1 |
************************************************************ |
2 |
* The following subroutines |
3 |
* - track_finding >> hough transform |
4 |
* - track_fitting >> bob golden fitting |
5 |
* all the procedures to create LEVEL2 data, starting from LEVEL1 data. |
6 |
* |
7 |
* |
8 |
* |
9 |
* (This subroutine and all the dependent subroutines |
10 |
* will be included in the flight software) |
11 |
************************************************************ |
12 |
subroutine track_finding(iflag) |
13 |
|
14 |
include 'commontracker.f' |
15 |
include 'level1.f' |
16 |
include 'common_momanhough.f' |
17 |
include 'common_mech.f' |
18 |
include 'common_xyzPAM.f' |
19 |
include 'common_mini_2.f' |
20 |
include 'calib.f' |
21 |
include 'level2.f' |
22 |
|
23 |
c print*,'======================================================' |
24 |
c$$$ do ic=1,NCLSTR1 |
25 |
c$$$ if(.false. |
26 |
c$$$ $ .or.nsatstrips(ic).gt.0 |
27 |
c$$$c $ .or.nbadstrips(0,ic).gt.0 |
28 |
c$$$c $ .or.nbadstrips(4,ic).gt.0 |
29 |
c$$$c $ .or.nbadstrips(3,ic).gt.0 |
30 |
c$$$ $ .or..false.)then |
31 |
c$$$ print*,'--- cl-',ic,' ------------------------' |
32 |
c$$$ istart = INDSTART(IC) |
33 |
c$$$ istop = TOTCLLENGTH |
34 |
c$$$ if(ic.lt.NCLSTR1)istop=INDSTART(IC+1)-1 |
35 |
c$$$ print*,'ADC ',(CLADC(i),i=istart,istop) |
36 |
c$$$ print*,'s/n ',(CLSIGNAL(i)/CLSIGMA(i),i=istart,istop) |
37 |
c$$$ print*,'sgnl ',(CLSIGNAL(i),i=istart,istop) |
38 |
c$$$ print*,'strip ',(i-INDMAX(ic),i=istart,istop) |
39 |
c$$$ print*,'view ',VIEW(ic) |
40 |
c$$$ print*,'maxs ',MAXS(ic) |
41 |
c$$$ print*,'COG4 ',cog(4,ic) |
42 |
c$$$ ff = fbad_cog(4,ic) |
43 |
c$$$ print*,'fbad ',ff |
44 |
c$$$ print*,(CLBAD(i),i=istart,istop) |
45 |
c$$$ bb=nbadstrips(0,ic) |
46 |
c$$$ print*,'#BAD (tot)',bb |
47 |
c$$$ bb=nbadstrips(4,ic) |
48 |
c$$$ print*,'#BAD (4)',bb |
49 |
c$$$ bb=nbadstrips(3,ic) |
50 |
c$$$ print*,'#BAD (3)',bb |
51 |
c$$$ ss=nsatstrips(ic) |
52 |
c$$$ print*,'#saturated ',ss |
53 |
c$$$ endif |
54 |
c$$$ enddo |
55 |
|
56 |
*------------------------------------------------------------------------------- |
57 |
* STEP 1 |
58 |
*------------------------------------------------------------------------------- |
59 |
* X-Y cluster association |
60 |
* |
61 |
* Clusters are associated to form COUPLES |
62 |
* Clusters not associated in any couple are called SINGLETS |
63 |
* |
64 |
* Track identification (Hough transform) and fitting is first done on couples. |
65 |
* Hence singlets are possibly added to the track. |
66 |
* |
67 |
* Variables assigned by the routine "cl_to_couples" are those in the |
68 |
* common blocks: |
69 |
* - common/clusters/cl_good |
70 |
* - common/couples/clx,cly,ncp_plane,ncp_tot,cp_useds1,cp_useds2 |
71 |
* - common/singlets/ncls,cls,cl_single |
72 |
*------------------------------------------------------------------------------- |
73 |
*------------------------------------------------------------------------------- |
74 |
|
75 |
call cl_to_couples(iflag) |
76 |
if(iflag.eq.1)then !bad event |
77 |
goto 880 !go to next event |
78 |
endif |
79 |
if(ncp_tot.eq.0)goto 880 !go to next event |
80 |
*----------------------------------------------------- |
81 |
*----------------------------------------------------- |
82 |
* HOUGH TRASFORM |
83 |
*----------------------------------------------------- |
84 |
*----------------------------------------------------- |
85 |
|
86 |
|
87 |
*------------------------------------------------------------------------------- |
88 |
* STEP 2 |
89 |
*------------------------------------------------------------------------------- |
90 |
* |
91 |
* Association of couples to form |
92 |
* - DOUBLETS in YZ view |
93 |
* - TRIPLETS in XZ view |
94 |
* |
95 |
* Variables assigned by the routine "cp_to_doubtrip" are those in the |
96 |
* common blocks: |
97 |
* - common/hough_param/ |
98 |
* $ alfayz1, !Y0 |
99 |
* $ alfayz2, !tg theta-yz |
100 |
* $ alfaxz1, !X0 |
101 |
* $ alfaxz2, !tg theta-xz |
102 |
* $ alfaxz3 !1/r |
103 |
* - common/doublets/ndblt,cpyz1,cpyz2 |
104 |
* - common/triplets/ntrpt,cpxz1,cpxz2,cpxz3 |
105 |
*------------------------------------------------------------------------------- |
106 |
*------------------------------------------------------------------------------- |
107 |
|
108 |
|
109 |
call cp_to_doubtrip(iflag) |
110 |
if(iflag.eq.1)then !bad event |
111 |
goto 880 !go to next event |
112 |
endif |
113 |
if(ndblt.eq.0.or.ntrpt.eq.0)goto 880 !go to next event |
114 |
|
115 |
|
116 |
*------------------------------------------------------------------------------- |
117 |
* STEP 3 |
118 |
*------------------------------------------------------------------------------- |
119 |
* |
120 |
* Classification of doublets and triplets to form CLOUDS, |
121 |
* according to distance in parameter space. |
122 |
* |
123 |
* cloud = cluster of points (doublets/triplets) in parameter space |
124 |
* |
125 |
* |
126 |
* |
127 |
* Variables assigned by the routine "doub_to_YZcloud" are those in the |
128 |
* common blocks: |
129 |
* - common/clouds_yz/ |
130 |
* $ nclouds_yz |
131 |
* $ ,alfayz1_av,alfayz2_av |
132 |
* $ ,ptcloud_yz,db_cloud,cpcloud_yz |
133 |
* |
134 |
* Variables assigned by the routine "trip_to_XZcloud" are those in the |
135 |
* common blocks: |
136 |
* common/clouds_xz/ |
137 |
* $ nclouds_xz xz2_av,alfaxz3_av |
138 |
* $ ,ptcloud_xz,tr_cloud,cpcloud_xz |
139 |
*------------------------------------------------------------------------------- |
140 |
*------------------------------------------------------------------------------- |
141 |
* count number of hit planes |
142 |
planehit=0 |
143 |
do np=1,nplanes |
144 |
if(ncp_plane(np).ne.0)then |
145 |
planehit=planehit+1 |
146 |
endif |
147 |
enddo |
148 |
if(planehit.lt.3) goto 880 ! exit |
149 |
|
150 |
nptxz_min=x_min_start |
151 |
nplxz_min=x_min_start |
152 |
|
153 |
nptyz_min=y_min_start |
154 |
nplyz_min=y_min_start |
155 |
|
156 |
cutdistyz=cutystart |
157 |
cutdistxz=cutxstart |
158 |
|
159 |
878 continue |
160 |
call doub_to_YZcloud(iflag) |
161 |
if(iflag.eq.1)then !bad event |
162 |
goto 880 !fill ntp and go to next event |
163 |
endif |
164 |
* ------------------------------------------------ |
165 |
* first try to release the tolerance |
166 |
* ------------------------------------------------ |
167 |
if(nclouds_yz.eq.0.and.cutdistyz.lt.maxcuty)then |
168 |
if(cutdistyz.lt.maxcuty/2)then |
169 |
cutdistyz=cutdistyz+cutystep |
170 |
else |
171 |
cutdistyz=cutdistyz+(3*cutystep) |
172 |
endif |
173 |
if(DEBUG.EQ.1)print*,'try again - cutdistyz ',cutdistyz |
174 |
goto 878 |
175 |
endif |
176 |
* ------------------------------------------------ |
177 |
* hence reduce the minimum number of plane |
178 |
* ------------------------------------------------ |
179 |
if(nclouds_yz.eq.0.and.nplyz_min.gt.3)then |
180 |
nplyz_min=nplyz_min-1 |
181 |
if(DEBUG.EQ.1)print*,'try again - nplyz_min ',nplyz_min |
182 |
goto 878 |
183 |
endif |
184 |
|
185 |
if(nclouds_yz.eq.0)goto 880 !go to next event |
186 |
|
187 |
|
188 |
ccc if(planehit.eq.3) goto 881 |
189 |
|
190 |
879 continue |
191 |
call trip_to_XZcloud(iflag) |
192 |
if(iflag.eq.1)then !bad event |
193 |
goto 880 !fill ntp and go to next event |
194 |
endif |
195 |
* ------------------------------------------------ |
196 |
* first try to release the tolerance |
197 |
* ------------------------------------------------ |
198 |
if(nclouds_xz.eq.0.and.cutdistxz.lt.maxcutx)then |
199 |
cutdistxz=cutdistxz+cutxstep |
200 |
if(DEBUG.EQ.1)print*,'try again - cutdistxz ',cutdistxz |
201 |
goto 879 |
202 |
endif |
203 |
* ------------------------------------------------ |
204 |
* hence reduce the minimum number of plane |
205 |
* ------------------------------------------------ |
206 |
if(nclouds_xz.eq.0.and.nplxz_min.gt.3)then |
207 |
nplxz_min=nplxz_min-1 |
208 |
if(DEBUG.EQ.1)print*,'try again - nplxz_min ',nplxz_min |
209 |
goto 879 |
210 |
endif |
211 |
|
212 |
if(nclouds_xz.eq.0)goto 880 !go to next event |
213 |
|
214 |
|
215 |
c$$$ 881 continue |
216 |
c$$$* if there is at least three planes on the Y view decreases cuts on X view |
217 |
c$$$ if(nclouds_xz.eq.0.and.nclouds_yz.gt.0.and. |
218 |
c$$$ $ nplxz_min.ne.y_min_start)then |
219 |
c$$$ nptxz_min=x_min_step |
220 |
c$$$ nplxz_min=x_min_start-x_min_step |
221 |
c$$$ goto 879 |
222 |
c$$$ endif |
223 |
|
224 |
880 return |
225 |
end |
226 |
|
227 |
************************************************************ |
228 |
|
229 |
|
230 |
subroutine track_fitting(iflag) |
231 |
|
232 |
include 'commontracker.f' |
233 |
include 'level1.f' |
234 |
include 'common_momanhough.f' |
235 |
include 'common_mech.f' |
236 |
include 'common_xyzPAM.f' |
237 |
include 'common_mini_2.f' |
238 |
include 'calib.f' |
239 |
include 'level2.f' |
240 |
|
241 |
c include 'momanhough_init.f' |
242 |
|
243 |
logical FIMAGE ! |
244 |
real trackimage(NTRACKSMAX) |
245 |
real*8 AL_GUESS(5) |
246 |
|
247 |
*------------------------------------------------------------------------------- |
248 |
* STEP 4 (ITERATED until any other physical track isn't found) |
249 |
*------------------------------------------------------------------------------- |
250 |
* |
251 |
* YZ and XZ clouds are combined in order to obtain the initial guess |
252 |
* of the candidate-track parameters. |
253 |
* A minimum number of matching couples between YZ and XZ clouds is required. |
254 |
* |
255 |
* A TRACK CANDIDATE is defined by |
256 |
* - the couples resulting from the INTERSECTION of the two clouds, and |
257 |
* - the associated track parameters (evaluated by performing a zero-order |
258 |
* track fitting) |
259 |
* |
260 |
* The NTRACKS candidate-track parameters are stored in common block: |
261 |
* |
262 |
* - common/track_candidates/NTRACKS,AL_STORE |
263 |
* $ ,XV_STORE,YV_STORE,ZV_STORE |
264 |
* $ ,XM_STORE,YM_STORE,ZM_STORE |
265 |
* $ ,RESX_STORE,RESY_STORE |
266 |
* $ ,AXV_STORE,AYV_STORE |
267 |
* $ ,XGOOD_STORE,YGOOD_STORE |
268 |
* $ ,CP_STORE,RCHI2_STORE |
269 |
* |
270 |
*------------------------------------------------------------------------------- |
271 |
*------------------------------------------------------------------------------- |
272 |
ccc ntrk=0 !counter of identified physical tracks |
273 |
|
274 |
11111 continue !<<<<<<< come here when performing a new search |
275 |
|
276 |
if(nclouds_xz.eq.0)goto 880 !go to next event |
277 |
if(nclouds_yz.eq.0)goto 880 !go to next event |
278 |
|
279 |
c iflag=0 |
280 |
call clouds_to_ctrack(iflag) |
281 |
if(iflag.eq.1)then !no candidate tracks found |
282 |
goto 880 !fill ntp and go to next event |
283 |
endif |
284 |
if(ntracks.eq.0)goto 880 !go to next event |
285 |
|
286 |
FIMAGE=.false. !processing best track (not track image) |
287 |
ibest=0 !best track among candidates |
288 |
iimage=0 !track image |
289 |
* ------------- select the best track ------------- |
290 |
c$$$ rchi2best=1000000000. |
291 |
c$$$ do i=1,ntracks |
292 |
c$$$ if(RCHI2_STORE(i).lt.rchi2best.and. |
293 |
c$$$ $ RCHI2_STORE(i).gt.0)then |
294 |
c$$$ ibest=i |
295 |
c$$$ rchi2best=RCHI2_STORE(i) |
296 |
c$$$ endif |
297 |
c$$$ enddo |
298 |
c$$$ if(ibest.eq.0)goto 880 !>> no good candidates |
299 |
|
300 |
* ------------------------------------------------------- |
301 |
* order track-candidates according to: |
302 |
* 1st) decreasing n.points |
303 |
* 2nd) increasing chi**2 |
304 |
* ------------------------------------------------------- |
305 |
rchi2best=1000000000. |
306 |
ndofbest=0 |
307 |
do i=1,ntracks |
308 |
ndof=0 |
309 |
do ii=1,nplanes |
310 |
ndof=ndof |
311 |
$ +int(xgood_store(ii,i)) |
312 |
$ +int(ygood_store(ii,i)) |
313 |
enddo |
314 |
if(ndof.gt.ndofbest)then |
315 |
ibest=i |
316 |
rchi2best=RCHI2_STORE(i) |
317 |
ndofbest=ndof |
318 |
elseif(ndof.eq.ndofbest)then |
319 |
if(RCHI2_STORE(i).lt.rchi2best.and. |
320 |
$ RCHI2_STORE(i).gt.0)then |
321 |
ibest=i |
322 |
rchi2best=RCHI2_STORE(i) |
323 |
ndofbest=ndof |
324 |
endif |
325 |
endif |
326 |
enddo |
327 |
|
328 |
|
329 |
if(ibest.eq.0)goto 880 !>> no good candidates |
330 |
*------------------------------------------------------------------------------- |
331 |
* The best track candidate (ibest) is selected and a new fitting is performed. |
332 |
* Previous to this, the track is refined by: |
333 |
* - possibly adding new COUPLES or SINGLETS from the missing planes |
334 |
* - evaluating the coordinates with improved PFAs |
335 |
* ( angle-dependent ETA algorithms ) |
336 |
*------------------------------------------------------------------------------- |
337 |
|
338 |
1212 continue !<<<<< come here to fit track-image |
339 |
|
340 |
if(.not.FIMAGE)then !processing best candidate |
341 |
icand=ibest |
342 |
else !processing image |
343 |
icand=iimage |
344 |
iimage=0 |
345 |
endif |
346 |
if(icand.eq.0)then |
347 |
if(VERBOSE.EQ.1)then |
348 |
print*,'HAI FATTO UN CASINO!!!!!! icand = ',icand |
349 |
$ ,ibest,iimage |
350 |
endif |
351 |
return |
352 |
endif |
353 |
|
354 |
* *-*-*-*-*-*-*-*-*-*-*-*-*-*-* |
355 |
call refine_track(icand) |
356 |
* *-*-*-*-*-*-*-*-*-*-*-*-*-*-* |
357 |
|
358 |
* ********************************************************** |
359 |
* ************************** FIT *** FIT *** FIT *** FIT *** |
360 |
* ********************************************************** |
361 |
call guess() |
362 |
do i=1,5 |
363 |
AL_GUESS(i)=AL(i) |
364 |
enddo |
365 |
|
366 |
do i=1,5 |
367 |
AL(i)=dble(AL_STORE(i,icand)) |
368 |
enddo |
369 |
|
370 |
IDCAND = icand !fitted track-candidate |
371 |
ifail=0 !error flag in chi2 computation |
372 |
jstep=0 !# minimization steps |
373 |
|
374 |
iprint=0 |
375 |
c if(DEBUG.EQ.1)iprint=1 |
376 |
if(VERBOSE.EQ.1)iprint=1 |
377 |
if(DEBUG.EQ.1)iprint=2 |
378 |
call mini2(jstep,ifail,iprint) |
379 |
cc if(ifail.ne.0) then |
380 |
if(ifail.ne.0.or.CHI2.ne.CHI2) then !new |
381 |
if(CHI2.ne.CHI2)CHI2=-9999. !new |
382 |
if(VERBOSE.EQ.1)then |
383 |
print *, |
384 |
$ '*** MINIMIZATION FAILURE *** (after refinement) ' |
385 |
$ ,iev |
386 |
endif |
387 |
endif |
388 |
|
389 |
if(DEBUG.EQ.1)then |
390 |
print*,'----------------------------- improved track coord' |
391 |
22222 format(i2,' * ',3f10.4,' --- ',4f10.4,' --- ',2f4.0,2f10.5) |
392 |
do ip=1,6 |
393 |
write(*,22222)ip,zm(ip),xm(ip),ym(ip) |
394 |
$ ,xm_A(ip),ym_A(ip),xm_B(ip),ym_B(ip) |
395 |
$ ,xgood(ip),ygood(ip),resx(ip),resy(ip) |
396 |
enddo |
397 |
endif |
398 |
|
399 |
c rchi2=chi2/dble(ndof) |
400 |
if(DEBUG.EQ.1)then |
401 |
print*,' ' |
402 |
print*,'****** SELECTED TRACK *************' |
403 |
print*,'# R. chi2 RIG' |
404 |
print*,' --- ',chi2,' --- ' |
405 |
$ ,1./abs(AL(5)) |
406 |
print*,'***********************************' |
407 |
endif |
408 |
* ********************************************************** |
409 |
* ************************** FIT *** FIT *** FIT *** FIT *** |
410 |
* ********************************************************** |
411 |
|
412 |
|
413 |
* ------------- search if the track has an IMAGE ------------- |
414 |
* ------------- (also this is stored ) ------------- |
415 |
if(FIMAGE)goto 122 !>>> jump! (this is already an image) |
416 |
|
417 |
* ----------------------------------------------------- |
418 |
* first check if the track is ambiguous |
419 |
* ----------------------------------------------------- |
420 |
* (modified on august 2007 by ElenaV) |
421 |
is1=0 |
422 |
do ip=1,NPLANES |
423 |
if(SENSOR_STORE(ip,icand).ne.0)then |
424 |
is1=SENSOR_STORE(ip,icand) |
425 |
if(ip.eq.6)is1=3-is1 !last plane inverted |
426 |
endif |
427 |
enddo |
428 |
if(is1.eq.0)then |
429 |
if(WARNING.EQ.1)print*,'** WARNING ** sensor=0' |
430 |
goto 122 !jump |
431 |
endif |
432 |
do ip=1,NPLANES |
433 |
is2 = SENSOR_STORE(ip,icand) !sensor |
434 |
if(ip.eq.6.and.is2.ne.0)is2=3-is2 !last plane inverted |
435 |
if( |
436 |
$ (is1.ne.is2.and.is2.ne.0) |
437 |
$ )goto 122 !jump (this track cannot have an image) |
438 |
enddo |
439 |
if(DEBUG.eq.1)print*,' >>> ambiguous track! ' |
440 |
* --------------------------------------------------------------- |
441 |
* take the candidate with the greatest number of matching couples |
442 |
* if more than one satisfies the requirement, |
443 |
* choose the one with more points and lower chi2 |
444 |
* --------------------------------------------------------------- |
445 |
* count the number of matching couples |
446 |
ncpmax = 0 |
447 |
iimage = 0 !id of candidate with better matching |
448 |
do i=1,ntracks |
449 |
ncp=0 |
450 |
do ip=1,nplanes |
451 |
if(CP_STORE(nplanes-ip+1,icand).ne.0)then |
452 |
if( |
453 |
$ CP_STORE(nplanes-ip+1,i).ne.0 |
454 |
$ .and. |
455 |
$ CP_STORE(nplanes-ip+1,icand).eq. |
456 |
$ -1*CP_STORE(nplanes-ip+1,i) |
457 |
$ )then |
458 |
ncp=ncp+1 !ok |
459 |
elseif( |
460 |
$ CP_STORE(nplanes-ip+1,i).ne.0 |
461 |
$ .and. |
462 |
$ CP_STORE(nplanes-ip+1,icand).ne. |
463 |
$ -1*CP_STORE(nplanes-ip+1,i) |
464 |
$ )then |
465 |
ncp = 0 |
466 |
goto 117 !it is not an image candidate |
467 |
else |
468 |
|
469 |
endif |
470 |
endif |
471 |
enddo |
472 |
117 continue |
473 |
trackimage(i)=ncp !number of matching couples |
474 |
if(ncp>ncpmax)then |
475 |
ncpmax=ncp |
476 |
iimage=i |
477 |
endif |
478 |
enddo |
479 |
* check if there are more than one image candidates |
480 |
ngood=0 |
481 |
do i=1,ntracks |
482 |
if( ncpmax.ne.0.and.trackimage(i).eq.ncpmax )ngood=ngood+1 |
483 |
enddo |
484 |
if(DEBUG.eq.1)print*,' n.image-candidates : ',ngood |
485 |
* if there are, choose the best one |
486 |
if(ngood.gt.0)then |
487 |
* ------------------------------------------------------- |
488 |
* order track-candidates according to: |
489 |
* 1st) decreasing n.points |
490 |
* 2nd) increasing chi**2 |
491 |
* ------------------------------------------------------- |
492 |
rchi2best=1000000000. |
493 |
ndofbest=0 |
494 |
do i=1,ntracks |
495 |
if( trackimage(i).eq.ncpmax )then |
496 |
ndof=0 |
497 |
do ii=1,nplanes |
498 |
ndof=ndof |
499 |
$ +int(xgood_store(ii,i)) |
500 |
$ +int(ygood_store(ii,i)) |
501 |
enddo |
502 |
if(ndof.gt.ndofbest)then |
503 |
iimage=i |
504 |
rchi2best=RCHI2_STORE(i) |
505 |
ndofbest=ndof |
506 |
elseif(ndof.eq.ndofbest)then |
507 |
if(RCHI2_STORE(i).lt.rchi2best.and. |
508 |
$ RCHI2_STORE(i).gt.0)then |
509 |
iimage=i |
510 |
rchi2best=RCHI2_STORE(i) |
511 |
ndofbest=ndof |
512 |
endif |
513 |
endif |
514 |
endif |
515 |
enddo |
516 |
|
517 |
if(DEBUG.EQ.1)then |
518 |
print*,'Track candidate ',iimage |
519 |
$ ,' >>> TRACK IMAGE >>> of' |
520 |
$ ,ibest |
521 |
endif |
522 |
|
523 |
endif |
524 |
|
525 |
|
526 |
122 continue |
527 |
|
528 |
|
529 |
* --- and store the results -------------------------------- |
530 |
ntrk = ntrk + 1 !counter of found tracks |
531 |
if(.not.FIMAGE |
532 |
$ .and.iimage.eq.0) image(ntrk)= 0 |
533 |
if(.not.FIMAGE |
534 |
$ .and.iimage.ne.0)image(ntrk)=ntrk+1 !this is the image of the next |
535 |
if(FIMAGE) image(ntrk)=ntrk-1 !this is the image of the previous |
536 |
call fill_level2_tracks(ntrk) !==> good2=.true. |
537 |
|
538 |
if(ntrk.eq.NTRKMAX)then |
539 |
if(verbose.eq.1) |
540 |
$ print*, |
541 |
$ '** warning ** number of identified '// |
542 |
$ 'tracks exceeds vector dimension ' |
543 |
$ ,'( ',NTRKMAX,' )' |
544 |
cc good2=.false. |
545 |
goto 880 !fill ntp and go to next event |
546 |
endif |
547 |
if(iimage.ne.0)then |
548 |
FIMAGE=.true. ! |
549 |
goto 1212 !>>> fit image-track |
550 |
endif |
551 |
|
552 |
|
553 |
880 return |
554 |
end |
555 |
|
556 |
|
557 |
|
558 |
************************************************************ |
559 |
************************************************************ |
560 |
************************************************************ |
561 |
************************************************************ |
562 |
* |
563 |
* This routine provides the coordinates (in cm) in the PAMELA reference system: |
564 |
* - of the point associated with a COUPLE ---> (xPAM,yPAM,zPAM) |
565 |
* - of the extremes of the segment |
566 |
* associated with a SINGLET ---------------> (xPAM_A,yPAM_A,zPAM_A) |
567 |
* ---> (xPAM_B,yPAM_B,zPAM_B) |
568 |
* |
569 |
* It also assigns the spatial resolution to the evaluated coordinates, |
570 |
* as a function (in principle) of the multiplicity, the angle, the PFA etc... |
571 |
* |
572 |
* |
573 |
* To call the routine you must pass the arguments: |
574 |
* icx - ID of cluster x |
575 |
* icy - ID of cluster y |
576 |
* sensor - sensor (1,2) |
577 |
* PFAx - Position Finding Algorithm in x (COG2,ETA2,...) |
578 |
* PFAy - Position Finding Algorithm in y (COG2,ETA2,...) |
579 |
* angx - Projected angle in x |
580 |
* angy - Projected angle in y |
581 |
* bfx - x-component of magnetci field |
582 |
* bfy - y-component of magnetic field |
583 |
* |
584 |
* --------- COUPLES ------------------------------------------------------- |
585 |
* The couple defines a point in the space. |
586 |
* The coordinates of the point are evaluated as follows: |
587 |
* 1 - the corrected coordinates relative to the sensor are evaluated |
588 |
* according to the chosen PFA --> (xi,yi,0) |
589 |
* 2 - coordinates are rotated and traslated, according to the aligmnet |
590 |
* parameters, and expressed in the reference system of the mechanical |
591 |
* sensor --> (xrt,yrt,zrt) |
592 |
* 3 - coordinates are finally converted to the PAMELA reference system |
593 |
* --> (xPAM,yPAM,zPAM) |
594 |
* |
595 |
* --------- SINGLETS ------------------------------------------------------- |
596 |
* Since a coordinate is missing, the singlet defines not a point |
597 |
* in the space but a segment AB (parallel to the strips). |
598 |
* In this case the routine returns the coordinates in the PAMELA reference |
599 |
* system of the two extremes A and B of the segment: |
600 |
* --> (xPAM_A,yPAM_A,zPAM_A) |
601 |
* --> (xPAM_B,yPAM_B,zPAM_B) |
602 |
* |
603 |
* ========================================================== |
604 |
* |
605 |
* The output of the routine is stored in the commons: |
606 |
* |
607 |
* double precision xPAM,yPAM,zPAM |
608 |
* common/coord_xyz_PAM/xPAM,yPAM,zPAM |
609 |
* |
610 |
* double precision xPAM_A,yPAM_A,zPAM_A |
611 |
* double precision xPAM_B,yPAM_B,zPAM_B |
612 |
* common/coord_AB_PAM/xPAM_A,yPAM_A,zPAM_A,xPAM_B,yPAM_B,zPAM_B |
613 |
* |
614 |
* double precision resxPAM,resyPAM |
615 |
* common/resolution_PAM/resxPAM,resyPAM |
616 |
* |
617 |
* (in file common_xyzPAM.f) |
618 |
* |
619 |
* |
620 |
|
621 |
subroutine xyz_PAM(icx,icy,sensor,PFAx,PFAy,ax,ay,bfx,bfy) |
622 |
|
623 |
|
624 |
include 'commontracker.f' |
625 |
include 'level1.f' |
626 |
include 'calib.f' |
627 |
include 'common_align.f' |
628 |
include 'common_mech.f' |
629 |
include 'common_xyzPAM.f' |
630 |
|
631 |
integer icx,icy !X-Y cluster ID |
632 |
integer sensor |
633 |
integer viewx,viewy |
634 |
character*4 PFAx,PFAy !PFA to be used |
635 |
real ax,ay !X-Y geometric angle |
636 |
real angx,angy !X-Y effective angle |
637 |
real bfx,bfy !X-Y b-field components |
638 |
|
639 |
real stripx,stripy |
640 |
|
641 |
double precision xi,yi,zi |
642 |
double precision xi_A,yi_A,zi_A |
643 |
double precision xi_B,yi_B,zi_B |
644 |
double precision xrt,yrt,zrt |
645 |
double precision xrt_A,yrt_A,zrt_A |
646 |
double precision xrt_B,yrt_B,zrt_B |
647 |
|
648 |
|
649 |
parameter (ndivx=30) |
650 |
|
651 |
|
652 |
|
653 |
resxPAM = 0 |
654 |
resyPAM = 0 |
655 |
|
656 |
xPAM = 0.D0 |
657 |
yPAM = 0.D0 |
658 |
zPAM = 0.D0 |
659 |
xPAM_A = 0.D0 |
660 |
yPAM_A = 0.D0 |
661 |
zPAM_A = 0.D0 |
662 |
xPAM_B = 0.D0 |
663 |
yPAM_B = 0.D0 |
664 |
zPAM_B = 0.D0 |
665 |
|
666 |
if(sensor.lt.1.or.sensor.gt.2)then |
667 |
print*,'xyz_PAM ***ERROR*** wrong input ' |
668 |
print*,'sensor ',sensor |
669 |
icx=0 |
670 |
icy=0 |
671 |
endif |
672 |
|
673 |
* ----------------- |
674 |
* CLUSTER X |
675 |
* ----------------- |
676 |
if(icx.ne.0)then |
677 |
|
678 |
viewx = VIEW(icx) |
679 |
nldx = nld(MAXS(icx),VIEW(icx)) |
680 |
nplx = npl(VIEW(icx)) |
681 |
c resxPAM = RESXAV |
682 |
stripx = float(MAXS(icx)) |
683 |
|
684 |
if( |
685 |
$ viewx.lt.1.or. |
686 |
$ viewx.gt.12.or. |
687 |
$ nldx.lt.1.or. |
688 |
$ nldx.gt.3.or. |
689 |
$ stripx.lt.1.or. |
690 |
$ stripx.gt.3072.or. |
691 |
$ .false.)then |
692 |
print*,'xyz_PAM ***ERROR*** wrong input ' |
693 |
print*,'icx ',icx,'view ',viewx,'nld ',nldx,'strip ',stripx |
694 |
icx = 0 |
695 |
goto 10 |
696 |
endif |
697 |
|
698 |
* -------------------------- |
699 |
* magnetic-field corrections |
700 |
* -------------------------- |
701 |
stripx = stripx + fieldcorr(viewx,bfy) |
702 |
angx = effectiveangle(ax,viewx,bfy) |
703 |
|
704 |
call applypfa(PFAx,icx,angx,corr,res) |
705 |
stripx = stripx + corr |
706 |
resxPAM = res |
707 |
|
708 |
10 endif |
709 |
|
710 |
* ----------------- |
711 |
* CLUSTER Y |
712 |
* ----------------- |
713 |
|
714 |
if(icy.ne.0)then |
715 |
|
716 |
viewy = VIEW(icy) |
717 |
nldy = nld(MAXS(icy),VIEW(icy)) |
718 |
nply = npl(VIEW(icy)) |
719 |
c resyPAM = RESYAV |
720 |
stripy = float(MAXS(icy)) |
721 |
|
722 |
if( |
723 |
$ viewy.lt.1.or. |
724 |
$ viewy.gt.12.or. |
725 |
$ nldy.lt.1.or. |
726 |
$ nldy.gt.3.or. |
727 |
$ stripy.lt.1.or. |
728 |
$ stripy.gt.3072.or. |
729 |
$ .false.)then |
730 |
print*,'xyz_PAM ***ERROR*** wrong input ' |
731 |
print*,'icy ',icy,'view ',viewy,'nld ',nldy,'strip ',stripy |
732 |
icy = 0 |
733 |
goto 20 |
734 |
endif |
735 |
|
736 |
if(icx.ne.0.and.(nply.ne.nplx.or.nldy.ne.nldx))then |
737 |
if(DEBUG.EQ.1) then |
738 |
print*,'xyz_PAM ***ERROR*** invalid cluster couple!!! ' |
739 |
$ ,icx,icy |
740 |
endif |
741 |
goto 100 |
742 |
endif |
743 |
|
744 |
* -------------------------- |
745 |
* magnetic-field corrections |
746 |
* -------------------------- |
747 |
stripy = stripy + fieldcorr(viewy,bfx) |
748 |
angy = effectiveangle(ay,viewy,bfx) |
749 |
|
750 |
call applypfa(PFAy,icy,angy,corr,res) |
751 |
stripy = stripy + corr |
752 |
resyPAM = res |
753 |
|
754 |
20 endif |
755 |
|
756 |
|
757 |
c=========================================================== |
758 |
C COUPLE |
759 |
C=========================================================== |
760 |
if(icx.ne.0.and.icy.ne.0)then |
761 |
|
762 |
c------------------------------------------------------------------------ |
763 |
c (xi,yi,zi) = mechanical coordinates in the silicon sensor frame |
764 |
c------------------------------------------------------------------------ |
765 |
if(((mod(int(stripx+0.5)-1,1024)+1).le.3) |
766 |
$ .or.((mod(int(stripx+0.5)-1,1024)+1).ge.1022)) then !X has 1018 strips... |
767 |
if(DEBUG.EQ.1) then |
768 |
print*,'xyz_PAM (couple):', |
769 |
$ ' WARNING: false X strip: strip ',stripx |
770 |
endif |
771 |
endif |
772 |
xi = dcoordsi(stripx,viewx) |
773 |
yi = dcoordsi(stripy,viewy) |
774 |
zi = 0.D0 |
775 |
|
776 |
c------------------------------------------------------------------------ |
777 |
c (xrt,yrt,zrt) = rototranslated coordinates in the silicon sensor frame |
778 |
c------------------------------------------------------------------------ |
779 |
c N.B. I convert angles from microradiants to radiants |
780 |
|
781 |
xrt = xi |
782 |
$ - omega(nplx,nldx,sensor)*yi |
783 |
$ + gamma(nplx,nldx,sensor)*zi |
784 |
$ + dx(nplx,nldx,sensor) |
785 |
|
786 |
yrt = omega(nplx,nldx,sensor)*xi |
787 |
$ + yi |
788 |
$ - beta(nplx,nldx,sensor)*zi |
789 |
$ + dy(nplx,nldx,sensor) |
790 |
|
791 |
zrt = -gamma(nplx,nldx,sensor)*xi |
792 |
$ + beta(nplx,nldx,sensor)*yi |
793 |
$ + zi |
794 |
$ + dz(nplx,nldx,sensor) |
795 |
|
796 |
c xrt = xi |
797 |
c yrt = yi |
798 |
c zrt = zi |
799 |
|
800 |
c------------------------------------------------------------------------ |
801 |
c (xPAM,yPAM,zPAM) = measured coordinates (in cm) |
802 |
c in PAMELA reference system |
803 |
c------------------------------------------------------------------------ |
804 |
|
805 |
xPAM = dcoord(xrt,viewx,nldx,sensor) / 1.d4 |
806 |
yPAM = dcoord(yrt,viewy,nldy,sensor) / 1.d4 |
807 |
zPAM = ( zrt + z_mech_sensor(nplx,nldx,sensor)*1000. ) / 1.d4 |
808 |
|
809 |
xPAM_A = 0.D0 |
810 |
yPAM_A = 0.D0 |
811 |
zPAM_A = 0.D0 |
812 |
|
813 |
xPAM_B = 0.D0 |
814 |
yPAM_B = 0.D0 |
815 |
zPAM_B = 0.D0 |
816 |
|
817 |
elseif( |
818 |
$ (icx.ne.0.and.icy.eq.0).or. |
819 |
$ (icx.eq.0.and.icy.ne.0).or. |
820 |
$ .false. |
821 |
$ )then |
822 |
|
823 |
c------------------------------------------------------------------------ |
824 |
c (xi,yi,zi) = mechanical coordinates in the silicon sensor frame |
825 |
c------------------------------------------------------------------------ |
826 |
|
827 |
if(icy.ne.0)then |
828 |
c=========================================================== |
829 |
C Y-SINGLET |
830 |
C=========================================================== |
831 |
nplx = nply |
832 |
nldx = nldy |
833 |
viewx = viewy + 1 |
834 |
|
835 |
xi = dcoordsi(0.5*(nstrips+1),viewx) !sensor center |
836 |
yi = dcoordsi(stripy,viewy) |
837 |
zi = 0.D0 |
838 |
|
839 |
xi_A = edgeY_d - SiDimX/2 |
840 |
yi_A = yi |
841 |
zi_A = 0. |
842 |
|
843 |
xi_B = SiDimX/2 - edgeY_u |
844 |
yi_B = yi |
845 |
zi_B = 0. |
846 |
|
847 |
|
848 |
elseif(icx.ne.0)then |
849 |
c=========================================================== |
850 |
C X-SINGLET |
851 |
C=========================================================== |
852 |
|
853 |
nply = nplx |
854 |
nldy = nldx |
855 |
viewy = viewx - 1 |
856 |
|
857 |
if(((mod(int(stripx+0.5)-1,1024)+1).le.3) |
858 |
$ .or.((mod(int(stripx+0.5)-1,1024)+1).ge.1022)) then !X has 1018 strips... |
859 |
if(DEBUG.EQ.1) then |
860 |
print*,'xyz_PAM (X-singlet):', |
861 |
$ ' WARNING: false X strip: strip ',stripx |
862 |
endif |
863 |
endif |
864 |
|
865 |
xi = dcoordsi(stripx,viewx) |
866 |
yi = dcoordsi(0.5*(nstrips+1),viewy) !sensor center |
867 |
zi = 0.D0 |
868 |
|
869 |
xi_A = xi |
870 |
yi_A = edgeX_d - SiDimY/2 |
871 |
zi_A = 0. |
872 |
|
873 |
xi_B = xi |
874 |
yi_B = SiDimY/2 - edgeX_u |
875 |
zi_B = 0. |
876 |
|
877 |
if(viewy.eq.11)then |
878 |
yi = yi_A |
879 |
yi_A = yi_B |
880 |
yi_B = yi |
881 |
endif |
882 |
|
883 |
|
884 |
else |
885 |
if(DEBUG.EQ.1) then |
886 |
print *,'routine xyz_PAM ---> not properly used !!!' |
887 |
print *,'icx = ',icx |
888 |
print *,'icy = ',icy |
889 |
endif |
890 |
goto 100 |
891 |
|
892 |
endif |
893 |
c------------------------------------------------------------------------ |
894 |
c (xrt,yrt,zrt) = rototranslated coordinates in the silicon sensor frame |
895 |
c------------------------------------------------------------------------ |
896 |
c N.B. I convert angles from microradiants to radiants |
897 |
|
898 |
xrt_A = xi_A |
899 |
$ - omega(nplx,nldx,sensor)*yi_A |
900 |
$ + gamma(nplx,nldx,sensor)*zi_A |
901 |
$ + dx(nplx,nldx,sensor) |
902 |
|
903 |
yrt_A = omega(nplx,nldx,sensor)*xi_A |
904 |
$ + yi_A |
905 |
$ - beta(nplx,nldx,sensor)*zi_A |
906 |
$ + dy(nplx,nldx,sensor) |
907 |
|
908 |
zrt_A = -gamma(nplx,nldx,sensor)*xi_A |
909 |
$ + beta(nplx,nldx,sensor)*yi_A |
910 |
$ + zi_A |
911 |
$ + dz(nplx,nldx,sensor) |
912 |
|
913 |
xrt_B = xi_B |
914 |
$ - omega(nplx,nldx,sensor)*yi_B |
915 |
$ + gamma(nplx,nldx,sensor)*zi_B |
916 |
$ + dx(nplx,nldx,sensor) |
917 |
|
918 |
yrt_B = omega(nplx,nldx,sensor)*xi_B |
919 |
$ + yi_B |
920 |
$ - beta(nplx,nldx,sensor)*zi_B |
921 |
$ + dy(nplx,nldx,sensor) |
922 |
|
923 |
zrt_B = -gamma(nplx,nldx,sensor)*xi_B |
924 |
$ + beta(nplx,nldx,sensor)*yi_B |
925 |
$ + zi_B |
926 |
$ + dz(nplx,nldx,sensor) |
927 |
|
928 |
|
929 |
|
930 |
xrt = xi |
931 |
$ - omega(nplx,nldx,sensor)*yi |
932 |
$ + gamma(nplx,nldx,sensor)*zi |
933 |
$ + dx(nplx,nldx,sensor) |
934 |
|
935 |
yrt = omega(nplx,nldx,sensor)*xi |
936 |
$ + yi |
937 |
$ - beta(nplx,nldx,sensor)*zi |
938 |
$ + dy(nplx,nldx,sensor) |
939 |
|
940 |
zrt = -gamma(nplx,nldx,sensor)*xi |
941 |
$ + beta(nplx,nldx,sensor)*yi |
942 |
$ + zi |
943 |
$ + dz(nplx,nldx,sensor) |
944 |
|
945 |
|
946 |
|
947 |
c xrt = xi |
948 |
c yrt = yi |
949 |
c zrt = zi |
950 |
|
951 |
c------------------------------------------------------------------------ |
952 |
c (xPAM,yPAM,zPAM) = measured coordinates (in cm) |
953 |
c in PAMELA reference system |
954 |
c------------------------------------------------------------------------ |
955 |
|
956 |
xPAM = dcoord(xrt,viewx,nldx,sensor) / 1.d4 |
957 |
yPAM = dcoord(yrt,viewy,nldy,sensor) / 1.d4 |
958 |
zPAM = ( zrt + z_mech_sensor(nplx,nldx,sensor)*1000. ) / 1.d4 |
959 |
c$$$ xPAM = 0.D0 |
960 |
c$$$ yPAM = 0.D0 |
961 |
c$$$ zPAM = 0.D0 |
962 |
|
963 |
xPAM_A = dcoord(xrt_A,viewx,nldx,sensor) / 1.d4 |
964 |
yPAM_A = dcoord(yrt_A,viewy,nldy,sensor) / 1.d4 |
965 |
zPAM_A = ( zrt_A + z_mech_sensor(nplx,nldx,sensor)*1000.)/ 1.d4 |
966 |
|
967 |
xPAM_B = dcoord(xrt_B,viewx,nldx,sensor) / 1.d4 |
968 |
yPAM_B = dcoord(yrt_B,viewy,nldy,sensor) / 1.d4 |
969 |
zPAM_B = ( zrt_B + z_mech_sensor(nplx,nldx,sensor)*1000.)/ 1.d4 |
970 |
|
971 |
|
972 |
|
973 |
else |
974 |
if(DEBUG.EQ.1) then |
975 |
print *,'routine xyz_PAM ---> not properly used !!!' |
976 |
print *,'icx = ',icx |
977 |
print *,'icy = ',icy |
978 |
endif |
979 |
endif |
980 |
|
981 |
|
982 |
|
983 |
100 continue |
984 |
end |
985 |
|
986 |
************************************************************************ |
987 |
* Call xyz_PAM subroutine with default PFA and fill the mini2 common. |
988 |
* (done to be called from c/c++) |
989 |
************************************************************************ |
990 |
|
991 |
subroutine xyzpam(ip,icx,icy,lad,sensor,ax,ay,bfx,bfy) |
992 |
|
993 |
include 'commontracker.f' |
994 |
include 'level1.f' |
995 |
include 'common_mini_2.f' |
996 |
include 'common_xyzPAM.f' |
997 |
include 'common_mech.f' |
998 |
include 'calib.f' |
999 |
|
1000 |
* flag to chose PFA |
1001 |
c$$$ character*10 PFA |
1002 |
c$$$ common/FINALPFA/PFA |
1003 |
|
1004 |
integer icx,icy !X-Y cluster ID |
1005 |
integer sensor |
1006 |
character*4 PFAx,PFAy !PFA to be used |
1007 |
real ax,ay !X-Y geometric angle |
1008 |
real bfx,bfy !X-Y b-field components |
1009 |
|
1010 |
ipx=0 |
1011 |
ipy=0 |
1012 |
|
1013 |
c$$$ PFAx = 'COG4'!PFA |
1014 |
c$$$ PFAy = 'COG4'!PFA |
1015 |
|
1016 |
|
1017 |
if(icx.gt.nclstr1.or.icy.gt.nclstr1)then |
1018 |
print*,'xyzpam: ***WARNING*** clusters ',icx,icy |
1019 |
$ ,' do not exists (n.clusters=',nclstr1,')' |
1020 |
icx = -1*icx |
1021 |
icy = -1*icy |
1022 |
return |
1023 |
|
1024 |
endif |
1025 |
|
1026 |
call idtoc(pfaid,PFAx) |
1027 |
call idtoc(pfaid,PFAy) |
1028 |
|
1029 |
|
1030 |
if(icx.ne.0.and.icy.ne.0)then |
1031 |
|
1032 |
ipx=npl(VIEW(icx)) |
1033 |
ipy=npl(VIEW(icy)) |
1034 |
|
1035 |
if( (nplanes-ipx+1).ne.ip )then |
1036 |
print*,'xyzpam: ***WARNING*** cluster ',icx |
1037 |
$ ,' does not belong to plane: ',ip |
1038 |
icx = -1*icx |
1039 |
return |
1040 |
endif |
1041 |
if( (nplanes-ipy+1).ne.ip )then |
1042 |
print*,'xyzpam: ***WARNING*** cluster ',icy |
1043 |
$ ,' does not belong to plane: ',ip |
1044 |
icy = -1*icy |
1045 |
return |
1046 |
endif |
1047 |
|
1048 |
call xyz_PAM(icx,icy,sensor,PFAx,PFAy,ax,ay,bfx,bfy) |
1049 |
|
1050 |
xgood(ip) = 1. |
1051 |
ygood(ip) = 1. |
1052 |
resx(ip) = resxPAM |
1053 |
resy(ip) = resyPAM |
1054 |
|
1055 |
xm(ip) = xPAM |
1056 |
ym(ip) = yPAM |
1057 |
zm(ip) = zPAM |
1058 |
xm_A(ip) = 0.D0 |
1059 |
ym_A(ip) = 0.D0 |
1060 |
xm_B(ip) = 0.D0 |
1061 |
ym_B(ip) = 0.D0 |
1062 |
|
1063 |
c zv(ip) = zPAM |
1064 |
|
1065 |
elseif(icx.eq.0.and.icy.ne.0)then |
1066 |
|
1067 |
ipy=npl(VIEW(icy)) |
1068 |
if( (nplanes-ipy+1).ne.ip )then |
1069 |
print*,'xyzpam: ***WARNING*** cluster ',icy |
1070 |
$ ,' does not belong to plane: ',ip |
1071 |
icy = -1*icy |
1072 |
return |
1073 |
endif |
1074 |
|
1075 |
call xyz_PAM(icx,icy,sensor,PFAx,PFAy,ax,ay,bfx,bfy) |
1076 |
|
1077 |
xgood(ip) = 0. |
1078 |
ygood(ip) = 1. |
1079 |
resx(ip) = 1000. |
1080 |
resy(ip) = resyPAM |
1081 |
|
1082 |
c$$$ xm(ip) = -100. |
1083 |
c$$$ ym(ip) = -100. |
1084 |
c$$$ zm(ip) = (zPAM_A+zPAM_B)/2. |
1085 |
xm(ip) = xPAM |
1086 |
ym(ip) = yPAM |
1087 |
zm(ip) = zPAM |
1088 |
xm_A(ip) = xPAM_A |
1089 |
ym_A(ip) = yPAM_A |
1090 |
xm_B(ip) = xPAM_B |
1091 |
ym_B(ip) = yPAM_B |
1092 |
|
1093 |
c zv(ip) = (zPAM_A+zPAM_B)/2. |
1094 |
|
1095 |
elseif(icx.ne.0.and.icy.eq.0)then |
1096 |
|
1097 |
ipx=npl(VIEW(icx)) |
1098 |
|
1099 |
if( (nplanes-ipx+1).ne.ip )then |
1100 |
print*,'xyzpam: ***WARNING*** cluster ',icx |
1101 |
$ ,' does not belong to plane: ',ip |
1102 |
icx = -1*icx |
1103 |
return |
1104 |
endif |
1105 |
|
1106 |
call xyz_PAM(icx,icy,sensor,PFAx,PFAy,ax,ay,bfx,bfy) |
1107 |
|
1108 |
xgood(ip) = 1. |
1109 |
ygood(ip) = 0. |
1110 |
resx(ip) = resxPAM |
1111 |
resy(ip) = 1000. |
1112 |
|
1113 |
c$$$ xm(ip) = -100. |
1114 |
c$$$ ym(ip) = -100. |
1115 |
c$$$ zm(ip) = (zPAM_A+zPAM_B)/2. |
1116 |
xm(ip) = xPAM |
1117 |
ym(ip) = yPAM |
1118 |
zm(ip) = zPAM |
1119 |
xm_A(ip) = xPAM_A |
1120 |
ym_A(ip) = yPAM_A |
1121 |
xm_B(ip) = xPAM_B |
1122 |
ym_B(ip) = yPAM_B |
1123 |
|
1124 |
c zv(ip) = (zPAM_A+zPAM_B)/2. |
1125 |
|
1126 |
else |
1127 |
|
1128 |
il = 2 |
1129 |
if(lad.ne.0)il=lad |
1130 |
is = 1 |
1131 |
if(sensor.ne.0)is=sensor |
1132 |
|
1133 |
xgood(ip) = 0. |
1134 |
ygood(ip) = 0. |
1135 |
resx(ip) = 1000. |
1136 |
resy(ip) = 1000. |
1137 |
|
1138 |
xm(ip) = -100. |
1139 |
ym(ip) = -100. |
1140 |
zm(ip) = z_mech_sensor(nplanes-ip+1,il,is)*1000./1.d4 |
1141 |
xm_A(ip) = 0. |
1142 |
ym_A(ip) = 0. |
1143 |
xm_B(ip) = 0. |
1144 |
ym_B(ip) = 0. |
1145 |
|
1146 |
c zv(ip) = z_mech_sensor(nplanes-ip+1,il,is)*1000./1.d4 |
1147 |
|
1148 |
endif |
1149 |
|
1150 |
if(DEBUG.EQ.1)then |
1151 |
22222 format(i2,' * ',3f10.4,' --- ',4f10.4,' --- ',2f4.0,2f10.5) |
1152 |
write(*,22222)ip,zm(ip),xm(ip),ym(ip) |
1153 |
$ ,xm_A(ip),ym_A(ip),xm_B(ip),ym_B(ip) |
1154 |
$ ,xgood(ip),ygood(ip),resx(ip),resy(ip) |
1155 |
endif |
1156 |
end |
1157 |
|
1158 |
******************************************************************************** |
1159 |
******************************************************************************** |
1160 |
******************************************************************************** |
1161 |
* |
1162 |
* The function distance_to(XP,YP) should be used after |
1163 |
* a call to the xyz_PAM routine and it evaluate the |
1164 |
* NORMALIZED distance (PROJECTED on the XY plane) between |
1165 |
* the point (XP,YP), argument of the function, |
1166 |
* and: |
1167 |
* |
1168 |
* - the point (xPAM,yPAM,zPAM), in the case of a COUPLE |
1169 |
* or |
1170 |
* - the segment (xPAM_A,yPAM_A,zPAM_A)-(xPAM_B,yPAM_B,zPAM_B), |
1171 |
* in the case of a SINGLET. |
1172 |
* |
1173 |
* ( The routine xyz_PAM fills the common defined in "common_xyzPAM.f", |
1174 |
* which stores the coordinates of the couple/singlet ) |
1175 |
* |
1176 |
******************************************************************************** |
1177 |
|
1178 |
real function distance_to(rXPP,rYPP) |
1179 |
|
1180 |
include 'common_xyzPAM.f' |
1181 |
|
1182 |
* ----------------------------------- |
1183 |
* it computes the normalized distance |
1184 |
* ( i.e. distance/resolution ) |
1185 |
* ----------------------------------- |
1186 |
|
1187 |
real rXPP,rYPP |
1188 |
double precision XPP,YPP |
1189 |
double precision distance,RE |
1190 |
double precision BETA,ALFA,xmi,ymi |
1191 |
|
1192 |
XPP=DBLE(rXPP) |
1193 |
YPP=DBLE(rYPP) |
1194 |
|
1195 |
* ---------------------- |
1196 |
if ( |
1197 |
c$$$ + xPAM.eq.0.and. |
1198 |
c$$$ + yPAM.eq.0.and. |
1199 |
c$$$ + zPAM.eq.0.and. |
1200 |
+ xPAM_A.ne.0.and. |
1201 |
+ yPAM_A.ne.0.and. |
1202 |
+ zPAM_A.ne.0.and. |
1203 |
+ xPAM_B.ne.0.and. |
1204 |
+ yPAM_B.ne.0.and. |
1205 |
+ zPAM_B.ne.0.and. |
1206 |
+ .true.)then |
1207 |
* ----------------------- |
1208 |
* DISTANCE TO --- SINGLET |
1209 |
* ----------------------- |
1210 |
if(abs(sngl(xPAM_B-xPAM_A)).lt.abs(sngl(yPAM_B-yPAM_A)))then |
1211 |
* |||---------- X CLUSTER |
1212 |
|
1213 |
BETA = (xPAM_B-xPAM_A)/(yPAM_B-yPAM_A) |
1214 |
ALFA = xPAM_A - BETA * yPAM_A |
1215 |
|
1216 |
ymi = ( YPP + BETA*XPP - BETA*ALFA )/(1+BETA**2) |
1217 |
if(ymi.lt.dmin1(yPAM_A,yPAM_B))ymi=dmin1(yPAM_A,yPAM_B) |
1218 |
if(ymi.gt.dmax1(yPAM_A,yPAM_B))ymi=dmax1(yPAM_A,yPAM_B) |
1219 |
xmi = ALFA + BETA * ymi |
1220 |
RE = resxPAM |
1221 |
|
1222 |
else |
1223 |
* |||---------- Y CLUSTER |
1224 |
|
1225 |
BETA = (yPAM_B-yPAM_A)/(xPAM_B-xPAM_A) |
1226 |
ALFA = yPAM_A - BETA * xPAM_A |
1227 |
|
1228 |
xmi = ( XPP + BETA*YPP - BETA*ALFA )/(1+BETA**2) |
1229 |
if(xmi.lt.dmin1(xPAM_A,xPAM_B))xmi=dmin1(xPAM_A,xPAM_B) |
1230 |
if(xmi.gt.dmax1(xPAM_A,xPAM_B))xmi=dmax1(xPAM_A,xPAM_B) |
1231 |
ymi = ALFA + BETA * xmi |
1232 |
RE = resyPAM |
1233 |
|
1234 |
endif |
1235 |
|
1236 |
distance= |
1237 |
$ ((xmi-XPP)**2+(ymi-YPP)**2)!QUIQUI |
1238 |
cc $ ((xmi-XPP)**2+(ymi-YPP)**2)/RE**2 |
1239 |
distance=dsqrt(distance) |
1240 |
|
1241 |
|
1242 |
|
1243 |
* ---------------------- |
1244 |
elseif( |
1245 |
c$$$ + xPAM.ne.0.and. |
1246 |
c$$$ + yPAM.ne.0.and. |
1247 |
c$$$ + zPAM.ne.0.and. |
1248 |
+ xPAM_A.eq.0.and. |
1249 |
+ yPAM_A.eq.0.and. |
1250 |
+ zPAM_A.eq.0.and. |
1251 |
+ xPAM_B.eq.0.and. |
1252 |
+ yPAM_B.eq.0.and. |
1253 |
+ zPAM_B.eq.0.and. |
1254 |
+ .true.)then |
1255 |
* ---------------------- |
1256 |
* DISTANCE TO --- COUPLE |
1257 |
* ---------------------- |
1258 |
|
1259 |
distance= |
1260 |
$ ((xPAM-XPP))**2 !QUIQUI |
1261 |
$ + |
1262 |
$ ((yPAM-YPP))**2 |
1263 |
c$$$ $ ((xPAM-XPP)/resxPAM)**2 |
1264 |
c$$$ $ + |
1265 |
c$$$ $ ((yPAM-YPP)/resyPAM)**2 |
1266 |
distance=dsqrt(distance) |
1267 |
|
1268 |
|
1269 |
else |
1270 |
|
1271 |
endif |
1272 |
|
1273 |
distance_to = sngl(distance) |
1274 |
|
1275 |
return |
1276 |
end |
1277 |
|
1278 |
******************************************************************************** |
1279 |
******************************************************************************** |
1280 |
******************************************************************************** |
1281 |
******************************************************************************** |
1282 |
|
1283 |
subroutine whichsensor(nplPAM,xPAM,yPAM,ladder,sensor) |
1284 |
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * |
1285 |
* Given the plane (1-6 from BOTTOM to TOP!!) and the (xPAM,yPAM) |
1286 |
* coordinates (in the PAMELA reference system), it returns |
1287 |
* the ladder and the sensor which the point belongs to. |
1288 |
* |
1289 |
* The method to assign a point to a sensor consists in |
1290 |
* - calculating the sum of the distances between the point |
1291 |
* and the sensor edges |
1292 |
* - requiring that it is less-equal than (SiDimX+SiDimY) |
1293 |
* |
1294 |
* NB -- SiDimX and SiDimY are not the dimentions of the SENSITIVE volume |
1295 |
* but of the whole silicon sensor |
1296 |
* |
1297 |
* CONVENTION: |
1298 |
* - sensor 1 is the one closest to the hybrid |
1299 |
* - ladder 1 is the first to be read out (strips from 1 to 1024) |
1300 |
* |
1301 |
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * |
1302 |
include 'commontracker.f' |
1303 |
include 'common_align.f' |
1304 |
|
1305 |
integer ladder,sensor,viewx,viewy |
1306 |
real c1(4),c2(4),c3(4) |
1307 |
data c1/1.,0.,0.,1./ |
1308 |
data c2/1.,-1.,-1.,1./ |
1309 |
data c3/1.,1.,0.,0./ |
1310 |
double precision yvvv,xvvv |
1311 |
double precision xi,yi,zi |
1312 |
double precision xrt,yrt,zrt |
1313 |
real AA,BB |
1314 |
double precision yvv(4),xvv(4) |
1315 |
|
1316 |
* tollerance to consider the track inside the sensitive area |
1317 |
real ptoll |
1318 |
data ptoll/150./ !um |
1319 |
|
1320 |
external nviewx,nviewy,dcoordsi,dcoord |
1321 |
|
1322 |
nplpt = nplPAM !plane |
1323 |
viewx = nviewx(nplpt) |
1324 |
viewy = nviewy(nplpt) |
1325 |
|
1326 |
do il=1,nladders_view |
1327 |
do is=1,2 |
1328 |
|
1329 |
do iv=1,4 !loop on sensor vertexes |
1330 |
stripx = (il-c1(iv))*1024 + c1(iv) + c2(iv)*3 |
1331 |
stripy = (il-c3(iv))*1024 + c3(iv) |
1332 |
c------------------------------------------------------------------------ |
1333 |
c (xi,yi,zi) = mechanical coordinates in the silicon sensor frame |
1334 |
c------------------------------------------------------------------------ |
1335 |
xi = dcoordsi(stripx,viewx) |
1336 |
yi = dcoordsi(stripy,viewy) |
1337 |
zi = 0.D0 |
1338 |
c------------------------------------------------------------------------ |
1339 |
c (xrt,yrt,zrt) = rototranslated coordinates in the silicon sensor frame |
1340 |
c------------------------------------------------------------------------ |
1341 |
c N.B. I convert angles from microradiants to radiants |
1342 |
xrt = xi |
1343 |
$ - omega(nplpt,il,is)*yi |
1344 |
$ + gamma(nplpt,il,is)*zi |
1345 |
$ + dx(nplpt,il,is) |
1346 |
yrt = omega(nplpt,il,is)*xi |
1347 |
$ + yi |
1348 |
$ - beta(nplpt,il,is)*zi |
1349 |
$ + dy(nplpt,il,is) |
1350 |
zrt = -gamma(nplpt,il,is)*xi |
1351 |
$ + beta(nplpt,il,is)*yi |
1352 |
$ + zi |
1353 |
$ + dz(nplpt,il,is) |
1354 |
c------------------------------------------------------------------------ |
1355 |
c measured coordinates (in cm) in PAMELA reference system |
1356 |
c------------------------------------------------------------------------ |
1357 |
yvvv = dcoord(yrt,viewy,il,is) / 1.d4 |
1358 |
xvvv = dcoord(xrt,viewx,il,is) / 1.d4 |
1359 |
|
1360 |
yvv(iv)=sngl(yvvv) |
1361 |
xvv(iv)=sngl(xvvv) |
1362 |
enddo !end loop on sensor vertexes |
1363 |
|
1364 |
dtot=0. |
1365 |
do iside=1,4,2 !loop on sensor edges X |
1366 |
iv1=iside |
1367 |
iv2=mod(iside,4)+1 |
1368 |
* straight line passing trhough two consecutive vertexes |
1369 |
AA = (yvv(iv1)-yvv(iv2))/(xvv(iv1)-xvv(iv2)) |
1370 |
BB = yvv(iv1) - AA*xvv(iv1) |
1371 |
* point along the straight line closer to the track |
1372 |
xoo = (xPAM+AA*yPAM-AA*BB)/(1+AA**2) |
1373 |
yoo = AA*xoo + BB |
1374 |
* sum of the distances |
1375 |
dtot = dtot + |
1376 |
$ sqrt((xPAM-xoo)**2+(yPAM-yoo)**2) |
1377 |
enddo !end loop on sensor edges |
1378 |
do iside=2,4,2 !loop on sensor edges Y |
1379 |
iv1=iside |
1380 |
iv2=mod(iside,4)+1 |
1381 |
* straight line passing trhough two consecutive vertexes |
1382 |
AA = (xvv(iv1)-xvv(iv2))/(yvv(iv1)-yvv(iv2)) |
1383 |
BB = xvv(iv1) - AA*yvv(iv1) |
1384 |
* point along the straight line closer to the track |
1385 |
yoo = (yPAM+AA*xPAM-AA*BB)/(1+AA**2) |
1386 |
xoo = AA*yoo + BB |
1387 |
* sum of the distances |
1388 |
dtot = dtot + |
1389 |
$ sqrt((xPAM-xoo)**2+(yPAM-yoo)**2) |
1390 |
enddo !end loop on sensor edges |
1391 |
|
1392 |
|
1393 |
* half-perimeter of sensitive area |
1394 |
Perim = |
1395 |
$ SiDimX - edgeX_l - edgeX_r |
1396 |
$ +SiDimY - edgeY_l - edgeY_r |
1397 |
Perim = (Perim + ptoll)/1.e4 |
1398 |
if(dtot.le.Perim)goto 100 |
1399 |
|
1400 |
|
1401 |
enddo |
1402 |
enddo |
1403 |
|
1404 |
ladder = 0 |
1405 |
sensor = 0 |
1406 |
goto 200 |
1407 |
|
1408 |
100 continue |
1409 |
ladder = il |
1410 |
sensor = is |
1411 |
|
1412 |
|
1413 |
200 return |
1414 |
end |
1415 |
|
1416 |
|
1417 |
|
1418 |
************************************************************************* |
1419 |
|
1420 |
subroutine reverse(v,n,temp) !invert the order of the components of v(n) vector |
1421 |
|
1422 |
implicit double precision (A-H,O-Z) |
1423 |
|
1424 |
dimension v(*) |
1425 |
dimension temp(*) |
1426 |
integer i,n |
1427 |
|
1428 |
do i=1,n |
1429 |
temp(i)=v(n+1-i) |
1430 |
enddo |
1431 |
|
1432 |
do i=1,n |
1433 |
v(i)=temp(i) |
1434 |
enddo |
1435 |
|
1436 |
return |
1437 |
end |
1438 |
|
1439 |
************************************************************************* |
1440 |
************************************************************************* |
1441 |
************************************************************************* |
1442 |
************************************************************************* |
1443 |
************************************************************************* |
1444 |
************************************************************************* |
1445 |
************************************************************************* |
1446 |
************************************************************************* |
1447 |
************************************************************************* |
1448 |
************************************************************************* |
1449 |
************************************************************************* |
1450 |
************************************************************************* |
1451 |
************************************************************************* |
1452 |
************************************************************************* |
1453 |
************************************************************************* |
1454 |
integer function ip_cp(id) |
1455 |
* |
1456 |
* given the couple id, |
1457 |
* it returns the plane number |
1458 |
* |
1459 |
include 'commontracker.f' |
1460 |
include 'level1.f' |
1461 |
c include 'common_analysis.f' |
1462 |
include 'common_momanhough.f' |
1463 |
|
1464 |
ip_cp=0 |
1465 |
ncpp=0 |
1466 |
do ip=1,nplanes |
1467 |
ncpp=ncpp+ncp_plane(ip) |
1468 |
if(ncpp.ge.abs(id))then |
1469 |
ip_cp=ip |
1470 |
goto 100 |
1471 |
endif |
1472 |
enddo |
1473 |
100 continue |
1474 |
return |
1475 |
end |
1476 |
|
1477 |
|
1478 |
integer function is_cp(id) |
1479 |
* |
1480 |
* given the couple id, |
1481 |
* it returns the sensor number |
1482 |
* |
1483 |
is_cp=0 |
1484 |
if(id.lt.0)is_cp=1 |
1485 |
if(id.gt.0)is_cp=2 |
1486 |
|
1487 |
return |
1488 |
end |
1489 |
|
1490 |
|
1491 |
integer function icp_cp(id) |
1492 |
* |
1493 |
* given the couple id, |
1494 |
* it returns the id number ON THE PLANE |
1495 |
* |
1496 |
include 'commontracker.f' |
1497 |
include 'level1.f' |
1498 |
c include 'common_analysis.f' |
1499 |
include 'common_momanhough.f' |
1500 |
|
1501 |
icp_cp=0 |
1502 |
|
1503 |
ncpp=0 |
1504 |
do ip=1,nplanes |
1505 |
ncppold=ncpp |
1506 |
ncpp=ncpp+ncp_plane(ip) |
1507 |
if(ncpp.ge.abs(id))then |
1508 |
icp_cp=abs(id)-ncppold |
1509 |
goto 100 |
1510 |
endif |
1511 |
enddo |
1512 |
100 continue |
1513 |
return |
1514 |
end |
1515 |
|
1516 |
|
1517 |
|
1518 |
integer function id_cp(ip,icp,is) |
1519 |
* |
1520 |
* given a plane, a couple and the sensor |
1521 |
* it returns the absolute couple id |
1522 |
* negative if sensor =1 |
1523 |
* positive if sensor =2 |
1524 |
* |
1525 |
include 'commontracker.f' |
1526 |
include 'level1.f' |
1527 |
c include 'calib.f' |
1528 |
c include 'level1.f' |
1529 |
c include 'common_analysis.f' |
1530 |
include 'common_momanhough.f' |
1531 |
|
1532 |
id_cp=0 |
1533 |
|
1534 |
if(ip.gt.1)then |
1535 |
do i=1,ip-1 |
1536 |
id_cp = id_cp + ncp_plane(i) |
1537 |
enddo |
1538 |
endif |
1539 |
|
1540 |
id_cp = id_cp + icp |
1541 |
|
1542 |
if(is.eq.1) id_cp = -id_cp |
1543 |
|
1544 |
return |
1545 |
end |
1546 |
|
1547 |
|
1548 |
|
1549 |
|
1550 |
************************************************************************* |
1551 |
************************************************************************* |
1552 |
************************************************************************* |
1553 |
************************************************************************* |
1554 |
************************************************************************* |
1555 |
************************************************************************* |
1556 |
|
1557 |
|
1558 |
*************************************************** |
1559 |
* * |
1560 |
* * |
1561 |
* * |
1562 |
* * |
1563 |
* * |
1564 |
* * |
1565 |
************************************************** |
1566 |
|
1567 |
subroutine cl_to_couples(iflag) |
1568 |
|
1569 |
include 'commontracker.f' |
1570 |
include 'level1.f' |
1571 |
include 'common_momanhough.f' |
1572 |
c include 'momanhough_init.f' |
1573 |
include 'calib.f' |
1574 |
c include 'level1.f' |
1575 |
|
1576 |
* output flag |
1577 |
* -------------- |
1578 |
* 0 = good event |
1579 |
* 1 = bad event |
1580 |
* -------------- |
1581 |
integer iflag |
1582 |
|
1583 |
integer badseed,badclx,badcly |
1584 |
|
1585 |
if(DEBUG.EQ.1)print*,'cl_to_couples:' |
1586 |
|
1587 |
cc if(RECOVER_SINGLETS.and..not.SECOND_SEARCH)goto 80 |
1588 |
|
1589 |
* init variables |
1590 |
do ip=1,nplanes |
1591 |
do ico=1,ncouplemax |
1592 |
clx(ip,ico)=0 |
1593 |
cly(ip,ico)=0 |
1594 |
enddo |
1595 |
ncp_plane(ip)=0 |
1596 |
do icl=1,nclstrmax_level2 |
1597 |
cls(ip,icl)=1 |
1598 |
enddo |
1599 |
ncls(ip)=0 |
1600 |
enddo |
1601 |
do icl=1,nclstrmax_level2 |
1602 |
cl_single(icl) = 1 !all are single |
1603 |
cl_good(icl) = 0 !all are bad |
1604 |
enddo |
1605 |
do iv=1,nviews |
1606 |
ncl_view(iv) = 0 |
1607 |
mask_view(iv) = 0 !all included |
1608 |
enddo |
1609 |
|
1610 |
* count number of cluster per view |
1611 |
do icl=1,nclstr1 |
1612 |
ncl_view(VIEW(icl)) = ncl_view(VIEW(icl)) + 1 |
1613 |
enddo |
1614 |
* mask views with too many clusters |
1615 |
do iv=1,nviews |
1616 |
if( ncl_view(iv).gt. nclusterlimit)then |
1617 |
c mask_view(iv) = 1 |
1618 |
mask_view(iv) = mask_view(iv) + 2**0 |
1619 |
if(DEBUG.EQ.1) |
1620 |
$ print*,' * WARNING * cl_to_couple: n.clusters > ' |
1621 |
$ ,nclusterlimit,' on view ', iv,' --> masked!' |
1622 |
endif |
1623 |
enddo |
1624 |
|
1625 |
|
1626 |
* start association |
1627 |
ncouples=0 |
1628 |
do icx=1,nclstr1 !loop on cluster (X) |
1629 |
if(mod(VIEW(icx),2).eq.1)goto 10 |
1630 |
|
1631 |
if(cl_used(icx).ne.0)goto 10 |
1632 |
|
1633 |
* ---------------------------------------------------- |
1634 |
* jump masked views (X VIEW) |
1635 |
* ---------------------------------------------------- |
1636 |
if( mask_view(VIEW(icx)).ne.0 ) goto 10 |
1637 |
* ---------------------------------------------------- |
1638 |
* cut on charge (X VIEW) |
1639 |
* ---------------------------------------------------- |
1640 |
if(sgnl(icx)/mip(VIEW(icx),LADDER(icx)).lt.dedx_x_min)then |
1641 |
cl_single(icx)=0 |
1642 |
goto 10 |
1643 |
endif |
1644 |
* ---------------------------------------------------- |
1645 |
* cut BAD (X VIEW) |
1646 |
* ---------------------------------------------------- |
1647 |
badseed=BAD(VIEW(icx),nvk(MAXS(icx)),nst(MAXS(icx))) |
1648 |
ifirst=INDSTART(icx) |
1649 |
if(icx.ne.nclstr1) then |
1650 |
ilast=INDSTART(icx+1)-1 |
1651 |
else |
1652 |
ilast=TOTCLLENGTH |
1653 |
endif |
1654 |
badclx=badseed |
1655 |
do igood=-ngoodstr,ngoodstr |
1656 |
ibad=1 |
1657 |
if((INDMAX(icx)+igood).gt.ifirst.and. |
1658 |
$ (INDMAX(icx)+igood).lt.ilast.and. |
1659 |
$ .true.)then |
1660 |
ibad=BAD(VIEW(icx), |
1661 |
$ nvk(MAXS(icx)+igood), |
1662 |
$ nst(MAXS(icx)+igood)) |
1663 |
endif |
1664 |
badclx=badclx*ibad |
1665 |
enddo |
1666 |
* ---------------------------------------------------- |
1667 |
* >>> eliminato il taglio sulle BAD <<< |
1668 |
* ---------------------------------------------------- |
1669 |
c if(badcl.eq.0)then |
1670 |
c cl_single(icx)=0 |
1671 |
c goto 10 |
1672 |
c endif |
1673 |
* ---------------------------------------------------- |
1674 |
|
1675 |
cl_good(icx)=1 |
1676 |
nplx=npl(VIEW(icx)) |
1677 |
nldx=nld(MAXS(icx),VIEW(icx)) |
1678 |
|
1679 |
do icy=1,nclstr1 !loop on cluster (Y) |
1680 |
if(mod(VIEW(icy),2).eq.0)goto 20 |
1681 |
|
1682 |
if(cl_used(icx).ne.0)goto 20 |
1683 |
|
1684 |
* ---------------------------------------------------- |
1685 |
* jump masked views (Y VIEW) |
1686 |
* ---------------------------------------------------- |
1687 |
if( mask_view(VIEW(icy)).ne.0 ) goto 20 |
1688 |
|
1689 |
* ---------------------------------------------------- |
1690 |
* cut on charge (Y VIEW) |
1691 |
* ---------------------------------------------------- |
1692 |
if(sgnl(icy)/mip(VIEW(icy),LADDER(icy)) .lt.dedx_y_min)then |
1693 |
cl_single(icy)=0 |
1694 |
goto 20 |
1695 |
endif |
1696 |
* ---------------------------------------------------- |
1697 |
* cut BAD (Y VIEW) |
1698 |
* ---------------------------------------------------- |
1699 |
badseed=BAD(VIEW(icy),nvk(MAXS(icy)),nst(MAXS(icy))) |
1700 |
ifirst=INDSTART(icy) |
1701 |
if(icy.ne.nclstr1) then |
1702 |
ilast=INDSTART(icy+1)-1 |
1703 |
else |
1704 |
ilast=TOTCLLENGTH |
1705 |
endif |
1706 |
badcly=badseed |
1707 |
do igood=-ngoodstr,ngoodstr |
1708 |
ibad=1 |
1709 |
if((INDMAX(icy)+igood).gt.ifirst.and. |
1710 |
$ (INDMAX(icy)+igood).lt.ilast.and. |
1711 |
$ .true.) |
1712 |
$ ibad=BAD(VIEW(icy), |
1713 |
$ nvk(MAXS(icy)+igood), |
1714 |
$ nst(MAXS(icy)+igood)) |
1715 |
badcly=badcly*ibad |
1716 |
enddo |
1717 |
* ---------------------------------------------------- |
1718 |
* >>> eliminato il taglio sulle BAD <<< |
1719 |
* ---------------------------------------------------- |
1720 |
c if(badcl.eq.0)then |
1721 |
c cl_single(icy)=0 |
1722 |
c goto 20 |
1723 |
c endif |
1724 |
* ---------------------------------------------------- |
1725 |
|
1726 |
cl_good(icy)=1 |
1727 |
nply=npl(VIEW(icy)) |
1728 |
nldy=nld(MAXS(icy),VIEW(icy)) |
1729 |
|
1730 |
* ---------------------------------------------- |
1731 |
* CONDITION TO FORM A COUPLE |
1732 |
* ---------------------------------------------- |
1733 |
* geometrical consistency (same plane and ladder) |
1734 |
if(nply.eq.nplx.and.nldy.eq.nldx)then |
1735 |
* charge correlation |
1736 |
* (modified to be applied only below saturation... obviously) |
1737 |
|
1738 |
if( .not.(sgnl(icy).gt.chsaty.and.sgnl(icx).gt.chsatx) |
1739 |
$ .and. |
1740 |
$ .not.(sgnl(icy).lt.chmipy.and.sgnl(icx).lt.chmipx) |
1741 |
$ .and. |
1742 |
$ (badclx.eq.1.and.badcly.eq.1) |
1743 |
$ .and. |
1744 |
$ .true.)then |
1745 |
|
1746 |
ddd=(sgnl(icy) |
1747 |
$ -kch(nplx,nldx)*sgnl(icx)-cch(nplx,nldx)) |
1748 |
ddd=ddd/sqrt(kch(nplx,nldx)**2+1) |
1749 |
|
1750 |
c cut = chcut * sch(nplx,nldx) |
1751 |
|
1752 |
sss=(kch(nplx,nldx)*sgnl(icy)+sgnl(icx) |
1753 |
$ -kch(nplx,nldx)*cch(nplx,nldx)) |
1754 |
sss=sss/sqrt(kch(nplx,nldx)**2+1) |
1755 |
cut = chcut * (16 + sss/50.) |
1756 |
|
1757 |
if(abs(ddd).gt.cut)then |
1758 |
goto 20 !charge not consistent |
1759 |
endif |
1760 |
endif |
1761 |
|
1762 |
if(ncp_plane(nplx).gt.ncouplemax)then |
1763 |
if(verbose.eq.1)print*, |
1764 |
$ '** warning ** number of identified '// |
1765 |
$ 'couples on plane ',nplx, |
1766 |
$ 'exceeds vector dimention ' |
1767 |
$ ,'( ',ncouplemax,' ) --> masked!' |
1768 |
c mask_view(nviewx(nplx)) = 2 |
1769 |
c mask_view(nviewy(nply)) = 2 |
1770 |
mask_view(nviewx(nplx))= mask_view(nviewx(nplx))+ 2**1 |
1771 |
mask_view(nviewy(nply))= mask_view(nviewy(nply))+ 2**1 |
1772 |
goto 10 |
1773 |
endif |
1774 |
|
1775 |
* ------------------> COUPLE <------------------ |
1776 |
ncp_plane(nplx) = ncp_plane(nplx) + 1 |
1777 |
clx(nplx,ncp_plane(nplx))=icx |
1778 |
cly(nply,ncp_plane(nplx))=icy |
1779 |
cl_single(icx)=0 |
1780 |
cl_single(icy)=0 |
1781 |
* ---------------------------------------------- |
1782 |
|
1783 |
endif |
1784 |
|
1785 |
20 continue |
1786 |
enddo !end loop on clusters(Y) |
1787 |
|
1788 |
10 continue |
1789 |
enddo !end loop on clusters(X) |
1790 |
|
1791 |
do icl=1,nclstr1 |
1792 |
if(cl_single(icl).eq.1)then |
1793 |
ip=npl(VIEW(icl)) |
1794 |
ncls(ip)=ncls(ip)+1 |
1795 |
cls(ip,ncls(ip))=icl |
1796 |
endif |
1797 |
enddo |
1798 |
|
1799 |
80 continue |
1800 |
|
1801 |
|
1802 |
if(DEBUG.EQ.1)then |
1803 |
print*,'clusters ',nclstr1 |
1804 |
print*,'good ',(cl_good(i),i=1,nclstr1) |
1805 |
print*,'used ',(cl_used(i),i=1,nclstr1) |
1806 |
print*,'singlets',(cl_single(i),i=1,nclstr1) |
1807 |
print*,'couples per plane: ',(ncp_plane(ip),ip=1,nplanes) |
1808 |
endif |
1809 |
|
1810 |
|
1811 |
if(.not.RECOVER_SINGLETS)goto 81 |
1812 |
|
1813 |
* //////////////////////////////////////////////// |
1814 |
* PATCH to recover events with less than 3 couples |
1815 |
* //////////////////////////////////////////////// |
1816 |
* loop over singlet and create "fake" couples |
1817 |
* (with clx=0 or cly=0) |
1818 |
* |
1819 |
|
1820 |
if(DEBUG.EQ.1) |
1821 |
$ print*,'>>> Recover singlets ' |
1822 |
$ ,'(creates fake couples) <<<' |
1823 |
do icl=1,nclstr1 |
1824 |
if( |
1825 |
$ cl_single(icl).eq.1.and. |
1826 |
$ cl_used(icl).eq.0.and. |
1827 |
$ .true.)then |
1828 |
* ---------------------------------------------------- |
1829 |
* jump masked views |
1830 |
* ---------------------------------------------------- |
1831 |
if( mask_view(VIEW(icl)).ne.0 ) goto 21 |
1832 |
if(mod(VIEW(icl),2).eq.0)then !=== X views |
1833 |
* ---------------------------------------------------- |
1834 |
* cut on charge (X VIEW) |
1835 |
* ---------------------------------------------------- |
1836 |
if(sgnl(icl).lt.dedx_x_min) goto 21 |
1837 |
|
1838 |
nplx=npl(VIEW(icl)) |
1839 |
* ------------------> (FAKE) COUPLE <----------------- |
1840 |
ncp_plane(nplx) = ncp_plane(nplx) + 1 |
1841 |
clx(nplx,ncp_plane(nplx))=icl |
1842 |
cly(nplx,ncp_plane(nplx))=0 |
1843 |
c$$$ cl_single(icl)=0! I leave the cluster tagged as singlet!!! |
1844 |
* ---------------------------------------------------- |
1845 |
|
1846 |
else !=== Y views |
1847 |
* ---------------------------------------------------- |
1848 |
* cut on charge (Y VIEW) |
1849 |
* ---------------------------------------------------- |
1850 |
if(sgnl(icl).lt.dedx_y_min) goto 21 |
1851 |
|
1852 |
nply=npl(VIEW(icl)) |
1853 |
* ------------------> (FAKE) COUPLE <----------------- |
1854 |
ncp_plane(nply) = ncp_plane(nply) + 1 |
1855 |
clx(nply,ncp_plane(nply))=0 |
1856 |
cly(nply,ncp_plane(nply))=icl |
1857 |
c$$$ cl_single(icl)=0! I leave the cluster tagged as singlet!!! |
1858 |
* ---------------------------------------------------- |
1859 |
|
1860 |
endif |
1861 |
endif !end "single" condition |
1862 |
21 continue |
1863 |
enddo !end loop over clusters |
1864 |
|
1865 |
if(DEBUG.EQ.1) |
1866 |
$ print*,'couples per plane: ',(ncp_plane(ip),ip=1,nplanes) |
1867 |
|
1868 |
|
1869 |
81 continue |
1870 |
|
1871 |
ncp_tot=0 |
1872 |
do ip=1,NPLANES |
1873 |
ncp_tot = ncp_tot + ncp_plane(ip) |
1874 |
enddo |
1875 |
if(DEBUG.EQ.1) |
1876 |
$ print*,'n.couple tot: ',ncp_tot |
1877 |
|
1878 |
return |
1879 |
end |
1880 |
|
1881 |
*************************************************** |
1882 |
* * |
1883 |
* * |
1884 |
* * |
1885 |
* * |
1886 |
* * |
1887 |
* * |
1888 |
************************************************** |
1889 |
|
1890 |
subroutine cp_to_doubtrip(iflag) |
1891 |
|
1892 |
include 'commontracker.f' |
1893 |
include 'level1.f' |
1894 |
include 'common_momanhough.f' |
1895 |
include 'common_xyzPAM.f' |
1896 |
include 'common_mini_2.f' |
1897 |
include 'calib.f' |
1898 |
|
1899 |
|
1900 |
* output flag |
1901 |
* -------------- |
1902 |
* 0 = good event |
1903 |
* 1 = bad event |
1904 |
* -------------- |
1905 |
integer iflag |
1906 |
|
1907 |
|
1908 |
* ----------------------------- |
1909 |
* DOUBLETS/TRIPLETS coordinates |
1910 |
c double precision xm1,ym1,zm1 |
1911 |
c double precision xm2,ym2,zm2 |
1912 |
c double precision xm3,ym3,zm3 |
1913 |
|
1914 |
real xm1,ym1,zm1 |
1915 |
real xm2,ym2,zm2 |
1916 |
real xm3,ym3,zm3 |
1917 |
* ----------------------------- |
1918 |
* variable needed for tricircle: |
1919 |
real xp(3),zp(3)!TRIPLETS coordinates, to find a circle |
1920 |
EQUIVALENCE (xm1,xp(1)) |
1921 |
EQUIVALENCE (xm2,xp(2)) |
1922 |
EQUIVALENCE (xm3,xp(3)) |
1923 |
EQUIVALENCE (zm1,zp(1)) |
1924 |
EQUIVALENCE (zm2,zp(2)) |
1925 |
EQUIVALENCE (zm3,zp(3)) |
1926 |
real angp(3),resp(3),chi |
1927 |
real xc,zc,radius |
1928 |
* ----------------------------- |
1929 |
|
1930 |
if(DEBUG.EQ.1)print*,'cp_to_doubtrip:' |
1931 |
|
1932 |
* -------------------------------------------- |
1933 |
* put a limit to the maximum number of couples |
1934 |
* per plane, in order to apply hough transform |
1935 |
* (couples recovered during track refinement) |
1936 |
* -------------------------------------------- |
1937 |
do ip=1,nplanes |
1938 |
if(ncp_plane(ip).gt.ncouplelimit)then |
1939 |
mask_view(nviewx(ip)) = mask_view(nviewx(ip)) + 2**7 |
1940 |
mask_view(nviewy(ip)) = mask_view(nviewy(ip)) + 2**7 |
1941 |
endif |
1942 |
enddo |
1943 |
|
1944 |
|
1945 |
ndblt=0 !number of doublets |
1946 |
ntrpt=0 !number of triplets |
1947 |
|
1948 |
do ip1=1,(nplanes-1) !loop on planes - COPPIA 1 |
1949 |
c$$$ print*,'(1) ip ',ip1 |
1950 |
c$$$ $ ,mask_view(nviewx(ip1)) |
1951 |
c$$$ $ ,mask_view(nviewy(ip1)) |
1952 |
if( mask_view(nviewx(ip1)).ne.0 .or. |
1953 |
$ mask_view(nviewy(ip1)).ne.0 )goto 10 !skip plane |
1954 |
do is1=1,2 !loop on sensors - COPPIA 1 |
1955 |
do icp1=1,ncp_plane(ip1) !loop on COPPIA 1 |
1956 |
icx1=clx(ip1,icp1) |
1957 |
icy1=cly(ip1,icp1) |
1958 |
|
1959 |
c$$$ print*,'(1) ip ',ip1,' icp ',icp1 |
1960 |
|
1961 |
c call xyz_PAM(icx1,icy1,is1,'COG2','COG2',0.,0.)!(1) |
1962 |
c call xyz_PAM(icx1,icy1,is1,PFAdef,PFAdef,0.,0.) !(1) |
1963 |
call xyz_PAM(icx1,icy1,is1,PFAdef,PFAdef,0.,0.,0.,0.) |
1964 |
xm1=xPAM |
1965 |
ym1=yPAM |
1966 |
zm1=zPAM |
1967 |
|
1968 |
do ip2=(ip1+1),nplanes !loop on planes - COPPIA 2 |
1969 |
c$$$ print*,'(2) ip ',ip2 |
1970 |
c$$$ $ ,mask_view(nviewx(ip2)) |
1971 |
c$$$ $ ,mask_view(nviewy(ip2)) |
1972 |
if( mask_view(nviewx(ip2)).ne.0 .or. |
1973 |
$ mask_view(nviewy(ip2)).ne.0 )goto 20 !skip plane |
1974 |
do is2=1,2 !loop on sensors -ndblt COPPIA 2 |
1975 |
do icp2=1,ncp_plane(ip2) !loop on COPPIA 2 |
1976 |
icx2=clx(ip2,icp2) |
1977 |
icy2=cly(ip2,icp2) |
1978 |
|
1979 |
c$$$ print*,'(2) ip ',ip2,' icp ',icp2 |
1980 |
|
1981 |
c call xyz_PAM |
1982 |
c $ (icx2,icy2,is2,'COG2','COG2',0.,0.)!(1) |
1983 |
c call xyz_PAM |
1984 |
c $ (icx2,icy2,is2,PFAdef,PFAdef,0.,0.) !(1) |
1985 |
call xyz_PAM |
1986 |
$ (icx2,icy2,is2,PFAdef,PFAdef,0.,0.,0.,0.) |
1987 |
xm2=xPAM |
1988 |
ym2=yPAM |
1989 |
zm2=zPAM |
1990 |
|
1991 |
* --------------------------------------------------- |
1992 |
* both couples must have a y-cluster |
1993 |
* (condition necessary when in RECOVER_SINGLETS mode) |
1994 |
* --------------------------------------------------- |
1995 |
if(icy1.eq.0.or.icy2.eq.0)goto 111 |
1996 |
|
1997 |
if(cl_used(icy1).ne.0)goto 111 |
1998 |
if(cl_used(icy2).ne.0)goto 111 |
1999 |
|
2000 |
|
2001 |
* - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
2002 |
* track parameters on Y VIEW |
2003 |
* (2 couples needed) |
2004 |
* - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
2005 |
if(ndblt.eq.ndblt_max)then |
2006 |
if(verbose.eq.1)print*, |
2007 |
$ '** warning ** number of identified '// |
2008 |
$ 'doublets exceeds vector dimention ' |
2009 |
$ ,'( ',ndblt_max,' )' |
2010 |
c good2=.false. |
2011 |
c goto 880 !fill ntp and go to next event |
2012 |
do iv=1,12 |
2013 |
c mask_view(iv) = 3 |
2014 |
mask_view(iv) = mask_view(iv)+ 2**2 |
2015 |
enddo |
2016 |
iflag=1 |
2017 |
return |
2018 |
endif |
2019 |
|
2020 |
|
2021 |
ccc print*,'<doublet> ',icp1,icp2 |
2022 |
|
2023 |
ndblt = ndblt + 1 |
2024 |
* store doublet info |
2025 |
cpyz1(ndblt)=id_cp(ip1,icp1,is1) |
2026 |
cpyz2(ndblt)=id_cp(ip2,icp2,is2) |
2027 |
* tg(th_yz) |
2028 |
alfayz2(ndblt)=(ym1-ym2)/(zm1-zm2) |
2029 |
* y0 (cm) |
2030 |
alfayz1(ndblt)=alfayz2(ndblt)*(zini-zm1)+ym1 |
2031 |
|
2032 |
**** -----------------------------------------------**** |
2033 |
**** reject non phisical couples **** |
2034 |
**** -----------------------------------------------**** |
2035 |
if(SECOND_SEARCH)goto 111 |
2036 |
if( |
2037 |
$ abs(alfayz2(ndblt)).gt.alfyz2_max |
2038 |
$ .or. |
2039 |
$ abs(alfayz1(ndblt)).gt.alfyz1_max |
2040 |
$ )ndblt = ndblt-1 |
2041 |
|
2042 |
|
2043 |
111 continue |
2044 |
* - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
2045 |
* track parameters on Y VIEW - end |
2046 |
* - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
2047 |
|
2048 |
|
2049 |
if(icx1.ne.0)then |
2050 |
if(cl_used(icx1).ne.0)goto 31 |
2051 |
endif |
2052 |
if(icx2.ne.0)then |
2053 |
if(cl_used(icx2).ne.0)goto 31 |
2054 |
endif |
2055 |
|
2056 |
if(ip2.eq.nplanes)goto 31 !no possible combination with 3 couples |
2057 |
|
2058 |
do ip3=(ip2+1),nplanes !loop on planes - COPPIA 3 |
2059 |
c$$$ print*,'(3) ip ',ip3 |
2060 |
c$$$ $ ,mask_view(nviewx(ip3)) |
2061 |
c$$$ $ ,mask_view(nviewy(ip3)) |
2062 |
if( mask_view(nviewx(ip3)).ne.0 .or. |
2063 |
$ mask_view(nviewy(ip3)).ne.0 )goto 30 !skip plane |
2064 |
do is3=1,2 !loop on sensors - COPPIA 3 |
2065 |
|
2066 |
do icp3=1,ncp_plane(ip3) !loop on COPPIA 3 |
2067 |
icx3=clx(ip3,icp3) |
2068 |
icy3=cly(ip3,icp3) |
2069 |
|
2070 |
c$$$ print*,'(3) ip ',ip3,' icp ',icp3 |
2071 |
|
2072 |
* --------------------------------------------------- |
2073 |
* all three couples must have a x-cluster |
2074 |
* (condition necessary when in RECOVER_SINGLETS mode) |
2075 |
* --------------------------------------------------- |
2076 |
if( |
2077 |
$ icx1.eq.0.or. |
2078 |
$ icx2.eq.0.or. |
2079 |
$ icx3.eq.0.or. |
2080 |
$ .false.)goto 29 |
2081 |
|
2082 |
if(cl_used(icx1).ne.0)goto 29 |
2083 |
if(cl_used(icx2).ne.0)goto 29 |
2084 |
if(cl_used(icx3).ne.0)goto 29 |
2085 |
|
2086 |
c call xyz_PAM |
2087 |
c $ (icx3,icy3,is3,'COG2','COG2',0.,0.)!(1) |
2088 |
c call xyz_PAM |
2089 |
c $ (icx3,icy3,is3,PFAdef,PFAdef,0.,0.) !(1) |
2090 |
call xyz_PAM |
2091 |
$ (icx3,icy3,is3,PFAdef,PFAdef |
2092 |
$ ,0.,0.,0.,0.) |
2093 |
xm3=xPAM |
2094 |
ym3=yPAM |
2095 |
zm3=zPAM |
2096 |
|
2097 |
|
2098 |
* find the circle passing through the three points |
2099 |
iflag_t = DEBUG |
2100 |
call tricircle(3,xp,zp,angp,resp,chi |
2101 |
$ ,xc,zc,radius,iflag_t) |
2102 |
* the circle must intersect the reference plane |
2103 |
cc if(iflag.ne.0)goto 29 |
2104 |
if(iflag_t.ne.0)then |
2105 |
* if tricircle fails, evaluate a straight line |
2106 |
if(DEBUG.eq.1) |
2107 |
$ print*,'TRICIRCLE failure' |
2108 |
$ ,' >>> straight line' |
2109 |
radius=0. |
2110 |
xc=0. |
2111 |
yc=0. |
2112 |
|
2113 |
SZZ=0. |
2114 |
SZX=0. |
2115 |
SSX=0. |
2116 |
SZ=0. |
2117 |
S1=0. |
2118 |
X0=0. |
2119 |
Ax=0. |
2120 |
BX=0. |
2121 |
DO I=1,3 |
2122 |
XX = XP(I) |
2123 |
SZZ=SZZ+ZP(I)*ZP(I) |
2124 |
SZX=SZX+ZP(I)*XX |
2125 |
SSX=SSX+XX |
2126 |
SZ=SZ+ZP(I) |
2127 |
S1=S1+1. |
2128 |
ENDDO |
2129 |
DET=SZZ*S1-SZ*SZ |
2130 |
AX=(SZX*S1-SZ*SSX)/DET |
2131 |
BX=(SZZ*SSX-SZX*SZ)/DET |
2132 |
X0 = AX*ZINI+BX |
2133 |
|
2134 |
endif |
2135 |
|
2136 |
if( .not.SECOND_SEARCH.and. |
2137 |
$ radius**2.lt.(ZINI-zc)**2)goto 29 |
2138 |
|
2139 |
* - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
2140 |
* track parameters on X VIEW |
2141 |
* (3 couples needed) |
2142 |
* - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
2143 |
if(ntrpt.eq.ntrpt_max)then |
2144 |
if(verbose.eq.1)print*, |
2145 |
$ '** warning **'// |
2146 |
$ ' number of identified '// |
2147 |
$ 'triplets exceeds'// |
2148 |
$ ' vector dimention ' |
2149 |
$ ,'( ',ntrpt_max,' )' |
2150 |
c good2=.false. |
2151 |
c goto 880 !fill ntp and go to next event |
2152 |
do iv=1,nviews |
2153 |
c mask_view(iv) = 4 |
2154 |
mask_view(iv) = |
2155 |
$ mask_view(iv)+ 2**3 |
2156 |
enddo |
2157 |
iflag=1 |
2158 |
return |
2159 |
endif |
2160 |
|
2161 |
ccc print*,'<triplet> ',icp1,icp2,icp3 |
2162 |
|
2163 |
ntrpt = ntrpt +1 |
2164 |
* store triplet info |
2165 |
cpxz1(ntrpt)=id_cp(ip1,icp1,is1) |
2166 |
cpxz2(ntrpt)=id_cp(ip2,icp2,is2) |
2167 |
cpxz3(ntrpt)=id_cp(ip3,icp3,is3) |
2168 |
|
2169 |
if(radius.ne.0.and.xc.lt.0)then |
2170 |
*************POSITIVE DEFLECTION |
2171 |
alfaxz1(ntrpt) = xc+sqrt(radius**2-(ZINI-zc)**2) |
2172 |
alfaxz2(ntrpt) = (ZINI-zc)/sqrt(radius**2-(ZINI-zc)**2) |
2173 |
alfaxz3(ntrpt) = 1/radius |
2174 |
else if(radius.ne.0.and.xc.ge.0)then |
2175 |
*************NEGATIVE DEFLECTION |
2176 |
alfaxz1(ntrpt) = xc-sqrt(radius**2-(ZINI-zc)**2) |
2177 |
alfaxz2(ntrpt) = -(ZINI-zc)/sqrt(radius**2-(ZINI-zc)**2) |
2178 |
alfaxz3(ntrpt) = -1/radius |
2179 |
else if(radius.eq.0)then |
2180 |
*************straight fit |
2181 |
alfaxz1(ntrpt) = X0 |
2182 |
alfaxz2(ntrpt) = AX |
2183 |
alfaxz3(ntrpt) = 0. |
2184 |
endif |
2185 |
|
2186 |
c$$$ print*,'alfaxz1 ', alfaxz1(ntrpt) |
2187 |
c$$$ print*,'alfaxz2 ', alfaxz2(ntrpt) |
2188 |
c$$$ print*,'alfaxz3 ', alfaxz3(ntrpt) |
2189 |
|
2190 |
**** -----------------------------------------------**** |
2191 |
**** reject non phisical triplets **** |
2192 |
**** -----------------------------------------------**** |
2193 |
if(SECOND_SEARCH)goto 29 |
2194 |
if( |
2195 |
$ abs(alfaxz2(ntrpt)).gt. |
2196 |
$ alfxz2_max |
2197 |
$ .or. |
2198 |
$ abs(alfaxz1(ntrpt)).gt. |
2199 |
$ alfxz1_max |
2200 |
$ )ntrpt = ntrpt-1 |
2201 |
|
2202 |
* - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
2203 |
* track parameters on X VIEW - end |
2204 |
* - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
2205 |
|
2206 |
29 continue |
2207 |
enddo !end loop on COPPIA 3 |
2208 |
enddo !end loop on sensors - COPPIA 3 |
2209 |
30 continue |
2210 |
enddo !end loop on planes - COPPIA 3 |
2211 |
|
2212 |
31 continue |
2213 |
1 enddo !end loop on COPPIA 2 |
2214 |
enddo !end loop on sensors - COPPIA 2 |
2215 |
20 continue |
2216 |
enddo !end loop on planes - COPPIA 2 |
2217 |
|
2218 |
11 continue |
2219 |
enddo !end loop on COPPIA1 |
2220 |
enddo !end loop on sensors - COPPIA 1 |
2221 |
10 continue |
2222 |
enddo !end loop on planes - COPPIA 1 |
2223 |
|
2224 |
if(DEBUG.EQ.1)then |
2225 |
print*,'--- doublets ',ndblt |
2226 |
print*,'--- triplets ',ntrpt |
2227 |
endif |
2228 |
|
2229 |
c goto 880 !ntp fill |
2230 |
|
2231 |
|
2232 |
return |
2233 |
end |
2234 |
|
2235 |
|
2236 |
|
2237 |
*************************************************** |
2238 |
* * |
2239 |
* * |
2240 |
* * |
2241 |
* * |
2242 |
* * |
2243 |
* * |
2244 |
************************************************** |
2245 |
|
2246 |
subroutine doub_to_YZcloud(iflag) |
2247 |
|
2248 |
include 'commontracker.f' |
2249 |
include 'level1.f' |
2250 |
include 'common_momanhough.f' |
2251 |
c include 'momanhough_init.f' |
2252 |
|
2253 |
|
2254 |
* output flag |
2255 |
* -------------- |
2256 |
* 0 = good event |
2257 |
* 1 = bad event |
2258 |
* -------------- |
2259 |
integer iflag |
2260 |
|
2261 |
integer db_used(ndblt_max) |
2262 |
integer db_temp(ndblt_max) |
2263 |
integer db_all(ndblt_max) !stores db ID in each cloud |
2264 |
|
2265 |
integer hit_plane(nplanes) |
2266 |
|
2267 |
* mask for used couples |
2268 |
integer cp_useds1(ncouplemaxtot) ! sensor 1 |
2269 |
integer cp_useds2(ncouplemaxtot) ! sensor 2 |
2270 |
|
2271 |
if(DEBUG.EQ.1)print*,'doub_to_YZcloud:' |
2272 |
|
2273 |
*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
2274 |
* classification of DOUBLETS |
2275 |
* according to distance in parameter space |
2276 |
* (cloud = group of points (doublets) in parameter space) |
2277 |
*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
2278 |
do idb=1,ndblt |
2279 |
db_used(idb)=0 |
2280 |
enddo |
2281 |
|
2282 |
distance=0 |
2283 |
nclouds_yz=0 !number of clouds |
2284 |
npt_tot=0 |
2285 |
nloop=0 |
2286 |
90 continue |
2287 |
do idb1=1,ndblt !loop (1) on DOUBLETS |
2288 |
if(db_used(idb1).eq.1)goto 2228 !db already included in a cloud |
2289 |
|
2290 |
do icp=1,ncp_tot |
2291 |
cp_useds1(icp)=0 !init |
2292 |
cp_useds2(icp)=0 !init |
2293 |
enddo |
2294 |
do idb=1,ndblt |
2295 |
db_all(idb)=0 |
2296 |
enddo |
2297 |
if(cpyz1(idb1).gt.0)cp_useds2(cpyz1(idb1))=1 |
2298 |
if(cpyz1(idb1).lt.0)cp_useds1(-cpyz1(idb1))=1 |
2299 |
if(cpyz2(idb1).gt.0)cp_useds2(cpyz2(idb1))=1 |
2300 |
if(cpyz2(idb1).lt.0)cp_useds1(-cpyz2(idb1))=1 |
2301 |
temp1 = alfayz1(idb1) |
2302 |
temp2 = alfayz2(idb1) |
2303 |
npt=1 !counter of points in the cloud |
2304 |
|
2305 |
db_all(npt) = idb1 |
2306 |
|
2307 |
nptloop=1 |
2308 |
db_temp(1)=idb1 |
2309 |
|
2310 |
88 continue |
2311 |
|
2312 |
npv=0 !# new points inlcuded |
2313 |
do iloop=1,nptloop |
2314 |
idbref=db_temp(iloop) !local point of reference |
2315 |
ccccc if(db_used(idbref).eq.1)goto 1188 !next |
2316 |
|
2317 |
do idb2=1,ndblt !loop (2) on DOUBLETS |
2318 |
if(idb2.eq.idbref)goto 1118 !next doublet |
2319 |
if(db_used(idb2).eq.1)goto 1118 |
2320 |
|
2321 |
|
2322 |
* doublet distance in parameter space |
2323 |
distance= |
2324 |
$ ((alfayz1(idbref)-alfayz1(idb2))/Dalfayz1)**2 |
2325 |
$ +((alfayz2(idbref)-alfayz2(idb2))/Dalfayz2)**2 |
2326 |
distance = sqrt(distance) |
2327 |
|
2328 |
if(distance.lt.cutdistyz)then |
2329 |
|
2330 |
if(cpyz1(idb2).gt.0)cp_useds2(cpyz1(idb2))=1 |
2331 |
if(cpyz1(idb2).lt.0)cp_useds1(-cpyz1(idb2))=1 |
2332 |
if(cpyz2(idb2).gt.0)cp_useds2(cpyz2(idb2))=1 |
2333 |
if(cpyz2(idb2).lt.0)cp_useds1(-cpyz2(idb2))=1 |
2334 |
npt = npt + 1 !counter of points in the cloud |
2335 |
|
2336 |
npv = npv +1 |
2337 |
db_temp(npv) = idb2 |
2338 |
db_used(idbref) = 1 |
2339 |
db_used(idb2) = 1 |
2340 |
|
2341 |
db_all(npt) = idb2 |
2342 |
|
2343 |
temp1 = temp1 + alfayz1(idb2) |
2344 |
temp2 = temp2 + alfayz2(idb2) |
2345 |
endif |
2346 |
|
2347 |
1118 continue |
2348 |
enddo !end loop (2) on DOUBLETS |
2349 |
|
2350 |
1188 continue |
2351 |
enddo !end loop on... bo? |
2352 |
|
2353 |
nptloop=npv |
2354 |
if(nptloop.ne.0)goto 88 |
2355 |
|
2356 |
* ------------------------------------------ |
2357 |
* stores the cloud only if |
2358 |
* 1) it includes a minimum number of REAL couples |
2359 |
* 1bis) it inlcudes a minimum number of doublets |
2360 |
* 2) it is not already stored |
2361 |
* ------------------------------------------ |
2362 |
do ip=1,nplanes |
2363 |
hit_plane(ip)=0 |
2364 |
enddo |
2365 |
ncpused=0 |
2366 |
do icp=1,ncp_tot |
2367 |
if( |
2368 |
$ (cp_useds1(icp).ne.0.or.cp_useds2(icp).ne.0).and. |
2369 |
$ .true.)then |
2370 |
ncpused=ncpused+1 |
2371 |
ip=ip_cp(icp) |
2372 |
hit_plane(ip)=1 |
2373 |
endif |
2374 |
enddo |
2375 |
nplused=0 |
2376 |
do ip=1,nplanes |
2377 |
nplused=nplused+ hit_plane(ip) |
2378 |
enddo |
2379 |
|
2380 |
if(nplused.lt.nplyz_min)goto 2228 !next doublet |
2381 |
|
2382 |
* ~~~~~~~~~~~~~~~~~ |
2383 |
* >>> NEW CLOUD <<< |
2384 |
|
2385 |
if(nclouds_yz.ge.ncloyz_max)then |
2386 |
if(verbose.eq.1)print*, |
2387 |
$ '** warning ** number of identified '// |
2388 |
$ 'YZ clouds exceeds vector dimention ' |
2389 |
$ ,'( ',ncloyz_max,' )' |
2390 |
c good2=.false. |
2391 |
c goto 880 !fill ntp and go to next event |
2392 |
do iv=1,nviews |
2393 |
c mask_view(iv) = 5 |
2394 |
mask_view(iv) = mask_view(iv) + 2**4 |
2395 |
enddo |
2396 |
iflag=1 |
2397 |
return |
2398 |
endif |
2399 |
|
2400 |
nclouds_yz = nclouds_yz + 1 !increase counter |
2401 |
alfayz1_av(nclouds_yz) = temp1/npt !store average parameter |
2402 |
alfayz2_av(nclouds_yz) = temp2/npt ! " |
2403 |
do icp=1,ncp_tot |
2404 |
cpcloud_yz(nclouds_yz,icp)= |
2405 |
$ cp_useds1(icp)+2*cp_useds2(icp) !store cp info |
2406 |
enddo |
2407 |
ptcloud_yz(nclouds_yz)=npt |
2408 |
c ptcloud_yz_nt(nclouds_yz)=npt |
2409 |
do ipt=1,npt |
2410 |
db_cloud(npt_tot+ipt) = db_all(ipt) |
2411 |
enddo |
2412 |
npt_tot=npt_tot+npt |
2413 |
if(DEBUG.EQ.1)then |
2414 |
print*,'>>>> cloud ',nclouds_yz,' --- ',npt,' points' |
2415 |
print*,'- alfayz1 ',alfayz1_av(nclouds_yz) |
2416 |
print*,'- alfayz2 ',alfayz2_av(nclouds_yz) |
2417 |
print*,'cp_useds1 ',(cp_useds1(icp),icp=1,ncp_tot) |
2418 |
print*,'cp_useds2 ',(cp_useds2(icp),icp=1,ncp_tot) |
2419 |
print*,'cpcloud_yz ' |
2420 |
$ ,(cpcloud_yz(nclouds_yz,icp),icp=1,ncp_tot) |
2421 |
print*,'hit_plane ',(hit_plane(ip),ip=1,nplanes) |
2422 |
endif |
2423 |
* >>> NEW CLOUD <<< |
2424 |
* ~~~~~~~~~~~~~~~~~ |
2425 |
2228 continue |
2426 |
enddo !end loop (1) on DOUBLETS |
2427 |
|
2428 |
|
2429 |
if(nloop.lt.nstepy)then |
2430 |
cutdistyz = cutdistyz+cutystep |
2431 |
nloop = nloop+1 |
2432 |
goto 90 |
2433 |
endif |
2434 |
|
2435 |
if(DEBUG.EQ.1)then |
2436 |
print*,'Y-Z total clouds ',nclouds_yz |
2437 |
endif |
2438 |
|
2439 |
|
2440 |
return |
2441 |
end |
2442 |
|
2443 |
|
2444 |
|
2445 |
|
2446 |
|
2447 |
*************************************************** |
2448 |
* * |
2449 |
* * |
2450 |
* * |
2451 |
* * |
2452 |
* * |
2453 |
* * |
2454 |
************************************************** |
2455 |
|
2456 |
subroutine trip_to_XZcloud(iflag) |
2457 |
|
2458 |
include 'commontracker.f' |
2459 |
include 'level1.f' |
2460 |
include 'common_momanhough.f' |
2461 |
c include 'momanhough_init.f' |
2462 |
|
2463 |
|
2464 |
* output flag |
2465 |
* -------------- |
2466 |
* 0 = good event |
2467 |
* 1 = bad event |
2468 |
* -------------- |
2469 |
integer iflag |
2470 |
|
2471 |
integer tr_used(ntrpt_max) |
2472 |
integer tr_temp(ntrpt_max) |
2473 |
integer tr_incl(ntrpt_max) |
2474 |
integer tr_all(ntrpt_max) !stores tr ID in each cloud |
2475 |
|
2476 |
integer hit_plane(nplanes) |
2477 |
|
2478 |
* mask for used couples |
2479 |
integer cp_useds1(ncouplemaxtot) ! sensor 1 |
2480 |
integer cp_useds2(ncouplemaxtot) ! sensor 2 |
2481 |
|
2482 |
if(DEBUG.EQ.1)print*,'trip_to_XZcloud:' |
2483 |
|
2484 |
*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
2485 |
* classification of TRIPLETS |
2486 |
* according to distance in parameter space |
2487 |
*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
2488 |
do itr=1,ntrpt |
2489 |
tr_used(itr)=0 |
2490 |
enddo |
2491 |
|
2492 |
distance=0 |
2493 |
nclouds_xz=0 !number of clouds |
2494 |
npt_tot=0 !total number of selected triplets |
2495 |
nloop=0 |
2496 |
91 continue |
2497 |
do itr1=1,ntrpt !loop (1) on TRIPLETS |
2498 |
if(tr_used(itr1).eq.1)goto 22288 !already included in a cloud |
2499 |
|
2500 |
do icp=1,ncp_tot |
2501 |
cp_useds1(icp)=0 |
2502 |
cp_useds2(icp)=0 |
2503 |
enddo |
2504 |
do itr=1,ntrpt |
2505 |
tr_all(itr)=0 !list of included triplets |
2506 |
enddo |
2507 |
if(cpxz1(itr1).gt.0)cp_useds2(cpxz1(itr1))=1 |
2508 |
if(cpxz1(itr1).lt.0)cp_useds1(-cpxz1(itr1))=1 |
2509 |
if(cpxz2(itr1).gt.0)cp_useds2(cpxz2(itr1))=1 |
2510 |
if(cpxz2(itr1).lt.0)cp_useds1(-cpxz2(itr1))=1 |
2511 |
if(cpxz3(itr1).gt.0)cp_useds2(cpxz3(itr1))=1 |
2512 |
if(cpxz3(itr1).lt.0)cp_useds1(-cpxz3(itr1))=1 |
2513 |
temp1 = alfaxz1(itr1) |
2514 |
temp2 = alfaxz2(itr1) |
2515 |
temp3 = alfaxz3(itr1) |
2516 |
npt=1 !counter of points in the cloud |
2517 |
|
2518 |
tr_all(npt) = itr1 |
2519 |
|
2520 |
nptloop=1 |
2521 |
c tr_temp(1)=itr1 |
2522 |
tr_incl(1)=itr1 |
2523 |
|
2524 |
8881 continue |
2525 |
|
2526 |
npv=0 !# new points inlcuded |
2527 |
do iloop=1,nptloop |
2528 |
itrref=tr_incl(iloop) !local point of reference |
2529 |
do itr2=1,ntrpt !loop (2) on TRIPLETS |
2530 |
if(itr2.eq.itr1)goto 11188 !next triplet |
2531 |
if(tr_used(itr2).eq.1)goto 11188 !next triplet |
2532 |
|
2533 |
|
2534 |
* triplet distance in parameter space |
2535 |
* solo i due parametri spaziali per il momemnto |
2536 |
distance= |
2537 |
$ ((alfaxz1(itrref)-alfaxz1(itr2))/Dalfaxz1)**2 |
2538 |
$ +((alfaxz2(itrref)-alfaxz2(itr2))/Dalfaxz2)**2 |
2539 |
distance = sqrt(distance) |
2540 |
|
2541 |
|
2542 |
* ------------------------------------------------------------------------ |
2543 |
* FORCE INCLUSION OF TRIPLETS COMPOSED BY SAME COUPLES, IGNORING THE IMAGE |
2544 |
* ------------------------------------------------------------------------ |
2545 |
* (added in august 2007) |
2546 |
istrimage=0 |
2547 |
if( |
2548 |
$ abs(cpxz1(itrref)).eq.abs(cpxz1(itr2)).and. |
2549 |
$ abs(cpxz2(itrref)).eq.abs(cpxz2(itr2)).and. |
2550 |
$ abs(cpxz3(itrref)).eq.abs(cpxz3(itr2)).and. |
2551 |
$ .true.)istrimage=1 |
2552 |
|
2553 |
if(distance.lt.cutdistxz.or.istrimage.eq.1)then |
2554 |
if(cpxz1(itr2).gt.0)cp_useds2(cpxz1(itr2))=1 |
2555 |
if(cpxz1(itr2).lt.0)cp_useds1(-cpxz1(itr2))=1 |
2556 |
if(cpxz2(itr2).gt.0)cp_useds2(cpxz2(itr2))=1 |
2557 |
if(cpxz2(itr2).lt.0)cp_useds1(-cpxz2(itr2))=1 |
2558 |
if(cpxz3(itr2).gt.0)cp_useds2(cpxz3(itr2))=1 |
2559 |
if(cpxz3(itr2).lt.0)cp_useds1(-cpxz3(itr2))=1 |
2560 |
npt = npt + 1 !counter of points in the cloud |
2561 |
|
2562 |
npv = npv +1 |
2563 |
tr_temp(npv) = itr2 |
2564 |
tr_used(itrref) = 1 |
2565 |
tr_used(itr2) = 1 |
2566 |
|
2567 |
tr_all(npt) = itr2 |
2568 |
|
2569 |
temp1 = temp1 + alfaxz1(itr2) |
2570 |
temp2 = temp2 + alfaxz2(itr2) |
2571 |
temp3 = temp3 + alfaxz3(itr2) |
2572 |
endif |
2573 |
|
2574 |
11188 continue |
2575 |
enddo !end loop (2) on TRIPLETS |
2576 |
|
2577 |
11888 continue |
2578 |
enddo !end loop on... bo? |
2579 |
|
2580 |
nptloop=npv |
2581 |
do i=1,npv |
2582 |
tr_incl(i)=tr_temp(i) |
2583 |
enddo |
2584 |
if(nptloop.ne.0)goto 8881 |
2585 |
|
2586 |
* ------------------------------------------ |
2587 |
* stores the cloud only if |
2588 |
* 1) it includes a minimum number of REAL couples |
2589 |
* 1bis) |
2590 |
* 2) it is not already stored |
2591 |
* ------------------------------------------ |
2592 |
do ip=1,nplanes |
2593 |
hit_plane(ip)=0 |
2594 |
enddo |
2595 |
ncpused=0 |
2596 |
do icp=1,ncp_tot |
2597 |
if( |
2598 |
$ (cp_useds1(icp).ne.0.or.cp_useds2(icp).ne.0).and. |
2599 |
$ .true.)then |
2600 |
ncpused=ncpused+1 |
2601 |
ip=ip_cp(icp) |
2602 |
hit_plane(ip)=1 |
2603 |
endif |
2604 |
enddo |
2605 |
nplused=0 |
2606 |
do ip=1,nplanes |
2607 |
nplused=nplused+ hit_plane(ip) |
2608 |
enddo |
2609 |
if(nplused.lt.nplxz_min)goto 22288 !next triplet |
2610 |
|
2611 |
* ~~~~~~~~~~~~~~~~~ |
2612 |
* >>> NEW CLOUD <<< |
2613 |
if(nclouds_xz.ge.ncloxz_max)then |
2614 |
if(verbose.eq.1)print*, |
2615 |
$ '** warning ** number of identified '// |
2616 |
$ 'XZ clouds exceeds vector dimention ' |
2617 |
$ ,'( ',ncloxz_max,' )' |
2618 |
c good2=.false. |
2619 |
c goto 880 !fill ntp and go to next event |
2620 |
do iv=1,nviews |
2621 |
c mask_view(iv) = 6 |
2622 |
mask_view(iv) = mask_view(iv) + 2**5 |
2623 |
enddo |
2624 |
iflag=1 |
2625 |
return |
2626 |
endif |
2627 |
nclouds_xz = nclouds_xz + 1 !increase counter |
2628 |
alfaxz1_av(nclouds_xz) = temp1/npt !store average parameter |
2629 |
alfaxz2_av(nclouds_xz) = temp2/npt ! " |
2630 |
alfaxz3_av(nclouds_xz) = temp3/npt ! " |
2631 |
do icp=1,ncp_tot |
2632 |
cpcloud_xz(nclouds_xz,icp)= |
2633 |
$ cp_useds1(icp)+2*cp_useds2(icp) !store cp info |
2634 |
enddo |
2635 |
ptcloud_xz(nclouds_xz)=npt |
2636 |
do ipt=1,npt |
2637 |
tr_cloud(npt_tot+ipt) = tr_all(ipt) |
2638 |
enddo |
2639 |
npt_tot=npt_tot+npt |
2640 |
|
2641 |
if(DEBUG.EQ.1)then |
2642 |
print*,'>>>> cloud ',nclouds_xz,' --- ',npt,' points' |
2643 |
print*,'- alfaxz1 ',alfaxz1_av(nclouds_xz) |
2644 |
print*,'- alfaxz2 ',alfaxz2_av(nclouds_xz) |
2645 |
print*,'- alfaxz3 ',alfaxz3_av(nclouds_xz) |
2646 |
print*,'cp_useds1 ',(cp_useds1(icp),icp=1,ncp_tot) |
2647 |
print*,'cp_useds2 ',(cp_useds2(icp),icp=1,ncp_tot) |
2648 |
print*,'cpcloud_xz ' |
2649 |
$ ,(cpcloud_xz(nclouds_xz,icp),icp=1,ncp_tot) |
2650 |
print*,'hit_plane ',(hit_plane(ip),ip=1,nplanes) |
2651 |
endif |
2652 |
* >>> NEW CLOUD <<< |
2653 |
* ~~~~~~~~~~~~~~~~~ |
2654 |
22288 continue |
2655 |
enddo !end loop (1) on DOUBLETS |
2656 |
|
2657 |
if(nloop.lt.nstepx)then |
2658 |
cutdistxz=cutdistxz+cutxstep |
2659 |
nloop=nloop+1 |
2660 |
goto 91 |
2661 |
endif |
2662 |
|
2663 |
if(DEBUG.EQ.1)then |
2664 |
print*,'X-Z total clouds ',nclouds_xz |
2665 |
endif |
2666 |
|
2667 |
|
2668 |
return |
2669 |
end |
2670 |
|
2671 |
|
2672 |
*************************************************** |
2673 |
* * |
2674 |
* * |
2675 |
* * |
2676 |
* * |
2677 |
* * |
2678 |
* * |
2679 |
************************************************** |
2680 |
|
2681 |
subroutine clouds_to_ctrack(iflag) |
2682 |
|
2683 |
include 'commontracker.f' |
2684 |
include 'level1.f' |
2685 |
include 'common_momanhough.f' |
2686 |
include 'common_xyzPAM.f' |
2687 |
include 'common_mini_2.f' |
2688 |
include 'common_mech.f' |
2689 |
|
2690 |
|
2691 |
|
2692 |
* output flag |
2693 |
* -------------- |
2694 |
* 0 = good event |
2695 |
* 1 = bad event |
2696 |
* -------------- |
2697 |
integer iflag |
2698 |
|
2699 |
* ----------------------------------------------------------- |
2700 |
* mask to store (locally) the couples included |
2701 |
* in the intersection bewteen a XZ and YZ cloud |
2702 |
integer cpintersec(ncouplemaxtot) |
2703 |
* ----------------------------------------------------------- |
2704 |
* list of matching couples in the combination |
2705 |
* between a XZ and YZ cloud |
2706 |
integer cp_match(nplanes,2*ncouplemax) |
2707 |
integer ncp_match(nplanes) |
2708 |
* ----------------------------------------------------------- |
2709 |
integer hit_plane(nplanes) |
2710 |
* ----------------------------------------------------------- |
2711 |
* variables for track fitting |
2712 |
double precision AL_INI(5) |
2713 |
* ----------------------------------------------------------- |
2714 |
|
2715 |
if(DEBUG.EQ.1)print*,'clouds_to_ctrack:' |
2716 |
|
2717 |
|
2718 |
ntracks=0 !counter of track candidates |
2719 |
|
2720 |
do iyz=1,nclouds_yz !loop on YZ clouds |
2721 |
do ixz=1,nclouds_xz !loop on XZ clouds |
2722 |
|
2723 |
* -------------------------------------------------- |
2724 |
* check of consistency of the clouds |
2725 |
* ---> required a minimum number of matching couples |
2726 |
* the track fit will be performed on the INTERSECTION |
2727 |
* of the two clouds |
2728 |
* -------------------------------------------------- |
2729 |
do ip=1,nplanes |
2730 |
hit_plane(ip)=0 !n.matching couples (REAL couples, not SINGLETS) |
2731 |
ncp_match(ip)=0 !n.matching couples per plane |
2732 |
do icpp=1,ncouplemax |
2733 |
cp_match(ip,icpp)=0 !init couple list |
2734 |
enddo |
2735 |
enddo |
2736 |
ncp_ok=0 !count n.matching-couples |
2737 |
ncpx_ok=0 !count n.matching-couples with x cluster |
2738 |
ncpy_ok=0 !count n.matching-couples with y cluster |
2739 |
|
2740 |
|
2741 |
do icp=1,ncp_tot !loop over couples |
2742 |
|
2743 |
if(.not.RECOVER_SINGLETS)then |
2744 |
* ------------------------------------------------------ |
2745 |
* if NOT in RECOVER_SINGLETS mode, take the intersection |
2746 |
* between xz yz clouds |
2747 |
* ------------------------------------------------------ |
2748 |
cpintersec(icp)=min( |
2749 |
$ cpcloud_yz(iyz,icp), |
2750 |
$ cpcloud_xz(ixz,icp)) |
2751 |
* cpintersec is >0 if yz and xz clouds contain the same image of couple icp |
2752 |
* ------------------------------------------------------ |
2753 |
* discard the couple if the sensor is in conflict |
2754 |
* ------------------------------------------------------ |
2755 |
if( |
2756 |
$ (cpcloud_yz(iyz,icp).eq.1.and.cpcloud_xz(ixz,icp).eq.2).or. |
2757 |
$ (cpcloud_yz(iyz,icp).eq.2.and.cpcloud_xz(ixz,icp).eq.1).or. |
2758 |
$ .false.)cpintersec(icp)=0 |
2759 |
else |
2760 |
* ------------------------------------------------------ |
2761 |
* if RECOVER_SINGLETS take the union |
2762 |
* (otherwise the fake couples formed by singlets would be |
2763 |
* discarded) |
2764 |
* ------------------------------------------------------ |
2765 |
cpintersec(icp)=max( |
2766 |
$ cpcloud_yz(iyz,icp), |
2767 |
$ cpcloud_xz(ixz,icp)) |
2768 |
c$$$ if(cpcloud_yz(iyz,icp).gt.0) |
2769 |
c$$$ $ cpintersec(icp)=cpcloud_yz(iyz,icp) |
2770 |
* cpintersec is >0 if either yz or xz cloud contains the couple icp |
2771 |
endif |
2772 |
|
2773 |
c$$$ print*,icp,ip_cp(icp),' -- ',cpintersec(icp) |
2774 |
|
2775 |
if(cpintersec(icp).ne.0)then |
2776 |
|
2777 |
ip=ip_cp(icp) |
2778 |
hit_plane(ip)=1 |
2779 |
c$$$ if(clx(ip,icp).gt.0.and.cly(ip,icp).gt.0) |
2780 |
c$$$ $ ncp_ok=ncp_ok+1 |
2781 |
c$$$ if(clx(ip,icp).gt.0.and.cly(ip,icp).eq.0) |
2782 |
c$$$ $ ncpx_ok=ncpx_ok+1 |
2783 |
c$$$ if(clx(ip,icp).eq.0.and.cly(ip,icp).gt.0) |
2784 |
c$$$ $ ncpy_ok=ncpy_ok+1 |
2785 |
|
2786 |
if( cpcloud_yz(iyz,icp).gt.0.and. |
2787 |
$ cpcloud_xz(ixz,icp).gt.0) |
2788 |
$ ncp_ok=ncp_ok+1 |
2789 |
if( cpcloud_yz(iyz,icp).gt.0.and. |
2790 |
$ cpcloud_xz(ixz,icp).eq.0) |
2791 |
$ ncpy_ok=ncpy_ok+1 |
2792 |
if( cpcloud_yz(iyz,icp).eq.0.and. |
2793 |
$ cpcloud_xz(ixz,icp).gt.0) |
2794 |
$ ncpx_ok=ncpx_ok+1 |
2795 |
|
2796 |
if(cpintersec(icp).eq.1)then |
2797 |
* 1) only the couple image in sensor 1 matches |
2798 |
id=-icp |
2799 |
ncp_match(ip)=ncp_match(ip)+1 |
2800 |
cp_match(ip,ncp_match(ip))=id |
2801 |
elseif(cpintersec(icp).eq.2)then |
2802 |
* 2) only the couple image in sensor 2 matches |
2803 |
id=icp |
2804 |
ncp_match(ip)=ncp_match(ip)+1 |
2805 |
cp_match(ip,ncp_match(ip))=id |
2806 |
else |
2807 |
* 3) both couple images match |
2808 |
id=icp |
2809 |
do is=1,2 |
2810 |
id=-id |
2811 |
ncp_match(ip)=ncp_match(ip)+1 |
2812 |
cp_match(ip,ncp_match(ip))=id |
2813 |
enddo |
2814 |
endif |
2815 |
endif !end matching condition |
2816 |
enddo !end loop on couples |
2817 |
|
2818 |
nplused=0 |
2819 |
do ip=1,nplanes |
2820 |
nplused=nplused+ hit_plane(ip) |
2821 |
enddo |
2822 |
|
2823 |
if(nplused.lt.3)goto 888 !next combination |
2824 |
ccc if(nplused.lt.nplxz_min)goto 888 !next combination |
2825 |
ccc if(nplused.lt.nplyz_min)goto 888 !next combination |
2826 |
* ----------------------------------------------------------- |
2827 |
* if in RECOVER_SINGLET mode, the two clouds must have |
2828 |
* at least ONE intersecting real couple |
2829 |
* ----------------------------------------------------------- |
2830 |
if(ncp_ok.lt.1)goto 888 !next combination |
2831 |
|
2832 |
if(DEBUG.EQ.1)then |
2833 |
print*,'////////////////////////////' |
2834 |
print*,'Cloud combination (Y,X): ',iyz,ixz |
2835 |
print*,' db ',ptcloud_yz(iyz) |
2836 |
print*,' tr ',ptcloud_xz(ixz) |
2837 |
print*,' -----> # matching couples ',ncp_ok |
2838 |
print*,' -----> # fake couples (X)',ncpx_ok |
2839 |
print*,' -----> # fake couples (Y)',ncpy_ok |
2840 |
do icp=1,ncp_tot |
2841 |
print*,'cp ',icp,' >' |
2842 |
$ ,' x ',cpcloud_xz(ixz,icp) |
2843 |
$ ,' y ',cpcloud_yz(iyz,icp) |
2844 |
$ ,' ==> ',cpintersec(icp) |
2845 |
enddo |
2846 |
endif |
2847 |
|
2848 |
if(DEBUG.EQ.1)then |
2849 |
print*,'1 >>> ',(cp_match(6,i),i=1,ncp_match(6)) |
2850 |
print*,'2 >>> ',(cp_match(5,i),i=1,ncp_match(5)) |
2851 |
print*,'3 >>> ',(cp_match(4,i),i=1,ncp_match(4)) |
2852 |
print*,'4 >>> ',(cp_match(3,i),i=1,ncp_match(3)) |
2853 |
print*,'5 >>> ',(cp_match(2,i),i=1,ncp_match(2)) |
2854 |
print*,'6 >>> ',(cp_match(1,i),i=1,ncp_match(1)) |
2855 |
endif |
2856 |
|
2857 |
do icp1=1,max(1,ncp_match(1)) |
2858 |
hit_plane(1)=icp1 |
2859 |
if(ncp_match(1).eq.0)hit_plane(1)=0 !-icp1 |
2860 |
|
2861 |
do icp2=1,max(1,ncp_match(2)) |
2862 |
hit_plane(2)=icp2 |
2863 |
if(ncp_match(2).eq.0)hit_plane(2)=0 !-icp2 |
2864 |
|
2865 |
do icp3=1,max(1,ncp_match(3)) |
2866 |
hit_plane(3)=icp3 |
2867 |
if(ncp_match(3).eq.0)hit_plane(3)=0 !-icp3 |
2868 |
|
2869 |
do icp4=1,max(1,ncp_match(4)) |
2870 |
hit_plane(4)=icp4 |
2871 |
if(ncp_match(4).eq.0)hit_plane(4)=0 !-icp4 |
2872 |
|
2873 |
do icp5=1,max(1,ncp_match(5)) |
2874 |
hit_plane(5)=icp5 |
2875 |
if(ncp_match(5).eq.0)hit_plane(5)=0 !-icp5 |
2876 |
|
2877 |
do icp6=1,max(1,ncp_match(6)) |
2878 |
hit_plane(6)=icp6 |
2879 |
if(ncp_match(6).eq.0)hit_plane(6)=0 !-icp6 |
2880 |
|
2881 |
if(DEBUG.eq.1) |
2882 |
$ print*,'combination: ' |
2883 |
$ ,cp_match(6,icp1) |
2884 |
$ ,cp_match(5,icp2) |
2885 |
$ ,cp_match(4,icp3) |
2886 |
$ ,cp_match(3,icp4) |
2887 |
$ ,cp_match(2,icp5) |
2888 |
$ ,cp_match(1,icp6) |
2889 |
|
2890 |
|
2891 |
* --------------------------------------- |
2892 |
* check if this group of couples has been |
2893 |
* already fitted |
2894 |
* --------------------------------------- |
2895 |
do ica=1,ntracks |
2896 |
isthesame=1 |
2897 |
do ip=1,NPLANES |
2898 |
if(hit_plane(ip).ne.0)then |
2899 |
if( CP_STORE(nplanes-ip+1,ica) |
2900 |
$ .ne. |
2901 |
$ cp_match(ip,hit_plane(ip)) ) |
2902 |
$ isthesame=0 |
2903 |
else |
2904 |
if( CP_STORE(nplanes-ip+1,ica) |
2905 |
$ .ne. |
2906 |
$ 0 ) |
2907 |
$ isthesame=0 |
2908 |
endif |
2909 |
enddo |
2910 |
if(isthesame.eq.1)then |
2911 |
if(DEBUG.eq.1) |
2912 |
$ print*,'(already fitted)' |
2913 |
goto 666 !jump to next combination |
2914 |
endif |
2915 |
enddo |
2916 |
|
2917 |
call track_init !init TRACK common |
2918 |
|
2919 |
do ip=1,nplanes !loop on planes (bottom to top) |
2920 |
if(hit_plane(ip).ne.0)then |
2921 |
id=cp_match(ip,hit_plane(ip)) |
2922 |
is=is_cp(id) |
2923 |
icp=icp_cp(id) |
2924 |
if(ip_cp(id).ne.ip) |
2925 |
$ print*,'OKKIO!!' |
2926 |
$ ,'id ',id,is,icp |
2927 |
$ ,ip_cp(id),ip |
2928 |
icx=clx(ip,icp) |
2929 |
icy=cly(ip,icp) |
2930 |
* ************************* |
2931 |
c call xyz_PAM(icx,icy,is, |
2932 |
c $ 'COG2','COG2',0.,0.) |
2933 |
c call xyz_PAM(icx,icy,is, !(1) |
2934 |
c $ PFAdef,PFAdef,0.,0.) !(1) |
2935 |
call xyz_PAM(icx,icy,is, !(1) |
2936 |
$ PFAdef,PFAdef,0.,0.,0.,0.) |
2937 |
* ************************* |
2938 |
* ----------------------------- |
2939 |
if(icx.gt.0.and.icy.gt.0)then |
2940 |
xgood(nplanes-ip+1)=1. |
2941 |
ygood(nplanes-ip+1)=1. |
2942 |
xm(nplanes-ip+1)=xPAM |
2943 |
ym(nplanes-ip+1)=yPAM |
2944 |
zm(nplanes-ip+1)=zPAM |
2945 |
resx(nplanes-ip+1)=resxPAM |
2946 |
resy(nplanes-ip+1)=resyPAM |
2947 |
if(DEBUG.EQ.1)print*,'(X,Y)' |
2948 |
$ ,nplanes-ip+1,xPAM,yPAM |
2949 |
else |
2950 |
xm_A(nplanes-ip+1) = xPAM_A |
2951 |
ym_A(nplanes-ip+1) = yPAM_A |
2952 |
xm_B(nplanes-ip+1) = xPAM_B |
2953 |
ym_B(nplanes-ip+1) = yPAM_B |
2954 |
zm(nplanes-ip+1) |
2955 |
$ = (zPAM_A+zPAM_B)/2. |
2956 |
resx(nplanes-ip+1) = resxPAM |
2957 |
resy(nplanes-ip+1) = resyPAM |
2958 |
if(icx.eq.0.and.icy.gt.0)then |
2959 |
xgood(nplanes-ip+1)=0. |
2960 |
ygood(nplanes-ip+1)=1. |
2961 |
resx(nplanes-ip+1) = 1000. |
2962 |
if(DEBUG.EQ.1)print*,'( Y)' |
2963 |
$ ,nplanes-ip+1,xPAM,yPAM |
2964 |
elseif(icx.gt.0.and.icy.eq.0)then |
2965 |
xgood(nplanes-ip+1)=1. |
2966 |
ygood(nplanes-ip+1)=0. |
2967 |
if(DEBUG.EQ.1)print*,'(X )' |
2968 |
$ ,nplanes-ip+1,xPAM,yPAM |
2969 |
resy(nplanes-ip+1) = 1000. |
2970 |
else |
2971 |
print*,'both icx=0 and icy=0' |
2972 |
$ ,' ==> IMPOSSIBLE!!' |
2973 |
endif |
2974 |
endif |
2975 |
* ----------------------------- |
2976 |
endif |
2977 |
enddo !end loop on planes |
2978 |
* ********************************************************** |
2979 |
* ************************** FIT *** FIT *** FIT *** FIT *** |
2980 |
* ********************************************************** |
2981 |
cccc scommentare se si usa al_ini della nuvola |
2982 |
c$$$ do i=1,5 |
2983 |
c$$$ AL(i)=AL_INI(i) |
2984 |
c$$$ enddo |
2985 |
call guess() |
2986 |
do i=1,5 |
2987 |
AL_INI(i)=AL(i) |
2988 |
enddo |
2989 |
ifail=0 !error flag in chi^2 computation |
2990 |
jstep=0 !number of minimization steps |
2991 |
iprint=0 |
2992 |
c if(DEBUG.EQ.1)iprint=1 |
2993 |
if(DEBUG.EQ.1)iprint=2 |
2994 |
call mini2(jstep,ifail,iprint) |
2995 |
if(ifail.ne.0) then |
2996 |
if(DEBUG.EQ.1)then |
2997 |
print *, |
2998 |
$ '*** MINIMIZATION FAILURE *** ' |
2999 |
$ //'(clouds_to_ctrack)' |
3000 |
print*,'initial guess: ' |
3001 |
|
3002 |
print*,'AL_INI(1) = ',AL_INI(1) |
3003 |
print*,'AL_INI(2) = ',AL_INI(2) |
3004 |
print*,'AL_INI(3) = ',AL_INI(3) |
3005 |
print*,'AL_INI(4) = ',AL_INI(4) |
3006 |
print*,'AL_INI(5) = ',AL_INI(5) |
3007 |
endif |
3008 |
c chi2=-chi2 |
3009 |
endif |
3010 |
* ********************************************************** |
3011 |
* ************************** FIT *** FIT *** FIT *** FIT *** |
3012 |
* ********************************************************** |
3013 |
|
3014 |
if(chi2.le.0.)goto 666 |
3015 |
if(chi2.ge.1.e08)goto 666 !OPTIMIZATION |
3016 |
if(chi2.ne.chi2)goto 666 !OPTIMIZATION |
3017 |
|
3018 |
* -------------------------- |
3019 |
* STORE candidate TRACK INFO |
3020 |
* -------------------------- |
3021 |
if(ntracks.eq.NTRACKSMAX)then |
3022 |
|
3023 |
if(verbose.eq.1)print*, |
3024 |
$ '** warning ** number of candidate tracks '// |
3025 |
$ ' exceeds vector dimension ' |
3026 |
$ ,'( ',NTRACKSMAX,' )' |
3027 |
c good2=.false. |
3028 |
c goto 880 !fill ntp and go to next event |
3029 |
do iv=1,nviews |
3030 |
c mask_view(iv) = 7 |
3031 |
mask_view(iv) = mask_view(iv) + 2**6 |
3032 |
enddo |
3033 |
iflag=1 |
3034 |
return |
3035 |
endif |
3036 |
|
3037 |
ntracks = ntracks + 1 |
3038 |
|
3039 |
do ip=1,nplanes !top to bottom |
3040 |
|
3041 |
XV_STORE(ip,ntracks)=sngl(xv(ip)) |
3042 |
YV_STORE(ip,ntracks)=sngl(yv(ip)) |
3043 |
ZV_STORE(ip,ntracks)=sngl(zv(ip)) |
3044 |
XM_STORE(ip,ntracks)=sngl(xm(ip)) |
3045 |
YM_STORE(ip,ntracks)=sngl(ym(ip)) |
3046 |
ZM_STORE(ip,ntracks)=sngl(zm(ip)) |
3047 |
RESX_STORE(ip,ntracks)=sngl(resx(ip)) |
3048 |
RESY_STORE(ip,ntracks)=sngl(resy(ip)) |
3049 |
XV_STORE(ip,ntracks)=sngl(xv(ip)) |
3050 |
YV_STORE(ip,ntracks)=sngl(yv(ip)) |
3051 |
ZV_STORE(ip,ntracks)=sngl(zv(ip)) |
3052 |
AXV_STORE(ip,ntracks)=sngl(axv(ip)) |
3053 |
AYV_STORE(ip,ntracks)=sngl(ayv(ip)) |
3054 |
XGOOD_STORE(ip,ntracks)=sngl(xgood(ip)) |
3055 |
YGOOD_STORE(ip,ntracks)=sngl(ygood(ip)) |
3056 |
* NB! hit_plane is defined from bottom to top |
3057 |
if(hit_plane(ip).ne.0)then |
3058 |
CP_STORE(nplanes-ip+1,ntracks)= |
3059 |
$ cp_match(ip,hit_plane(ip)) |
3060 |
SENSOR_STORE(nplanes-ip+1,ntracks) |
3061 |
$ = is_cp(cp_match(ip,hit_plane(ip))) |
3062 |
|
3063 |
icl= |
3064 |
$ clx(ip,icp_cp( |
3065 |
$ cp_match(ip,hit_plane(ip) |
3066 |
$ ))); |
3067 |
if(icl.eq.0) |
3068 |
$ icl= |
3069 |
$ cly(ip,icp_cp( |
3070 |
$ cp_match(ip,hit_plane(ip) |
3071 |
$ ))); |
3072 |
|
3073 |
LADDER_STORE(nplanes-ip+1,ntracks) |
3074 |
$ = LADDER(icl); |
3075 |
else |
3076 |
CP_STORE(nplanes-ip+1,ntracks)=0 |
3077 |
SENSOR_STORE(nplanes-ip+1,ntracks)=0 |
3078 |
LADDER_STORE(nplanes-ip+1,ntracks)=0 |
3079 |
endif |
3080 |
BX_STORE(ip,ntracks)=0!I dont need it now |
3081 |
BY_STORE(ip,ntracks)=0!I dont need it now |
3082 |
CLS_STORE(ip,ntracks)=0 |
3083 |
do i=1,5 |
3084 |
AL_STORE(i,ntracks)=sngl(AL(i)) |
3085 |
enddo |
3086 |
enddo |
3087 |
|
3088 |
RCHI2_STORE(ntracks)=chi2 |
3089 |
|
3090 |
* -------------------------------- |
3091 |
* STORE candidate TRACK INFO - end |
3092 |
* -------------------------------- |
3093 |
|
3094 |
666 continue |
3095 |
enddo !end loop on cp in plane 6 |
3096 |
enddo !end loop on cp in plane 5 |
3097 |
enddo !end loop on cp in plane 4 |
3098 |
enddo !end loop on cp in plane 3 |
3099 |
enddo !end loop on cp in plane 2 |
3100 |
enddo !end loop on cp in plane 1 |
3101 |
|
3102 |
888 continue |
3103 |
enddo !end loop on XZ couds |
3104 |
enddo !end loop on YZ couds |
3105 |
|
3106 |
if(ntracks.eq.0)then |
3107 |
iflag=1 |
3108 |
cc return |
3109 |
endif |
3110 |
|
3111 |
if(DEBUG.EQ.1)then |
3112 |
print*,'****** TRACK CANDIDATES *****************' |
3113 |
print*,'# R. chi2 RIG ndof' |
3114 |
do i=1,ntracks |
3115 |
ndof=0 !(1) |
3116 |
do ii=1,nplanes !(1) |
3117 |
ndof=ndof !(1) |
3118 |
$ +int(xgood_store(ii,i)) !(1) |
3119 |
$ +int(ygood_store(ii,i)) !(1) |
3120 |
enddo !(1) |
3121 |
print*,i,' --- ',rchi2_store(i),' --- ' |
3122 |
$ ,1./abs(AL_STORE(5,i)),' --- ',ndof |
3123 |
enddo |
3124 |
print*,'*****************************************' |
3125 |
endif |
3126 |
|
3127 |
|
3128 |
return |
3129 |
end |
3130 |
|
3131 |
|
3132 |
*************************************************** |
3133 |
* * |
3134 |
* * |
3135 |
* * |
3136 |
* * |
3137 |
* * |
3138 |
* * |
3139 |
************************************************** |
3140 |
|
3141 |
subroutine refine_track(ibest) |
3142 |
|
3143 |
|
3144 |
include 'commontracker.f' |
3145 |
include 'level1.f' |
3146 |
include 'common_momanhough.f' |
3147 |
include 'common_xyzPAM.f' |
3148 |
include 'common_mini_2.f' |
3149 |
include 'common_mech.f' |
3150 |
include 'calib.f' |
3151 |
|
3152 |
* flag to chose PFA |
3153 |
character*10 PFA |
3154 |
common/FINALPFA/PFA |
3155 |
|
3156 |
real k(6) |
3157 |
DATA k/1.099730,0.418900,0.220939,0.220907,0.418771,1.100674/ |
3158 |
|
3159 |
real xp,yp,zp |
3160 |
real xyzp(3),bxyz(3) |
3161 |
equivalence (xp,xyzp(1)),(yp,xyzp(2)),(zp,xyzp(3)) |
3162 |
|
3163 |
if(DEBUG.EQ.1)print*,'refine_track:' |
3164 |
* ================================================= |
3165 |
* new estimate of positions using ETA algorithm |
3166 |
* and |
3167 |
* search for new couples and single clusters to add |
3168 |
* ================================================= |
3169 |
call track_init |
3170 |
do ip=1,nplanes !loop on planes |
3171 |
|
3172 |
if(DEBUG.EQ.1)print*,' ........... plane ',ip,' ........... ' |
3173 |
|
3174 |
xP=XV_STORE(nplanes-ip+1,ibest) |
3175 |
yP=YV_STORE(nplanes-ip+1,ibest) |
3176 |
zP=ZV_STORE(nplanes-ip+1,ibest) |
3177 |
call gufld(xyzp,bxyz) |
3178 |
BX_STORE(nplanes-ip+1,ibest)=bxyz(1) |
3179 |
BY_STORE(nplanes-ip+1,ibest)=bxyz(2) |
3180 |
c$$$ bxyz(1)=0 |
3181 |
c$$$ bxyz(2)=0 |
3182 |
c$$$ bxyz(3)=0 |
3183 |
* ||||||||||||||||||||||||||||||||||||||||||||||||| |
3184 |
* ------------------------------------------------- |
3185 |
* If the plane has been already included, it just |
3186 |
* computes again the coordinates of the x-y couple |
3187 |
* using improved PFAs |
3188 |
* ------------------------------------------------- |
3189 |
* ||||||||||||||||||||||||||||||||||||||||||||||||| |
3190 |
c$$$ if(XGOOD_STORE(nplanes-ip+1,ibest).eq.1..and. |
3191 |
c$$$ $ YGOOD_STORE(nplanes-ip+1,ibest).eq.1. )then |
3192 |
c$$$ |
3193 |
c$$$ id=CP_STORE(nplanes-ip+1,ibest) |
3194 |
c$$$ |
3195 |
c$$$ is=is_cp(id) |
3196 |
c$$$ icp=icp_cp(id) |
3197 |
c$$$ if(ip_cp(id).ne.ip) |
3198 |
c$$$ $ print*,'OKKIO!!' |
3199 |
c$$$ $ ,'id ',id,is,icp |
3200 |
c$$$ $ ,ip_cp(id),ip |
3201 |
c$$$ icx=clx(ip,icp) |
3202 |
c$$$ icy=cly(ip,icp) |
3203 |
c$$$c call xyz_PAM(icx,icy,is, |
3204 |
c$$$c $ PFA,PFA, |
3205 |
c$$$c $ AXV_STORE(nplanes-ip+1,ibest), |
3206 |
c$$$c $ AYV_STORE(nplanes-ip+1,ibest)) |
3207 |
c$$$ call xyz_PAM(icx,icy,is, |
3208 |
c$$$ $ PFA,PFA, |
3209 |
c$$$ $ AXV_STORE(nplanes-ip+1,ibest), |
3210 |
c$$$ $ AYV_STORE(nplanes-ip+1,ibest), |
3211 |
c$$$ $ bxyz(1), |
3212 |
c$$$ $ bxyz(2) |
3213 |
c$$$ $ ) |
3214 |
c$$$ |
3215 |
c$$$ xm(nplanes-ip+1) = xPAM |
3216 |
c$$$ ym(nplanes-ip+1) = yPAM |
3217 |
c$$$ zm(nplanes-ip+1) = zPAM |
3218 |
c$$$ xgood(nplanes-ip+1) = 1 |
3219 |
c$$$ ygood(nplanes-ip+1) = 1 |
3220 |
c$$$ resx(nplanes-ip+1) = resxPAM |
3221 |
c$$$ resy(nplanes-ip+1) = resyPAM |
3222 |
c$$$ |
3223 |
c$$$ dedxtrk_x(nplanes-ip+1)=sgnl(icx)/mip(VIEW(icx),LADDER(icx)) |
3224 |
c$$$ dedxtrk_y(nplanes-ip+1)=sgnl(icy)/mip(VIEW(icy),LADDER(icy)) |
3225 |
if(XGOOD_STORE(nplanes-ip+1,ibest).eq.1..or. |
3226 |
$ YGOOD_STORE(nplanes-ip+1,ibest).eq.1. )then |
3227 |
|
3228 |
id=CP_STORE(nplanes-ip+1,ibest) |
3229 |
|
3230 |
is=is_cp(id) |
3231 |
icp=icp_cp(id) |
3232 |
if(ip_cp(id).ne.ip) |
3233 |
$ print*,'OKKIO!!' |
3234 |
$ ,'id ',id,is,icp |
3235 |
$ ,ip_cp(id),ip |
3236 |
icx=clx(ip,icp) |
3237 |
icy=cly(ip,icp) |
3238 |
c call xyz_PAM(icx,icy,is, |
3239 |
c $ PFA,PFA, |
3240 |
c $ AXV_STORE(nplanes-ip+1,ibest), |
3241 |
c $ AYV_STORE(nplanes-ip+1,ibest)) |
3242 |
call xyz_PAM(icx,icy,is, |
3243 |
$ PFA,PFA, |
3244 |
$ AXV_STORE(nplanes-ip+1,ibest), |
3245 |
$ AYV_STORE(nplanes-ip+1,ibest), |
3246 |
$ bxyz(1), |
3247 |
$ bxyz(2) |
3248 |
$ ) |
3249 |
|
3250 |
if(icx.gt.0.and.icy.gt.0)then |
3251 |
xm(nplanes-ip+1) = xPAM |
3252 |
ym(nplanes-ip+1) = yPAM |
3253 |
zm(nplanes-ip+1) = zPAM |
3254 |
xm_A(nplanes-ip+1) = 0. |
3255 |
ym_A(nplanes-ip+1) = 0. |
3256 |
xm_B(nplanes-ip+1) = 0. |
3257 |
ym_B(nplanes-ip+1) = 0. |
3258 |
xgood(nplanes-ip+1) = 1 |
3259 |
ygood(nplanes-ip+1) = 1 |
3260 |
resx(nplanes-ip+1) = resxPAM |
3261 |
resy(nplanes-ip+1) = resyPAM |
3262 |
dedxtrk_x(nplanes-ip+1)= |
3263 |
$ sgnl(icx)/mip(VIEW(icx),LADDER(icx)) |
3264 |
dedxtrk_y(nplanes-ip+1)= |
3265 |
$ sgnl(icy)/mip(VIEW(icy),LADDER(icy)) |
3266 |
else |
3267 |
xm(nplanes-ip+1) = 0. |
3268 |
ym(nplanes-ip+1) = 0. |
3269 |
zm(nplanes-ip+1) = (zPAM_A+zPAM_B)/2. |
3270 |
xm_A(nplanes-ip+1) = xPAM_A |
3271 |
ym_A(nplanes-ip+1) = yPAM_A |
3272 |
xm_B(nplanes-ip+1) = xPAM_B |
3273 |
ym_B(nplanes-ip+1) = yPAM_B |
3274 |
xgood(nplanes-ip+1) = 0 |
3275 |
ygood(nplanes-ip+1) = 0 |
3276 |
resx(nplanes-ip+1) = 1000.!resxPAM |
3277 |
resy(nplanes-ip+1) = 1000.!resyPAM |
3278 |
dedxtrk_x(nplanes-ip+1)= 0 |
3279 |
dedxtrk_y(nplanes-ip+1)= 0 |
3280 |
if(icx.gt.0)then |
3281 |
xgood(nplanes-ip+1) = 1 |
3282 |
resx(nplanes-ip+1) = resxPAM |
3283 |
dedxtrk_x(nplanes-ip+1)= |
3284 |
$ sgnl(icx)/mip(VIEW(icx),LADDER(icx)) |
3285 |
elseif(icy.gt.0)then |
3286 |
ygood(nplanes-ip+1) = 1 |
3287 |
resy(nplanes-ip+1) = resyPAM |
3288 |
dedxtrk_y(nplanes-ip+1)= |
3289 |
$ sgnl(icy)/mip(VIEW(icy),LADDER(icy)) |
3290 |
endif |
3291 |
endif |
3292 |
|
3293 |
* ||||||||||||||||||||||||||||||||||||||||||||||||| |
3294 |
* ------------------------------------------------- |
3295 |
* If the plane has NOT been already included, |
3296 |
* it tries to include a COUPLE or a single cluster |
3297 |
* ------------------------------------------------- |
3298 |
* ||||||||||||||||||||||||||||||||||||||||||||||||| |
3299 |
else |
3300 |
|
3301 |
xgood(nplanes-ip+1)=0 |
3302 |
ygood(nplanes-ip+1)=0 |
3303 |
|
3304 |
CP_STORE(nplanes-ip+1,ibest)=0 !re-init |
3305 |
CLS_STORE(nplanes-ip+1,ibest)=0 |
3306 |
|
3307 |
|
3308 |
* -------------------------------------------------------------- |
3309 |
* determine which ladder and sensor are intersected by the track |
3310 |
call whichsensor(ip,xP,yP,nldt,ist) |
3311 |
* if the track hit the plane in a dead area, go to the next plane |
3312 |
if(nldt.eq.0.or.ist.eq.0)goto 133 |
3313 |
|
3314 |
SENSOR_STORE(nplanes-ip+1,IBEST)=ist |
3315 |
LADDER_STORE(nplanes-ip+1,IBEST)=nldt |
3316 |
* -------------------------------------------------------------- |
3317 |
|
3318 |
if(DEBUG.EQ.1)then |
3319 |
print*, |
3320 |
$ '------ Plane ',ip,' intersected on LADDER ',nldt |
3321 |
$ ,' SENSOR ',ist |
3322 |
print*, |
3323 |
$ '------ coord: ',XP,YP |
3324 |
endif |
3325 |
|
3326 |
* =========================================== |
3327 |
* STEP 1 >>>>>>> try to include a new couple |
3328 |
* =========================================== |
3329 |
distmin=100000000. |
3330 |
xmm = 0. |
3331 |
ymm = 0. |
3332 |
zmm = 0. |
3333 |
rxmm = 0. |
3334 |
rymm = 0. |
3335 |
dedxmmx = 0. !(1) |
3336 |
dedxmmy = 0. !(1) |
3337 |
idm = 0 !ID of the closer couple |
3338 |
distance=0. |
3339 |
do icp=1,ncp_plane(ip) !loop on couples on plane icp |
3340 |
icx=clx(ip,icp) |
3341 |
icy=cly(ip,icp) |
3342 |
if(icx.eq.0.or.icy.eq.0)goto 1188!if fake couple, jump to next |
3343 |
if(LADDER(icx).ne.nldt.or. !If the ladder number does not match |
3344 |
c $ cl_used(icx).eq.1.or. !or the X cluster is already used |
3345 |
c $ cl_used(icy).eq.1.or. !or the Y cluster is already used |
3346 |
$ cl_used(icx).ne.0.or. !or the X cluster is already used |
3347 |
$ cl_used(icy).ne.0.or. !or the Y cluster is already used |
3348 |
$ .false.)goto 1188 !then jump to next couple. |
3349 |
* |
3350 |
call xyz_PAM(icx,icy,ist, |
3351 |
$ PFA,PFA, |
3352 |
$ AXV_STORE(nplanes-ip+1,ibest), |
3353 |
$ AYV_STORE(nplanes-ip+1,ibest), |
3354 |
$ bxyz(1), |
3355 |
$ bxyz(2) |
3356 |
$ ) |
3357 |
|
3358 |
distance = distance_to(XP,YP) |
3359 |
c distance = distance / RCHI2_STORE(ibest)!<<< MS !QUIQUI |
3360 |
id=id_cp(ip,icp,ist) |
3361 |
if(DEBUG.EQ.1) |
3362 |
$ print*,'( couple ',id |
3363 |
$ ,' ) distance ',distance |
3364 |
if(distance.lt.distmin)then |
3365 |
xmm = xPAM |
3366 |
ymm = yPAM |
3367 |
zmm = zPAM |
3368 |
rxmm = resxPAM |
3369 |
rymm = resyPAM |
3370 |
distmin = distance |
3371 |
idm = id |
3372 |
dedxmmx = sgnl(icx)/mip(VIEW(icx),LADDER(icx)) !(1)(2) |
3373 |
dedxmmy = sgnl(icy)/mip(VIEW(icy),LADDER(icy)) !(1)(2) |
3374 |
clincnewc=10*sqrt(rymm**2+rxmm**2 |
3375 |
$ +RCHI2_STORE(ibest)*k(ip)*(cov(1,1)+cov(2,2))) |
3376 |
endif |
3377 |
1188 continue |
3378 |
enddo !end loop on couples on plane icp |
3379 |
if(distmin.le.clincnewc)then |
3380 |
* ----------------------------------- |
3381 |
xm(nplanes-ip+1) = xmm !<<< |
3382 |
ym(nplanes-ip+1) = ymm !<<< |
3383 |
zm(nplanes-ip+1) = zmm !<<< |
3384 |
xgood(nplanes-ip+1) = 1 !<<< |
3385 |
ygood(nplanes-ip+1) = 1 !<<< |
3386 |
resx(nplanes-ip+1)=rxmm !<<< |
3387 |
resy(nplanes-ip+1)=rymm !<<< |
3388 |
dedxtrk_x(nplanes-ip+1) = dedxmmx !<<< |
3389 |
dedxtrk_y(nplanes-ip+1) = dedxmmy !<<< |
3390 |
* ----------------------------------- |
3391 |
CP_STORE(nplanes-ip+1,ibest)=idm |
3392 |
if(DEBUG.EQ.1)print*,'%%%% included couple ',idm |
3393 |
$ ,' (dist.= ',distmin,', cut ',clincnewc,' )' |
3394 |
goto 133 !next plane |
3395 |
endif |
3396 |
* ================================================ |
3397 |
* STEP 2 >>>>>>> try to include a single cluster |
3398 |
* either from a couple or single |
3399 |
* ================================================ |
3400 |
distmin=1000000. |
3401 |
xmm_A = 0. !--------------------------- |
3402 |
ymm_A = 0. ! init variables that |
3403 |
zmm_A = 0. ! define the SINGLET |
3404 |
xmm_B = 0. ! |
3405 |
ymm_B = 0. ! |
3406 |
zmm_B = 0. ! |
3407 |
rxmm = 0. ! |
3408 |
rymm = 0. ! |
3409 |
dedxmmx = 0. !(1) |
3410 |
dedxmmy = 0. !(1) |
3411 |
iclm=0 !--------------------------- |
3412 |
distance=0. |
3413 |
|
3414 |
*----- clusters inside couples ------------------------------------- |
3415 |
do icp=1,ncp_plane(ip) !loop on cluster inside couples |
3416 |
icx=clx(ip,icp) |
3417 |
icy=cly(ip,icp) |
3418 |
if(icx.eq.0.or.icy.eq.0)goto 11882!if fake couple, jump to next |
3419 |
id=id_cp(ip,icp,ist) |
3420 |
if(LADDER(icx).ne.nldt)goto 11882 !if the ladder number does not match |
3421 |
* !jump to the next couple |
3422 |
*----- try cluster x ----------------------------------------------- |
3423 |
c if(cl_used(icx).eq.1)goto 11881 !if the X cluster is already used |
3424 |
if(cl_used(icx).ne.0)goto 11881 !if the X cluster is already used !(3) |
3425 |
* !jump to the Y cluster |
3426 |
c call xyz_PAM(icx,0,ist, |
3427 |
c $ PFA,PFA, |
3428 |
c $ AXV_STORE(nplanes-ip+1,ibest),0.) |
3429 |
call xyz_PAM(icx,0,ist, |
3430 |
$ PFA,PFA, |
3431 |
$ AXV_STORE(nplanes-ip+1,ibest),0., |
3432 |
$ bxyz(1), |
3433 |
$ bxyz(2) |
3434 |
$ ) |
3435 |
distance = distance_to(XP,YP) |
3436 |
c distance = distance / RCHI2_STORE(ibest)!<<< MS !QUIQUI |
3437 |
if(DEBUG.EQ.1) |
3438 |
$ print*,'( cl-X ',icx |
3439 |
$ ,' in cp ',id,' ) distance ',distance |
3440 |
if(distance.lt.distmin)then |
3441 |
xmm_A = xPAM_A |
3442 |
ymm_A = yPAM_A |
3443 |
zmm_A = zPAM_A |
3444 |
xmm_B = xPAM_B |
3445 |
ymm_B = yPAM_B |
3446 |
zmm_B = zPAM_B |
3447 |
rxmm = resxPAM |
3448 |
rymm = resyPAM |
3449 |
distmin = distance |
3450 |
iclm = icx |
3451 |
c dedxmm = sgnl(icx) !(1) |
3452 |
dedxmmx = sgnl(icx)/mip(VIEW(icx),LADDER(icx)) !(1)(2) |
3453 |
dedxmmy = 0. !(1) |
3454 |
endif |
3455 |
11881 continue |
3456 |
*----- try cluster y ----------------------------------------------- |
3457 |
c if(cl_used(icy).eq.1)goto 11882 !if the Y cluster is already used |
3458 |
if(cl_used(icy).ne.0)goto 11882 !if the Y cluster is already used !(3) |
3459 |
* !jump to the next couple |
3460 |
c call xyz_PAM(0,icy,ist, |
3461 |
c $ PFA,PFA, |
3462 |
c $ 0.,AYV_STORE(nplanes-ip+1,ibest)) |
3463 |
call xyz_PAM(0,icy,ist, |
3464 |
$ PFA,PFA, |
3465 |
$ 0.,AYV_STORE(nplanes-ip+1,ibest), |
3466 |
$ bxyz(1), |
3467 |
$ bxyz(2) |
3468 |
$ ) |
3469 |
distance = distance_to(XP,YP) |
3470 |
c distance = distance / RCHI2_STORE(ibest)!<<< MS !QUIQUI |
3471 |
if(DEBUG.EQ.1) |
3472 |
$ print*,'( cl-Y ',icy |
3473 |
$ ,' in cp ',id,' ) distance ',distance |
3474 |
if(distance.lt.distmin)then |
3475 |
xmm_A = xPAM_A |
3476 |
ymm_A = yPAM_A |
3477 |
zmm_A = zPAM_A |
3478 |
xmm_B = xPAM_B |
3479 |
ymm_B = yPAM_B |
3480 |
zmm_B = zPAM_B |
3481 |
rxmm = resxPAM |
3482 |
rymm = resyPAM |
3483 |
distmin = distance |
3484 |
iclm = icy |
3485 |
c dedxmm = sgnl(icy) !(1) |
3486 |
dedxmmx = 0. !(1) |
3487 |
dedxmmy = sgnl(icy)/mip(VIEW(icy),LADDER(icy)) !(1)(2) |
3488 |
endif |
3489 |
11882 continue |
3490 |
enddo !end loop on cluster inside couples |
3491 |
*----- single clusters ----------------------------------------------- |
3492 |
do ic=1,ncls(ip) !loop on single clusters |
3493 |
icl=cls(ip,ic) |
3494 |
if(cl_used(icl).ne.0.or. !if the cluster is already used !(3) |
3495 |
$ LADDER(icl).ne.nldt.or. !or the ladder number does not match |
3496 |
$ .false.)goto 18882 !jump to the next singlet |
3497 |
if(mod(VIEW(icl),2).eq.0)then!<---- X view |
3498 |
call xyz_PAM(icl,0,ist, |
3499 |
$ PFA,PFA, |
3500 |
$ AXV_STORE(nplanes-ip+1,ibest),0., |
3501 |
$ bxyz(1), |
3502 |
$ bxyz(2) |
3503 |
$ ) |
3504 |
else !<---- Y view |
3505 |
call xyz_PAM(0,icl,ist, |
3506 |
$ PFA,PFA, |
3507 |
$ 0.,AYV_STORE(nplanes-ip+1,ibest), |
3508 |
$ bxyz(1), |
3509 |
$ bxyz(2) |
3510 |
$ ) |
3511 |
endif |
3512 |
|
3513 |
distance = distance_to(XP,YP) |
3514 |
c distance = distance / RCHI2_STORE(ibest)!<<< MS !QUIQUI |
3515 |
if(DEBUG.EQ.1) |
3516 |
$ print*,'( cl-s ',icl |
3517 |
$ ,' ) distance ',distance |
3518 |
if(distance.lt.distmin)then |
3519 |
xmm_A = xPAM_A |
3520 |
ymm_A = yPAM_A |
3521 |
zmm_A = zPAM_A |
3522 |
xmm_B = xPAM_B |
3523 |
ymm_B = yPAM_B |
3524 |
zmm_B = zPAM_B |
3525 |
rxmm = resxPAM |
3526 |
rymm = resyPAM |
3527 |
distmin = distance |
3528 |
iclm = icl |
3529 |
if(mod(VIEW(icl),2).eq.0)then !<---- X view |
3530 |
dedxmmx = sgnl(icl)/mip(VIEW(icl),LADDER(icl)) |
3531 |
dedxmmy = 0. |
3532 |
else !<---- Y view |
3533 |
dedxmmx = 0. |
3534 |
dedxmmy = sgnl(icl)/mip(VIEW(icl),LADDER(icl)) |
3535 |
endif |
3536 |
endif |
3537 |
18882 continue |
3538 |
enddo !end loop on single clusters |
3539 |
|
3540 |
if(iclm.ne.0)then |
3541 |
if(mod(VIEW(iclm),2).eq.0)then |
3542 |
clincnew= |
3543 |
$ 20* |
3544 |
$ sqrt(rxmm**2+RCHI2_STORE(ibest)*k(ip)*cov(1,1)) |
3545 |
else if(mod(VIEW(iclm),2).ne.0)then |
3546 |
clincnew= |
3547 |
$ 10* |
3548 |
$ sqrt(rymm**2+RCHI2_STORE(ibest)*k(ip)*cov(2,2)) |
3549 |
endif |
3550 |
|
3551 |
if(distmin.le.clincnew)then |
3552 |
|
3553 |
CLS_STORE(nplanes-ip+1,ibest)=iclm !<<<< |
3554 |
* ---------------------------- |
3555 |
if(mod(VIEW(iclm),2).eq.0)then |
3556 |
XGOOD(nplanes-ip+1)=1. |
3557 |
resx(nplanes-ip+1)=rxmm |
3558 |
if(DEBUG.EQ.1) |
3559 |
$ print*,'%%%% included X-cl ',iclm |
3560 |
$ ,'( chi^2, ',RCHI2_STORE(ibest) |
3561 |
$ ,', dist.= ',distmin |
3562 |
$ ,', cut ',clincnew,' )' |
3563 |
else |
3564 |
YGOOD(nplanes-ip+1)=1. |
3565 |
resy(nplanes-ip+1)=rymm |
3566 |
if(DEBUG.EQ.1) |
3567 |
$ print*,'%%%% included Y-cl ',iclm |
3568 |
$ ,'( chi^2, ',RCHI2_STORE(ibest) |
3569 |
$ ,', dist.= ', distmin |
3570 |
$ ,', cut ',clincnew,' )' |
3571 |
endif |
3572 |
* ---------------------------- |
3573 |
xm_A(nplanes-ip+1) = xmm_A |
3574 |
ym_A(nplanes-ip+1) = ymm_A |
3575 |
xm_B(nplanes-ip+1) = xmm_B |
3576 |
ym_B(nplanes-ip+1) = ymm_B |
3577 |
zm(nplanes-ip+1) = (zmm_A+zmm_B)/2. |
3578 |
dedxtrk_x(nplanes-ip+1) = dedxmmx !<<< |
3579 |
dedxtrk_y(nplanes-ip+1) = dedxmmy !<<< |
3580 |
* ---------------------------- |
3581 |
endif |
3582 |
endif |
3583 |
endif |
3584 |
133 continue |
3585 |
enddo !end loop on planes |
3586 |
|
3587 |
|
3588 |
|
3589 |
return |
3590 |
end |
3591 |
|
3592 |
|
3593 |
*************************************************** |
3594 |
* * |
3595 |
* * |
3596 |
* * |
3597 |
* * |
3598 |
* * |
3599 |
* * |
3600 |
************************************************** |
3601 |
* |
3602 |
|
3603 |
|
3604 |
|
3605 |
* **************************************************** |
3606 |
|
3607 |
subroutine init_level2 |
3608 |
|
3609 |
include 'commontracker.f' |
3610 |
include 'level1.f' |
3611 |
include 'common_momanhough.f' |
3612 |
include 'level2.f' |
3613 |
|
3614 |
* --------------------------------- |
3615 |
* variables initialized from level1 |
3616 |
* --------------------------------- |
3617 |
do i=1,nviews |
3618 |
good2(i)=good1(i) |
3619 |
do j=1,nva1_view |
3620 |
vkflag(i,j)=1 |
3621 |
if(cnnev(i,j).le.0)then |
3622 |
vkflag(i,j)=cnnev(i,j) |
3623 |
endif |
3624 |
enddo |
3625 |
enddo |
3626 |
* ---------------- |
3627 |
* level2 variables |
3628 |
* ---------------- |
3629 |
NTRK = 0 |
3630 |
do it=1,NTRKMAX |
3631 |
IMAGE(IT)=0 |
3632 |
CHI2_nt(IT) = -100000. |
3633 |
do ip=1,nplanes |
3634 |
XM_nt(IP,IT) = 0 |
3635 |
YM_nt(IP,IT) = 0 |
3636 |
ZM_nt(IP,IT) = 0 |
3637 |
RESX_nt(IP,IT) = 0 |
3638 |
RESY_nt(IP,IT) = 0 |
3639 |
TAILX_nt(IP,IT) = 0 |
3640 |
TAILY_nt(IP,IT) = 0 |
3641 |
XBAD(IP,IT) = 0 |
3642 |
YBAD(IP,IT) = 0 |
3643 |
XGOOD_nt(IP,IT) = 0 |
3644 |
YGOOD_nt(IP,IT) = 0 |
3645 |
LS(IP,IT) = 0 |
3646 |
DEDX_X(IP,IT) = 0 |
3647 |
DEDX_Y(IP,IT) = 0 |
3648 |
CLTRX(IP,IT) = 0 |
3649 |
CLTRY(IP,IT) = 0 |
3650 |
multmaxx(ip,it) = 0 |
3651 |
seedx(ip,it) = 0 |
3652 |
xpu(ip,it) = 0 |
3653 |
multmaxy(ip,it) = 0 |
3654 |
seedy(ip,it) = 0 |
3655 |
ypu(ip,it) = 0 |
3656 |
enddo |
3657 |
do ipa=1,5 |
3658 |
AL_nt(IPA,IT) = 0 |
3659 |
do ipaa=1,5 |
3660 |
coval(ipa,ipaa,IT)=0 |
3661 |
enddo |
3662 |
enddo |
3663 |
enddo |
3664 |
nclsx=0 |
3665 |
nclsy=0 |
3666 |
do ip=1,NSINGMAX |
3667 |
planex(ip)=0 |
3668 |
xs(1,ip)=0 |
3669 |
xs(2,ip)=0 |
3670 |
sgnlxs(ip)=0 |
3671 |
planey(ip)=0 |
3672 |
ys(1,ip)=0 |
3673 |
ys(2,ip)=0 |
3674 |
sgnlys(ip)=0 |
3675 |
sxbad(ip)=0 |
3676 |
sybad(ip)=0 |
3677 |
multmaxsx(ip)=0 |
3678 |
multmaxsy(ip)=0 |
3679 |
enddo |
3680 |
end |
3681 |
|
3682 |
|
3683 |
************************************************************ |
3684 |
* |
3685 |
* |
3686 |
* |
3687 |
* |
3688 |
* |
3689 |
* |
3690 |
* |
3691 |
************************************************************ |
3692 |
|
3693 |
|
3694 |
subroutine init_hough |
3695 |
|
3696 |
include 'commontracker.f' |
3697 |
include 'level1.f' |
3698 |
include 'common_momanhough.f' |
3699 |
include 'common_hough.f' |
3700 |
include 'level2.f' |
3701 |
|
3702 |
ntrpt_nt=0 |
3703 |
ndblt_nt=0 |
3704 |
NCLOUDS_XZ_nt=0 |
3705 |
NCLOUDS_YZ_nt=0 |
3706 |
do idb=1,ndblt_max_nt |
3707 |
db_cloud_nt(idb)=0 |
3708 |
alfayz1_nt(idb)=0 |
3709 |
alfayz2_nt(idb)=0 |
3710 |
enddo |
3711 |
do itr=1,ntrpt_max_nt |
3712 |
tr_cloud_nt(itr)=0 |
3713 |
alfaxz1_nt(itr)=0 |
3714 |
alfaxz2_nt(itr)=0 |
3715 |
alfaxz3_nt(itr)=0 |
3716 |
enddo |
3717 |
do idb=1,ncloyz_max |
3718 |
ptcloud_yz_nt(idb)=0 |
3719 |
alfayz1_av_nt(idb)=0 |
3720 |
alfayz2_av_nt(idb)=0 |
3721 |
enddo |
3722 |
do itr=1,ncloxz_max |
3723 |
ptcloud_xz_nt(itr)=0 |
3724 |
alfaxz1_av_nt(itr)=0 |
3725 |
alfaxz2_av_nt(itr)=0 |
3726 |
alfaxz3_av_nt(itr)=0 |
3727 |
enddo |
3728 |
|
3729 |
ntrpt=0 |
3730 |
ndblt=0 |
3731 |
NCLOUDS_XZ=0 |
3732 |
NCLOUDS_YZ=0 |
3733 |
do idb=1,ndblt_max |
3734 |
db_cloud(idb)=0 |
3735 |
cpyz1(idb)=0 |
3736 |
cpyz2(idb)=0 |
3737 |
alfayz1(idb)=0 |
3738 |
alfayz2(idb)=0 |
3739 |
enddo |
3740 |
do itr=1,ntrpt_max |
3741 |
tr_cloud(itr)=0 |
3742 |
cpxz1(itr)=0 |
3743 |
cpxz2(itr)=0 |
3744 |
cpxz3(itr)=0 |
3745 |
alfaxz1(itr)=0 |
3746 |
alfaxz2(itr)=0 |
3747 |
alfaxz3(itr)=0 |
3748 |
enddo |
3749 |
do idb=1,ncloyz_max |
3750 |
ptcloud_yz(idb)=0 |
3751 |
alfayz1_av(idb)=0 |
3752 |
alfayz2_av(idb)=0 |
3753 |
do idbb=1,ncouplemaxtot |
3754 |
cpcloud_yz(idb,idbb)=0 |
3755 |
enddo |
3756 |
enddo |
3757 |
do itr=1,ncloxz_max |
3758 |
ptcloud_xz(itr)=0 |
3759 |
alfaxz1_av(itr)=0 |
3760 |
alfaxz2_av(itr)=0 |
3761 |
alfaxz3_av(itr)=0 |
3762 |
do itrr=1,ncouplemaxtot |
3763 |
cpcloud_xz(itr,itrr)=0 |
3764 |
enddo |
3765 |
enddo |
3766 |
end |
3767 |
************************************************************ |
3768 |
* |
3769 |
* |
3770 |
* |
3771 |
* |
3772 |
* |
3773 |
* |
3774 |
* |
3775 |
************************************************************ |
3776 |
|
3777 |
|
3778 |
subroutine fill_level2_tracks(ntr) |
3779 |
|
3780 |
* ------------------------------------------------------- |
3781 |
* This routine fills the ntr-th element of the variables |
3782 |
* inside the level2_tracks common, which correspond |
3783 |
* to the ntr-th track info. |
3784 |
* ------------------------------------------------------- |
3785 |
|
3786 |
|
3787 |
include 'commontracker.f' |
3788 |
include 'level1.f' |
3789 |
include 'common_momanhough.f' |
3790 |
include 'level2.f' |
3791 |
include 'common_mini_2.f' |
3792 |
include 'calib.f' |
3793 |
|
3794 |
character*10 PFA |
3795 |
common/FINALPFA/PFA |
3796 |
|
3797 |
real sinth,phi,pig |
3798 |
integer ssensor,sladder |
3799 |
pig=acos(-1.) |
3800 |
|
3801 |
|
3802 |
|
3803 |
* ------------------------------------- |
3804 |
chi2_nt(ntr) = sngl(chi2) |
3805 |
nstep_nt(ntr) = nstep |
3806 |
* ------------------------------------- |
3807 |
phi = al(4) |
3808 |
sinth = al(3) |
3809 |
if(sinth.lt.0)then |
3810 |
sinth = -sinth |
3811 |
phi = phi + pig |
3812 |
endif |
3813 |
npig = aint(phi/(2*pig)) |
3814 |
phi = phi - npig*2*pig |
3815 |
if(phi.lt.0) |
3816 |
$ phi = phi + 2*pig |
3817 |
al(4) = phi |
3818 |
al(3) = sinth |
3819 |
do i=1,5 |
3820 |
al_nt(i,ntr) = sngl(al(i)) |
3821 |
do j=1,5 |
3822 |
coval(i,j,ntr) = sngl(cov(i,j)) |
3823 |
enddo |
3824 |
enddo |
3825 |
* ------------------------------------- |
3826 |
do ip=1,nplanes ! loop on planes |
3827 |
xgood_nt(ip,ntr) = int(xgood(ip)) |
3828 |
ygood_nt(ip,ntr) = int(ygood(ip)) |
3829 |
xm_nt(ip,ntr) = sngl(xm(ip)) |
3830 |
ym_nt(ip,ntr) = sngl(ym(ip)) |
3831 |
zm_nt(ip,ntr) = sngl(zm(ip)) |
3832 |
RESX_nt(IP,ntr) = sngl(resx(ip)) |
3833 |
RESY_nt(IP,ntr) = sngl(resy(ip)) |
3834 |
TAILX_nt(IP,ntr) = 0. |
3835 |
TAILY_nt(IP,ntr) = 0. |
3836 |
xv_nt(ip,ntr) = sngl(xv(ip)) |
3837 |
yv_nt(ip,ntr) = sngl(yv(ip)) |
3838 |
zv_nt(ip,ntr) = sngl(zv(ip)) |
3839 |
axv_nt(ip,ntr) = sngl(axv(ip)) |
3840 |
ayv_nt(ip,ntr) = sngl(ayv(ip)) |
3841 |
|
3842 |
factor = sqrt( |
3843 |
$ tan( acos(-1.) * sngl(axv(ip)) /180. )**2 + |
3844 |
$ tan( acos(-1.) * sngl(ayv(ip)) /180. )**2 + |
3845 |
$ 1. ) |
3846 |
|
3847 |
dedx_x(ip,ntr) = sngl(dedxtrk_x(ip)/factor) |
3848 |
dedx_y(ip,ntr) = sngl(dedxtrk_y(ip)/factor) |
3849 |
|
3850 |
|
3851 |
ccc print*,ip,'dedx >>> ',dedx_x(ip,ntr),dedx_y(ip,ntr) |
3852 |
|
3853 |
ax = axv_nt(ip,ntr) |
3854 |
ay = ayv_nt(ip,ntr) |
3855 |
bfx = BX_STORE(ip,IDCAND) |
3856 |
bfy = BY_STORE(ip,IDCAND) |
3857 |
c$$$ if(ip.eq.6) ax = -1. * axv_nt(ip,ntr) |
3858 |
c$$$ if(ip.eq.6) bfy = -1. * BY_STORE(ip,IDCAND) |
3859 |
c$$$ tgtemp = tan(ax*acos(-1.)/180.) + pmuH_h*bfy*0.00001 |
3860 |
c$$$ angx = 180.*atan(tgtemp)/acos(-1.) |
3861 |
c$$$ tgtemp = tan(ay*acos(-1.)/180.)+pmuH_e*bfx*0.00001 |
3862 |
c$$$ angy = 180.*atan(tgtemp)/acos(-1.) |
3863 |
|
3864 |
angx = effectiveangle(ax,2*ip,bfy) |
3865 |
angy = effectiveangle(ay,2*ip-1,bfx) |
3866 |
|
3867 |
|
3868 |
|
3869 |
id = CP_STORE(ip,IDCAND) ! couple id |
3870 |
icl = CLS_STORE(ip,IDCAND) |
3871 |
ssensor = -1 |
3872 |
sladder = -1 |
3873 |
ssensor = SENSOR_STORE(ip,IDCAND) |
3874 |
sladder = LADDER_STORE(ip,IDCAND) |
3875 |
if(ip.eq.6.and.ssensor.ne.0)ssensor = 3 - ssensor !notazione paolo x align |
3876 |
LS(IP,ntr) = ssensor+10*sladder |
3877 |
|
3878 |
if(id.ne.0)then |
3879 |
c >>> is a couple |
3880 |
cltrx(ip,ntr) = clx(nplanes-ip+1,icp_cp(id)) |
3881 |
cltry(ip,ntr) = cly(nplanes-ip+1,icp_cp(id)) |
3882 |
|
3883 |
if(clx(nplanes-ip+1,icp_cp(id)).gt.0)then |
3884 |
|
3885 |
cl_used(cltrx(ip,ntr)) = 1 !tag used clusters |
3886 |
|
3887 |
xbad(ip,ntr)= nbadstrips(4,clx(nplanes-ip+1,icp_cp(id))) |
3888 |
|
3889 |
if(nsatstrips(clx(nplanes-ip+1,icp_cp(id))).gt.0) |
3890 |
$ dedx_x(ip,ntr)=-dedx_x(ip,ntr) |
3891 |
|
3892 |
multmaxx(ip,ntr) = maxs(cltrx(ip,ntr)) |
3893 |
$ +10000*mult(cltrx(ip,ntr)) |
3894 |
seedx(ip,ntr) = clsignal(indmax(cltrx(ip,ntr))) |
3895 |
$ /clsigma(indmax(cltrx(ip,ntr))) |
3896 |
call applypfa(PFA,cltrx(ip,ntr),angx,corr,res) |
3897 |
xpu(ip,ntr) = corr |
3898 |
|
3899 |
endif |
3900 |
if(cly(nplanes-ip+1,icp_cp(id)).gt.0)then |
3901 |
|
3902 |
cl_used(cltry(ip,ntr)) = 1 !tag used clusters |
3903 |
|
3904 |
ybad(ip,ntr)= nbadstrips(4,cly(nplanes-ip+1,icp_cp(id))) |
3905 |
|
3906 |
if(nsatstrips(cly(nplanes-ip+1,icp_cp(id))).gt.0) |
3907 |
$ dedx_y(ip,ntr)=-dedx_y(ip,ntr) |
3908 |
|
3909 |
multmaxy(ip,ntr) = maxs(cltry(ip,ntr)) |
3910 |
$ +10000*mult(cltry(ip,ntr)) |
3911 |
seedy(ip,ntr) = clsignal(indmax(cltry(ip,ntr))) |
3912 |
$ /clsigma(indmax(cltry(ip,ntr))) |
3913 |
call applypfa(PFA,cltry(ip,ntr),angy,corr,res) |
3914 |
ypu(ip,ntr) = corr |
3915 |
endif |
3916 |
|
3917 |
elseif(icl.ne.0)then |
3918 |
|
3919 |
cl_used(icl) = 1 !tag used clusters |
3920 |
|
3921 |
if(mod(VIEW(icl),2).eq.0)then |
3922 |
cltrx(ip,ntr)=icl |
3923 |
xbad(ip,ntr) = nbadstrips(4,icl) |
3924 |
|
3925 |
if(nsatstrips(icl).gt.0)dedx_x(ip,ntr)=-dedx_x(ip,ntr) |
3926 |
|
3927 |
multmaxx(ip,ntr) = maxs(cltrx(ip,ntr)) |
3928 |
$ +10000*mult(cltrx(ip,ntr)) |
3929 |
seedx(ip,ntr) = clsignal(indmax(cltrx(ip,ntr))) |
3930 |
$ /clsigma(indmax(cltrx(ip,ntr))) |
3931 |
call applypfa(PFA,cltrx(ip,ntr),angx,corr,res) |
3932 |
xpu(ip,ntr) = corr |
3933 |
|
3934 |
elseif(mod(VIEW(icl),2).eq.1)then |
3935 |
cltry(ip,ntr)=icl |
3936 |
ybad(ip,ntr) = nbadstrips(4,icl) |
3937 |
|
3938 |
if(nsatstrips(icl).gt.0)dedx_y(ip,ntr)=-dedx_y(ip,ntr) |
3939 |
|
3940 |
multmaxy(ip,ntr) = maxs(cltry(ip,ntr)) |
3941 |
$ +10000*mult(cltry(ip,ntr)) |
3942 |
seedy(ip,ntr) = clsignal(indmax(cltry(ip,ntr))) |
3943 |
$ /clsigma(indmax(cltry(ip,ntr))) |
3944 |
call applypfa(PFA,cltry(ip,ntr),angy,corr,res) |
3945 |
ypu(ip,ntr) = corr |
3946 |
|
3947 |
endif |
3948 |
|
3949 |
endif |
3950 |
|
3951 |
enddo |
3952 |
|
3953 |
if(DEBUG.eq.1)then |
3954 |
print*,'> STORING TRACK ',ntr |
3955 |
print*,'clusters: ' |
3956 |
do ip=1,6 |
3957 |
print*,'> ',ip,' -- ',cltrx(ip,ntr),cltry(ip,ntr) |
3958 |
enddo |
3959 |
print*,'dedx: ' |
3960 |
do ip=1,6 |
3961 |
print*,'> ',ip,' -- ',dedx_x(ip,ntr),dedx_y(ip,ntr) |
3962 |
enddo |
3963 |
endif |
3964 |
|
3965 |
end |
3966 |
|
3967 |
subroutine fill_level2_siglets |
3968 |
|
3969 |
* ------------------------------------------------------- |
3970 |
* This routine fills the elements of the variables |
3971 |
* inside the level2_singletsx and level2_singletsy commons, |
3972 |
* which store info on clusters outside the tracks |
3973 |
* ------------------------------------------------------- |
3974 |
|
3975 |
include 'commontracker.f' |
3976 |
include 'calib.f' |
3977 |
include 'level1.f' |
3978 |
include 'common_momanhough.f' |
3979 |
include 'level2.f' |
3980 |
include 'common_xyzPAM.f' |
3981 |
|
3982 |
* count #cluster per plane not associated to any track |
3983 |
nclsx = 0 |
3984 |
nclsy = 0 |
3985 |
|
3986 |
do iv = 1,nviews |
3987 |
c if( mask_view(iv).ne.0 )good2(iv) = 20+mask_view(iv) |
3988 |
good2(iv) = good2(iv) + mask_view(iv)*2**8 |
3989 |
enddo |
3990 |
|
3991 |
if(DEBUG.eq.1)then |
3992 |
print*,'> STORING SINGLETS ' |
3993 |
endif |
3994 |
|
3995 |
do icl=1,nclstr1 |
3996 |
|
3997 |
ip=nplanes-npl(VIEW(icl))+1 |
3998 |
|
3999 |
if(cl_used(icl).eq.0)then !cluster not included in any track |
4000 |
|
4001 |
if(mod(VIEW(icl),2).eq.0)then !=== X views |
4002 |
|
4003 |
nclsx = nclsx + 1 |
4004 |
planex(nclsx) = ip |
4005 |
sgnlxs(nclsx) = sgnl(icl)/mip(VIEW(icl),LADDER(icl)) |
4006 |
if(nsatstrips(icl).gt.0)sgnlxs(nclsx)=-sgnlxs(nclsx) |
4007 |
clsx(nclsx) = icl |
4008 |
sxbad(nclsx) = nbadstrips(1,icl) |
4009 |
multmaxsx(nclsx) = maxs(icl)+10000*mult(icl) |
4010 |
|
4011 |
|
4012 |
do is=1,2 |
4013 |
c call xyz_PAM(icl,0,is,'COG1',' ',0.,0.) |
4014 |
c call xyz_PAM(icl,0,is,PFAdef,' ',0.,0.) |
4015 |
call xyz_PAM(icl,0,is,PFAdef,' ',0.,0.,0.,0.) |
4016 |
xs(is,nclsx) = (xPAM_A+xPAM_B)/2 |
4017 |
enddo |
4018 |
else !=== Y views |
4019 |
nclsy = nclsy + 1 |
4020 |
planey(nclsy) = ip |
4021 |
sgnlys(nclsy) = sgnl(icl)/mip(VIEW(icl),LADDER(icl)) |
4022 |
if(nsatstrips(icl).gt.0)sgnlys(nclsy)=-sgnlys(nclsy) |
4023 |
clsy(nclsy) = icl |
4024 |
sybad(nclsy) = nbadstrips(1,icl) |
4025 |
multmaxsy(nclsy) = maxs(icl)+10000*mult(icl) |
4026 |
|
4027 |
|
4028 |
do is=1,2 |
4029 |
c call xyz_PAM(0,icl,is,' ','COG1',0.,0.) |
4030 |
c call xyz_PAM(0,icl,is,' ',PFAdef,0.,0.) |
4031 |
call xyz_PAM(0,icl,is,' ',PFAdef,0.,0.,0.,0.) |
4032 |
ys(is,nclsy) = (yPAM_A+yPAM_B)/2 |
4033 |
enddo |
4034 |
endif |
4035 |
endif |
4036 |
|
4037 |
***** LO METTO QUI PERCHE` NON SO DOVE METTERLO |
4038 |
whichtrack(icl) = cl_used(icl) |
4039 |
* -------------------------------------------------- |
4040 |
* per non perdere la testa... |
4041 |
* whichtrack(icl) e` una variabile del common level1 |
4042 |
* che serve solo per sapere quali cluster sono stati |
4043 |
* associati ad una traccia, e permettere di salvare |
4044 |
* solo questi nell'albero di uscita |
4045 |
* -------------------------------------------------- |
4046 |
|
4047 |
enddo |
4048 |
end |
4049 |
|
4050 |
*************************************************** |
4051 |
* * |
4052 |
* * |
4053 |
* * |
4054 |
* * |
4055 |
* * |
4056 |
* * |
4057 |
************************************************** |
4058 |
|
4059 |
subroutine fill_hough |
4060 |
|
4061 |
* ------------------------------------------------------- |
4062 |
* This routine fills the variables related to the hough |
4063 |
* transform, for the debig n-tuple |
4064 |
* ------------------------------------------------------- |
4065 |
|
4066 |
include 'commontracker.f' |
4067 |
include 'level1.f' |
4068 |
include 'common_momanhough.f' |
4069 |
include 'common_hough.f' |
4070 |
include 'level2.f' |
4071 |
|
4072 |
if(.false. |
4073 |
$ .or.ntrpt.gt.ntrpt_max_nt |
4074 |
$ .or.ndblt.gt.ndblt_max_nt |
4075 |
$ .or.NCLOUDS_XZ.gt.ncloxz_max |
4076 |
$ .or.NCLOUDS_yZ.gt.ncloyz_max |
4077 |
$ )then |
4078 |
ntrpt_nt=0 |
4079 |
ndblt_nt=0 |
4080 |
NCLOUDS_XZ_nt=0 |
4081 |
NCLOUDS_YZ_nt=0 |
4082 |
else |
4083 |
ndblt_nt=ndblt |
4084 |
ntrpt_nt=ntrpt |
4085 |
if(ndblt.ne.0)then |
4086 |
do id=1,ndblt |
4087 |
alfayz1_nt(id)=alfayz1(id) !Y0 |
4088 |
alfayz2_nt(id)=alfayz2(id) !tg theta-yz |
4089 |
enddo |
4090 |
endif |
4091 |
if(ndblt.ne.0)then |
4092 |
do it=1,ntrpt |
4093 |
alfaxz1_nt(it)=alfaxz1(it) !X0 |
4094 |
alfaxz2_nt(it)=alfaxz2(it) !tg theta-xz |
4095 |
alfaxz3_nt(it)=alfaxz3(it) !1/r |
4096 |
enddo |
4097 |
endif |
4098 |
nclouds_yz_nt=nclouds_yz |
4099 |
nclouds_xz_nt=nclouds_xz |
4100 |
if(nclouds_yz.ne.0)then |
4101 |
nnn=0 |
4102 |
do iyz=1,nclouds_yz |
4103 |
ptcloud_yz_nt(iyz)=ptcloud_yz(iyz) |
4104 |
alfayz1_av_nt(iyz)=alfayz1_av(iyz) |
4105 |
alfayz2_av_nt(iyz)=alfayz2_av(iyz) |
4106 |
nnn=nnn+ptcloud_yz(iyz) |
4107 |
enddo |
4108 |
do ipt=1,min(ndblt_max_nt,nnn) |
4109 |
db_cloud_nt(ipt)=db_cloud(ipt) |
4110 |
enddo |
4111 |
endif |
4112 |
if(nclouds_xz.ne.0)then |
4113 |
nnn=0 |
4114 |
do ixz=1,nclouds_xz |
4115 |
ptcloud_xz_nt(ixz)=ptcloud_xz(ixz) |
4116 |
alfaxz1_av_nt(ixz)=alfaxz1_av(ixz) |
4117 |
alfaxz2_av_nt(ixz)=alfaxz2_av(ixz) |
4118 |
alfaxz3_av_nt(ixz)=alfaxz3_av(ixz) |
4119 |
nnn=nnn+ptcloud_xz(ixz) |
4120 |
enddo |
4121 |
do ipt=1,min(ntrpt_max_nt,nnn) |
4122 |
tr_cloud_nt(ipt)=tr_cloud(ipt) |
4123 |
enddo |
4124 |
endif |
4125 |
endif |
4126 |
end |
4127 |
|