include 'commontracker.f' include 'level1.f' include 'common_momanhough.f' include 'common_xyzPAM.f' include 'common_mini_2.f' include 'calib.f' * output flag * -------------- * 0 = good event * 1 = bad event * -------------- integer iflag * ----------------------------- * DOUBLETS/TRIPLETS coordinates c double precision xm1,ym1,zm1 c double precision xm2,ym2,zm2 c double precision xm3,ym3,zm3 real xm1,ym1,zm1 real xm2,ym2,zm2 real xm3,ym3,zm3 * ----------------------------- * variable needed for tricircle: real xp(3),zp(3)!TRIPLETS coordinates, to find a circle EQUIVALENCE (xm1,xp(1)) EQUIVALENCE (xm2,xp(2)) EQUIVALENCE (xm3,xp(3)) EQUIVALENCE (zm1,zp(1)) EQUIVALENCE (zm2,zp(2)) EQUIVALENCE (zm3,zp(3)) real angp(3),resp(3),chi real xc,zc,radius * ----------------------------- * -------------------------------------------- * put a limit to the maximum number of couples * per plane, in order to apply hough transform * (couples recovered during track refinement) * -------------------------------------------- do ip=1,nplanes if(ncp_plane(ip).gt.ncouplelimit)then mask_view(nviewx(ip)) = 8 mask_view(nviewy(ip)) = 8 endif enddo ndblt=0 !number of doublets ntrpt=0 !number of triplets do ip1=1,(nplanes-1) !loop on planes - COPPIA 1 if( mask_view(nviewx(ip1)).ne.0 .or. $ mask_view(nviewy(ip1)).ne.0 )goto 10 !skip plane do is1=1,2 !loop on sensors - COPPIA 1 do icp1=1,ncp_plane(ip1) !loop on COPPIA 1 icx1=clx(ip1,icp1) icy1=cly(ip1,icp1) c call xyz_PAM(icx1,icy1,is1,'COG2','COG2',0.,0.)!(1) c call xyz_PAM(icx1,icy1,is1,PFAdef,PFAdef,0.,0.) !(1) call xyz_PAM(icx1,icy1,is1,PFAdef,PFAdef,0.,0.,0.,0.) xm1=xPAM ym1=yPAM zm1=zPAM c print*,'***',is1,xm1,ym1,zm1 do ip2=(ip1+1),nplanes !loop on planes - COPPIA 2 if( mask_view(nviewx(ip2)).ne.0 .or. $ mask_view(nviewy(ip2)).ne.0 )goto 20 !skip plane do is2=1,2 !loop on sensors -ndblt COPPIA 2 do icp2=1,ncp_plane(ip2) !loop on COPPIA 2 icx2=clx(ip2,icp2) icy2=cly(ip2,icp2) c call xyz_PAM c $ (icx2,icy2,is2,'COG2','COG2',0.,0.)!(1) c call xyz_PAM c $ (icx2,icy2,is2,PFAdef,PFAdef,0.,0.) !(1) call xyz_PAM $ (icx2,icy2,is2,PFAdef,PFAdef,0.,0.,0.,0.) xm2=xPAM ym2=yPAM zm2=zPAM * - - - - - - - - - - - - - - - - - - - - - - - - - - - - * track parameters on Y VIEW * (2 couples needed) * - - - - - - - - - - - - - - - - - - - - - - - - - - - - if(ndblt.eq.ndblt_max)then if(verbose)print*, $ '** warning ** number of identified '// $ 'doublets exceeds vector dimention ' $ ,'( ',ndblt_max,' )' c good2=.false. c goto 880 !fill ntp and go to next event do iv=1,12 mask_view(iv) = 3 enddo iflag=1 return endif ndblt = ndblt + 1 * store doublet info cpyz1(ndblt)=id_cp(ip1,icp1,is1) cpyz2(ndblt)=id_cp(ip2,icp2,is2) * tg(th_yz) alfayz2(ndblt)=(ym1-ym2)/(zm1-zm2) * y0 (cm) alfayz1(ndblt)=alfayz2(ndblt)*(zini-zm1)+ym1 **** -----------------------------------------------**** **** reject non phisical couples **** **** -----------------------------------------------**** if( $ abs(alfayz2(ndblt)).gt.alfyz2_max $ .or. $ abs(alfayz1(ndblt)).gt.alfyz1_max $ )ndblt = ndblt-1 c$$$ if(iev.eq.33)then c$$$ print*,'********* ',ndblt,' -- ',icp1,icp2,is1,is2 c$$$ $ ,' || ',icx1,icy1,icx2,icy2 c$$$ $ ,' || ',xm1,ym1,xm2,ym2 c$$$ $ ,' || ',alfayz2(ndblt),alfayz1(ndblt) c$$$ endif c$$$ * - - - - - - - - - - - - - - - - - - - - - - - - - - - - * track parameters on Y VIEW - end * - - - - - - - - - - - - - - - - - - - - - - - - - - - - if(ip2.eq.nplanes)goto 31 !no possible combination with 3 couples do ip3=(ip2+1),nplanes !loop on planes - COPPIA 3 if( mask_view(nviewx(ip3)).ne.0 .or. $ mask_view(nviewy(ip3)).ne.0 )goto 30 !skip plane do is3=1,2 !loop on sensors - COPPIA 3 do icp3=1,ncp_plane(ip3) !loop on COPPIA 3 icx3=clx(ip3,icp3) icy3=cly(ip3,icp3) c call xyz_PAM c $ (icx3,icy3,is3,'COG2','COG2',0.,0.)!(1) c call xyz_PAM c $ (icx3,icy3,is3,PFAdef,PFAdef,0.,0.) !(1) call xyz_PAM $ (icx3,icy3,is3,PFAdef,PFAdef $ ,0.,0.,0.,0.) xm3=xPAM ym3=yPAM zm3=zPAM * find the circle passing through the three points call tricircle(3,xp,zp,angp,resp,chi $ ,xc,zc,radius,iflag) c print*,xc,zc,radius * the circle must intersect the reference plane if( c $ (xc.le.-1.*xclimit.or. c $ xc.ge.xclimit).and. $ radius**2.ge.(ZINI-zc)**2.and. $ iflag.eq.0.and. $ .true.)then * - - - - - - - - - - - - - - - - - - - - - - - - - - - - * track parameters on X VIEW * (3 couples needed) * - - - - - - - - - - - - - - - - - - - - - - - - - - - - if(ntrpt.eq.ntrpt_max)then if(verbose)print*, $ '** warning ** number of identified '// $ 'triplets exceeds vector dimention ' $ ,'( ',ntrpt_max,' )' c good2=.false. c goto 880 !fill ntp and go to next event do iv=1,nviews mask_view(iv) = 4 enddo iflag=1 return endif ntrpt = ntrpt +1 * store triplet info cpxz1(ntrpt)=id_cp(ip1,icp1,is1) cpxz2(ntrpt)=id_cp(ip2,icp2,is2) cpxz3(ntrpt)=id_cp(ip3,icp3,is3) if(xc.lt.0)then *************POSITIVE DEFLECTION alfaxz1(ntrpt) = xc+sqrt(radius**2-(ZINI-zc)**2) alfaxz2(ntrpt) = (ZINI-zc)/sqrt(radius**2-(ZINI-zc)**2) alfaxz3(ntrpt) = 1/radius else *************NEGATIVE DEFLECTION alfaxz1(ntrpt) = xc-sqrt(radius**2-(ZINI-zc)**2) alfaxz2(ntrpt) = -(ZINI-zc)/sqrt(radius**2-(ZINI-zc)**2) alfaxz3(ntrpt) = -1/radius endif **** -----------------------------------------------**** **** reject non phisical triplets **** **** -----------------------------------------------**** if( $ abs(alfaxz2(ntrpt)).gt.alfxz2_max $ .or. $ abs(alfaxz1(ntrpt)).gt.alfxz1_max $ )ntrpt = ntrpt-1 c print*,alfaxz1(ntrpt),alfaxz2(ntrpt),alfaxz3(ntrpt) * - - - - - - - - - - - - - - - - - - - - - - - - - - - - * track parameters on X VIEW - end * - - - - - - - - - - - - - - - - - - - - - - - - - - - - endif enddo !end loop on COPPIA 3 enddo !end loop on sensors - COPPIA 3 30 continue enddo !end loop on planes - COPPIA 3 31 continue 1 enddo !end loop on COPPIA 2 enddo !end loop on sensors - COPPIA 2 20 continue enddo !end loop on planes - COPPIA 2 enddo !end loop on COPPIA1 enddo !end loop on sensors - COPPIA 1 10 continue enddo !end loop on planes - COPPIA 1 if(DEBUG)then print*,'--- doublets ',ndblt print*,'--- triplets ',ntrpt endif c goto 880 !ntp fill return end *************************************************** * * * * * * * * * * * * ************************************************** subroutine doub_to_YZcloud(iflag) include 'commontracker.f' include 'level1.f' include 'common_momanhough.f' c include 'momanhough_init.f' * output flag * -------------- * 0 = good event * 1 = bad event * -------------- integer iflag integer db_used(ndblt_max) integer db_temp(ndblt_max) integer db_all(ndblt_max) !stores db ID in each cloud integer hit_plane(nplanes) * mask for used couples integer cp_useds1(ncouplemaxtot) ! sensor 1 integer cp_useds2(ncouplemaxtot) ! sensor 2 *~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * classification of DOUBLETS * according to distance in parameter space * (cloud = group of points (doublets) in parameter space) *~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ do idb=1,ndblt db_used(idb)=0 enddo distance=0 nclouds_yz=0 !number of clouds npt_tot=0 nloop=0 90 continue do idb1=1,ndblt !loop (1) on DOUBLETS if(db_used(idb1).eq.1)goto 2228 !db already included in a cloud c print*,'--------------' c print*,'** ',idb1,' **' do icp=1,ncp_tot cp_useds1(icp)=0 !init cp_useds2(icp)=0 !init enddo do idb=1,ndblt db_all(idb)=0 enddo if(cpyz1(idb1).gt.0)cp_useds2(cpyz1(idb1))=1 if(cpyz1(idb1).lt.0)cp_useds1(-cpyz1(idb1))=1 if(cpyz2(idb1).gt.0)cp_useds2(cpyz2(idb1))=1 if(cpyz2(idb1).lt.0)cp_useds1(-cpyz2(idb1))=1 temp1 = alfayz1(idb1) temp2 = alfayz2(idb1) npt=1 !counter of points in the cloud db_all(npt) = idb1 nptloop=1 db_temp(1)=idb1 88 continue npv=0 !# new points inlcuded do iloop=1,nptloop idbref=db_temp(iloop) !local point of reference ccccc if(db_used(idbref).eq.1)goto 1188 !next do idb2=1,ndblt !loop (2) on DOUBLETS if(idb2.eq.idbref)goto 1118 !next doublet if(db_used(idb2).eq.1)goto 1118 * doublet distance in parameter space distance= $ ((alfayz1(idbref)-alfayz1(idb2))/Dalfayz1)**2 $ +((alfayz2(idbref)-alfayz2(idb2))/Dalfayz2)**2 distance = sqrt(distance) c$$$ if(iev.eq.33)then c$$$ if(distance.lt.100) c$$$ $ print*,'********* ',idb1,idbref,idb2,distance c$$$ if(distance.lt.100) c$$$ $ print*,'********* ',alfayz1(idbref),alfayz1(idb2) c$$$ $ ,alfayz2(idbref),alfayz2(idb2) c$$$ endif if(distance.lt.cutdistyz)then c print*,idb1,idb2,distance,' cloud ',nclouds_yz if(cpyz1(idb2).gt.0)cp_useds2(cpyz1(idb2))=1 if(cpyz1(idb2).lt.0)cp_useds1(-cpyz1(idb2))=1 if(cpyz2(idb2).gt.0)cp_useds2(cpyz2(idb2))=1 if(cpyz2(idb2).lt.0)cp_useds1(-cpyz2(idb2))=1 npt = npt + 1 !counter of points in the cloud npv = npv +1 db_temp(npv) = idb2 db_used(idbref) = 1 db_used(idb2) = 1 db_all(npt) = idb2 temp1 = temp1 + alfayz1(idb2) temp2 = temp2 + alfayz2(idb2) c print*,'* idbref,idb2 ',idbref,idb2 endif 1118 continue enddo !end loop (2) on DOUBLETS 1188 continue enddo !end loop on... bo? nptloop=npv if(nptloop.ne.0)goto 88 * ------------------------------------------ * stores the cloud only if * 1) it includes a minimum number of REAL couples * 1bis) it inlcudes a minimum number of doublets * 2) it is not already stored * ------------------------------------------ do ip=1,nplanes hit_plane(ip)=0 enddo ncpused=0 do icp=1,ncp_tot if(cp_useds1(icp).ne.0.or.cp_useds2(icp).ne.0)then ncpused=ncpused+1 ip=ip_cp(icp) hit_plane(ip)=1 endif enddo nplused=0 do ip=1,nplanes nplused=nplused+ hit_plane(ip) enddo c print*,'>>>> ',ncpused,npt,nplused c if(ncpused.lt.ncpyz_min)goto 2228 !next doublet if(npt.lt.nptyz_min)goto 2228 !next doublet if(nplused.lt.nplyz_min)goto 2228 !next doublet * ~~~~~~~~~~~~~~~~~ * >>> NEW CLOUD <<< if(nclouds_yz.ge.ncloyz_max)then if(verbose)print*, $ '** warning ** number of identified '// $ 'YZ clouds exceeds vector dimention ' $ ,'( ',ncloyz_max,' )' c good2=.false. c goto 880 !fill ntp and go to next event do iv=1,nviews mask_view(iv) = 5 enddo iflag=1 return endif nclouds_yz = nclouds_yz + 1 !increase counter alfayz1_av(nclouds_yz) = temp1/npt !store average parameter alfayz2_av(nclouds_yz) = temp2/npt ! " do icp=1,ncp_tot cpcloud_yz(nclouds_yz,icp)= $ cp_useds1(icp)+2*cp_useds2(icp) !store cp info enddo ptcloud_yz(nclouds_yz)=npt c ptcloud_yz_nt(nclouds_yz)=npt do ipt=1,npt db_cloud(npt_tot+ipt) = db_all(ipt) c print*,'>> ',ipt,db_all(ipt) enddo npt_tot=npt_tot+npt if(DEBUG)then print*,'-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~' print*,'>>>> cloud ',nclouds_yz,' --- ',npt,' points' print*,'- alfayz1 ',alfayz1_av(nclouds_yz) print*,'- alfayz2 ',alfayz2_av(nclouds_yz) print*,'cp_useds1 ',(cp_useds1(icp),icp=1,ncp_tot) print*,'cp_useds2 ',(cp_useds2(icp),icp=1,ncp_tot) print*,'hit_plane ',(hit_plane(ip),ip=1,nplanes) c$$$ print*,'nt-uple: ptcloud_yz(',nclouds_yz,') = ' c$$$ $ ,ptcloud_yz(nclouds_yz) c$$$ print*,'nt-uple: db_cloud(...) = ' c$$$ $ ,(db_cloud(iii),iii=npt_tot-npt+1,npt_tot) endif * >>> NEW CLOUD <<< * ~~~~~~~~~~~~~~~~~ 2228 continue enddo !end loop (1) on DOUBLETS if(nloop.lt.nstepy)then cutdistyz = cutdistyz+cutystep nloop = nloop+1 goto 90 endif if(DEBUG)then print*,'---------------------- ' print*,'Y-Z total clouds ',nclouds_yz print*,' ' endif return end *************************************************** * * * * * * * * * * * * ************************************************** subroutine trip_to_XZcloud(iflag) include 'commontracker.f' include 'level1.f' include 'common_momanhough.f' c include 'momanhough_init.f' * output flag * -------------- * 0 = good event * 1 = bad event * -------------- integer iflag integer tr_used(ntrpt_max) integer tr_temp(ntrpt_max) integer tr_incl(ntrpt_max) integer tr_all(ntrpt_max) !stores tr ID in each cloud integer hit_plane(nplanes) * mask for used couples integer cp_useds1(ncouplemaxtot) ! sensor 1 integer cp_useds2(ncouplemaxtot) ! sensor 2 *~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * classification of TRIPLETS * according to distance in parameter space *~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ do itr=1,ntrpt tr_used(itr)=0 enddo distance=0 nclouds_xz=0 !number of clouds npt_tot=0 !total number of selected triplets nloop=0 91 continue do itr1=1,ntrpt !loop (1) on TRIPLETS if(tr_used(itr1).eq.1)goto 22288 !already included in a cloud c print*,'--------------' c print*,'** ',itr1,' **' do icp=1,ncp_tot cp_useds1(icp)=0 cp_useds2(icp)=0 enddo do itr=1,ntrpt tr_all(itr)=0 !list of included triplets enddo if(cpxz1(itr1).gt.0)cp_useds2(cpxz1(itr1))=1 if(cpxz1(itr1).lt.0)cp_useds1(-cpxz1(itr1))=1 if(cpxz2(itr1).gt.0)cp_useds2(cpxz2(itr1))=1 if(cpxz2(itr1).lt.0)cp_useds1(-cpxz2(itr1))=1 if(cpxz3(itr1).gt.0)cp_useds2(cpxz3(itr1))=1 if(cpxz3(itr1).lt.0)cp_useds1(-cpxz3(itr1))=1 temp1 = alfaxz1(itr1) temp2 = alfaxz2(itr1) temp3 = alfaxz3(itr1) npt=1 !counter of points in the cloud tr_all(npt) = itr1 nptloop=1 c tr_temp(1)=itr1 tr_incl(1)=itr1 8881 continue npv=0 !# new points inlcuded do iloop=1,nptloop itrref=tr_incl(iloop) !local point of reference do itr2=1,ntrpt !loop (2) on TRIPLETS if(itr2.eq.itr1)goto 11188 !next triplet if(tr_used(itr2).eq.1)goto 11188 !next triplet * triplet distance in parameter space * solo i due parametri spaziali per il momemnto distance= $ ((alfaxz1(itrref)-alfaxz1(itr2))/Dalfaxz1)**2 $ +((alfaxz2(itrref)-alfaxz2(itr2))/Dalfaxz2)**2 distance = sqrt(distance) if(distance.lt.cutdistxz)then c print*,idb1,idb2,distance,' cloud ',nclouds_yz if(cpxz1(itr2).gt.0)cp_useds2(cpxz1(itr2))=1 if(cpxz1(itr2).lt.0)cp_useds1(-cpxz1(itr2))=1 if(cpxz2(itr2).gt.0)cp_useds2(cpxz2(itr2))=1 if(cpxz2(itr2).lt.0)cp_useds1(-cpxz2(itr2))=1 if(cpxz3(itr2).gt.0)cp_useds2(cpxz3(itr2))=1 if(cpxz3(itr2).lt.0)cp_useds1(-cpxz3(itr2))=1 npt = npt + 1 !counter of points in the cloud npv = npv +1 tr_temp(npv) = itr2 tr_used(itrref) = 1 tr_used(itr2) = 1 tr_all(npt) = itr2 temp1 = temp1 + alfaxz1(itr2) temp2 = temp2 + alfaxz2(itr2) temp3 = temp3 + alfaxz3(itr2) c print*,'* itrref,itr2 ',itrref,itr2,distance endif 11188 continue enddo !end loop (2) on TRIPLETS 11888 continue enddo !end loop on... bo? nptloop=npv do i=1,npv tr_incl(i)=tr_temp(i) enddo if(nptloop.ne.0)goto 8881 * ------------------------------------------ * stores the cloud only if * 1) it includes a minimum number of REAL couples * 1bis) * 2) it is not already stored * ------------------------------------------ c print*,'check cp_used' do ip=1,nplanes hit_plane(ip)=0 enddo ncpused=0 do icp=1,ncp_tot if(cp_useds1(icp).ne.0.or.cp_useds2(icp).ne.0)then ncpused=ncpused+1 ip=ip_cp(icp) hit_plane(ip)=1 endif enddo nplused=0 do ip=1,nplanes nplused=nplused+ hit_plane(ip) enddo c if(ncpused.lt.ncpxz_min)goto 22288 !next triplet if(npt.lt.nptxz_min)goto 22288 !next triplet if(nplused.lt.nplxz_min)goto 22288 !next triplet * ~~~~~~~~~~~~~~~~~ * >>> NEW CLOUD <<< if(nclouds_xz.ge.ncloxz_max)then if(verbose)print*, $ '** warning ** number of identified '// $ 'XZ clouds exceeds vector dimention ' $ ,'( ',ncloxz_max,' )' c good2=.false. c goto 880 !fill ntp and go to next event do iv=1,nviews mask_view(iv) = 6 enddo iflag=1 return endif nclouds_xz = nclouds_xz + 1 !increase counter alfaxz1_av(nclouds_xz) = temp1/npt !store average parameter alfaxz2_av(nclouds_xz) = temp2/npt ! " alfaxz3_av(nclouds_xz) = temp3/npt ! " do icp=1,ncp_tot cpcloud_xz(nclouds_xz,icp)= $ cp_useds1(icp)+2*cp_useds2(icp) !store cp info enddo ptcloud_xz(nclouds_xz)=npt do ipt=1,npt tr_cloud(npt_tot+ipt) = tr_all(ipt) enddo npt_tot=npt_tot+npt if(DEBUG)then print*,'-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~' print*,'>>>> cloud ',nclouds_xz,' --- ',npt,' points' print*,'- alfaxz1 ',alfaxz1_av(nclouds_xz) print*,'- alfaxz2 ',alfaxz2_av(nclouds_xz) print*,'- alfaxz3 ',alfaxz3_av(nclouds_xz) print*,'cp_useds1 ',(cp_useds1(icp),icp=1,ncp_tot) print*,'cp_useds2 ',(cp_useds2(icp),icp=1,ncp_tot) print*,'hit_plane ',(hit_plane(ip),ip=1,nplanes) c$$$ print*,'nt-uple: ptcloud_xz(',nclouds_xz,') = ' c$$$ $ ,ptcloud_xz(nclouds_xz) c$$$ print*,'nt-uple: tr_cloud(...) = ' c$$$ $ ,(tr_cloud(iii),iii=npt_tot-npt+1,npt_tot) endif * >>> NEW CLOUD <<< * ~~~~~~~~~~~~~~~~~ 22288 continue enddo !end loop (1) on DOUBLETS if(nloop.lt.nstepx)then cutdistxz=cutdistxz+cutxstep nloop=nloop+1 goto 91 endif if(DEBUG)then print*,'---------------------- ' print*,'X-Z total clouds ',nclouds_xz print*,' ' endif return end *************************************************** * * * * * * * * * * * * ************************************************** subroutine clouds_to_ctrack(iflag) include 'commontracker.f' include 'level1.f' include 'common_momanhough.f' include 'common_xyzPAM.f' include 'common_mini_2.f' include 'common_mech.f' * output flag * -------------- * 0 = good event * 1 = bad event * -------------- integer iflag * ----------------------------------------------------------- * mask to store (locally) the couples included * in the intersection bewteen a XZ and YZ cloud integer cpintersec(ncouplemaxtot) * ----------------------------------------------------------- * list of matching couples in the combination * between a XZ and YZ cloud integer cp_match(nplanes,2*ncouplemax) integer ncp_match(nplanes) * ----------------------------------------------------------- integer hit_plane(nplanes) * ----------------------------------------------------------- * variables for track fitting double precision AL_INI(5) c double precision tath * ----------------------------------------------------------- c real fitz(nplanes) !z coordinates of the planes in cm ntracks=0 !counter of track candidates do iyz=1,nclouds_yz !loop on YZ couds do ixz=1,nclouds_xz !loop on XZ couds * -------------------------------------------------- * check of consistency of the clouds * ---> required a minimum number of matching couples * the track fit will be performed on the INTERSECTION * of the two clouds * -------------------------------------------------- do ip=1,nplanes hit_plane(ip)=0 ncp_match(ip)=0 do icpp=1,ncouplemax cp_match(ip,icpp)=0 !init couple list enddo enddo ncp_ok=0 do icp=1,ncp_tot !loop on couples * get info on cpintersec(icp)=min( $ cpcloud_yz(iyz,icp), $ cpcloud_xz(ixz,icp)) if( $ (cpcloud_yz(iyz,icp).eq.1.and.cpcloud_xz(ixz,icp).eq.2).or. $ (cpcloud_yz(iyz,icp).eq.2.and.cpcloud_xz(ixz,icp).eq.1).or. $ .false.)cpintersec(icp)=0 if(cpintersec(icp).ne.0)then ncp_ok=ncp_ok+1 ip=ip_cp(icp) hit_plane(ip)=1 if(cpintersec(icp).eq.1)then * 1) only the couple image in sensor 1 matches id=-icp ncp_match(ip)=ncp_match(ip)+1 cp_match(ip,ncp_match(ip))=id elseif(cpintersec(icp).eq.2)then * 2) only the couple image in sensor 2 matches id=icp ncp_match(ip)=ncp_match(ip)+1 cp_match(ip,ncp_match(ip))=id else * 3) both couple images match id=icp do is=1,2 id=-id ncp_match(ip)=ncp_match(ip)+1 cp_match(ip,ncp_match(ip))=id enddo endif endif !end matching condition enddo !end loop on couples nplused=0 do ip=1,nplanes nplused=nplused+ hit_plane(ip) enddo c if(nplused.lt.nplxz_min)goto 888 !next doublet if(nplused.lt.nplyz_min)goto 888 !next doublet if(ncp_ok.lt.ncpok)goto 888 !next cloud if(DEBUG)then print*,'Combination ',iyz,ixz $ ,' db ',ptcloud_yz(iyz) $ ,' tr ',ptcloud_xz(ixz) $ ,' -----> # matching couples ',ncp_ok endif c$$$ print*,'~~~~~~~~~~~~~~~~~~~~~~~~~' c$$$ print*,'Configurazione cluster XZ' c$$$ print*,'1 -- ',(clx(1,i),i=1,ncp_plane(1)) c$$$ print*,'2 -- ',(clx(2,i),i=1,ncp_plane(1)) c$$$ print*,'3 -- ',(clx(3,i),i=1,ncp_plane(1)) c$$$ print*,'4 -- ',(clx(4,i),i=1,ncp_plane(1)) c$$$ print*,'5 -- ',(clx(5,i),i=1,ncp_plane(1)) c$$$ print*,'6 -- ',(clx(6,i),i=1,ncp_plane(1)) c$$$ print*,'Configurazione cluster YZ' c$$$ print*,'1 -- ',(cly(1,i),i=1,ncp_plane(1)) c$$$ print*,'2 -- ',(cly(2,i),i=1,ncp_plane(1)) c$$$ print*,'3 -- ',(cly(3,i),i=1,ncp_plane(1)) c$$$ print*,'4 -- ',(cly(4,i),i=1,ncp_plane(1)) c$$$ print*,'5 -- ',(cly(5,i),i=1,ncp_plane(1)) c$$$ print*,'6 -- ',(cly(6,i),i=1,ncp_plane(1)) c$$$ print*,'~~~~~~~~~~~~~~~~~~~~~~~~~' * -------> INITIAL GUESS <------- cccc SBAGLIATO c$$$ AL_INI(1) = dreal(alfaxz1_av(ixz)) c$$$ AL_INI(2) = dreal(alfayz1_av(iyz)) c$$$ AL_INI(4) = PIGR + datan(dreal(alfayz2_av(iyz)) c$$$ $ /dreal(alfaxz2_av(ixz))) c$$$ tath = -dreal(alfaxz2_av(ixz))/dcos(AL_INI(4)) c$$$ AL_INI(3) = tath/sqrt(1+tath**2) c$$$ AL_INI(5) = (1.e2*alfaxz3_av(ixz))/(0.3*0.43) !0. cccc GIUSTO (ma si sua guess()) c$$$ AL_INI(1) = dreal(alfaxz1_av(ixz)) c$$$ AL_INI(2) = dreal(alfayz1_av(iyz)) c$$$ tath = -dreal(alfaxz2_av(ixz))/dcos(AL_INI(4)) c$$$ AL_INI(3) = tath/sqrt(1+tath**2) c$$$ IF(alfaxz2_av(ixz).NE.0)THEN c$$$ AL_INI(4) = PIGR + datan(dreal(alfayz2_av(iyz)) c$$$ $ /dreal(alfaxz2_av(ixz))) c$$$ ELSE c$$$ AL_INI(4) = acos(-1.)/2 c$$$ IF(alfayz2_av(iyz).LT.0)AL_INI(4) = AL_INI(4)+acos(-1.) c$$$ ENDIF c$$$ IF(alfaxz2_av(ixz).LT.0)AL_INI(4)= acos(-1.)+ AL_INI(4) c$$$ AL_INI(4) = -acos(-1.) + AL_INI(4) !from incidence direction to tracking rs c$$$ c$$$ AL_INI(5) = (1.e2*alfaxz3_av(ixz))/(0.3*0.43) !0. c$$$ c$$$ if(AL_INI(5).gt.defmax)goto 888 !next cloud if(DEBUG)then print*,'1 >>> ',(cp_match(6,i),i=1,ncp_match(6)) print*,'2 >>> ',(cp_match(5,i),i=1,ncp_match(5)) print*,'3 >>> ',(cp_match(4,i),i=1,ncp_match(4)) print*,'4 >>> ',(cp_match(3,i),i=1,ncp_match(3)) print*,'5 >>> ',(cp_match(2,i),i=1,ncp_match(2)) print*,'6 >>> ',(cp_match(1,i),i=1,ncp_match(1)) endif do icp1=1,max(1,ncp_match(1)) hit_plane(1)=icp1 if(ncp_match(1).eq.0)hit_plane(1)=0 !-icp1 do icp2=1,max(1,ncp_match(2)) hit_plane(2)=icp2 if(ncp_match(2).eq.0)hit_plane(2)=0 !-icp2 do icp3=1,max(1,ncp_match(3)) hit_plane(3)=icp3 if(ncp_match(3).eq.0)hit_plane(3)=0 !-icp3 do icp4=1,max(1,ncp_match(4)) hit_plane(4)=icp4 if(ncp_match(4).eq.0)hit_plane(4)=0 !-icp4 do icp5=1,max(1,ncp_match(5)) hit_plane(5)=icp5 if(ncp_match(5).eq.0)hit_plane(5)=0 !-icp5 do icp6=1,max(1,ncp_match(6)) hit_plane(6)=icp6 if(ncp_match(6).eq.0)hit_plane(6)=0 !-icp6 call track_init !init TRACK common do ip=1,nplanes !loop on planes if(hit_plane(ip).ne.0)then id=cp_match(ip,hit_plane(ip)) is=is_cp(id) icp=icp_cp(id) if(ip_cp(id).ne.ip) $ print*,'OKKIO!!' $ ,'id ',id,is,icp $ ,ip_cp(id),ip icx=clx(ip,icp) icy=cly(ip,icp) * ************************* c call xyz_PAM(icx,icy,is, c $ 'COG2','COG2',0.,0.) c call xyz_PAM(icx,icy,is, !(1) c $ PFAdef,PFAdef,0.,0.) !(1) call xyz_PAM(icx,icy,is, !(1) $ PFAdef,PFAdef,0.,0.,0.,0.) * ************************* * ----------------------------- xgood(nplanes-ip+1)=1. ygood(nplanes-ip+1)=1. xm(nplanes-ip+1)=xPAM ym(nplanes-ip+1)=yPAM zm(nplanes-ip+1)=zPAM resx(nplanes-ip+1)=resxPAM resy(nplanes-ip+1)=resyPAM * ----------------------------- endif enddo !end loop on planes * ********************************************************** * ************************** FIT *** FIT *** FIT *** FIT *** * ********************************************************** cccc scommentare se si usa al_ini della nuvola c$$$ do i=1,5 c$$$ AL(i)=AL_INI(i) c$$$ enddo call guess() do i=1,5 AL_INI(i)=AL(i) enddo ifail=0 !error flag in chi^2 computation jstep=0 !number of minimization steps iprint=0 c if(DEBUG)iprint=1 if(DEBUG)iprint=2 call mini2(jstep,ifail,iprint) if(ifail.ne.0) then if(DEBUG)then print *, $ '*** MINIMIZATION FAILURE *** ' $ //'(clouds_to_ctrack)' print*,'initial guess: ' print*,'AL_INI(1) = ',AL_INI(1) print*,'AL_INI(2) = ',AL_INI(2) print*,'AL_INI(3) = ',AL_INI(3) print*,'AL_INI(4) = ',AL_INI(4) print*,'AL_INI(5) = ',AL_INI(5) endif c chi2=-chi2 endif * ********************************************************** * ************************** FIT *** FIT *** FIT *** FIT *** * ********************************************************** if(chi2.le.0.)goto 666 * -------------------------- * STORE candidate TRACK INFO * -------------------------- if(ntracks.eq.NTRACKSMAX)then if(verbose)print*, $ '** warning ** number of candidate tracks '// $ ' exceeds vector dimension ' $ ,'( ',NTRACKSMAX,' )' c good2=.false. c goto 880 !fill ntp and go to next event do iv=1,nviews mask_view(iv) = 7 enddo iflag=1 return endif ntracks = ntracks + 1 do ip=1,nplanes XV_STORE(ip,ntracks)=sngl(xv(ip)) YV_STORE(ip,ntracks)=sngl(yv(ip)) ZV_STORE(ip,ntracks)=sngl(zv(ip)) XM_STORE(ip,ntracks)=sngl(xm(ip)) YM_STORE(ip,ntracks)=sngl(ym(ip)) ZM_STORE(ip,ntracks)=sngl(zm(ip)) RESX_STORE(ip,ntracks)=sngl(resx(ip)) RESY_STORE(ip,ntracks)=sngl(resy(ip)) XV_STORE(ip,ntracks)=sngl(xv(ip)) YV_STORE(ip,ntracks)=sngl(yv(ip)) ZV_STORE(ip,ntracks)=sngl(zv(ip)) AXV_STORE(ip,ntracks)=sngl(axv(ip)) AYV_STORE(ip,ntracks)=sngl(ayv(ip)) XGOOD_STORE(ip,ntracks)=sngl(xgood(ip)) YGOOD_STORE(ip,ntracks)=sngl(ygood(ip)) if(hit_plane(ip).ne.0)then CP_STORE(nplanes-ip+1,ntracks)= $ cp_match(ip,hit_plane(ip)) SENSOR_STORE(nplanes-ip+1,ntracks) $ = is_cp(cp_match(ip,hit_plane(ip))) LADDER_STORE(nplanes-ip+1,ntracks) $ = LADDER( $ clx(ip,icp_cp( $ cp_match(ip,hit_plane(ip) $ )))); else CP_STORE(nplanes-ip+1,ntracks)=0 SENSOR_STORE(nplanes-ip+1,ntracks)=0 LADDER_STORE(nplanes-ip+1,ntracks)=0 endif BX_STORE(nplanes-ip+1,ntracks)=0!I dont need it now BY_STORE(nplanes-ip+1,ntracks)=0!I dont need it now CLS_STORE(nplanes-ip+1,ntracks)=0 do i=1,5 AL_STORE(i,ntracks)=sngl(AL(i)) enddo enddo RCHI2_STORE(ntracks)=chi2 * -------------------------------- * STORE candidate TRACK INFO - end * -------------------------------- 666 continue enddo !end loop on cp in plane 6 enddo !end loop on cp in plane 5 enddo !end loop on cp in plane 4 enddo !end loop on cp in plane 3 enddo !end loop on cp in plane 2 enddo !end loop on cp in plane 1 888 continue enddo !end loop on XZ couds enddo !end loop on YZ couds if(ntracks.eq.0)then iflag=1 return endif c$$$ if(DEBUG)then c$$$ print*,'****** TRACK CANDIDATES ***********' c$$$ print*,'# R. chi2 RIG' c$$$ do i=1,ntracks c$$$ print*,i,' --- ',rchi2_store(i),' --- ' c$$$ $ ,1./abs(AL_STORE(5,i)) c$$$ enddo c$$$ print*,'***********************************' c$$$ endif if(DEBUG)then print*,'****** TRACK CANDIDATES *****************' print*,'# R. chi2 RIG ndof' do i=1,ntracks ndof=0 !(1) do ii=1,nplanes !(1) ndof=ndof !(1) $ +int(xgood_store(ii,i)) !(1) $ +int(ygood_store(ii,i)) !(1) enddo !(1) print*,i,' --- ',rchi2_store(i),' --- ' $ ,1./abs(AL_STORE(5,i)),' --- ',ndof enddo print*,'*****************************************' endif return end *************************************************** * * * * * * * * * * * * ************************************************** subroutine refine_track(ibest) include 'commontracker.f' include 'level1.f' include 'common_momanhough.f' include 'common_xyzPAM.f' include 'common_mini_2.f' include 'common_mech.f' include 'calib.f' * flag to chose PFA character*10 PFA common/FINALPFA/PFA real k(6) DATA k/1.099730,0.418900,0.220939,0.220907,0.418771,1.100674/ real xp,yp,zp real xyzp(3),bxyz(3) equivalence (xp,xyzp(1)),(yp,xyzp(2)),(zp,xyzp(3)) * ================================================= * new estimate of positions using ETA algorithm * and * search for new couples and single clusters to add * ================================================= call track_init do ip=1,nplanes !loop on planes xP=XV_STORE(nplanes-ip+1,ibest) yP=YV_STORE(nplanes-ip+1,ibest) zP=ZV_STORE(nplanes-ip+1,ibest) call gufld(xyzp,bxyz) BX_STORE(nplanes-ip+1,ibest)=bxyz(1) BY_STORE(nplanes-ip+1,ibest)=bxyz(2) c$$$ bxyz(1)=0 c$$$ bxyz(2)=0 c$$$ bxyz(3)=0 * ||||||||||||||||||||||||||||||||||||||||||||||||| * ------------------------------------------------- * If the plane has been already included, it just * computes again the coordinates of the x-y couple * using improved PFAs * ------------------------------------------------- * ||||||||||||||||||||||||||||||||||||||||||||||||| if(XGOOD_STORE(nplanes-ip+1,ibest).eq.1..and. $ YGOOD_STORE(nplanes-ip+1,ibest).eq.1. )then id=CP_STORE(nplanes-ip+1,ibest) is=is_cp(id) icp=icp_cp(id) if(ip_cp(id).ne.ip) $ print*,'OKKIO!!' $ ,'id ',id,is,icp $ ,ip_cp(id),ip icx=clx(ip,icp) icy=cly(ip,icp) c call xyz_PAM(icx,icy,is, c $ PFA,PFA, c $ AXV_STORE(nplanes-ip+1,ibest), c $ AYV_STORE(nplanes-ip+1,ibest)) call xyz_PAM(icx,icy,is, $ PFA,PFA, $ AXV_STORE(nplanes-ip+1,ibest), $ AYV_STORE(nplanes-ip+1,ibest), $ bxyz(1), $ bxyz(2) $ ) xm(nplanes-ip+1) = xPAM ym(nplanes-ip+1) = yPAM zm(nplanes-ip+1) = zPAM xgood(nplanes-ip+1) = 1 ygood(nplanes-ip+1) = 1 resx(nplanes-ip+1) = resxPAM resy(nplanes-ip+1) = resyPAM dedxtrk_x(nplanes-ip+1)=sgnl(icx)/mip(VIEW(icx),LADDER(icx)) dedxtrk_y(nplanes-ip+1)=sgnl(icy)/mip(VIEW(icy),LADDER(icy)) * ||||||||||||||||||||||||||||||||||||||||||||||||| * ------------------------------------------------- * If the plane has NOT been already included, * it tries to include a COUPLE or a single cluster * ------------------------------------------------- * ||||||||||||||||||||||||||||||||||||||||||||||||| else xgood(nplanes-ip+1)=0 ygood(nplanes-ip+1)=0 * -------------------------------------------------------------- * determine which ladder and sensor are intersected by the track call whichsensor(ip,xP,yP,nldt,ist) * if the track hit the plane in a dead area, go to the next plane if(nldt.eq.0.or.ist.eq.0)goto 133 SENSOR_STORE(nplanes-ip+1,IBEST)=ist LADDER_STORE(nplanes-ip+1,IBEST)=nldt * -------------------------------------------------------------- if(DEBUG)then print*, $ '------ Plane ',ip,' intersected on LADDER ',nldt $ ,' SENSOR ',ist print*, $ '------ coord: ',XP,YP endif * =========================================== * STEP 1 >>>>>>> try to include a new couple * =========================================== c if(DEBUG)print*,'>>>> try to include a new couple' distmin=1000000. xmm = 0. ymm = 0. zmm = 0. rxmm = 0. rymm = 0. dedxmmx = 0. !(1) dedxmmy = 0. !(1) idm = 0 !ID of the closer couple distance=0. do icp=1,ncp_plane(ip) !loop on couples on plane icp icx=clx(ip,icp) icy=cly(ip,icp) if(LADDER(icx).ne.nldt.or. !If the ladder number does not match c $ cl_used(icx).eq.1.or. !or the X cluster is already used c $ cl_used(icy).eq.1.or. !or the Y cluster is already used $ cl_used(icx).ne.0.or. !or the X cluster is already used !(3) $ cl_used(icy).ne.0.or. !or the Y cluster is already used !(3) $ .false.)goto 1188 !then jump to next couple. * call xyz_PAM(icx,icy,ist, $ PFA,PFA, $ AXV_STORE(nplanes-ip+1,ibest), $ AYV_STORE(nplanes-ip+1,ibest), $ bxyz(1), $ bxyz(2) $ ) distance = distance_to(XP,YP) c distance = distance / RCHI2_STORE(ibest)!<<< MS !QUIQUI id=id_cp(ip,icp,ist) if(DEBUG)print*,'( couple ',id $ ,' ) distance ',distance if(distance.lt.distmin)then xmm = xPAM ymm = yPAM zmm = zPAM rxmm = resxPAM rymm = resyPAM distmin = distance idm = id dedxmmx = sgnl(icx)/mip(VIEW(icx),LADDER(icx)) !(1)(2) dedxmmy = sgnl(icy)/mip(VIEW(icy),LADDER(icy)) !(1)(2) c QUIQUI --> non devo moltiplicare per clinc?!?!?! clincnewc=10*sqrt(rymm**2+rxmm**2 !QUIQUI $ +RCHI2_STORE(ibest)*k(ip)*(cov(1,1)+cov(2,2))) !QUIQUI endif 1188 continue enddo !end loop on couples on plane icp c if(distmin.le.clinc)then !QUIQUI if(distmin.le.clincnewc)then !QUIQUI * ----------------------------------- xm(nplanes-ip+1) = xmm !<<< ym(nplanes-ip+1) = ymm !<<< zm(nplanes-ip+1) = zmm !<<< xgood(nplanes-ip+1) = 1 !<<< ygood(nplanes-ip+1) = 1 !<<< resx(nplanes-ip+1)=rxmm !<<< resy(nplanes-ip+1)=rymm !<<< dedxtrk_x(nplanes-ip+1) = dedxmmx !<<< dedxtrk_y(nplanes-ip+1) = dedxmmy !<<< * ----------------------------------- CP_STORE(nplanes-ip+1,ibest)=idm if(DEBUG)print*,'%%%% included couple ',idm $ ,' (dist.= ',distmin,', cut ',clinc,' )' goto 133 !next plane endif * ================================================ * STEP 2 >>>>>>> try to include a single cluster * either from a couple or single * ================================================ c if(DEBUG)print*,'>>>> try to include a new cluster' distmin=1000000. xmm_A = 0. !--------------------------- ymm_A = 0. ! init variables that zmm_A = 0. ! define the SINGLET xmm_B = 0. ! ymm_B = 0. ! zmm_B = 0. ! rxmm = 0. ! rymm = 0. ! dedxmmx = 0. !(1) dedxmmy = 0. !(1) iclm=0 !--------------------------- distance=0. *----- clusters inside couples ------------------------------------- do icp=1,ncp_plane(ip) !loop on cluster inside couples icx=clx(ip,icp) icy=cly(ip,icp) id=id_cp(ip,icp,ist) if(LADDER(icx).ne.nldt)goto 11882 !if the ladder number does not match * !jump to the next couple *----- try cluster x ----------------------------------------------- c if(cl_used(icx).eq.1)goto 11881 !if the X cluster is already used if(cl_used(icx).ne.0)goto 11881 !if the X cluster is already used !(3) * !jump to the Y cluster c call xyz_PAM(icx,0,ist, c $ PFA,PFA, c $ AXV_STORE(nplanes-ip+1,ibest),0.) call xyz_PAM(icx,0,ist, $ PFA,PFA, $ AXV_STORE(nplanes-ip+1,ibest),0., $ bxyz(1), $ bxyz(2) $ ) distance = distance_to(XP,YP) c distance = distance / RCHI2_STORE(ibest)!<<< MS !QUIQUI if(DEBUG)print*,'( cl-X ',icx $ ,' in cp ',id,' ) distance ',distance if(distance.lt.distmin)then xmm_A = xPAM_A ymm_A = yPAM_A zmm_A = zPAM_A xmm_B = xPAM_B ymm_B = yPAM_B zmm_B = zPAM_B rxmm = resxPAM rymm = resyPAM distmin = distance iclm = icx c dedxmm = sgnl(icx) !(1) dedxmmx = sgnl(icx)/mip(VIEW(icx),LADDER(icx)) !(1)(2) dedxmmy = 0. !(1) endif 11881 continue *----- try cluster y ----------------------------------------------- c if(cl_used(icy).eq.1)goto 11882 !if the Y cluster is already used if(cl_used(icy).ne.0)goto 11882 !if the Y cluster is already used !(3) * !jump to the next couple c call xyz_PAM(0,icy,ist, c $ PFA,PFA, c $ 0.,AYV_STORE(nplanes-ip+1,ibest)) call xyz_PAM(0,icy,ist, $ PFA,PFA, $ 0.,AYV_STORE(nplanes-ip+1,ibest), $ bxyz(1), $ bxyz(2) $ ) distance = distance_to(XP,YP) c distance = distance / RCHI2_STORE(ibest)!<<< MS !QUIQUI if(DEBUG)print*,'( cl-Y ',icy $ ,' in cp ',id,' ) distance ',distance if(distance.lt.distmin)then xmm_A = xPAM_A ymm_A = yPAM_A zmm_A = zPAM_A xmm_B = xPAM_B ymm_B = yPAM_B zmm_B = zPAM_B rxmm = resxPAM rymm = resyPAM distmin = distance iclm = icy c dedxmm = sgnl(icy) !(1) dedxmmx = 0. !(1) dedxmmy = sgnl(icy)/mip(VIEW(icy),LADDER(icy)) !(1)(2) endif 11882 continue enddo !end loop on cluster inside couples *----- single clusters ----------------------------------------------- c print*,'## ncls(',ip,') ',ncls(ip) do ic=1,ncls(ip) !loop on single clusters icl=cls(ip,ic) c if(cl_used(icl).eq.1.or. !if the cluster is already used if(cl_used(icl).ne.0.or. !if the cluster is already used !(3) $ LADDER(icl).ne.nldt.or. !or the ladder number does not match $ .false.)goto 18882 !jump to the next singlet if(mod(VIEW(icl),2).eq.0)then!<---- X view call xyz_PAM(icl,0,ist, $ PFA,PFA, $ AXV_STORE(nplanes-ip+1,ibest),0., $ bxyz(1), $ bxyz(2) $ ) else !<---- Y view call xyz_PAM(0,icl,ist, $ PFA,PFA, $ 0.,AYV_STORE(nplanes-ip+1,ibest), $ bxyz(1), $ bxyz(2) $ ) endif distance = distance_to(XP,YP) c distance = distance / RCHI2_STORE(ibest)!<<< MS !QUIQUI if(DEBUG)print*,'( cl-s ',icl $ ,' ) distance ',distance,'<',distmin,' ?' if(distance.lt.distmin)then if(DEBUG)print*,'YES' xmm_A = xPAM_A ymm_A = yPAM_A zmm_A = zPAM_A xmm_B = xPAM_B ymm_B = yPAM_B zmm_B = zPAM_B rxmm = resxPAM rymm = resyPAM distmin = distance iclm = icl if(mod(VIEW(icl),2).eq.0)then !<---- X view dedxmmx = sgnl(icl)/mip(VIEW(icl),LADDER(icl)) dedxmmy = 0. else !<---- Y view dedxmmx = 0. dedxmmy = sgnl(icl)/mip(VIEW(icl),LADDER(icl)) endif endif 18882 continue enddo !end loop on single clusters c print*,'## distmin ', distmin,' clinc ',clinc c QUIQUI------------ c anche qui: non ci vuole clinc??? if(iclm.ne.0)then if(mod(VIEW(iclm),2).eq.0)then clincnew= $ 20* $ sqrt(rxmm**2+RCHI2_STORE(ibest)*k(ip)*cov(1,1)) else if(mod(VIEW(iclm),2).ne.0)then clincnew= $ 10* $ sqrt(rymm**2+RCHI2_STORE(ibest)*k(ip)*cov(2,2)) endif c QUIQUI------------ if(distmin.le.clincnew)then !QUIQUI c if(distmin.le.clinc)then !QUIQUI CLS_STORE(nplanes-ip+1,ibest)=iclm !<<<< * ---------------------------- c print*,'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~' if(mod(VIEW(iclm),2).eq.0)then XGOOD(nplanes-ip+1)=1. resx(nplanes-ip+1)=rxmm if(DEBUG)print*,'%%%% included X-cl ',iclm $ ,'( chi^2, ',RCHI2_STORE(ibest) $ ,', dist.= ',distmin $ ,', cut ',clinc,' )' else YGOOD(nplanes-ip+1)=1. resy(nplanes-ip+1)=rymm if(DEBUG)print*,'%%%% included Y-cl ',iclm $ ,'( chi^2, ',RCHI2_STORE(ibest) $ ,', dist.= ', distmin $ ,', cut ',clinc,' )' endif c print*,'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~' * ---------------------------- xm_A(nplanes-ip+1) = xmm_A ym_A(nplanes-ip+1) = ymm_A xm_B(nplanes-ip+1) = xmm_B ym_B(nplanes-ip+1) = ymm_B zm(nplanes-ip+1) = (zmm_A+zmm_B)/2. dedxtrk_x(nplanes-ip+1) = dedxmmx !<<< dedxtrk_y(nplanes-ip+1) = dedxmmy !<<< * ---------------------------- endif endif endif 133 continue enddo !end loop on planes return end *************************************************** * * * * * * * * * * * * ************************************************** * subroutine clean_XYclouds(ibest,iflag) include 'commontracker.f' include 'level1.f' include 'common_momanhough.f' include 'level2.f' do ip=1,nplanes !loop on planes id=CP_STORE(nplanes-ip+1,ibest) icl=CLS_STORE(nplanes-ip+1,ibest) if(id.ne.0.or.icl.ne.0)then if(id.ne.0)then iclx=clx(ip,icp_cp(id)) icly=cly(ip,icp_cp(id)) cl_used(iclx)=ntrk !tag used clusters cl_used(icly)=ntrk !tag used clusters elseif(icl.ne.0)then cl_used(icl)=ntrk !tag used clusters endif * ----------------------------- * remove the couple from clouds * remove also vitual couples containing the * selected clusters * ----------------------------- do icp=1,ncp_plane(ip) if( $ clx(ip,icp).eq.iclx $ .or. $ clx(ip,icp).eq.icl $ .or. $ cly(ip,icp).eq.icly $ .or. $ cly(ip,icp).eq.icl $ )then id=id_cp(ip,icp,1) if(DEBUG)then print*,ip,' <<< cp ',id $ ,' ( cl-x ' $ ,clx(ip,icp) $ ,' cl-y ' $ ,cly(ip,icp),' ) --> removed' endif * ----------------------------- * remove the couple from clouds do iyz=1,nclouds_yz if(cpcloud_yz(iyz,abs(id)).ne.0)then ptcloud_yz(iyz)=ptcloud_yz(iyz)-1 cpcloud_yz(iyz,abs(id))=0 endif enddo do ixz=1,nclouds_xz if(cpcloud_xz(ixz,abs(id)).ne.0)then ptcloud_xz(ixz)=ptcloud_xz(ixz)-1 cpcloud_xz(ixz,abs(id))=0 endif enddo * ----------------------------- endif enddo endif enddo !end loop on planes return end * **************************************************** subroutine init_level2 include 'commontracker.f' include 'level1.f' include 'common_momanhough.f' include 'level2.f' * --------------------------------- * variables initialized from level1 * --------------------------------- do i=1,nviews good2(i)=good1(i) do j=1,nva1_view vkflag(i,j)=1 if(cnnev(i,j).le.0)then vkflag(i,j)=cnnev(i,j) endif enddo enddo * ---------------- * level2 variables * ---------------- NTRK = 0 do it=1,NTRKMAX IMAGE(IT)=0 CHI2_nt(IT) = -100000. do ip=1,nplanes XM_nt(IP,IT) = 0 YM_nt(IP,IT) = 0 ZM_nt(IP,IT) = 0 RESX_nt(IP,IT) = 0 RESY_nt(IP,IT) = 0 TAILX_nt(IP,IT) = 0 TAILY_nt(IP,IT) = 0 XBAD(IP,IT) = 0 YBAD(IP,IT) = 0 XGOOD_nt(IP,IT) = 0 YGOOD_nt(IP,IT) = 0 LS(IP,IT) = 0 DEDX_X(IP,IT) = 0 DEDX_Y(IP,IT) = 0 CLTRX(IP,IT) = 0 CLTRY(IP,IT) = 0 enddo do ipa=1,5 AL_nt(IPA,IT) = 0 do ipaa=1,5 coval(ipa,ipaa,IT)=0 enddo enddo enddo nclsx=0 nclsy=0 do ip=1,NSINGMAX planex(ip)=0 xs(1,ip)=0 xs(2,ip)=0 sgnlxs(ip)=0 planey(ip)=0 ys(1,ip)=0 ys(2,ip)=0 sgnlys(ip)=0 enddo end ************************************************************ * * * * * * * ************************************************************ subroutine init_hough include 'commontracker.f' include 'level1.f' include 'common_momanhough.f' include 'common_hough.f' include 'level2.f' ntrpt_nt=0 ndblt_nt=0 NCLOUDS_XZ_nt=0 NCLOUDS_YZ_nt=0 do idb=1,ndblt_max_nt db_cloud_nt(idb)=0 alfayz1_nt(idb)=0 alfayz2_nt(idb)=0 enddo do itr=1,ntrpt_max_nt tr_cloud_nt(itr)=0 alfaxz1_nt(itr)=0 alfaxz2_nt(itr)=0 alfaxz3_nt(itr)=0 enddo do idb=1,ncloyz_max ptcloud_yz_nt(idb)=0 alfayz1_av_nt(idb)=0 alfayz2_av_nt(idb)=0 enddo do itr=1,ncloxz_max ptcloud_xz_nt(itr)=0 alfaxz1_av_nt(itr)=0 alfaxz2_av_nt(itr)=0 alfaxz3_av_nt(itr)=0 enddo ntrpt=0 ndblt=0 NCLOUDS_XZ=0 NCLOUDS_YZ=0 do idb=1,ndblt_max db_cloud(idb)=0 cpyz1(idb)=0 cpyz2(idb)=0 alfayz1(idb)=0 alfayz2(idb)=0 enddo do itr=1,ntrpt_max tr_cloud(itr)=0 cpxz1(itr)=0 cpxz2(itr)=0 cpxz3(itr)=0 alfaxz1(itr)=0 alfaxz2(itr)=0 alfaxz3(itr)=0 enddo do idb=1,ncloyz_max ptcloud_yz(idb)=0 alfayz1_av(idb)=0 alfayz2_av(idb)=0 do idbb=1,ncouplemaxtot cpcloud_yz(idb,idbb)=0 enddo enddo do itr=1,ncloxz_max ptcloud_xz(itr)=0 alfaxz1_av(itr)=0 alfaxz2_av(itr)=0 alfaxz3_av(itr)=0 do itrr=1,ncouplemaxtot cpcloud_xz(itr,itrr)=0 enddo enddo end ************************************************************ * * * * * * * ************************************************************ subroutine fill_level2_tracks(ntr) * ------------------------------------------------------- * This routine fills the ntr-th element of the variables * inside the level2_tracks common, which correspond * to the ntr-th track info. * ------------------------------------------------------- include 'commontracker.f' include 'level1.f' include 'common_momanhough.f' include 'level2.f' include 'common_mini_2.f' include 'calib.f' character*10 PFA common/FINALPFA/PFA real sinth,phi,pig integer ssensor,sladder pig=acos(-1.) * ------------------------------------- chi2_nt(ntr) = sngl(chi2) nstep_nt(ntr) = nstep * ------------------------------------- phi = al(4) sinth = al(3) if(sinth.lt.0)then sinth = -sinth phi = phi + pig endif npig = aint(phi/(2*pig)) phi = phi - npig*2*pig if(phi.lt.0) $ phi = phi + 2*pig al(4) = phi al(3) = sinth do i=1,5 al_nt(i,ntr) = sngl(al(i)) do j=1,5 coval(i,j,ntr) = sngl(cov(i,j)) enddo enddo * ------------------------------------- do ip=1,nplanes ! loop on planes xgood_nt(ip,ntr) = int(xgood(ip)) ygood_nt(ip,ntr) = int(ygood(ip)) xm_nt(ip,ntr) = sngl(xm(ip)) ym_nt(ip,ntr) = sngl(ym(ip)) zm_nt(ip,ntr) = sngl(zm(ip)) RESX_nt(IP,ntr) = sngl(resx(ip)) RESY_nt(IP,ntr) = sngl(resy(ip)) TAILX_nt(IP,ntr) = 0. TAILY_nt(IP,ntr) = 0. xv_nt(ip,ntr) = sngl(xv(ip)) yv_nt(ip,ntr) = sngl(yv(ip)) zv_nt(ip,ntr) = sngl(zv(ip)) axv_nt(ip,ntr) = sngl(axv(ip)) ayv_nt(ip,ntr) = sngl(ayv(ip)) c l'avevo dimenticato!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! factor = sqrt( $ tan( acos(-1.) * sngl(axv(ip)) /180. )**2 + $ tan( acos(-1.) * sngl(ayv(ip)) /180. )**2 + $ 1. ) c !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! dedx_x(ip,ntr) = sngl(dedxtrk_x(ip)/factor) dedx_y(ip,ntr) = sngl(dedxtrk_y(ip)/factor) ax = axv_nt(ip,ntr) ay = ayv_nt(ip,ntr) bfx = BX_STORE(ip,IDCAND) bfy = BY_STORE(ip,IDCAND) if(ip.eq.6) ax = -1. * axv_nt(ip,ntr) if(ip.eq.6) bfy = -1. * BY_STORE(ip,IDCAND) tgtemp = tan(ax*acos(-1.)/180.) + pmuH_h*bfy*0.00001 angx = 180.*atan(tgtemp)/acos(-1.) tgtemp = tan(ay*acos(-1.)/180.)+pmuH_e*bfx*0.00001 angy = 180.*atan(tgtemp)/acos(-1.) c print*,'* ',ip,bfx,bfy,angx,angy id = CP_STORE(ip,IDCAND) ! couple id icl = CLS_STORE(ip,IDCAND) ssensor = -1 sladder = -1 ssensor = SENSOR_STORE(ip,IDCAND) sladder = LADDER_STORE(ip,IDCAND) if(ip.eq.6.and.ssensor.ne.0)ssensor = 3 - ssensor !notazione paolo x align LS(IP,ntr) = ssensor+10*sladder if(id.ne.0)then c >>> is a couple cltrx(ip,ntr) = clx(nplanes-ip+1,icp_cp(id)) cltry(ip,ntr) = cly(nplanes-ip+1,icp_cp(id)) c$$$ if(is_cp(id).ne.ssensor) c$$$ $ print*,'ERROR is sensor assignment (couple)' c$$$ $ ,is_cp(id),ssensor c$$$ if(LADDER(clx(nplanes-ip+1,icp_cp(id))).ne.sladder) c$$$ $ print*,'ERROR is ladder assignment (couple)' c$$$ $ ,LADDER(clx(nplanes-ip+1,icp_cp(id))),sladder nnnnx = npfastrips(clx(nplanes-ip+1,icp_cp(id)),PFA,angx) nnnny = npfastrips(cly(nplanes-ip+1,icp_cp(id)),PFA,angy) xbad(ip,ntr)= nbadstrips(nnnnx,clx(nplanes-ip+1,icp_cp(id))) ybad(ip,ntr)= nbadstrips(nnnny,cly(nplanes-ip+1,icp_cp(id))) if(nsatstrips(clx(nplanes-ip+1,icp_cp(id))).gt.0) $ dedx_x(ip,ntr)=-dedx_x(ip,ntr) if(nsatstrips(cly(nplanes-ip+1,icp_cp(id))).gt.0) $ dedx_y(ip,ntr)=-dedx_y(ip,ntr) elseif(icl.ne.0)then c >>> is a singlet c$$$ if(LADDER(icl).ne.sladder) c$$$ $ print*,'ERROR is ladder assignment (single)' c$$$ $ ,LADDER(icl),sladder if(mod(VIEW(icl),2).eq.0)then cltrx(ip,ntr)=icl nnnnn = npfastrips(icl,PFA,angx) xbad(ip,ntr) = nbadstrips(nnnnn,icl) if(nsatstrips(icl).gt.0)dedx_x(ip,ntr)=-dedx_x(ip,ntr) elseif(mod(VIEW(icl),2).eq.1)then cltry(ip,ntr)=icl nnnnn = npfastrips(icl,PFA,angy) ybad(ip,ntr) = nbadstrips(nnnnn,icl) if(nsatstrips(icl).gt.0)dedx_y(ip,ntr)=-dedx_y(ip,ntr) endif endif enddo c$$$ print*,(xgood(i),i=1,6) c$$$ print*,(ygood(i),i=1,6) c$$$ print*,(ls(i,ntr),i=1,6) c$$$ print*,(dedx_x(i,ntr),i=1,6) c$$$ print*,(dedx_y(i,ntr),i=1,6) c$$$ print*,'-----------------------' end subroutine fill_level2_siglets * ------------------------------------------------------- * This routine fills the elements of the variables * inside the level2_singletsx and level2_singletsy commons, * which store info on clusters outside the tracks * ------------------------------------------------------- include 'commontracker.f' include 'calib.f' include 'level1.f' include 'common_momanhough.f' include 'level2.f' include 'common_xyzPAM.f' * count #cluster per plane not associated to any track nclsx = 0 nclsy = 0 do iv = 1,nviews if( mask_view(iv).ne.0 )good2(iv) = 20+mask_view(iv) enddo do icl=1,nclstr1 if(cl_used(icl).eq.0)then !cluster not included in any track ip=nplanes-npl(VIEW(icl))+1 if(mod(VIEW(icl),2).eq.0)then !=== X views nclsx = nclsx + 1 planex(nclsx) = ip sgnlxs(nclsx) = sgnl(icl)/mip(VIEW(icl),LADDER(icl)) if(nsatstrips(icl).gt.0)sgnlxs(nclsx)=-sgnlxs(nclsx) clsx(nclsx) = icl do is=1,2 c call xyz_PAM(icl,0,is,'COG1',' ',0.,0.) c call xyz_PAM(icl,0,is,PFAdef,' ',0.,0.) call xyz_PAM(icl,0,is,PFAdef,' ',0.,0.,0.,0.) xs(is,nclsx) = (xPAM_A+xPAM_B)/2 enddo c$$$ print*,'nclsx ',nclsx c$$$ print*,'planex(nclsx) ',planex(nclsx) c$$$ print*,'sgnlxs(nclsx) ',sgnlxs(nclsx) c$$$ print*,'xs(1,nclsx) ',xs(1,nclsx) c$$$ print*,'xs(2,nclsx) ',xs(2,nclsx) else !=== Y views nclsy = nclsy + 1 planey(nclsy) = ip sgnlys(nclsy) = sgnl(icl)/mip(VIEW(icl),LADDER(icl)) if(nsatstrips(icl).gt.0)sgnlys(nclsy)=-sgnlys(nclsy) clsy(nclsy) = icl do is=1,2 c call xyz_PAM(0,icl,is,' ','COG1',0.,0.) c call xyz_PAM(0,icl,is,' ',PFAdef,0.,0.) call xyz_PAM(0,icl,is,' ',PFAdef,0.,0.,0.,0.) ys(is,nclsy) = (yPAM_A+yPAM_B)/2 enddo c$$$ print*,'nclsy ',nclsy c$$$ print*,'planey(nclsy) ',planey(nclsy) c$$$ print*,'sgnlys(nclsy) ',sgnlys(nclsy) c$$$ print*,'ys(1,nclsy) ',ys(1,nclsy) c$$$ print*,'ys(2,nclsy) ',ys(2,nclsy) endif endif ***** LO METTO QUI PERCHE` NON SO DOVE METTERLO whichtrack(icl) = cl_used(icl) enddo end *************************************************** * * * * * * * * * * * * ************************************************** subroutine fill_hough * ------------------------------------------------------- * This routine fills the variables related to the hough * transform, for the debig n-tuple * ------------------------------------------------------- include 'commontracker.f' include 'level1.f' include 'common_momanhough.f' include 'common_hough.f' include 'level2.f' if(.false. $ .or.ntrpt.gt.ntrpt_max_nt $ .or.ndblt.gt.ndblt_max_nt $ .or.NCLOUDS_XZ.gt.ncloxz_max $ .or.NCLOUDS_yZ.gt.ncloyz_max $ )then ntrpt_nt=0 ndblt_nt=0 NCLOUDS_XZ_nt=0 NCLOUDS_YZ_nt=0 else ndblt_nt=ndblt ntrpt_nt=ntrpt if(ndblt.ne.0)then do id=1,ndblt alfayz1_nt(id)=alfayz1(id) !Y0 alfayz2_nt(id)=alfayz2(id) !tg theta-yz enddo endif if(ndblt.ne.0)then do it=1,ntrpt alfaxz1_nt(it)=alfaxz1(it) !X0 alfaxz2_nt(it)=alfaxz2(it) !tg theta-xz alfaxz3_nt(it)=alfaxz3(it) !1/r enddo endif nclouds_yz_nt=nclouds_yz nclouds_xz_nt=nclouds_xz if(nclouds_yz.ne.0)then nnn=0 do iyz=1,nclouds_yz ptcloud_yz_nt(iyz)=ptcloud_yz(iyz) alfayz1_av_nt(iyz)=alfayz1_av(iyz) alfayz2_av_nt(iyz)=alfayz2_av(iyz) nnn=nnn+ptcloud_yz(iyz) enddo do ipt=1,nnn db_cloud_nt(ipt)=db_cloud(ipt) enddo endif if(nclouds_xz.ne.0)then nnn=0 do ixz=1,nclouds_xz ptcloud_xz_nt(ixz)=ptcloud_xz(ixz) alfaxz1_av_nt(ixz)=alfaxz1_av(ixz) alfaxz2_av_nt(ixz)=alfaxz2_av(ixz) alfaxz3_av_nt(ixz)=alfaxz3_av(ixz) nnn=nnn+ptcloud_xz(ixz) enddo do ipt=1,nnn tr_cloud_nt(ipt)=tr_cloud(ipt) enddo endif endif end