1 |
************************************************************ |
2 |
* The following subroutines |
3 |
* - track_finding >> hough transform |
4 |
* - track_fitting >> bob golden fitting |
5 |
* all the procedures to create LEVEL2 data, starting from LEVEL1 data. |
6 |
* |
7 |
* |
8 |
* |
9 |
* (This subroutine and all the dependent subroutines |
10 |
* will be included in the flight software) |
11 |
************************************************************ |
12 |
subroutine track_finding(iflag) |
13 |
|
14 |
include 'commontracker.f' |
15 |
include 'level1.f' |
16 |
include 'common_momanhough.f' |
17 |
include 'common_mech.f' |
18 |
include 'common_xyzPAM.f' |
19 |
include 'common_mini_2.f' |
20 |
include 'calib.f' |
21 |
include 'level2.f' |
22 |
|
23 |
c include 'momanhough_init.f' |
24 |
|
25 |
*------------------------------------------------------------------------------- |
26 |
* STEP 1 |
27 |
*------------------------------------------------------------------------------- |
28 |
* X-Y cluster association |
29 |
* |
30 |
* Clusters are associated to form COUPLES |
31 |
* Clusters not associated in any couple are called SINGLETS |
32 |
* |
33 |
* Track identification (Hough transform) and fitting is first done on couples. |
34 |
* Hence singlets are possibly added to the track. |
35 |
* |
36 |
* Variables assigned by the routine "cl_to_couples" are those in the |
37 |
* common blocks: |
38 |
* - common/clusters/cl_good |
39 |
* - common/couples/clx,cly,ncp_plane,ncp_tot,cp_useds1,cp_useds2 |
40 |
* - common/singlets/ncls,cls,cl_single |
41 |
*------------------------------------------------------------------------------- |
42 |
*------------------------------------------------------------------------------- |
43 |
|
44 |
c iflag=0 |
45 |
call cl_to_couples(iflag) |
46 |
if(iflag.eq.1)then !bad event |
47 |
goto 880 !go to next event |
48 |
endif |
49 |
|
50 |
*----------------------------------------------------- |
51 |
*----------------------------------------------------- |
52 |
* HOUGH TRASFORM |
53 |
*----------------------------------------------------- |
54 |
*----------------------------------------------------- |
55 |
|
56 |
|
57 |
*------------------------------------------------------------------------------- |
58 |
* STEP 2 |
59 |
*------------------------------------------------------------------------------- |
60 |
* |
61 |
* Association of couples to form |
62 |
* - DOUBLETS in YZ view |
63 |
* - TRIPLETS in XZ view |
64 |
* |
65 |
* Variables assigned by the routine "cp_to_doubtrip" are those in the |
66 |
* common blocks: |
67 |
* - common/hough_param/ |
68 |
* $ alfayz1, !Y0 |
69 |
* $ alfayz2, !tg theta-yz |
70 |
* $ alfaxz1, !X0 |
71 |
* $ alfaxz2, !tg theta-xz |
72 |
* $ alfaxz3 !1/r |
73 |
* - common/doublets/ndblt,cpyz1,cpyz2 |
74 |
* - common/triplets/ntrpt,cpxz1,cpxz2,cpxz3 |
75 |
*------------------------------------------------------------------------------- |
76 |
*------------------------------------------------------------------------------- |
77 |
|
78 |
c iflag=0 |
79 |
call cp_to_doubtrip(iflag) |
80 |
if(iflag.eq.1)then !bad event |
81 |
goto 880 !go to next event |
82 |
endif |
83 |
|
84 |
|
85 |
*------------------------------------------------------------------------------- |
86 |
* STEP 3 |
87 |
*------------------------------------------------------------------------------- |
88 |
* |
89 |
* Classification of doublets and triplets to form CLOUDS, |
90 |
* according to distance in parameter space. |
91 |
* |
92 |
* cloud = cluster of points (doublets/triplets) in parameter space |
93 |
* |
94 |
* |
95 |
* |
96 |
* Variables assigned by the routine "doub_to_YZcloud" are those in the |
97 |
* common blocks: |
98 |
* - common/clouds_yz/ |
99 |
* $ nclouds_yz |
100 |
* $ ,alfayz1_av,alfayz2_av |
101 |
* $ ,ptcloud_yz,db_cloud,cpcloud_yz |
102 |
* |
103 |
* Variables assigned by the routine "trip_to_XZcloud" are those in the |
104 |
* common blocks: |
105 |
* common/clouds_xz/ |
106 |
* $ nclouds_xz xz2_av,alfaxz3_av |
107 |
* $ ,ptcloud_xz,tr_cloud,cpcloud_xz |
108 |
*------------------------------------------------------------------------------- |
109 |
*------------------------------------------------------------------------------- |
110 |
* count number of hit planes |
111 |
planehit=0 |
112 |
do np=1,nplanes |
113 |
if(ncp_plane(np).ne.0)then |
114 |
planehit=planehit+1 |
115 |
endif |
116 |
enddo |
117 |
if(planehit.lt.3) goto 880 ! exit |
118 |
|
119 |
nptxz_min=x_min_start |
120 |
nplxz_min=x_min_start |
121 |
|
122 |
nptyz_min=y_min_start |
123 |
nplyz_min=y_min_start |
124 |
|
125 |
cutdistyz=cutystart |
126 |
cutdistxz=cutxstart |
127 |
|
128 |
878 continue |
129 |
call doub_to_YZcloud(iflag) |
130 |
if(iflag.eq.1)then !bad event |
131 |
goto 880 !fill ntp and go to next event |
132 |
endif |
133 |
if(nclouds_yz.eq.0.and.cutdistyz.lt.maxcuty)then |
134 |
if(cutdistyz.lt.maxcuty/2)then |
135 |
cutdistyz=cutdistyz+cutystep |
136 |
else |
137 |
cutdistyz=cutdistyz+(3*cutystep) |
138 |
endif |
139 |
goto 878 |
140 |
endif |
141 |
|
142 |
if(planehit.eq.3) goto 881 |
143 |
|
144 |
879 continue |
145 |
call trip_to_XZcloud(iflag) |
146 |
if(iflag.eq.1)then !bad event |
147 |
goto 880 !fill ntp and go to next event |
148 |
endif |
149 |
|
150 |
if(nclouds_xz.eq.0.and.cutdistxz.lt.maxcutx)then |
151 |
cutdistxz=cutdistxz+cutxstep |
152 |
goto 879 |
153 |
endif |
154 |
|
155 |
|
156 |
881 continue |
157 |
* if there is at least three planes on the Y view decreases cuts on X view |
158 |
if(nclouds_xz.eq.0.and.nclouds_yz.gt.0.and. |
159 |
$ nplxz_min.ne.y_min_start)then |
160 |
nptxz_min=x_min_step |
161 |
nplxz_min=x_min_start-x_min_step |
162 |
goto 879 |
163 |
endif |
164 |
|
165 |
880 return |
166 |
end |
167 |
|
168 |
************************************************************ |
169 |
|
170 |
|
171 |
subroutine track_fitting(iflag) |
172 |
|
173 |
include 'commontracker.f' |
174 |
include 'level1.f' |
175 |
include 'common_momanhough.f' |
176 |
include 'common_mech.f' |
177 |
include 'common_xyzPAM.f' |
178 |
include 'common_mini_2.f' |
179 |
include 'calib.f' |
180 |
include 'level2.f' |
181 |
|
182 |
c include 'momanhough_init.f' |
183 |
|
184 |
logical FIMAGE ! |
185 |
real*8 AL_GUESS(5) |
186 |
|
187 |
*------------------------------------------------------------------------------- |
188 |
* STEP 4 (ITERATED until any other physical track isn't found) |
189 |
*------------------------------------------------------------------------------- |
190 |
* |
191 |
* YZ and XZ clouds are combined in order to obtain the initial guess |
192 |
* of the candidate-track parameters. |
193 |
* A minimum number of matching couples between YZ and XZ clouds is required. |
194 |
* |
195 |
* A TRACK CANDIDATE is defined by |
196 |
* - the couples resulting from the INTERSECTION of the two clouds, and |
197 |
* - the associated track parameters (evaluated by performing a zero-order |
198 |
* track fitting) |
199 |
* |
200 |
* The NTRACKS candidate-track parameters are stored in common block: |
201 |
* |
202 |
* - common/track_candidates/NTRACKS,AL_STORE |
203 |
* $ ,XV_STORE,YV_STORE,ZV_STORE |
204 |
* $ ,XM_STORE,YM_STORE,ZM_STORE |
205 |
* $ ,RESX_STORE,RESY_STORE |
206 |
* $ ,AXV_STORE,AYV_STORE |
207 |
* $ ,XGOOD_STORE,YGOOD_STORE |
208 |
* $ ,CP_STORE,RCHI2_STORE |
209 |
* |
210 |
*------------------------------------------------------------------------------- |
211 |
*------------------------------------------------------------------------------- |
212 |
ntrk=0 !counter of identified physical tracks |
213 |
|
214 |
11111 continue !<<<<<<< come here when performing a new search |
215 |
|
216 |
c iflag=0 |
217 |
call clouds_to_ctrack(iflag) |
218 |
if(iflag.eq.1)then !no candidate tracks found |
219 |
goto 880 !fill ntp and go to next event |
220 |
endif |
221 |
|
222 |
FIMAGE=.false. !processing best track (not track image) |
223 |
ibest=0 !best track among candidates |
224 |
iimage=0 !track image |
225 |
* ------------- select the best track ------------- |
226 |
c$$$ rchi2best=1000000000. |
227 |
c$$$ do i=1,ntracks |
228 |
c$$$ if(RCHI2_STORE(i).lt.rchi2best.and. |
229 |
c$$$ $ RCHI2_STORE(i).gt.0)then |
230 |
c$$$ ibest=i |
231 |
c$$$ rchi2best=RCHI2_STORE(i) |
232 |
c$$$ endif |
233 |
c$$$ enddo |
234 |
c$$$ if(ibest.eq.0)goto 880 !>> no good candidates |
235 |
|
236 |
* ------------------------------------------------------- |
237 |
* order track-candidates according to: |
238 |
* 1st) decreasing n.points |
239 |
* 2nd) increasing chi**2 |
240 |
* ------------------------------------------------------- |
241 |
rchi2best=1000000000. |
242 |
ndofbest=0 !(1) |
243 |
do i=1,ntracks |
244 |
ndof=0 !(1) |
245 |
do ii=1,nplanes !(1) |
246 |
ndof=ndof !(1) |
247 |
$ +int(xgood_store(ii,i)) !(1) |
248 |
$ +int(ygood_store(ii,i)) !(1) |
249 |
enddo !(1) |
250 |
if(ndof.gt.ndofbest)then !(1) |
251 |
ibest=i |
252 |
rchi2best=RCHI2_STORE(i) |
253 |
ndofbest=ndof !(1) |
254 |
elseif(ndof.eq.ndofbest)then !(1) |
255 |
if(RCHI2_STORE(i).lt.rchi2best.and. |
256 |
$ RCHI2_STORE(i).gt.0)then |
257 |
ibest=i |
258 |
rchi2best=RCHI2_STORE(i) |
259 |
ndofbest=ndof !(1) |
260 |
endif !(1) |
261 |
endif |
262 |
enddo |
263 |
|
264 |
c$$$ rchi2best=1000000000. |
265 |
c$$$ ndofbest=0 !(1) |
266 |
c$$$ do i=1,ntracks |
267 |
c$$$ if(RCHI2_STORE(i).lt.rchi2best.and. |
268 |
c$$$ $ RCHI2_STORE(i).gt.0)then |
269 |
c$$$ ndof=0 !(1) |
270 |
c$$$ do ii=1,nplanes !(1) |
271 |
c$$$ ndof=ndof !(1) |
272 |
c$$$ $ +int(xgood_store(ii,i)) !(1) |
273 |
c$$$ $ +int(ygood_store(ii,i)) !(1) |
274 |
c$$$ enddo !(1) |
275 |
c$$$ if(ndof.ge.ndofbest)then !(1) |
276 |
c$$$ ibest=i |
277 |
c$$$ rchi2best=RCHI2_STORE(i) |
278 |
c$$$ ndofbest=ndof !(1) |
279 |
c$$$ endif !(1) |
280 |
c$$$ endif |
281 |
c$$$ enddo |
282 |
|
283 |
if(ibest.eq.0)goto 880 !>> no good candidates |
284 |
*------------------------------------------------------------------------------- |
285 |
* The best track candidate (ibest) is selected and a new fitting is performed. |
286 |
* Previous to this, the track is refined by: |
287 |
* - possibly adding new COUPLES or SINGLETS from the missing planes |
288 |
* - evaluating the coordinates with improved PFAs |
289 |
* ( angle-dependent ETA algorithms ) |
290 |
*------------------------------------------------------------------------------- |
291 |
|
292 |
1212 continue !<<<<< come here to fit track-image |
293 |
|
294 |
if(.not.FIMAGE)then !processing best candidate |
295 |
icand=ibest |
296 |
else !processing image |
297 |
icand=iimage |
298 |
iimage=0 |
299 |
endif |
300 |
if(icand.eq.0)then |
301 |
print*,'HAI FATTO UN CASINO!!!!!! icand = ',icand |
302 |
$ ,ibest,iimage |
303 |
return |
304 |
endif |
305 |
|
306 |
* *-*-*-*-*-*-*-*-*-*-*-*-*-*-* |
307 |
call refine_track(icand) |
308 |
* *-*-*-*-*-*-*-*-*-*-*-*-*-*-* |
309 |
|
310 |
* ********************************************************** |
311 |
* ************************** FIT *** FIT *** FIT *** FIT *** |
312 |
* ********************************************************** |
313 |
call guess() |
314 |
do i=1,5 |
315 |
AL_GUESS(i)=AL(i) |
316 |
enddo |
317 |
|
318 |
do i=1,5 |
319 |
AL(i)=dble(AL_STORE(i,icand)) |
320 |
enddo |
321 |
|
322 |
IDCAND = icand !fitted track-candidate |
323 |
ifail=0 !error flag in chi2 computation |
324 |
jstep=0 !# minimization steps |
325 |
|
326 |
iprint=0 |
327 |
c if(DEBUG)iprint=1 |
328 |
if(VERBOSE)iprint=1 |
329 |
if(DEBUG)iprint=2 |
330 |
call mini2(jstep,ifail,iprint) |
331 |
if(ifail.ne.0) then |
332 |
if(VERBOSE)then |
333 |
print *, |
334 |
$ '*** MINIMIZATION FAILURE *** (after refinement) ' |
335 |
$ ,iev |
336 |
|
337 |
c$$$ print*,'guess: ',(al_guess(i),i=1,5) |
338 |
c$$$ print*,'previous: ',(al_store(i,icand),i=1,5) |
339 |
c$$$ print*,'result: ',(al(i),i=1,5) |
340 |
c$$$ print*,'xgood ',xgood |
341 |
c$$$ print*,'ygood ',ygood |
342 |
c$$$ print*,'----------------------------------------------' |
343 |
endif |
344 |
c chi2=-chi2 |
345 |
endif |
346 |
|
347 |
if(DEBUG)then |
348 |
print*,'----------------------------- improved track coord' |
349 |
22222 format(i2,' * ',3f10.4,' --- ',4f10.4,' --- ',2f4.0,2f10.5) |
350 |
do ip=1,6 |
351 |
write(*,22222)ip,zm(ip),xm(ip),ym(ip) |
352 |
$ ,xm_A(ip),ym_A(ip),xm_B(ip),ym_B(ip) |
353 |
$ ,xgood(ip),ygood(ip),resx(ip),resy(ip) |
354 |
enddo |
355 |
endif |
356 |
|
357 |
c rchi2=chi2/dble(ndof) |
358 |
if(DEBUG)then |
359 |
print*,' ' |
360 |
print*,'****** SELECTED TRACK *************' |
361 |
print*,'# R. chi2 RIG' |
362 |
print*,' --- ',chi2,' --- ' |
363 |
$ ,1./abs(AL(5)) |
364 |
print*,'***********************************' |
365 |
endif |
366 |
* ********************************************************** |
367 |
* ************************** FIT *** FIT *** FIT *** FIT *** |
368 |
* ********************************************************** |
369 |
|
370 |
|
371 |
* ------------- search if the track has an IMAGE ------------- |
372 |
* ------------- (also this is stored ) ------------- |
373 |
if(FIMAGE)goto 122 !>>> jump! (this is already an image) |
374 |
* now search for track-image, by comparing couples IDs |
375 |
do i=1,ntracks |
376 |
iimage=i |
377 |
do ip=1,nplanes |
378 |
if( CP_STORE(nplanes-ip+1,icand).ne. |
379 |
$ -1*CP_STORE(nplanes-ip+1,i) )iimage=0 |
380 |
enddo |
381 |
if( iimage.ne.0.and. |
382 |
c $ RCHI2_STORE(i).le.CHI2MAX.and. |
383 |
c $ RCHI2_STORE(i).gt.0.and. |
384 |
$ .true.)then |
385 |
if(DEBUG)print*,'Track candidate ',iimage |
386 |
$ ,' >>> TRACK IMAGE >>> of' |
387 |
$ ,ibest |
388 |
goto 122 !image track found |
389 |
endif |
390 |
enddo |
391 |
122 continue |
392 |
|
393 |
* --- and store the results -------------------------------- |
394 |
ntrk = ntrk + 1 !counter of found tracks |
395 |
if(.not.FIMAGE |
396 |
$ .and.iimage.eq.0) image(ntrk)= 0 |
397 |
if(.not.FIMAGE |
398 |
$ .and.iimage.ne.0)image(ntrk)=ntrk+1 !this is the image of the next |
399 |
if(FIMAGE) image(ntrk)=ntrk-1 !this is the image of the previous |
400 |
call fill_level2_tracks(ntrk) !==> good2=.true. |
401 |
c print*,'++++++++++ iimage,fimage,ntrk,image ' |
402 |
c $ ,iimage,fimage,ntrk,image(ntrk) |
403 |
|
404 |
if(ntrk.eq.NTRKMAX)then |
405 |
if(verbose) |
406 |
$ print*, |
407 |
$ '** warning ** number of identified '// |
408 |
$ 'tracks exceeds vector dimension ' |
409 |
$ ,'( ',NTRKMAX,' )' |
410 |
cc good2=.false. |
411 |
goto 880 !fill ntp and go to next event |
412 |
endif |
413 |
if(iimage.ne.0)then |
414 |
FIMAGE=.true. ! |
415 |
goto 1212 !>>> fit image-track |
416 |
endif |
417 |
|
418 |
* --- then remove selected clusters (ibest+iimage) from clouds ---- |
419 |
call clean_XYclouds(ibest,iflag) |
420 |
if(iflag.eq.1)then !bad event |
421 |
goto 880 !fill ntp and go to next event |
422 |
endif |
423 |
|
424 |
* ********************************************************** |
425 |
* condition to start a new search |
426 |
* ********************************************************** |
427 |
ixznew=0 |
428 |
do ixz=1,nclouds_xz |
429 |
if(ptcloud_xz(ixz).ge.nptxz_min)ixznew=1 |
430 |
enddo |
431 |
iyznew=0 |
432 |
do iyz=1,nclouds_yz |
433 |
if(ptcloud_yz(iyz).ge.nptyz_min)iyznew=1 |
434 |
enddo |
435 |
|
436 |
if(ixznew.ne.0.and. |
437 |
$ iyznew.ne.0.and. |
438 |
$ rchi2best.le.CHI2MAX.and. |
439 |
c $ rchi2best.lt.15..and. |
440 |
$ .true.)then |
441 |
if(DEBUG)then |
442 |
print*,'***** NEW SEARCH ****' |
443 |
endif |
444 |
goto 11111 !try new search |
445 |
|
446 |
endif |
447 |
* ********************************************** |
448 |
|
449 |
|
450 |
|
451 |
880 return |
452 |
end |
453 |
|
454 |
|
455 |
|
456 |
************************************************************ |
457 |
************************************************************ |
458 |
************************************************************ |
459 |
************************************************************ |
460 |
* |
461 |
* This routine provides the coordinates (in cm) in the PAMELA reference system: |
462 |
* - of the point associated with a COUPLE ---> (xPAM,yPAM,zPAM) |
463 |
* - of the extremes of the segment |
464 |
* associated with a SINGLET ---------------> (xPAM_A,yPAM_A,zPAM_A) |
465 |
* ---> (xPAM_B,yPAM_B,zPAM_B) |
466 |
* |
467 |
* It also assigns the spatial resolution to the evaluated coordinates, |
468 |
* as a function (in principle) of the multiplicity, the angle, the PFA etc... |
469 |
* |
470 |
* |
471 |
* To call the routine you must pass the arguments: |
472 |
* icx - ID of cluster x |
473 |
* icy - ID of cluster y |
474 |
* sensor - sensor (1,2) |
475 |
* PFAx - Position Finding Algorithm in x (COG2,ETA2,...) |
476 |
* PFAy - Position Finding Algorithm in y (COG2,ETA2,...) |
477 |
* angx - Projected angle in x |
478 |
* angy - Projected angle in y |
479 |
* |
480 |
* --------- COUPLES ------------------------------------------------------- |
481 |
* The couple defines a point in the space. |
482 |
* The coordinates of the point are evaluated as follows: |
483 |
* 1 - the corrected coordinates relative to the sensor are evaluated |
484 |
* according to the chosen PFA --> (xi,yi,0) |
485 |
* 2 - coordinates are rotated and traslated, according to the aligmnet |
486 |
* parameters, and expressed in the reference system of the mechanical |
487 |
* sensor --> (xrt,yrt,zrt) |
488 |
* 3 - coordinates are finally converted to the PAMELA reference system |
489 |
* --> (xPAM,yPAM,zPAM) |
490 |
* |
491 |
* --------- SINGLETS ------------------------------------------------------- |
492 |
* Since a coordinate is missing, the singlet defines not a point |
493 |
* in the space but a segment AB (parallel to the strips). |
494 |
* In this case the routine returns the coordinates in the PAMELA reference |
495 |
* system of the two extremes A and B of the segment: |
496 |
* --> (xPAM_A,yPAM_A,zPAM_A) |
497 |
* --> (xPAM_B,yPAM_B,zPAM_B) |
498 |
* |
499 |
* ========================================================== |
500 |
* |
501 |
* The output of the routine is stored in the commons: |
502 |
* |
503 |
* double precision xPAM,yPAM,zPAM |
504 |
* common/coord_xyz_PAM/xPAM,yPAM,zPAM |
505 |
* |
506 |
* double precision xPAM_A,yPAM_A,zPAM_A |
507 |
* double precision xPAM_B,yPAM_B,zPAM_B |
508 |
* common/coord_AB_PAM/xPAM_A,yPAM_A,zPAM_A,xPAM_B,yPAM_B,zPAM_B |
509 |
* |
510 |
* double precision resxPAM,resyPAM |
511 |
* common/resolution_PAM/resxPAM,resyPAM |
512 |
* |
513 |
* (in file common_xyzPAM.f) |
514 |
* |
515 |
* |
516 |
|
517 |
subroutine xyz_PAM(icx,icy,sensor,PFAx,PFAy,angx,angy) |
518 |
|
519 |
c***************************************************** |
520 |
c 07/10/2005 modified by elena vannuccini --> (1) |
521 |
c 01/02/2006 modified by elena vannuccini --> (2) |
522 |
c 02/02/2006 modified by Elena Vannuccini --> (3) |
523 |
c (implemented new p.f.a.) |
524 |
c 03/02/2006 modified by Elena Vannuccini --> (4) |
525 |
c (implemented variable resolution) |
526 |
c***************************************************** |
527 |
|
528 |
include 'commontracker.f' |
529 |
include 'level1.f' |
530 |
include 'calib.f' |
531 |
c include 'level1.f' |
532 |
include 'common_align.f' |
533 |
include 'common_mech.f' |
534 |
include 'common_xyzPAM.f' |
535 |
c include 'common_resxy.f' |
536 |
|
537 |
c logical DEBUG |
538 |
c common/dbg/DEBUG |
539 |
|
540 |
integer icx,icy !X-Y cluster ID |
541 |
integer sensor |
542 |
integer viewx,viewy |
543 |
character*4 PFAx,PFAy !PFA to be used |
544 |
real angx,angy !X-Y angle |
545 |
|
546 |
real stripx,stripy |
547 |
|
548 |
double precision xrt,yrt,zrt |
549 |
double precision xrt_A,yrt_A,zrt_A |
550 |
double precision xrt_B,yrt_B,zrt_B |
551 |
c double precision xi,yi,zi |
552 |
c double precision xi_A,yi_A,zi_A |
553 |
c double precision xi_B,yi_B,zi_B |
554 |
|
555 |
|
556 |
parameter (ndivx=30) |
557 |
|
558 |
resxPAM = 0 |
559 |
resyPAM = 0 |
560 |
|
561 |
xPAM = 0. |
562 |
yPAM = 0. |
563 |
zPAM = 0. |
564 |
xPAM_A = 0. |
565 |
yPAM_A = 0. |
566 |
zPAM_A = 0. |
567 |
xPAM_B = 0. |
568 |
yPAM_B = 0. |
569 |
zPAM_B = 0. |
570 |
|
571 |
* ----------------- |
572 |
* CLUSTER X |
573 |
* ----------------- |
574 |
|
575 |
if(icx.ne.0)then |
576 |
viewx = VIEW(icx) |
577 |
nldx = nld(MAXS(icx),VIEW(icx)) |
578 |
nplx = npl(VIEW(icx)) |
579 |
resxPAM = RESXAV !!!!!!!TEMPORANEO!!!!!!!!!!!!!!!! |
580 |
|
581 |
stripx = float(MAXS(icx)) |
582 |
if(PFAx.eq.'COG1')then !(1) |
583 |
stripx = stripx !(1) |
584 |
resxPAM = resxPAM !(1) |
585 |
elseif(PFAx.eq.'COG2')then |
586 |
stripx = stripx + cog(2,icx) |
587 |
resxPAM = resxPAM*fbad_cog(2,icx) |
588 |
elseif(PFAx.eq.'ETA2')then |
589 |
c cog2 = cog(2,icx) |
590 |
c etacorr = pfaeta2(cog2,viewx,nldx,angx) |
591 |
c stripx = stripx + etacorr |
592 |
stripx = stripx + pfaeta2(icx,angx) !(3) |
593 |
resxPAM = risx_eta2(angx) ! (4) |
594 |
if(DEBUG.and.fbad_cog(2,icx).ne.1) |
595 |
$ print*,'BAD icx >>> ',viewx,fbad_cog(2,icx) |
596 |
resxPAM = resxPAM*fbad_cog(2,icx) |
597 |
elseif(PFAx.eq.'ETA3')then !(3) |
598 |
stripx = stripx + pfaeta3(icx,angx) !(3) |
599 |
resxPAM = risx_eta3(angx) ! (4) |
600 |
if(DEBUG.and.fbad_cog(3,icx).ne.1) !(3) |
601 |
$ print*,'BAD icx >>> ',viewx,fbad_cog(3,icx)!(3) |
602 |
resxPAM = resxPAM*fbad_cog(3,icx) !(3) |
603 |
elseif(PFAx.eq.'ETA4')then !(3) |
604 |
stripx = stripx + pfaeta4(icx,angx) !(3) |
605 |
resxPAM = risx_eta4(angx) ! (4) |
606 |
if(DEBUG.and.fbad_cog(4,icx).ne.1) !(3) |
607 |
$ print*,'BAD icx >>> ',viewx,fbad_cog(4,icx)!(3) |
608 |
resxPAM = resxPAM*fbad_cog(4,icx) !(3) |
609 |
elseif(PFAx.eq.'ETA')then !(3) |
610 |
stripx = stripx + pfaeta(icx,angx) !(3) |
611 |
resxPAM = ris_eta(icx,angx) ! (4) |
612 |
if(DEBUG.and.fbad_cog(2,icx).ne.1) !(3) |
613 |
$ print*,'BAD icx >>> ',viewx,fbad_cog(2,icx)!(3) |
614 |
c resxPAM = resxPAM*fbad_cog(2,icx) !(3)TEMPORANEO |
615 |
resxPAM = resxPAM*fbad_eta(icx,angx) !(3)(4) |
616 |
elseif(PFAx.eq.'COG')then !(2) |
617 |
stripx = stripx + cog(0,icx) !(2) |
618 |
resxPAM = risx_cog(angx) ! (4) |
619 |
resxPAM = resxPAM*fbad_cog(0,icx)!(2) |
620 |
else |
621 |
print*,'*** Non valid p.f.a. (x) --> ',PFAx |
622 |
endif |
623 |
|
624 |
endif |
625 |
c if(icy.eq.0.and.icx.ne.0) |
626 |
c $ print*,PFAx,icx,angx,stripx,resxPAM,'***' |
627 |
|
628 |
* ----------------- |
629 |
* CLUSTER Y |
630 |
* ----------------- |
631 |
|
632 |
if(icy.ne.0)then |
633 |
viewy = VIEW(icy) |
634 |
nldy = nld(MAXS(icy),VIEW(icy)) |
635 |
nply = npl(VIEW(icy)) |
636 |
resyPAM = RESYAV !!!!!!!TEMPORANEO!!!!!!!!!!!!!!!! |
637 |
|
638 |
|
639 |
if(icx.ne.0.and.(nply.ne.nplx.or.nldy.ne.nldx))then |
640 |
print*,'xyz_PAM ***ERROR*** invalid cluster couple!!! ' |
641 |
$ ,icx,icy |
642 |
goto 100 |
643 |
endif |
644 |
|
645 |
stripy = float(MAXS(icy)) |
646 |
if(PFAy.eq.'COG1')then !(1) |
647 |
stripy = stripy !(1) |
648 |
resyPAM = resyPAM !(1) |
649 |
elseif(PFAy.eq.'COG2')then |
650 |
stripy = stripy + cog(2,icy) |
651 |
resyPAM = resyPAM*fbad_cog(2,icy) |
652 |
elseif(PFAy.eq.'ETA2')then |
653 |
c cog2 = cog(2,icy) |
654 |
c etacorr = pfaeta2(cog2,viewy,nldy,angy) |
655 |
c stripy = stripy + etacorr |
656 |
stripy = stripy + pfaeta2(icy,angy) !(3) |
657 |
resyPAM = risy_eta2(angy) ! (4) |
658 |
resyPAM = resyPAM*fbad_cog(2,icy) |
659 |
if(DEBUG.and.fbad_cog(2,icy).ne.1) |
660 |
$ print*,'BAD icy >>> ',viewy,fbad_cog(2,icy) |
661 |
elseif(PFAy.eq.'ETA3')then !(3) |
662 |
stripy = stripy + pfaeta3(icy,angy) !(3) |
663 |
resyPAM = resyPAM*fbad_cog(3,icy) !(3) |
664 |
if(DEBUG.and.fbad_cog(3,icy).ne.1) !(3) |
665 |
$ print*,'BAD icy >>> ',viewy,fbad_cog(3,icy)!(3) |
666 |
elseif(PFAy.eq.'ETA4')then !(3) |
667 |
stripy = stripy + pfaeta4(icy,angy) !(3) |
668 |
resyPAM = resyPAM*fbad_cog(4,icy) !(3) |
669 |
if(DEBUG.and.fbad_cog(4,icy).ne.1) !(3) |
670 |
$ print*,'BAD icy >>> ',viewy,fbad_cog(4,icy)!(3) |
671 |
elseif(PFAy.eq.'ETA')then !(3) |
672 |
stripy = stripy + pfaeta(icy,angy) !(3) |
673 |
resyPAM = ris_eta(icy,angy) ! (4) |
674 |
c resyPAM = resyPAM*fbad_cog(2,icy) !(3)TEMPORANEO |
675 |
resyPAM = resyPAM*fbad_eta(icy,angy) ! (4) |
676 |
if(DEBUG.and.fbad_cog(2,icy).ne.1) !(3) |
677 |
$ print*,'BAD icy >>> ',viewy,fbad_cog(2,icy)!(3) |
678 |
elseif(PFAy.eq.'COG')then |
679 |
stripy = stripy + cog(0,icy) |
680 |
resyPAM = risy_cog(angy) ! (4) |
681 |
c resyPAM = ris_eta(icy,angy) ! (4) |
682 |
resyPAM = resyPAM*fbad_cog(0,icy) |
683 |
else |
684 |
print*,'*** Non valid p.f.a. (x) --> ',PFAx |
685 |
endif |
686 |
|
687 |
endif |
688 |
|
689 |
|
690 |
c=========================================================== |
691 |
C COUPLE |
692 |
C=========================================================== |
693 |
if(icx.ne.0.and.icy.ne.0)then |
694 |
|
695 |
c------------------------------------------------------------------------ |
696 |
c (xi,yi,zi) = mechanical coordinates in the silicon sensor frame |
697 |
c------------------------------------------------------------------------ |
698 |
if(((mod(int(stripx+0.5)-1,1024)+1).le.3) |
699 |
$ .or.((mod(int(stripx+0.5)-1,1024)+1).ge.1022)) then !X has 1018 strips... |
700 |
print*,'xyz_PAM (couple):', |
701 |
$ ' WARNING: false X strip: strip ',stripx |
702 |
endif |
703 |
xi = acoordsi(stripx,viewx) |
704 |
yi = acoordsi(stripy,viewy) |
705 |
zi = 0. |
706 |
|
707 |
|
708 |
c------------------------------------------------------------------------ |
709 |
c (xrt,yrt,zrt) = rototranslated coordinates in the silicon sensor frame |
710 |
c------------------------------------------------------------------------ |
711 |
c N.B. I convert angles from microradiants to radiants |
712 |
|
713 |
xrt = xi |
714 |
$ - omega(nplx,nldx,sensor)*yi |
715 |
$ + gamma(nplx,nldx,sensor)*zi |
716 |
$ + dx(nplx,nldx,sensor) |
717 |
|
718 |
yrt = omega(nplx,nldx,sensor)*xi |
719 |
$ + yi |
720 |
$ - beta(nplx,nldx,sensor)*zi |
721 |
$ + dy(nplx,nldx,sensor) |
722 |
|
723 |
zrt = -gamma(nplx,nldx,sensor)*xi |
724 |
$ + beta(nplx,nldx,sensor)*yi |
725 |
$ + zi |
726 |
$ + dz(nplx,nldx,sensor) |
727 |
|
728 |
c xrt = xi |
729 |
c yrt = yi |
730 |
c zrt = zi |
731 |
|
732 |
c------------------------------------------------------------------------ |
733 |
c (xPAM,yPAM,zPAM) = measured coordinates (in cm) |
734 |
c in PAMELA reference system |
735 |
c------------------------------------------------------------------------ |
736 |
|
737 |
xPAM = dcoord(xrt,viewx,nldx,sensor) / 1.d4 |
738 |
yPAM = dcoord(yrt,viewy,nldy,sensor) / 1.d4 |
739 |
zPAM = ( zrt + z_mech_sensor(nplx,nldx,sensor)*1000. ) / 1.d4 |
740 |
|
741 |
xPAM_A = 0. |
742 |
yPAM_A = 0. |
743 |
zPAM_A = 0. |
744 |
|
745 |
xPAM_B = 0. |
746 |
yPAM_B = 0. |
747 |
zPAM_B = 0. |
748 |
|
749 |
elseif( |
750 |
$ (icx.ne.0.and.icy.eq.0).or. |
751 |
$ (icx.eq.0.and.icy.ne.0).or. |
752 |
$ .false. |
753 |
$ )then |
754 |
|
755 |
c------------------------------------------------------------------------ |
756 |
c (xi,yi,zi) = mechanical coordinates in the silicon sensor frame |
757 |
c------------------------------------------------------------------------ |
758 |
|
759 |
if(icy.ne.0)then |
760 |
c=========================================================== |
761 |
C Y-SINGLET |
762 |
C=========================================================== |
763 |
nplx = nply |
764 |
nldx = nldy |
765 |
viewx = viewy + 1 |
766 |
|
767 |
yi = acoordsi(stripy,viewy) |
768 |
|
769 |
xi_A = edgeY_d - SiDimX/2 |
770 |
yi_A = yi |
771 |
zi_A = 0. |
772 |
|
773 |
xi_B = SiDimX/2 - edgeY_u |
774 |
yi_B = yi |
775 |
zi_B = 0. |
776 |
|
777 |
c print*,'Y-cl ',icy,stripy,' --> ',yi |
778 |
c print*,xi_A,' <--> ',xi_B |
779 |
|
780 |
elseif(icx.ne.0)then |
781 |
c=========================================================== |
782 |
C X-SINGLET |
783 |
C=========================================================== |
784 |
|
785 |
nply = nplx |
786 |
nldy = nldx |
787 |
viewy = viewx - 1 |
788 |
|
789 |
c print*,'X-singlet ',icx,nplx,nldx,viewx,stripx |
790 |
c if((stripx.le.3).or.(stripx.ge.1022)) then !X has 1018 strips... |
791 |
if(((mod(int(stripx+0.5)-1,1024)+1).le.3) |
792 |
$ .or.((mod(int(stripx+0.5)-1,1024)+1).ge.1022)) then !X has 1018 strips... |
793 |
print*,'xyz_PAM (X-singlet):', |
794 |
$ ' WARNING: false X strip: strip ',stripx |
795 |
endif |
796 |
xi = acoordsi(stripx,viewx) |
797 |
|
798 |
xi_A = xi |
799 |
yi_A = edgeX_d - SiDimY/2 |
800 |
zi_A = 0. |
801 |
|
802 |
xi_B = xi |
803 |
yi_B = SiDimY/2 - edgeX_u |
804 |
zi_B = 0. |
805 |
|
806 |
if(viewy.eq.11)then |
807 |
yi = yi_A |
808 |
yi_A = yi_B |
809 |
yi_B = yi |
810 |
endif |
811 |
|
812 |
c print*,'X-cl ',icx,stripx,' --> ',xi |
813 |
c print*,yi_A,' <--> ',yi_B |
814 |
|
815 |
else |
816 |
|
817 |
print *,'routine xyz_PAM ---> not properly used !!!' |
818 |
print *,'icx = ',icx |
819 |
print *,'icy = ',icy |
820 |
goto 100 |
821 |
|
822 |
endif |
823 |
c------------------------------------------------------------------------ |
824 |
c (xrt,yrt,zrt) = rototranslated coordinates in the silicon sensor frame |
825 |
c------------------------------------------------------------------------ |
826 |
c N.B. I convert angles from microradiants to radiants |
827 |
|
828 |
xrt_A = xi_A |
829 |
$ - omega(nplx,nldx,sensor)*yi_A |
830 |
$ + gamma(nplx,nldx,sensor)*zi_A |
831 |
$ + dx(nplx,nldx,sensor) |
832 |
|
833 |
yrt_A = omega(nplx,nldx,sensor)*xi_A |
834 |
$ + yi_A |
835 |
$ - beta(nplx,nldx,sensor)*zi_A |
836 |
$ + dy(nplx,nldx,sensor) |
837 |
|
838 |
zrt_A = -gamma(nplx,nldx,sensor)*xi_A |
839 |
$ + beta(nplx,nldx,sensor)*yi_A |
840 |
$ + zi_A |
841 |
$ + dz(nplx,nldx,sensor) |
842 |
|
843 |
xrt_B = xi_B |
844 |
$ - omega(nplx,nldx,sensor)*yi_B |
845 |
$ + gamma(nplx,nldx,sensor)*zi_B |
846 |
$ + dx(nplx,nldx,sensor) |
847 |
|
848 |
yrt_B = omega(nplx,nldx,sensor)*xi_B |
849 |
$ + yi_B |
850 |
$ - beta(nplx,nldx,sensor)*zi_B |
851 |
$ + dy(nplx,nldx,sensor) |
852 |
|
853 |
zrt_B = -gamma(nplx,nldx,sensor)*xi_B |
854 |
$ + beta(nplx,nldx,sensor)*yi_B |
855 |
$ + zi_B |
856 |
$ + dz(nplx,nldx,sensor) |
857 |
|
858 |
|
859 |
c xrt = xi |
860 |
c yrt = yi |
861 |
c zrt = zi |
862 |
|
863 |
c------------------------------------------------------------------------ |
864 |
c (xPAM,yPAM,zPAM) = measured coordinates (in cm) |
865 |
c in PAMELA reference system |
866 |
c------------------------------------------------------------------------ |
867 |
|
868 |
xPAM = 0. |
869 |
yPAM = 0. |
870 |
zPAM = 0. |
871 |
|
872 |
xPAM_A = dcoord(xrt_A,viewx,nldx,sensor) / 1.d4 |
873 |
yPAM_A = dcoord(yrt_A,viewy,nldy,sensor) / 1.d4 |
874 |
zPAM_A = ( zrt_A + z_mech_sensor(nplx,nldx,sensor)*1000.)/ 1.d4 |
875 |
|
876 |
xPAM_B = dcoord(xrt_B,viewx,nldx,sensor) / 1.d4 |
877 |
yPAM_B = dcoord(yrt_B,viewy,nldy,sensor) / 1.d4 |
878 |
zPAM_B = ( zrt_B + z_mech_sensor(nplx,nldx,sensor)*1000.)/ 1.d4 |
879 |
|
880 |
|
881 |
c print*,'A-(',xPAM_A,yPAM_A,') B-(',xPAM_B,yPAM_B,')' |
882 |
|
883 |
else |
884 |
|
885 |
print *,'routine xyz_PAM ---> not properly used !!!' |
886 |
print *,'icx = ',icx |
887 |
print *,'icy = ',icy |
888 |
|
889 |
endif |
890 |
|
891 |
100 continue |
892 |
end |
893 |
|
894 |
|
895 |
******************************************************************************** |
896 |
******************************************************************************** |
897 |
******************************************************************************** |
898 |
* |
899 |
* The function distance_to(XP,YP) should be used after |
900 |
* a call to the xyz_PAM routine and it evaluate the |
901 |
* NORMALIZED distance (PROJECTED on the XY plane) between |
902 |
* the point (XP,YP), argument of the function, |
903 |
* and: |
904 |
* |
905 |
* - the point (xPAM,yPAM,zPAM), in the case of a COUPLE |
906 |
* or |
907 |
* - the segment (xPAM_A,yPAM_A,zPAM_A)-(xPAM_B,yPAM_B,zPAM_B), |
908 |
* in the case of a SINGLET. |
909 |
* |
910 |
* ( The routine xyz_PAM fills the common defined in "common_xyzPAM.f", |
911 |
* which stores the coordinates of the couple/singlet ) |
912 |
* |
913 |
******************************************************************************** |
914 |
|
915 |
real function distance_to(XPP,YPP) |
916 |
|
917 |
include 'common_xyzPAM.f' |
918 |
|
919 |
* ----------------------------------- |
920 |
* it computes the normalized distance |
921 |
* ( i.e. distance/resolution ) |
922 |
* ----------------------------------- |
923 |
|
924 |
double precision distance,RE |
925 |
double precision BETA,ALFA,xmi,ymi |
926 |
|
927 |
* ---------------------- |
928 |
if ( |
929 |
+ xPAM.eq.0.and. |
930 |
+ yPAM.eq.0.and. |
931 |
+ zPAM.eq.0.and. |
932 |
+ xPAM_A.ne.0.and. |
933 |
+ yPAM_A.ne.0.and. |
934 |
+ zPAM_A.ne.0.and. |
935 |
+ xPAM_B.ne.0.and. |
936 |
+ yPAM_B.ne.0.and. |
937 |
+ zPAM_B.ne.0.and. |
938 |
+ .true.)then |
939 |
* ----------------------- |
940 |
* DISTANCE TO --- SINGLET |
941 |
* ----------------------- |
942 |
if(abs(sngl(xPAM_B-xPAM_A)).lt.abs(sngl(yPAM_B-yPAM_A)))then |
943 |
* |||---------- X CLUSTER |
944 |
|
945 |
BETA = (xPAM_B-xPAM_A)/(yPAM_B-yPAM_A) |
946 |
ALFA = xPAM_A - BETA * yPAM_A |
947 |
|
948 |
ymi = ( YPP + BETA*XPP - BETA*ALFA )/(1+BETA**2) |
949 |
if(ymi.lt.dmin1(yPAM_A,yPAM_B))ymi=dmin1(yPAM_A,yPAM_B) |
950 |
if(ymi.gt.dmax1(yPAM_A,yPAM_B))ymi=dmax1(yPAM_A,yPAM_B) |
951 |
xmi = ALFA + BETA * ymi |
952 |
RE = resxPAM |
953 |
|
954 |
else |
955 |
* |||---------- Y CLUSTER |
956 |
|
957 |
BETA = (yPAM_B-yPAM_A)/(xPAM_B-xPAM_A) |
958 |
ALFA = yPAM_A - BETA * xPAM_A |
959 |
|
960 |
xmi = ( XPP + BETA*YPP - BETA*ALFA )/(1+BETA**2) |
961 |
if(xmi.lt.dmin1(xPAM_A,xPAM_B))xmi=dmin1(xPAM_A,xPAM_B) |
962 |
if(xmi.gt.dmax1(xPAM_A,xPAM_B))xmi=dmax1(xPAM_A,xPAM_B) |
963 |
ymi = ALFA + BETA * xmi |
964 |
RE = resyPAM |
965 |
|
966 |
endif |
967 |
|
968 |
distance= |
969 |
$ ((xmi-XPP)**2+(ymi-YPP)**2)/RE**2 |
970 |
distance=dsqrt(distance) |
971 |
|
972 |
c$$$ print*,xPAM_A,yPAM_A,zPAM_A,xPAM_b,yPAM_b,zPAM_b |
973 |
c$$$ $ ,' --- distance_to --- ',xpp,ypp |
974 |
c$$$ print*,' resolution ',re |
975 |
|
976 |
|
977 |
* ---------------------- |
978 |
elseif( |
979 |
+ xPAM.ne.0.and. |
980 |
+ yPAM.ne.0.and. |
981 |
+ zPAM.ne.0.and. |
982 |
+ xPAM_A.eq.0.and. |
983 |
+ yPAM_A.eq.0.and. |
984 |
+ zPAM_A.eq.0.and. |
985 |
+ xPAM_B.eq.0.and. |
986 |
+ yPAM_B.eq.0.and. |
987 |
+ zPAM_B.eq.0.and. |
988 |
+ .true.)then |
989 |
* ---------------------- |
990 |
* DISTANCE TO --- COUPLE |
991 |
* ---------------------- |
992 |
|
993 |
distance= |
994 |
$ ((xPAM-XPP)/resxPAM)**2 |
995 |
$ + |
996 |
$ ((yPAM-YPP)/resyPAM)**2 |
997 |
distance=dsqrt(distance) |
998 |
|
999 |
c$$$ print*,xPAM,yPAM,zPAM |
1000 |
c$$$ $ ,' --- distance_to --- ',xpp,ypp |
1001 |
c$$$ print*,' resolution ',resxPAM,resyPAM |
1002 |
|
1003 |
else |
1004 |
|
1005 |
print* |
1006 |
$ ,' function distance_to ---> wrong usage!!!' |
1007 |
print*,' xPAM,yPAM,zPAM ',xPAM,yPAM,zPAM |
1008 |
print*,' xPAM_A,yPAM_A,zPAM_A,xPAM_b,yPAM_b,zPAM_b ' |
1009 |
$ ,xPAM_A,yPAM_A,zPAM_A,xPAM_b,yPAM_b,zPAM_b |
1010 |
endif |
1011 |
|
1012 |
distance_to = sngl(distance) |
1013 |
|
1014 |
return |
1015 |
end |
1016 |
|
1017 |
******************************************************************************** |
1018 |
******************************************************************************** |
1019 |
******************************************************************************** |
1020 |
******************************************************************************** |
1021 |
|
1022 |
subroutine whichsensor(nplPAM,xPAM,yPAM,ladder,sensor) |
1023 |
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * |
1024 |
* Given the plane (1-6 from BOTTOM to TOP!!) and the (xPAM,yPAM) |
1025 |
* coordinates (in the PAMELA reference system), it returns |
1026 |
* the ladder and the sensor which the point belongs to. |
1027 |
* |
1028 |
* The method to assign a point to a sensor consists in |
1029 |
* - calculating the sum of the distances between the point |
1030 |
* and the sensor edges |
1031 |
* - requiring that it is less-equal than (SiDimX+SiDimY) |
1032 |
* |
1033 |
* NB -- SiDimX and SiDimY are not the dimentions of the SENSITIVE volume |
1034 |
* but of the whole silicon sensor |
1035 |
* |
1036 |
* CONVENTION: |
1037 |
* - sensor 1 is the one closest to the hybrid |
1038 |
* - ladder 1 is the first to be read out (strips from 1 to 1024) |
1039 |
* |
1040 |
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * |
1041 |
include 'commontracker.f' |
1042 |
include 'common_align.f' |
1043 |
|
1044 |
integer ladder,sensor,viewx,viewy |
1045 |
real c1(4),c2(4),c3(4) |
1046 |
data c1/1.,0.,0.,1./ |
1047 |
data c2/1.,-1.,-1.,1./ |
1048 |
data c3/1.,1.,0.,0./ |
1049 |
real*8 yvvv,xvvv |
1050 |
double precision xi,yi,zi |
1051 |
double precision xrt,yrt,zrt |
1052 |
real AA,BB |
1053 |
real yvv(4),xvv(4) |
1054 |
|
1055 |
* tollerance to consider the track inside the sensitive area |
1056 |
real ptoll |
1057 |
data ptoll/150./ !um |
1058 |
|
1059 |
external nviewx,nviewy,acoordsi,dcoord |
1060 |
|
1061 |
nplpt = nplPAM !plane |
1062 |
viewx = nviewx(nplpt) |
1063 |
viewy = nviewy(nplpt) |
1064 |
|
1065 |
do il=1,nladders_view |
1066 |
do is=1,2 |
1067 |
|
1068 |
do iv=1,4 !loop on sensor vertexes |
1069 |
stripx = (il-c1(iv))*1024 + c1(iv) + c2(iv)*3 |
1070 |
stripy = (il-c3(iv))*1024 + c3(iv) |
1071 |
c------------------------------------------------------------------------ |
1072 |
c (xi,yi,zi) = mechanical coordinates in the silicon sensor frame |
1073 |
c------------------------------------------------------------------------ |
1074 |
if(((mod(int(stripx+0.5)-1,1024)+1).le.3) |
1075 |
$ .or.((mod(int(stripx+0.5)-1,1024)+1).ge.1022)) then !X has 1018 strips... |
1076 |
c if((stripx.le.3).or.(stripx.ge.1022)) then !X has 1018 strips... |
1077 |
print*,'whichsensor: ', |
1078 |
$ ' WARNING: false X strip: strip ',stripx |
1079 |
endif |
1080 |
xi = acoordsi(stripx,viewx) |
1081 |
yi = acoordsi(stripy,viewy) |
1082 |
zi = 0. |
1083 |
c------------------------------------------------------------------------ |
1084 |
c (xrt,yrt,zrt) = rototranslated coordinates in the silicon sensor frame |
1085 |
c------------------------------------------------------------------------ |
1086 |
c N.B. I convert angles from microradiants to radiants |
1087 |
xrt = xi |
1088 |
$ - omega(nplpt,il,is)*yi |
1089 |
$ + gamma(nplpt,il,is)*zi |
1090 |
$ + dx(nplpt,il,is) |
1091 |
yrt = omega(nplpt,il,is)*xi |
1092 |
$ + yi |
1093 |
$ - beta(nplpt,il,is)*zi |
1094 |
$ + dy(nplpt,il,is) |
1095 |
zrt = -gamma(nplpt,il,is)*xi |
1096 |
$ + beta(nplpt,il,is)*yi |
1097 |
$ + zi |
1098 |
$ + dz(nplpt,il,is) |
1099 |
c------------------------------------------------------------------------ |
1100 |
c measured coordinates (in cm) in PAMELA reference system |
1101 |
c------------------------------------------------------------------------ |
1102 |
yvvv = dcoord(yrt,viewy,il,is) / 1.d4 |
1103 |
xvvv = dcoord(xrt,viewx,il,is) / 1.d4 |
1104 |
|
1105 |
yvv(iv)=sngl(yvvv) |
1106 |
xvv(iv)=sngl(xvvv) |
1107 |
c print*,'LADDER ',il,' SENSOR ',is,' vertexes >> ' |
1108 |
c $ ,iv,xvv(iv),yvv(iv) |
1109 |
enddo !end loop on sensor vertexes |
1110 |
|
1111 |
dtot=0. |
1112 |
do iside=1,4,2 !loop on sensor edges X |
1113 |
iv1=iside |
1114 |
iv2=mod(iside,4)+1 |
1115 |
* straight line passing trhough two consecutive vertexes |
1116 |
AA = (yvv(iv1)-yvv(iv2))/(xvv(iv1)-xvv(iv2)) |
1117 |
BB = yvv(iv1) - AA*xvv(iv1) |
1118 |
* point along the straight line closer to the track |
1119 |
xoo = (xPAM+AA*yPAM-AA*BB)/(1+AA**2) |
1120 |
yoo = AA*xoo + BB |
1121 |
* sum of the distances |
1122 |
dtot = dtot + |
1123 |
$ sqrt((xPAM-xoo)**2+(yPAM-yoo)**2) |
1124 |
enddo !end loop on sensor edges |
1125 |
do iside=2,4,2 !loop on sensor edges Y |
1126 |
iv1=iside |
1127 |
iv2=mod(iside,4)+1 |
1128 |
* straight line passing trhough two consecutive vertexes |
1129 |
AA = (xvv(iv1)-xvv(iv2))/(yvv(iv1)-yvv(iv2)) |
1130 |
BB = xvv(iv1) - AA*yvv(iv1) |
1131 |
* point along the straight line closer to the track |
1132 |
yoo = (yPAM+AA*xPAM-AA*BB)/(1+AA**2) |
1133 |
xoo = AA*yoo + BB |
1134 |
* sum of the distances |
1135 |
dtot = dtot + |
1136 |
$ sqrt((xPAM-xoo)**2+(yPAM-yoo)**2) |
1137 |
enddo !end loop on sensor edges |
1138 |
|
1139 |
|
1140 |
* half-perimeter of sensitive area |
1141 |
Perim = |
1142 |
$ SiDimX - edgeX_l - edgeX_r |
1143 |
$ +SiDimY - edgeY_l - edgeY_r |
1144 |
Perim = (Perim + ptoll)/1.e4 |
1145 |
if(dtot.le.Perim)goto 100 |
1146 |
|
1147 |
|
1148 |
enddo |
1149 |
enddo |
1150 |
|
1151 |
ladder = 0 |
1152 |
sensor = 0 |
1153 |
goto 200 |
1154 |
|
1155 |
100 continue |
1156 |
ladder = il |
1157 |
sensor = is |
1158 |
|
1159 |
|
1160 |
200 return |
1161 |
end |
1162 |
|
1163 |
|
1164 |
|
1165 |
************************************************************************* |
1166 |
|
1167 |
subroutine reverse(v,n,temp) !invert the order of the components of v(n) vector |
1168 |
|
1169 |
implicit double precision (A-H,O-Z) |
1170 |
|
1171 |
dimension v(*) |
1172 |
dimension temp(*) |
1173 |
integer i,n |
1174 |
|
1175 |
do i=1,n |
1176 |
temp(i)=v(n+1-i) |
1177 |
enddo |
1178 |
|
1179 |
do i=1,n |
1180 |
v(i)=temp(i) |
1181 |
enddo |
1182 |
|
1183 |
return |
1184 |
end |
1185 |
|
1186 |
************************************************************************* |
1187 |
************************************************************************* |
1188 |
************************************************************************* |
1189 |
************************************************************************* |
1190 |
************************************************************************* |
1191 |
************************************************************************* |
1192 |
************************************************************************* |
1193 |
************************************************************************* |
1194 |
************************************************************************* |
1195 |
************************************************************************* |
1196 |
************************************************************************* |
1197 |
************************************************************************* |
1198 |
************************************************************************* |
1199 |
************************************************************************* |
1200 |
************************************************************************* |
1201 |
integer function ip_cp(id) |
1202 |
* |
1203 |
* given the couple id, |
1204 |
* it returns the plane number |
1205 |
* |
1206 |
include 'commontracker.f' |
1207 |
include 'level1.f' |
1208 |
c include 'common_analysis.f' |
1209 |
include 'common_momanhough.f' |
1210 |
|
1211 |
ip_cp=0 |
1212 |
ncpp=0 |
1213 |
do ip=1,nplanes |
1214 |
ncpp=ncpp+ncp_plane(ip) |
1215 |
if(ncpp.ge.abs(id))then |
1216 |
ip_cp=ip |
1217 |
goto 100 |
1218 |
endif |
1219 |
enddo |
1220 |
100 continue |
1221 |
return |
1222 |
end |
1223 |
|
1224 |
|
1225 |
integer function is_cp(id) |
1226 |
* |
1227 |
* given the couple id, |
1228 |
* it returns the sensor number |
1229 |
* |
1230 |
is_cp=0 |
1231 |
if(id.lt.0)is_cp=1 |
1232 |
if(id.gt.0)is_cp=2 |
1233 |
if(id.eq.0)print*,'IS_CP ===> wrong couple id !!!' |
1234 |
|
1235 |
return |
1236 |
end |
1237 |
|
1238 |
|
1239 |
integer function icp_cp(id) |
1240 |
* |
1241 |
* given the couple id, |
1242 |
* it returns the id number ON THE PLANE |
1243 |
* |
1244 |
include 'commontracker.f' |
1245 |
include 'level1.f' |
1246 |
c include 'common_analysis.f' |
1247 |
include 'common_momanhough.f' |
1248 |
|
1249 |
icp_cp=0 |
1250 |
|
1251 |
ncpp=0 |
1252 |
do ip=1,nplanes |
1253 |
ncppold=ncpp |
1254 |
ncpp=ncpp+ncp_plane(ip) |
1255 |
if(ncpp.ge.abs(id))then |
1256 |
icp_cp=abs(id)-ncppold |
1257 |
goto 100 |
1258 |
endif |
1259 |
enddo |
1260 |
100 continue |
1261 |
return |
1262 |
end |
1263 |
|
1264 |
|
1265 |
|
1266 |
integer function id_cp(ip,icp,is) |
1267 |
* |
1268 |
* given a plane, a couple and the sensor |
1269 |
* it returns the absolute couple id |
1270 |
* negative if sensor =1 |
1271 |
* positive if sensor =2 |
1272 |
* |
1273 |
include 'commontracker.f' |
1274 |
include 'level1.f' |
1275 |
c include 'calib.f' |
1276 |
c include 'level1.f' |
1277 |
c include 'common_analysis.f' |
1278 |
include 'common_momanhough.f' |
1279 |
|
1280 |
id_cp=0 |
1281 |
|
1282 |
if(ip.gt.1)then |
1283 |
do i=1,ip-1 |
1284 |
id_cp = id_cp + ncp_plane(i) |
1285 |
enddo |
1286 |
endif |
1287 |
|
1288 |
id_cp = id_cp + icp |
1289 |
|
1290 |
if(is.eq.1) id_cp = -id_cp |
1291 |
|
1292 |
return |
1293 |
end |
1294 |
|
1295 |
|
1296 |
|
1297 |
|
1298 |
************************************************************************* |
1299 |
************************************************************************* |
1300 |
************************************************************************* |
1301 |
************************************************************************* |
1302 |
************************************************************************* |
1303 |
************************************************************************* |
1304 |
|
1305 |
|
1306 |
*************************************************** |
1307 |
* * |
1308 |
* * |
1309 |
* * |
1310 |
* * |
1311 |
* * |
1312 |
* * |
1313 |
************************************************** |
1314 |
|
1315 |
subroutine cl_to_couples(iflag) |
1316 |
|
1317 |
include 'commontracker.f' |
1318 |
include 'level1.f' |
1319 |
include 'common_momanhough.f' |
1320 |
c include 'momanhough_init.f' |
1321 |
include 'calib.f' |
1322 |
c include 'level1.f' |
1323 |
|
1324 |
* output flag |
1325 |
* -------------- |
1326 |
* 0 = good event |
1327 |
* 1 = bad event |
1328 |
* -------------- |
1329 |
integer iflag |
1330 |
|
1331 |
integer badseed,badclx,badcly |
1332 |
|
1333 |
* init variables |
1334 |
ncp_tot=0 |
1335 |
do ip=1,nplanes |
1336 |
do ico=1,ncouplemax |
1337 |
clx(ip,ico)=0 |
1338 |
cly(ip,ico)=0 |
1339 |
enddo |
1340 |
ncp_plane(ip)=0 |
1341 |
do icl=1,nclstrmax_level2 |
1342 |
cls(ip,icl)=1 |
1343 |
enddo |
1344 |
ncls(ip)=0 |
1345 |
enddo |
1346 |
do icl=1,nclstrmax_level2 |
1347 |
cl_single(icl) = 1 |
1348 |
cl_good(icl) = 0 |
1349 |
enddo |
1350 |
do iv=1,nviews |
1351 |
ncl_view(iv) = 0 |
1352 |
mask_view(iv) = 0 !all included |
1353 |
enddo |
1354 |
|
1355 |
* count number of cluster per view |
1356 |
do icl=1,nclstr1 |
1357 |
ncl_view(VIEW(icl)) = ncl_view(VIEW(icl)) + 1 |
1358 |
enddo |
1359 |
* mask views with too many clusters |
1360 |
do iv=1,nviews |
1361 |
if( ncl_view(iv).gt. nclusterlimit)then |
1362 |
mask_view(iv) = 1 |
1363 |
if(DEBUG)print*,' * WARNING * cl_to_couple: n.clusters > ' |
1364 |
$ ,nclusterlimit,' on view ', iv,' --> masked!' |
1365 |
endif |
1366 |
enddo |
1367 |
|
1368 |
|
1369 |
* start association |
1370 |
ncouples=0 |
1371 |
do icx=1,nclstr1 !loop on cluster (X) |
1372 |
if(mod(VIEW(icx),2).eq.1)goto 10 |
1373 |
|
1374 |
* ---------------------------------------------------- |
1375 |
* jump masked views (X VIEW) |
1376 |
* ---------------------------------------------------- |
1377 |
if( mask_view(VIEW(icx)).ne.0 ) goto 10 |
1378 |
* ---------------------------------------------------- |
1379 |
* cut on charge (X VIEW) |
1380 |
* ---------------------------------------------------- |
1381 |
if(dedx(icx).lt.dedx_x_min)then |
1382 |
cl_single(icx)=0 |
1383 |
goto 10 |
1384 |
endif |
1385 |
* ---------------------------------------------------- |
1386 |
* cut BAD (X VIEW) |
1387 |
* ---------------------------------------------------- |
1388 |
badseed=BAD(VIEW(icx),nvk(MAXS(icx)),nst(MAXS(icx))) |
1389 |
ifirst=INDSTART(icx) |
1390 |
if(icx.ne.nclstr1) then |
1391 |
ilast=INDSTART(icx+1)-1 |
1392 |
else |
1393 |
ilast=TOTCLLENGTH |
1394 |
endif |
1395 |
badclx=badseed |
1396 |
do igood=-ngoodstr,ngoodstr |
1397 |
ibad=1 |
1398 |
if((INDMAX(icx)+igood).gt.ifirst.and. |
1399 |
$ (INDMAX(icx)+igood).lt.ilast.and. |
1400 |
$ .true.)then |
1401 |
ibad=BAD(VIEW(icx), |
1402 |
$ nvk(MAXS(icx)+igood), |
1403 |
$ nst(MAXS(icx)+igood)) |
1404 |
endif |
1405 |
badclx=badclx*ibad |
1406 |
enddo |
1407 |
* ---------------------------------------------------- |
1408 |
* >>> eliminato il taglio sulle BAD <<< |
1409 |
* ---------------------------------------------------- |
1410 |
c if(badcl.eq.0)then |
1411 |
c cl_single(icx)=0 |
1412 |
c goto 10 |
1413 |
c endif |
1414 |
* ---------------------------------------------------- |
1415 |
|
1416 |
cl_good(icx)=1 |
1417 |
nplx=npl(VIEW(icx)) |
1418 |
nldx=nld(MAXS(icx),VIEW(icx)) |
1419 |
|
1420 |
do icy=1,nclstr1 !loop on cluster (Y) |
1421 |
if(mod(VIEW(icy),2).eq.0)goto 20 |
1422 |
|
1423 |
* ---------------------------------------------------- |
1424 |
* jump masked views (Y VIEW) |
1425 |
* ---------------------------------------------------- |
1426 |
if( mask_view(VIEW(icy)).ne.0 ) goto 20 |
1427 |
|
1428 |
* ---------------------------------------------------- |
1429 |
* cut on charge (Y VIEW) |
1430 |
* ---------------------------------------------------- |
1431 |
if(dedx(icy).lt.dedx_y_min)then |
1432 |
cl_single(icy)=0 |
1433 |
goto 20 |
1434 |
endif |
1435 |
* ---------------------------------------------------- |
1436 |
* cut BAD (Y VIEW) |
1437 |
* ---------------------------------------------------- |
1438 |
badseed=BAD(VIEW(icy),nvk(MAXS(icy)),nst(MAXS(icy))) |
1439 |
ifirst=INDSTART(icy) |
1440 |
if(icy.ne.nclstr1) then |
1441 |
ilast=INDSTART(icy+1)-1 |
1442 |
else |
1443 |
ilast=TOTCLLENGTH |
1444 |
endif |
1445 |
badcly=badseed |
1446 |
do igood=-ngoodstr,ngoodstr |
1447 |
ibad=1 |
1448 |
if((INDMAX(icy)+igood).gt.ifirst.and. |
1449 |
$ (INDMAX(icy)+igood).lt.ilast.and. |
1450 |
$ .true.) |
1451 |
$ ibad=BAD(VIEW(icy), |
1452 |
$ nvk(MAXS(icy)+igood), |
1453 |
$ nst(MAXS(icy)+igood)) |
1454 |
badcly=badcly*ibad |
1455 |
enddo |
1456 |
* ---------------------------------------------------- |
1457 |
* >>> eliminato il taglio sulle BAD <<< |
1458 |
* ---------------------------------------------------- |
1459 |
c if(badcl.eq.0)then |
1460 |
c cl_single(icy)=0 |
1461 |
c goto 20 |
1462 |
c endif |
1463 |
* ---------------------------------------------------- |
1464 |
|
1465 |
cl_good(icy)=1 |
1466 |
nply=npl(VIEW(icy)) |
1467 |
nldy=nld(MAXS(icy),VIEW(icy)) |
1468 |
|
1469 |
* ---------------------------------------------- |
1470 |
* CONDITION TO FORM A COUPLE |
1471 |
* ---------------------------------------------- |
1472 |
* geometrical consistency (same plane and ladder) |
1473 |
if(nply.eq.nplx.and.nldy.eq.nldx)then |
1474 |
* charge correlation |
1475 |
* (modified to be applied only below saturation... obviously) |
1476 |
|
1477 |
if( .not.(dedx(icy).gt.chsaty.and.dedx(icx).gt.chsatx) |
1478 |
$ .and. |
1479 |
$ .not.(dedx(icy).lt.chmipy.and.dedx(icx).lt.chmipx) |
1480 |
$ .and. |
1481 |
$ (badclx.eq.1.and.badcly.eq.1) |
1482 |
$ .and. |
1483 |
$ .true.)then |
1484 |
|
1485 |
ddd=(dedx(icy) |
1486 |
$ -kch(nplx,nldx)*dedx(icx)-cch(nplx,nldx)) |
1487 |
ddd=ddd/sqrt(kch(nplx,nldx)**2+1) |
1488 |
|
1489 |
c cut = chcut * sch(nplx,nldx) |
1490 |
|
1491 |
sss=(kch(nplx,nldx)*dedx(icy)+dedx(icx) |
1492 |
$ -kch(nplx,nldx)*cch(nplx,nldx)) |
1493 |
sss=sss/sqrt(kch(nplx,nldx)**2+1) |
1494 |
cut = chcut * (16 + sss/50.) |
1495 |
|
1496 |
if(abs(ddd).gt.cut)then |
1497 |
goto 20 !charge not consistent |
1498 |
endif |
1499 |
endif |
1500 |
|
1501 |
if(ncp_plane(nplx).gt.ncouplemax)then |
1502 |
if(verbose)print*, |
1503 |
$ '** warning ** number of identified '// |
1504 |
$ 'couples on plane ',nplx, |
1505 |
$ 'exceeds vector dimention ' |
1506 |
$ ,'( ',ncouplemax,' ) --> masked!' |
1507 |
mask_view(nviewx(nplx)) = 2 |
1508 |
mask_view(nviewy(nply)) = 2 |
1509 |
goto 10 |
1510 |
endif |
1511 |
|
1512 |
* ------------------> COUPLE <------------------ |
1513 |
ncp_plane(nplx) = ncp_plane(nplx) + 1 |
1514 |
clx(nplx,ncp_plane(nplx))=icx |
1515 |
cly(nply,ncp_plane(nplx))=icy |
1516 |
cl_single(icx)=0 |
1517 |
cl_single(icy)=0 |
1518 |
* ---------------------------------------------- |
1519 |
|
1520 |
endif |
1521 |
|
1522 |
20 continue |
1523 |
enddo !end loop on clusters(Y) |
1524 |
|
1525 |
10 continue |
1526 |
enddo !end loop on clusters(X) |
1527 |
|
1528 |
|
1529 |
do icl=1,nclstr1 |
1530 |
if(cl_single(icl).eq.1)then |
1531 |
ip=npl(VIEW(icl)) |
1532 |
ncls(ip)=ncls(ip)+1 |
1533 |
cls(ip,ncls(ip))=icl |
1534 |
endif |
1535 |
enddo |
1536 |
|
1537 |
|
1538 |
if(DEBUG)then |
1539 |
print*,'clusters ',nclstr1 |
1540 |
print*,'good ',(cl_good(i),i=1,nclstr1) |
1541 |
print*,'singles ',(cl_single(i),i=1,nclstr1) |
1542 |
print*,'couples per plane: ',(ncp_plane(ip),ip=1,nplanes) |
1543 |
endif |
1544 |
|
1545 |
do ip=1,6 |
1546 |
ncp_tot = ncp_tot + ncp_plane(ip) |
1547 |
enddo |
1548 |
|
1549 |
return |
1550 |
end |
1551 |
|
1552 |
*************************************************** |
1553 |
* * |
1554 |
* * |
1555 |
* * |
1556 |
* * |
1557 |
* * |
1558 |
* * |
1559 |
************************************************** |
1560 |
|
1561 |
subroutine cp_to_doubtrip(iflag) |
1562 |
|
1563 |
include 'commontracker.f' |
1564 |
include 'level1.f' |
1565 |
include 'common_momanhough.f' |
1566 |
include 'common_xyzPAM.f' |
1567 |
include 'common_mini_2.f' |
1568 |
include 'calib.f' |
1569 |
|
1570 |
|
1571 |
* output flag |
1572 |
* -------------- |
1573 |
* 0 = good event |
1574 |
* 1 = bad event |
1575 |
* -------------- |
1576 |
integer iflag |
1577 |
|
1578 |
|
1579 |
* ----------------------------- |
1580 |
* DOUBLETS/TRIPLETS coordinates |
1581 |
c double precision xm1,ym1,zm1 |
1582 |
c double precision xm2,ym2,zm2 |
1583 |
c double precision xm3,ym3,zm3 |
1584 |
|
1585 |
real xm1,ym1,zm1 |
1586 |
real xm2,ym2,zm2 |
1587 |
real xm3,ym3,zm3 |
1588 |
* ----------------------------- |
1589 |
* variable needed for tricircle: |
1590 |
real xp(3),zp(3)!TRIPLETS coordinates, to find a circle |
1591 |
EQUIVALENCE (xm1,xp(1)) |
1592 |
EQUIVALENCE (xm2,xp(2)) |
1593 |
EQUIVALENCE (xm3,xp(3)) |
1594 |
EQUIVALENCE (zm1,zp(1)) |
1595 |
EQUIVALENCE (zm2,zp(2)) |
1596 |
EQUIVALENCE (zm3,zp(3)) |
1597 |
real angp(3),resp(3),chi |
1598 |
real xc,zc,radius |
1599 |
* ----------------------------- |
1600 |
|
1601 |
|
1602 |
* -------------------------------------------- |
1603 |
* put a limit to the maximum number of couples |
1604 |
* per plane, in order to apply hough transform |
1605 |
* (couples recovered during track refinement) |
1606 |
* -------------------------------------------- |
1607 |
do ip=1,nplanes |
1608 |
if(ncp_plane(ip).gt.ncouplelimit)then |
1609 |
mask_view(nviewx(ip)) = 8 |
1610 |
mask_view(nviewy(ip)) = 8 |
1611 |
endif |
1612 |
enddo |
1613 |
|
1614 |
|
1615 |
ndblt=0 !number of doublets |
1616 |
ntrpt=0 !number of triplets |
1617 |
|
1618 |
do ip1=1,(nplanes-1) !loop on planes - COPPIA 1 |
1619 |
if( mask_view(nviewx(ip1)).ne.0 .or. |
1620 |
$ mask_view(nviewy(ip1)).ne.0 )goto 10 !skip plane |
1621 |
do is1=1,2 !loop on sensors - COPPIA 1 |
1622 |
do icp1=1,ncp_plane(ip1) !loop on COPPIA 1 |
1623 |
icx1=clx(ip1,icp1) |
1624 |
icy1=cly(ip1,icp1) |
1625 |
c call xyz_PAM(icx1,icy1,is1,'COG2','COG2',0.,0.)!(1) |
1626 |
call xyz_PAM(icx1,icy1,is1,PFAdef,PFAdef,0.,0.) !(1) |
1627 |
xm1=xPAM |
1628 |
ym1=yPAM |
1629 |
zm1=zPAM |
1630 |
c print*,'***',is1,xm1,ym1,zm1 |
1631 |
|
1632 |
do ip2=(ip1+1),nplanes !loop on planes - COPPIA 2 |
1633 |
if( mask_view(nviewx(ip2)).ne.0 .or. |
1634 |
$ mask_view(nviewy(ip2)).ne.0 )goto 20 !skip plane |
1635 |
do is2=1,2 !loop on sensors -ndblt COPPIA 2 |
1636 |
|
1637 |
do icp2=1,ncp_plane(ip2) !loop on COPPIA 2 |
1638 |
icx2=clx(ip2,icp2) |
1639 |
icy2=cly(ip2,icp2) |
1640 |
c call xyz_PAM |
1641 |
c $ (icx2,icy2,is2,'COG2','COG2',0.,0.)!(1) |
1642 |
call xyz_PAM |
1643 |
$ (icx2,icy2,is2,PFAdef,PFAdef,0.,0.) !(1) |
1644 |
xm2=xPAM |
1645 |
ym2=yPAM |
1646 |
zm2=zPAM |
1647 |
|
1648 |
* - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
1649 |
* track parameters on Y VIEW |
1650 |
* (2 couples needed) |
1651 |
* - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
1652 |
if(ndblt.eq.ndblt_max)then |
1653 |
if(verbose)print*, |
1654 |
$ '** warning ** number of identified '// |
1655 |
$ 'doublets exceeds vector dimention ' |
1656 |
$ ,'( ',ndblt_max,' )' |
1657 |
c good2=.false. |
1658 |
c goto 880 !fill ntp and go to next event |
1659 |
do iv=1,12 |
1660 |
mask_view(iv) = 3 |
1661 |
enddo |
1662 |
iflag=1 |
1663 |
return |
1664 |
endif |
1665 |
ndblt = ndblt + 1 |
1666 |
* store doublet info |
1667 |
cpyz1(ndblt)=id_cp(ip1,icp1,is1) |
1668 |
cpyz2(ndblt)=id_cp(ip2,icp2,is2) |
1669 |
* tg(th_yz) |
1670 |
alfayz2(ndblt)=(ym1-ym2)/(zm1-zm2) |
1671 |
* y0 (cm) |
1672 |
alfayz1(ndblt)=alfayz2(ndblt)*(zini-zm1)+ym1 |
1673 |
|
1674 |
**** -----------------------------------------------**** |
1675 |
**** reject non phisical couples **** |
1676 |
**** -----------------------------------------------**** |
1677 |
if( |
1678 |
$ abs(alfayz2(ndblt)).gt.alfyz2_max |
1679 |
$ .or. |
1680 |
$ abs(alfayz1(ndblt)).gt.alfyz1_max |
1681 |
$ )ndblt = ndblt-1 |
1682 |
|
1683 |
c$$$ if(iev.eq.33)then |
1684 |
c$$$ print*,'********* ',ndblt,' -- ',icp1,icp2,is1,is2 |
1685 |
c$$$ $ ,' || ',icx1,icy1,icx2,icy2 |
1686 |
c$$$ $ ,' || ',xm1,ym1,xm2,ym2 |
1687 |
c$$$ $ ,' || ',alfayz2(ndblt),alfayz1(ndblt) |
1688 |
c$$$ endif |
1689 |
c$$$ |
1690 |
* - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
1691 |
* track parameters on Y VIEW - end |
1692 |
* - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
1693 |
|
1694 |
|
1695 |
if(ip2.eq.nplanes)goto 31 !no possible combination with 3 couples |
1696 |
|
1697 |
do ip3=(ip2+1),nplanes !loop on planes - COPPIA 3 |
1698 |
if( mask_view(nviewx(ip3)).ne.0 .or. |
1699 |
$ mask_view(nviewy(ip3)).ne.0 )goto 30 !skip plane |
1700 |
do is3=1,2 !loop on sensors - COPPIA 3 |
1701 |
|
1702 |
do icp3=1,ncp_plane(ip3) !loop on COPPIA 3 |
1703 |
icx3=clx(ip3,icp3) |
1704 |
icy3=cly(ip3,icp3) |
1705 |
c call xyz_PAM |
1706 |
c $ (icx3,icy3,is3,'COG2','COG2',0.,0.)!(1) |
1707 |
call xyz_PAM |
1708 |
$ (icx3,icy3,is3,PFAdef,PFAdef,0.,0.) !(1) |
1709 |
xm3=xPAM |
1710 |
ym3=yPAM |
1711 |
zm3=zPAM |
1712 |
* find the circle passing through the three points |
1713 |
call tricircle(3,xp,zp,angp,resp,chi |
1714 |
$ ,xc,zc,radius,iflag) |
1715 |
c print*,xc,zc,radius |
1716 |
* the circle must intersect the reference plane |
1717 |
if( |
1718 |
c $ (xc.le.-1.*xclimit.or. |
1719 |
c $ xc.ge.xclimit).and. |
1720 |
$ radius**2.ge.(ZINI-zc)**2.and. |
1721 |
$ iflag.eq.0.and. |
1722 |
$ .true.)then |
1723 |
|
1724 |
* - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
1725 |
* track parameters on X VIEW |
1726 |
* (3 couples needed) |
1727 |
* - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
1728 |
if(ntrpt.eq.ntrpt_max)then |
1729 |
if(verbose)print*, |
1730 |
$ '** warning ** number of identified '// |
1731 |
$ 'triplets exceeds vector dimention ' |
1732 |
$ ,'( ',ntrpt_max,' )' |
1733 |
c good2=.false. |
1734 |
c goto 880 !fill ntp and go to next event |
1735 |
do iv=1,nviews |
1736 |
mask_view(iv) = 4 |
1737 |
enddo |
1738 |
iflag=1 |
1739 |
return |
1740 |
endif |
1741 |
ntrpt = ntrpt +1 |
1742 |
* store triplet info |
1743 |
cpxz1(ntrpt)=id_cp(ip1,icp1,is1) |
1744 |
cpxz2(ntrpt)=id_cp(ip2,icp2,is2) |
1745 |
cpxz3(ntrpt)=id_cp(ip3,icp3,is3) |
1746 |
|
1747 |
if(xc.lt.0)then |
1748 |
*************POSITIVE DEFLECTION |
1749 |
alfaxz1(ntrpt) = xc+sqrt(radius**2-(ZINI-zc)**2) |
1750 |
alfaxz2(ntrpt) = (ZINI-zc)/sqrt(radius**2-(ZINI-zc)**2) |
1751 |
alfaxz3(ntrpt) = 1/radius |
1752 |
else |
1753 |
*************NEGATIVE DEFLECTION |
1754 |
alfaxz1(ntrpt) = xc-sqrt(radius**2-(ZINI-zc)**2) |
1755 |
alfaxz2(ntrpt) = -(ZINI-zc)/sqrt(radius**2-(ZINI-zc)**2) |
1756 |
alfaxz3(ntrpt) = -1/radius |
1757 |
endif |
1758 |
|
1759 |
**** -----------------------------------------------**** |
1760 |
**** reject non phisical triplets **** |
1761 |
**** -----------------------------------------------**** |
1762 |
if( |
1763 |
$ abs(alfaxz2(ntrpt)).gt.alfxz2_max |
1764 |
$ .or. |
1765 |
$ abs(alfaxz1(ntrpt)).gt.alfxz1_max |
1766 |
$ )ntrpt = ntrpt-1 |
1767 |
|
1768 |
|
1769 |
c print*,alfaxz1(ntrpt),alfaxz2(ntrpt),alfaxz3(ntrpt) |
1770 |
* - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
1771 |
* track parameters on X VIEW - end |
1772 |
* - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
1773 |
endif |
1774 |
enddo !end loop on COPPIA 3 |
1775 |
enddo !end loop on sensors - COPPIA 3 |
1776 |
30 continue |
1777 |
enddo !end loop on planes - COPPIA 3 |
1778 |
31 continue |
1779 |
|
1780 |
1 enddo !end loop on COPPIA 2 |
1781 |
enddo !end loop on sensors - COPPIA 2 |
1782 |
20 continue |
1783 |
enddo !end loop on planes - COPPIA 2 |
1784 |
|
1785 |
enddo !end loop on COPPIA1 |
1786 |
enddo !end loop on sensors - COPPIA 1 |
1787 |
10 continue |
1788 |
enddo !end loop on planes - COPPIA 1 |
1789 |
|
1790 |
if(DEBUG)then |
1791 |
print*,'--- doublets ',ndblt |
1792 |
print*,'--- triplets ',ntrpt |
1793 |
endif |
1794 |
|
1795 |
c goto 880 !ntp fill |
1796 |
|
1797 |
|
1798 |
return |
1799 |
end |
1800 |
|
1801 |
|
1802 |
|
1803 |
*************************************************** |
1804 |
* * |
1805 |
* * |
1806 |
* * |
1807 |
* * |
1808 |
* * |
1809 |
* * |
1810 |
************************************************** |
1811 |
|
1812 |
subroutine doub_to_YZcloud(iflag) |
1813 |
|
1814 |
include 'commontracker.f' |
1815 |
include 'level1.f' |
1816 |
include 'common_momanhough.f' |
1817 |
c include 'momanhough_init.f' |
1818 |
|
1819 |
|
1820 |
* output flag |
1821 |
* -------------- |
1822 |
* 0 = good event |
1823 |
* 1 = bad event |
1824 |
* -------------- |
1825 |
integer iflag |
1826 |
|
1827 |
integer db_used(ndblt_max) |
1828 |
integer db_temp(ndblt_max) |
1829 |
integer db_all(ndblt_max) !stores db ID in each cloud |
1830 |
|
1831 |
integer hit_plane(nplanes) |
1832 |
|
1833 |
* mask for used couples |
1834 |
integer cp_useds1(ncouplemaxtot) ! sensor 1 |
1835 |
integer cp_useds2(ncouplemaxtot) ! sensor 2 |
1836 |
|
1837 |
|
1838 |
*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
1839 |
* classification of DOUBLETS |
1840 |
* according to distance in parameter space |
1841 |
* (cloud = group of points (doublets) in parameter space) |
1842 |
*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
1843 |
do idb=1,ndblt |
1844 |
db_used(idb)=0 |
1845 |
enddo |
1846 |
|
1847 |
distance=0 |
1848 |
nclouds_yz=0 !number of clouds |
1849 |
npt_tot=0 |
1850 |
nloop=0 |
1851 |
90 continue |
1852 |
do idb1=1,ndblt !loop (1) on DOUBLETS |
1853 |
if(db_used(idb1).eq.1)goto 2228 !db already included in a cloud |
1854 |
|
1855 |
c print*,'--------------' |
1856 |
c print*,'** ',idb1,' **' |
1857 |
|
1858 |
do icp=1,ncp_tot |
1859 |
cp_useds1(icp)=0 !init |
1860 |
cp_useds2(icp)=0 !init |
1861 |
enddo |
1862 |
do idb=1,ndblt |
1863 |
db_all(idb)=0 |
1864 |
enddo |
1865 |
if(cpyz1(idb1).gt.0)cp_useds2(cpyz1(idb1))=1 |
1866 |
if(cpyz1(idb1).lt.0)cp_useds1(-cpyz1(idb1))=1 |
1867 |
if(cpyz2(idb1).gt.0)cp_useds2(cpyz2(idb1))=1 |
1868 |
if(cpyz2(idb1).lt.0)cp_useds1(-cpyz2(idb1))=1 |
1869 |
temp1 = alfayz1(idb1) |
1870 |
temp2 = alfayz2(idb1) |
1871 |
npt=1 !counter of points in the cloud |
1872 |
|
1873 |
db_all(npt) = idb1 |
1874 |
|
1875 |
nptloop=1 |
1876 |
db_temp(1)=idb1 |
1877 |
|
1878 |
88 continue |
1879 |
|
1880 |
npv=0 !# new points inlcuded |
1881 |
do iloop=1,nptloop |
1882 |
idbref=db_temp(iloop) !local point of reference |
1883 |
ccccc if(db_used(idbref).eq.1)goto 1188 !next |
1884 |
|
1885 |
do idb2=1,ndblt !loop (2) on DOUBLETS |
1886 |
if(idb2.eq.idbref)goto 1118 !next doublet |
1887 |
if(db_used(idb2).eq.1)goto 1118 |
1888 |
|
1889 |
|
1890 |
* doublet distance in parameter space |
1891 |
distance= |
1892 |
$ ((alfayz1(idbref)-alfayz1(idb2))/Dalfayz1)**2 |
1893 |
$ +((alfayz2(idbref)-alfayz2(idb2))/Dalfayz2)**2 |
1894 |
distance = sqrt(distance) |
1895 |
|
1896 |
c$$$ if(iev.eq.33)then |
1897 |
c$$$ if(distance.lt.100) |
1898 |
c$$$ $ print*,'********* ',idb1,idbref,idb2,distance |
1899 |
c$$$ if(distance.lt.100) |
1900 |
c$$$ $ print*,'********* ',alfayz1(idbref),alfayz1(idb2) |
1901 |
c$$$ $ ,alfayz2(idbref),alfayz2(idb2) |
1902 |
c$$$ endif |
1903 |
if(distance.lt.cutdistyz)then |
1904 |
|
1905 |
c print*,idb1,idb2,distance,' cloud ',nclouds_yz |
1906 |
if(cpyz1(idb2).gt.0)cp_useds2(cpyz1(idb2))=1 |
1907 |
if(cpyz1(idb2).lt.0)cp_useds1(-cpyz1(idb2))=1 |
1908 |
if(cpyz2(idb2).gt.0)cp_useds2(cpyz2(idb2))=1 |
1909 |
if(cpyz2(idb2).lt.0)cp_useds1(-cpyz2(idb2))=1 |
1910 |
npt = npt + 1 !counter of points in the cloud |
1911 |
|
1912 |
npv = npv +1 |
1913 |
db_temp(npv) = idb2 |
1914 |
db_used(idbref) = 1 |
1915 |
db_used(idb2) = 1 |
1916 |
|
1917 |
db_all(npt) = idb2 |
1918 |
|
1919 |
temp1 = temp1 + alfayz1(idb2) |
1920 |
temp2 = temp2 + alfayz2(idb2) |
1921 |
c print*,'* idbref,idb2 ',idbref,idb2 |
1922 |
endif |
1923 |
|
1924 |
1118 continue |
1925 |
enddo !end loop (2) on DOUBLETS |
1926 |
|
1927 |
1188 continue |
1928 |
enddo !end loop on... bo? |
1929 |
|
1930 |
nptloop=npv |
1931 |
if(nptloop.ne.0)goto 88 |
1932 |
|
1933 |
* ------------------------------------------ |
1934 |
* stores the cloud only if |
1935 |
* 1) it includes a minimum number of REAL couples |
1936 |
* 1bis) it inlcudes a minimum number of doublets |
1937 |
* 2) it is not already stored |
1938 |
* ------------------------------------------ |
1939 |
do ip=1,nplanes |
1940 |
hit_plane(ip)=0 |
1941 |
enddo |
1942 |
ncpused=0 |
1943 |
do icp=1,ncp_tot |
1944 |
if(cp_useds1(icp).ne.0.or.cp_useds2(icp).ne.0)then |
1945 |
ncpused=ncpused+1 |
1946 |
ip=ip_cp(icp) |
1947 |
hit_plane(ip)=1 |
1948 |
endif |
1949 |
enddo |
1950 |
nplused=0 |
1951 |
do ip=1,nplanes |
1952 |
nplused=nplused+ hit_plane(ip) |
1953 |
enddo |
1954 |
c print*,'>>>> ',ncpused,npt,nplused |
1955 |
c if(ncpused.lt.ncpyz_min)goto 2228 !next doublet |
1956 |
if(npt.lt.nptyz_min)goto 2228 !next doublet |
1957 |
if(nplused.lt.nplyz_min)goto 2228 !next doublet |
1958 |
|
1959 |
* ~~~~~~~~~~~~~~~~~ |
1960 |
* >>> NEW CLOUD <<< |
1961 |
|
1962 |
if(nclouds_yz.ge.ncloyz_max)then |
1963 |
if(verbose)print*, |
1964 |
$ '** warning ** number of identified '// |
1965 |
$ 'YZ clouds exceeds vector dimention ' |
1966 |
$ ,'( ',ncloyz_max,' )' |
1967 |
c good2=.false. |
1968 |
c goto 880 !fill ntp and go to next event |
1969 |
do iv=1,nviews |
1970 |
mask_view(iv) = 5 |
1971 |
enddo |
1972 |
iflag=1 |
1973 |
return |
1974 |
endif |
1975 |
|
1976 |
nclouds_yz = nclouds_yz + 1 !increase counter |
1977 |
alfayz1_av(nclouds_yz) = temp1/npt !store average parameter |
1978 |
alfayz2_av(nclouds_yz) = temp2/npt ! " |
1979 |
do icp=1,ncp_tot |
1980 |
cpcloud_yz(nclouds_yz,icp)= |
1981 |
$ cp_useds1(icp)+2*cp_useds2(icp) !store cp info |
1982 |
enddo |
1983 |
ptcloud_yz(nclouds_yz)=npt |
1984 |
c ptcloud_yz_nt(nclouds_yz)=npt |
1985 |
do ipt=1,npt |
1986 |
db_cloud(npt_tot+ipt) = db_all(ipt) |
1987 |
c print*,'>> ',ipt,db_all(ipt) |
1988 |
enddo |
1989 |
npt_tot=npt_tot+npt |
1990 |
if(DEBUG)then |
1991 |
print*,'-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~' |
1992 |
print*,'>>>> cloud ',nclouds_yz,' --- ',npt,' points' |
1993 |
print*,'- alfayz1 ',alfayz1_av(nclouds_yz) |
1994 |
print*,'- alfayz2 ',alfayz2_av(nclouds_yz) |
1995 |
print*,'cp_useds1 ',(cp_useds1(icp),icp=1,ncp_tot) |
1996 |
print*,'cp_useds2 ',(cp_useds2(icp),icp=1,ncp_tot) |
1997 |
print*,'hit_plane ',(hit_plane(ip),ip=1,nplanes) |
1998 |
c$$$ print*,'nt-uple: ptcloud_yz(',nclouds_yz,') = ' |
1999 |
c$$$ $ ,ptcloud_yz(nclouds_yz) |
2000 |
c$$$ print*,'nt-uple: db_cloud(...) = ' |
2001 |
c$$$ $ ,(db_cloud(iii),iii=npt_tot-npt+1,npt_tot) |
2002 |
endif |
2003 |
* >>> NEW CLOUD <<< |
2004 |
* ~~~~~~~~~~~~~~~~~ |
2005 |
2228 continue |
2006 |
enddo !end loop (1) on DOUBLETS |
2007 |
|
2008 |
|
2009 |
if(nloop.lt.nstepy)then |
2010 |
cutdistyz = cutdistyz+cutystep |
2011 |
nloop = nloop+1 |
2012 |
goto 90 |
2013 |
endif |
2014 |
|
2015 |
if(DEBUG)then |
2016 |
print*,'---------------------- ' |
2017 |
print*,'Y-Z total clouds ',nclouds_yz |
2018 |
print*,' ' |
2019 |
endif |
2020 |
|
2021 |
|
2022 |
return |
2023 |
end |
2024 |
|
2025 |
|
2026 |
|
2027 |
|
2028 |
|
2029 |
*************************************************** |
2030 |
* * |
2031 |
* * |
2032 |
* * |
2033 |
* * |
2034 |
* * |
2035 |
* * |
2036 |
************************************************** |
2037 |
|
2038 |
subroutine trip_to_XZcloud(iflag) |
2039 |
|
2040 |
include 'commontracker.f' |
2041 |
include 'level1.f' |
2042 |
include 'common_momanhough.f' |
2043 |
c include 'momanhough_init.f' |
2044 |
|
2045 |
|
2046 |
* output flag |
2047 |
* -------------- |
2048 |
* 0 = good event |
2049 |
* 1 = bad event |
2050 |
* -------------- |
2051 |
integer iflag |
2052 |
|
2053 |
integer tr_used(ntrpt_max) |
2054 |
integer tr_temp(ntrpt_max) |
2055 |
integer tr_incl(ntrpt_max) |
2056 |
integer tr_all(ntrpt_max) !stores tr ID in each cloud |
2057 |
|
2058 |
integer hit_plane(nplanes) |
2059 |
|
2060 |
* mask for used couples |
2061 |
integer cp_useds1(ncouplemaxtot) ! sensor 1 |
2062 |
integer cp_useds2(ncouplemaxtot) ! sensor 2 |
2063 |
|
2064 |
*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
2065 |
* classification of TRIPLETS |
2066 |
* according to distance in parameter space |
2067 |
*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
2068 |
do itr=1,ntrpt |
2069 |
tr_used(itr)=0 |
2070 |
enddo |
2071 |
|
2072 |
distance=0 |
2073 |
nclouds_xz=0 !number of clouds |
2074 |
npt_tot=0 !total number of selected triplets |
2075 |
nloop=0 |
2076 |
91 continue |
2077 |
do itr1=1,ntrpt !loop (1) on TRIPLETS |
2078 |
if(tr_used(itr1).eq.1)goto 22288 !already included in a cloud |
2079 |
c print*,'--------------' |
2080 |
c print*,'** ',itr1,' **' |
2081 |
|
2082 |
do icp=1,ncp_tot |
2083 |
cp_useds1(icp)=0 |
2084 |
cp_useds2(icp)=0 |
2085 |
enddo |
2086 |
do itr=1,ntrpt |
2087 |
tr_all(itr)=0 !list of included triplets |
2088 |
enddo |
2089 |
if(cpxz1(itr1).gt.0)cp_useds2(cpxz1(itr1))=1 |
2090 |
if(cpxz1(itr1).lt.0)cp_useds1(-cpxz1(itr1))=1 |
2091 |
if(cpxz2(itr1).gt.0)cp_useds2(cpxz2(itr1))=1 |
2092 |
if(cpxz2(itr1).lt.0)cp_useds1(-cpxz2(itr1))=1 |
2093 |
if(cpxz3(itr1).gt.0)cp_useds2(cpxz3(itr1))=1 |
2094 |
if(cpxz3(itr1).lt.0)cp_useds1(-cpxz3(itr1))=1 |
2095 |
temp1 = alfaxz1(itr1) |
2096 |
temp2 = alfaxz2(itr1) |
2097 |
temp3 = alfaxz3(itr1) |
2098 |
npt=1 !counter of points in the cloud |
2099 |
|
2100 |
tr_all(npt) = itr1 |
2101 |
|
2102 |
nptloop=1 |
2103 |
c tr_temp(1)=itr1 |
2104 |
tr_incl(1)=itr1 |
2105 |
|
2106 |
8881 continue |
2107 |
|
2108 |
npv=0 !# new points inlcuded |
2109 |
do iloop=1,nptloop |
2110 |
itrref=tr_incl(iloop) !local point of reference |
2111 |
do itr2=1,ntrpt !loop (2) on TRIPLETS |
2112 |
if(itr2.eq.itr1)goto 11188 !next triplet |
2113 |
if(tr_used(itr2).eq.1)goto 11188 !next triplet |
2114 |
* triplet distance in parameter space |
2115 |
* solo i due parametri spaziali per il momemnto |
2116 |
distance= |
2117 |
$ ((alfaxz1(itrref)-alfaxz1(itr2))/Dalfaxz1)**2 |
2118 |
$ +((alfaxz2(itrref)-alfaxz2(itr2))/Dalfaxz2)**2 |
2119 |
distance = sqrt(distance) |
2120 |
|
2121 |
if(distance.lt.cutdistxz)then |
2122 |
c print*,idb1,idb2,distance,' cloud ',nclouds_yz |
2123 |
if(cpxz1(itr2).gt.0)cp_useds2(cpxz1(itr2))=1 |
2124 |
if(cpxz1(itr2).lt.0)cp_useds1(-cpxz1(itr2))=1 |
2125 |
if(cpxz2(itr2).gt.0)cp_useds2(cpxz2(itr2))=1 |
2126 |
if(cpxz2(itr2).lt.0)cp_useds1(-cpxz2(itr2))=1 |
2127 |
if(cpxz3(itr2).gt.0)cp_useds2(cpxz3(itr2))=1 |
2128 |
if(cpxz3(itr2).lt.0)cp_useds1(-cpxz3(itr2))=1 |
2129 |
npt = npt + 1 !counter of points in the cloud |
2130 |
|
2131 |
npv = npv +1 |
2132 |
tr_temp(npv) = itr2 |
2133 |
tr_used(itrref) = 1 |
2134 |
tr_used(itr2) = 1 |
2135 |
|
2136 |
tr_all(npt) = itr2 |
2137 |
|
2138 |
temp1 = temp1 + alfaxz1(itr2) |
2139 |
temp2 = temp2 + alfaxz2(itr2) |
2140 |
temp3 = temp3 + alfaxz3(itr2) |
2141 |
c print*,'* itrref,itr2 ',itrref,itr2,distance |
2142 |
endif |
2143 |
|
2144 |
11188 continue |
2145 |
enddo !end loop (2) on TRIPLETS |
2146 |
|
2147 |
11888 continue |
2148 |
enddo !end loop on... bo? |
2149 |
|
2150 |
nptloop=npv |
2151 |
do i=1,npv |
2152 |
tr_incl(i)=tr_temp(i) |
2153 |
enddo |
2154 |
if(nptloop.ne.0)goto 8881 |
2155 |
|
2156 |
* ------------------------------------------ |
2157 |
* stores the cloud only if |
2158 |
* 1) it includes a minimum number of REAL couples |
2159 |
* 1bis) |
2160 |
* 2) it is not already stored |
2161 |
* ------------------------------------------ |
2162 |
c print*,'check cp_used' |
2163 |
do ip=1,nplanes |
2164 |
hit_plane(ip)=0 |
2165 |
enddo |
2166 |
ncpused=0 |
2167 |
do icp=1,ncp_tot |
2168 |
if(cp_useds1(icp).ne.0.or.cp_useds2(icp).ne.0)then |
2169 |
ncpused=ncpused+1 |
2170 |
ip=ip_cp(icp) |
2171 |
hit_plane(ip)=1 |
2172 |
endif |
2173 |
enddo |
2174 |
nplused=0 |
2175 |
do ip=1,nplanes |
2176 |
nplused=nplused+ hit_plane(ip) |
2177 |
enddo |
2178 |
c if(ncpused.lt.ncpxz_min)goto 22288 !next triplet |
2179 |
if(npt.lt.nptxz_min)goto 22288 !next triplet |
2180 |
if(nplused.lt.nplxz_min)goto 22288 !next doublet |
2181 |
|
2182 |
* ~~~~~~~~~~~~~~~~~ |
2183 |
* >>> NEW CLOUD <<< |
2184 |
if(nclouds_xz.ge.ncloxz_max)then |
2185 |
if(verbose)print*, |
2186 |
$ '** warning ** number of identified '// |
2187 |
$ 'XZ clouds exceeds vector dimention ' |
2188 |
$ ,'( ',ncloxz_max,' )' |
2189 |
c good2=.false. |
2190 |
c goto 880 !fill ntp and go to next event |
2191 |
do iv=1,nviews |
2192 |
mask_view(iv) = 6 |
2193 |
enddo |
2194 |
iflag=1 |
2195 |
return |
2196 |
endif |
2197 |
nclouds_xz = nclouds_xz + 1 !increase counter |
2198 |
alfaxz1_av(nclouds_xz) = temp1/npt !store average parameter |
2199 |
alfaxz2_av(nclouds_xz) = temp2/npt ! " |
2200 |
alfaxz3_av(nclouds_xz) = temp3/npt ! " |
2201 |
do icp=1,ncp_tot |
2202 |
cpcloud_xz(nclouds_xz,icp)= |
2203 |
$ cp_useds1(icp)+2*cp_useds2(icp) !store cp info |
2204 |
enddo |
2205 |
ptcloud_xz(nclouds_xz)=npt |
2206 |
do ipt=1,npt |
2207 |
tr_cloud(npt_tot+ipt) = tr_all(ipt) |
2208 |
enddo |
2209 |
npt_tot=npt_tot+npt |
2210 |
|
2211 |
if(DEBUG)then |
2212 |
print*,'-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~' |
2213 |
print*,'>>>> cloud ',nclouds_xz,' --- ',npt,' points' |
2214 |
print*,'- alfaxz1 ',alfaxz1_av(nclouds_xz) |
2215 |
print*,'- alfaxz2 ',alfaxz2_av(nclouds_xz) |
2216 |
print*,'- alfaxz3 ',alfaxz3_av(nclouds_xz) |
2217 |
print*,'cp_useds1 ',(cp_useds1(icp),icp=1,ncp_tot) |
2218 |
print*,'cp_useds2 ',(cp_useds2(icp),icp=1,ncp_tot) |
2219 |
print*,'hit_plane ',(hit_plane(ip),ip=1,nplanes) |
2220 |
c$$$ print*,'nt-uple: ptcloud_xz(',nclouds_xz,') = ' |
2221 |
c$$$ $ ,ptcloud_xz(nclouds_xz) |
2222 |
c$$$ print*,'nt-uple: tr_cloud(...) = ' |
2223 |
c$$$ $ ,(tr_cloud(iii),iii=npt_tot-npt+1,npt_tot) |
2224 |
endif |
2225 |
* >>> NEW CLOUD <<< |
2226 |
* ~~~~~~~~~~~~~~~~~ |
2227 |
22288 continue |
2228 |
enddo !end loop (1) on DOUBLETS |
2229 |
|
2230 |
if(nloop.lt.nstepx)then |
2231 |
cutdistxz=cutdistxz+cutxstep |
2232 |
nloop=nloop+1 |
2233 |
goto 91 |
2234 |
endif |
2235 |
|
2236 |
if(DEBUG)then |
2237 |
print*,'---------------------- ' |
2238 |
print*,'X-Z total clouds ',nclouds_xz |
2239 |
print*,' ' |
2240 |
endif |
2241 |
|
2242 |
|
2243 |
return |
2244 |
end |
2245 |
|
2246 |
|
2247 |
*************************************************** |
2248 |
* * |
2249 |
* * |
2250 |
* * |
2251 |
* * |
2252 |
* * |
2253 |
* * |
2254 |
************************************************** |
2255 |
|
2256 |
subroutine clouds_to_ctrack(iflag) |
2257 |
c***************************************************** |
2258 |
c 02/02/2006 modified by Elena Vannuccini --> (1) |
2259 |
c***************************************************** |
2260 |
|
2261 |
include 'commontracker.f' |
2262 |
include 'level1.f' |
2263 |
include 'common_momanhough.f' |
2264 |
include 'common_xyzPAM.f' |
2265 |
include 'common_mini_2.f' |
2266 |
include 'common_mech.f' |
2267 |
c include 'momanhough_init.f' |
2268 |
|
2269 |
|
2270 |
* output flag |
2271 |
* -------------- |
2272 |
* 0 = good event |
2273 |
* 1 = bad event |
2274 |
* -------------- |
2275 |
integer iflag |
2276 |
|
2277 |
* ----------------------------------------------------------- |
2278 |
* mask to store (locally) the couples included |
2279 |
* in the intersection bewteen a XZ and YZ cloud |
2280 |
integer cpintersec(ncouplemaxtot) |
2281 |
* ----------------------------------------------------------- |
2282 |
* list of matching couples in the combination |
2283 |
* between a XZ and YZ cloud |
2284 |
integer cp_match(nplanes,2*ncouplemax) |
2285 |
integer ncp_match(nplanes) |
2286 |
* ----------------------------------------------------------- |
2287 |
integer hit_plane(nplanes) |
2288 |
* ----------------------------------------------------------- |
2289 |
* variables for track fitting |
2290 |
double precision AL_INI(5) |
2291 |
c double precision tath |
2292 |
* ----------------------------------------------------------- |
2293 |
c real fitz(nplanes) !z coordinates of the planes in cm |
2294 |
|
2295 |
|
2296 |
|
2297 |
ntracks=0 !counter of track candidates |
2298 |
|
2299 |
do iyz=1,nclouds_yz !loop on YZ couds |
2300 |
do ixz=1,nclouds_xz !loop on XZ couds |
2301 |
|
2302 |
* -------------------------------------------------- |
2303 |
* check of consistency of the clouds |
2304 |
* ---> required a minimum number of matching couples |
2305 |
* the track fit will be performed on the INTERSECTION |
2306 |
* of the two clouds |
2307 |
* -------------------------------------------------- |
2308 |
do ip=1,nplanes |
2309 |
hit_plane(ip)=0 |
2310 |
ncp_match(ip)=0 |
2311 |
do icpp=1,ncouplemax |
2312 |
cp_match(ip,icpp)=0 !init couple list |
2313 |
enddo |
2314 |
enddo |
2315 |
ncp_ok=0 |
2316 |
do icp=1,ncp_tot !loop on couples |
2317 |
* get info on |
2318 |
cpintersec(icp)=min( |
2319 |
$ cpcloud_yz(iyz,icp), |
2320 |
$ cpcloud_xz(ixz,icp)) |
2321 |
if( |
2322 |
$ (cpcloud_yz(iyz,icp).eq.1.and.cpcloud_xz(ixz,icp).eq.2).or. |
2323 |
$ (cpcloud_yz(iyz,icp).eq.2.and.cpcloud_xz(ixz,icp).eq.1).or. |
2324 |
$ .false.)cpintersec(icp)=0 |
2325 |
if(cpintersec(icp).ne.0)then |
2326 |
ncp_ok=ncp_ok+1 |
2327 |
|
2328 |
ip=ip_cp(icp) |
2329 |
hit_plane(ip)=1 |
2330 |
if(cpintersec(icp).eq.1)then |
2331 |
* 1) only the couple image in sensor 1 matches |
2332 |
id=-icp |
2333 |
ncp_match(ip)=ncp_match(ip)+1 |
2334 |
cp_match(ip,ncp_match(ip))=id |
2335 |
elseif(cpintersec(icp).eq.2)then |
2336 |
* 2) only the couple image in sensor 2 matches |
2337 |
id=icp |
2338 |
ncp_match(ip)=ncp_match(ip)+1 |
2339 |
cp_match(ip,ncp_match(ip))=id |
2340 |
else |
2341 |
* 3) both couple images match |
2342 |
id=icp |
2343 |
do is=1,2 |
2344 |
id=-id |
2345 |
ncp_match(ip)=ncp_match(ip)+1 |
2346 |
cp_match(ip,ncp_match(ip))=id |
2347 |
enddo |
2348 |
endif |
2349 |
endif !end matching condition |
2350 |
enddo !end loop on couples |
2351 |
|
2352 |
nplused=0 |
2353 |
do ip=1,nplanes |
2354 |
nplused=nplused+ hit_plane(ip) |
2355 |
enddo |
2356 |
|
2357 |
c if(nplused.lt.nplxz_min)goto 888 !next doublet |
2358 |
if(nplused.lt.nplyz_min)goto 888 !next doublet |
2359 |
if(ncp_ok.lt.ncpok)goto 888 !next cloud |
2360 |
|
2361 |
if(DEBUG)then |
2362 |
print*,'Combination ',iyz,ixz |
2363 |
$ ,' db ',ptcloud_yz(iyz) |
2364 |
$ ,' tr ',ptcloud_xz(ixz) |
2365 |
$ ,' -----> # matching couples ',ncp_ok |
2366 |
endif |
2367 |
c$$$ print*,'~~~~~~~~~~~~~~~~~~~~~~~~~' |
2368 |
c$$$ print*,'Configurazione cluster XZ' |
2369 |
c$$$ print*,'1 -- ',(clx(1,i),i=1,ncp_plane(1)) |
2370 |
c$$$ print*,'2 -- ',(clx(2,i),i=1,ncp_plane(1)) |
2371 |
c$$$ print*,'3 -- ',(clx(3,i),i=1,ncp_plane(1)) |
2372 |
c$$$ print*,'4 -- ',(clx(4,i),i=1,ncp_plane(1)) |
2373 |
c$$$ print*,'5 -- ',(clx(5,i),i=1,ncp_plane(1)) |
2374 |
c$$$ print*,'6 -- ',(clx(6,i),i=1,ncp_plane(1)) |
2375 |
c$$$ print*,'Configurazione cluster YZ' |
2376 |
c$$$ print*,'1 -- ',(cly(1,i),i=1,ncp_plane(1)) |
2377 |
c$$$ print*,'2 -- ',(cly(2,i),i=1,ncp_plane(1)) |
2378 |
c$$$ print*,'3 -- ',(cly(3,i),i=1,ncp_plane(1)) |
2379 |
c$$$ print*,'4 -- ',(cly(4,i),i=1,ncp_plane(1)) |
2380 |
c$$$ print*,'5 -- ',(cly(5,i),i=1,ncp_plane(1)) |
2381 |
c$$$ print*,'6 -- ',(cly(6,i),i=1,ncp_plane(1)) |
2382 |
c$$$ print*,'~~~~~~~~~~~~~~~~~~~~~~~~~' |
2383 |
|
2384 |
* -------> INITIAL GUESS <------- |
2385 |
cccc SBAGLIATO |
2386 |
c$$$ AL_INI(1) = dreal(alfaxz1_av(ixz)) |
2387 |
c$$$ AL_INI(2) = dreal(alfayz1_av(iyz)) |
2388 |
c$$$ AL_INI(4) = PIGR + datan(dreal(alfayz2_av(iyz)) |
2389 |
c$$$ $ /dreal(alfaxz2_av(ixz))) |
2390 |
c$$$ tath = -dreal(alfaxz2_av(ixz))/dcos(AL_INI(4)) |
2391 |
c$$$ AL_INI(3) = tath/sqrt(1+tath**2) |
2392 |
c$$$ AL_INI(5) = (1.e2*alfaxz3_av(ixz))/(0.3*0.43) !0. |
2393 |
cccc GIUSTO (ma si sua guess()) |
2394 |
c$$$ AL_INI(1) = dreal(alfaxz1_av(ixz)) |
2395 |
c$$$ AL_INI(2) = dreal(alfayz1_av(iyz)) |
2396 |
c$$$ tath = -dreal(alfaxz2_av(ixz))/dcos(AL_INI(4)) |
2397 |
c$$$ AL_INI(3) = tath/sqrt(1+tath**2) |
2398 |
c$$$ IF(alfaxz2_av(ixz).NE.0)THEN |
2399 |
c$$$ AL_INI(4) = PIGR + datan(dreal(alfayz2_av(iyz)) |
2400 |
c$$$ $ /dreal(alfaxz2_av(ixz))) |
2401 |
c$$$ ELSE |
2402 |
c$$$ AL_INI(4) = acos(-1.)/2 |
2403 |
c$$$ IF(alfayz2_av(iyz).LT.0)AL_INI(4) = AL_INI(4)+acos(-1.) |
2404 |
c$$$ ENDIF |
2405 |
c$$$ IF(alfaxz2_av(ixz).LT.0)AL_INI(4)= acos(-1.)+ AL_INI(4) |
2406 |
c$$$ AL_INI(4) = -acos(-1.) + AL_INI(4) !from incidence direction to tracking rs |
2407 |
c$$$ |
2408 |
c$$$ AL_INI(5) = (1.e2*alfaxz3_av(ixz))/(0.3*0.43) !0. |
2409 |
c$$$ |
2410 |
c$$$ if(AL_INI(5).gt.defmax)goto 888 !next cloud |
2411 |
|
2412 |
if(DEBUG)then |
2413 |
print*,'1 >>> ',(cp_match(6,i),i=1,ncp_match(6)) |
2414 |
print*,'2 >>> ',(cp_match(5,i),i=1,ncp_match(5)) |
2415 |
print*,'3 >>> ',(cp_match(4,i),i=1,ncp_match(4)) |
2416 |
print*,'4 >>> ',(cp_match(3,i),i=1,ncp_match(3)) |
2417 |
print*,'5 >>> ',(cp_match(2,i),i=1,ncp_match(2)) |
2418 |
print*,'6 >>> ',(cp_match(1,i),i=1,ncp_match(1)) |
2419 |
endif |
2420 |
|
2421 |
do icp1=1,max(1,ncp_match(1)) |
2422 |
hit_plane(1)=icp1 |
2423 |
if(ncp_match(1).eq.0)hit_plane(1)=0 !-icp1 |
2424 |
|
2425 |
do icp2=1,max(1,ncp_match(2)) |
2426 |
hit_plane(2)=icp2 |
2427 |
if(ncp_match(2).eq.0)hit_plane(2)=0 !-icp2 |
2428 |
|
2429 |
do icp3=1,max(1,ncp_match(3)) |
2430 |
hit_plane(3)=icp3 |
2431 |
if(ncp_match(3).eq.0)hit_plane(3)=0 !-icp3 |
2432 |
|
2433 |
do icp4=1,max(1,ncp_match(4)) |
2434 |
hit_plane(4)=icp4 |
2435 |
if(ncp_match(4).eq.0)hit_plane(4)=0 !-icp4 |
2436 |
|
2437 |
do icp5=1,max(1,ncp_match(5)) |
2438 |
hit_plane(5)=icp5 |
2439 |
if(ncp_match(5).eq.0)hit_plane(5)=0 !-icp5 |
2440 |
|
2441 |
do icp6=1,max(1,ncp_match(6)) |
2442 |
hit_plane(6)=icp6 |
2443 |
if(ncp_match(6).eq.0)hit_plane(6)=0 !-icp6 |
2444 |
|
2445 |
|
2446 |
call track_init !init TRACK common |
2447 |
|
2448 |
do ip=1,nplanes !loop on planes |
2449 |
if(hit_plane(ip).ne.0)then |
2450 |
id=cp_match(ip,hit_plane(ip)) |
2451 |
is=is_cp(id) |
2452 |
icp=icp_cp(id) |
2453 |
if(ip_cp(id).ne.ip) |
2454 |
$ print*,'OKKIO!!' |
2455 |
$ ,'id ',id,is,icp |
2456 |
$ ,ip_cp(id),ip |
2457 |
icx=clx(ip,icp) |
2458 |
icy=cly(ip,icp) |
2459 |
* ************************* |
2460 |
c call xyz_PAM(icx,icy,is, |
2461 |
c $ 'COG2','COG2',0.,0.) |
2462 |
call xyz_PAM(icx,icy,is, !(1) |
2463 |
$ PFAdef,PFAdef,0.,0.) !(1) |
2464 |
* ************************* |
2465 |
* ----------------------------- |
2466 |
xgood(nplanes-ip+1)=1. |
2467 |
ygood(nplanes-ip+1)=1. |
2468 |
xm(nplanes-ip+1)=xPAM |
2469 |
ym(nplanes-ip+1)=yPAM |
2470 |
zm(nplanes-ip+1)=zPAM |
2471 |
resx(nplanes-ip+1)=resxPAM |
2472 |
resy(nplanes-ip+1)=resyPAM |
2473 |
* ----------------------------- |
2474 |
endif |
2475 |
enddo !end loop on planes |
2476 |
* ********************************************************** |
2477 |
* ************************** FIT *** FIT *** FIT *** FIT *** |
2478 |
* ********************************************************** |
2479 |
cccc scommentare se si usa al_ini della nuvola |
2480 |
c$$$ do i=1,5 |
2481 |
c$$$ AL(i)=AL_INI(i) |
2482 |
c$$$ enddo |
2483 |
call guess() |
2484 |
do i=1,5 |
2485 |
AL_INI(i)=AL(i) |
2486 |
enddo |
2487 |
ifail=0 !error flag in chi^2 computation |
2488 |
jstep=0 !number of minimization steps |
2489 |
iprint=0 |
2490 |
c if(DEBUG)iprint=1 |
2491 |
if(DEBUG)iprint=2 |
2492 |
call mini2(jstep,ifail,iprint) |
2493 |
if(ifail.ne.0) then |
2494 |
if(DEBUG)then |
2495 |
print *, |
2496 |
$ '*** MINIMIZATION FAILURE *** ' |
2497 |
$ //'(clouds_to_ctrack)' |
2498 |
print*,'initial guess: ' |
2499 |
|
2500 |
print*,'AL_INI(1) = ',AL_INI(1) |
2501 |
print*,'AL_INI(2) = ',AL_INI(2) |
2502 |
print*,'AL_INI(3) = ',AL_INI(3) |
2503 |
print*,'AL_INI(4) = ',AL_INI(4) |
2504 |
print*,'AL_INI(5) = ',AL_INI(5) |
2505 |
endif |
2506 |
c chi2=-chi2 |
2507 |
endif |
2508 |
* ********************************************************** |
2509 |
* ************************** FIT *** FIT *** FIT *** FIT *** |
2510 |
* ********************************************************** |
2511 |
|
2512 |
if(chi2.le.0.)goto 666 |
2513 |
|
2514 |
* -------------------------- |
2515 |
* STORE candidate TRACK INFO |
2516 |
* -------------------------- |
2517 |
if(ntracks.eq.NTRACKSMAX)then |
2518 |
|
2519 |
if(verbose)print*, |
2520 |
$ '** warning ** number of candidate tracks '// |
2521 |
$ ' exceeds vector dimension ' |
2522 |
$ ,'( ',NTRACKSMAX,' )' |
2523 |
c good2=.false. |
2524 |
c goto 880 !fill ntp and go to next event |
2525 |
do iv=1,nviews |
2526 |
mask_view(iv) = 7 |
2527 |
enddo |
2528 |
iflag=1 |
2529 |
return |
2530 |
endif |
2531 |
|
2532 |
ntracks = ntracks + 1 |
2533 |
|
2534 |
c$$$ ndof=0 |
2535 |
do ip=1,nplanes |
2536 |
c$$$ ndof=ndof |
2537 |
c$$$ $ +int(xgood(ip)) |
2538 |
c$$$ $ +int(ygood(ip)) |
2539 |
XV_STORE(ip,ntracks)=sngl(xv(ip)) |
2540 |
YV_STORE(ip,ntracks)=sngl(yv(ip)) |
2541 |
ZV_STORE(ip,ntracks)=sngl(zv(ip)) |
2542 |
XM_STORE(ip,ntracks)=sngl(xm(ip)) |
2543 |
YM_STORE(ip,ntracks)=sngl(ym(ip)) |
2544 |
ZM_STORE(ip,ntracks)=sngl(zm(ip)) |
2545 |
RESX_STORE(ip,ntracks)=sngl(resx(ip)) |
2546 |
RESY_STORE(ip,ntracks)=sngl(resy(ip)) |
2547 |
XV_STORE(ip,ntracks)=sngl(xv(ip)) |
2548 |
YV_STORE(ip,ntracks)=sngl(yv(ip)) |
2549 |
ZV_STORE(ip,ntracks)=sngl(zv(ip)) |
2550 |
AXV_STORE(ip,ntracks)=sngl(axv(ip)) |
2551 |
AYV_STORE(ip,ntracks)=sngl(ayv(ip)) |
2552 |
XGOOD_STORE(ip,ntracks)=sngl(xgood(ip)) |
2553 |
YGOOD_STORE(ip,ntracks)=sngl(ygood(ip)) |
2554 |
if(hit_plane(ip).ne.0)then |
2555 |
CP_STORE(nplanes-ip+1,ntracks)= |
2556 |
$ cp_match(ip,hit_plane(ip)) |
2557 |
else |
2558 |
CP_STORE(nplanes-ip+1,ntracks)=0 |
2559 |
endif |
2560 |
CLS_STORE(nplanes-ip+1,ntracks)=0 |
2561 |
do i=1,5 |
2562 |
AL_STORE(i,ntracks)=sngl(AL(i)) |
2563 |
enddo |
2564 |
enddo |
2565 |
|
2566 |
c$$$ * Number of Degree Of Freedom |
2567 |
c$$$ ndof=ndof-5 |
2568 |
c$$$ * reduced chi^2 |
2569 |
c$$$ rchi2=chi2/dble(ndof) |
2570 |
RCHI2_STORE(ntracks)=chi2 |
2571 |
|
2572 |
* -------------------------------- |
2573 |
* STORE candidate TRACK INFO - end |
2574 |
* -------------------------------- |
2575 |
|
2576 |
666 continue |
2577 |
enddo !end loop on cp in plane 6 |
2578 |
enddo !end loop on cp in plane 5 |
2579 |
enddo !end loop on cp in plane 4 |
2580 |
enddo !end loop on cp in plane 3 |
2581 |
enddo !end loop on cp in plane 2 |
2582 |
enddo !end loop on cp in plane 1 |
2583 |
|
2584 |
888 continue |
2585 |
enddo !end loop on XZ couds |
2586 |
enddo !end loop on YZ couds |
2587 |
|
2588 |
if(ntracks.eq.0)then |
2589 |
iflag=1 |
2590 |
return |
2591 |
endif |
2592 |
|
2593 |
if(DEBUG)then |
2594 |
print*,'****** TRACK CANDIDATES ***********' |
2595 |
print*,'# R. chi2 RIG' |
2596 |
do i=1,ntracks |
2597 |
print*,i,' --- ',rchi2_store(i),' --- ' |
2598 |
$ ,1./abs(AL_STORE(5,i)) |
2599 |
enddo |
2600 |
print*,'***********************************' |
2601 |
endif |
2602 |
|
2603 |
|
2604 |
return |
2605 |
end |
2606 |
|
2607 |
|
2608 |
*************************************************** |
2609 |
* * |
2610 |
* * |
2611 |
* * |
2612 |
* * |
2613 |
* * |
2614 |
* * |
2615 |
************************************************** |
2616 |
|
2617 |
subroutine refine_track(ibest) |
2618 |
|
2619 |
c****************************************************** |
2620 |
cccccc 06/10/2005 modified by elena vannuccini ---> (1) |
2621 |
cccccc 31/01/2006 modified by elena vannuccini ---> (2) |
2622 |
cccccc 12/08/2006 modified by elena vannucicni ---> (3) |
2623 |
c****************************************************** |
2624 |
|
2625 |
include 'commontracker.f' |
2626 |
include 'level1.f' |
2627 |
include 'common_momanhough.f' |
2628 |
include 'common_xyzPAM.f' |
2629 |
include 'common_mini_2.f' |
2630 |
include 'common_mech.f' |
2631 |
c include 'momanhough_init.f' |
2632 |
c include 'level1.f' |
2633 |
include 'calib.f' |
2634 |
|
2635 |
|
2636 |
* flag to chose PFA |
2637 |
character*10 PFA |
2638 |
common/FINALPFA/PFA |
2639 |
|
2640 |
* ================================================= |
2641 |
* new estimate of positions using ETA algorithm |
2642 |
* and |
2643 |
* search for new couples and single clusters to add |
2644 |
* ================================================= |
2645 |
call track_init |
2646 |
do ip=1,nplanes !loop on planes |
2647 |
|
2648 |
* ||||||||||||||||||||||||||||||||||||||||||||||||| |
2649 |
* ------------------------------------------------- |
2650 |
* If the plane has been already included, it just |
2651 |
* computes again the coordinates of the x-y couple |
2652 |
* using improved PFAs |
2653 |
* ------------------------------------------------- |
2654 |
* ||||||||||||||||||||||||||||||||||||||||||||||||| |
2655 |
if(XGOOD_STORE(nplanes-ip+1,ibest).eq.1..and. |
2656 |
$ YGOOD_STORE(nplanes-ip+1,ibest).eq.1. )then |
2657 |
|
2658 |
id=CP_STORE(nplanes-ip+1,ibest) |
2659 |
|
2660 |
is=is_cp(id) |
2661 |
icp=icp_cp(id) |
2662 |
if(ip_cp(id).ne.ip) |
2663 |
$ print*,'OKKIO!!' |
2664 |
$ ,'id ',id,is,icp |
2665 |
$ ,ip_cp(id),ip |
2666 |
icx=clx(ip,icp) |
2667 |
icy=cly(ip,icp) |
2668 |
call xyz_PAM(icx,icy,is, |
2669 |
c $ 'ETA2','ETA2', |
2670 |
$ PFA,PFA, |
2671 |
$ AXV_STORE(nplanes-ip+1,ibest), |
2672 |
$ AYV_STORE(nplanes-ip+1,ibest)) |
2673 |
c$$$ call xyz_PAM(icx,icy,is, |
2674 |
c$$$ $ 'COG2','COG2', |
2675 |
c$$$ $ 0., |
2676 |
c$$$ $ 0.) |
2677 |
xm(nplanes-ip+1) = xPAM |
2678 |
ym(nplanes-ip+1) = yPAM |
2679 |
zm(nplanes-ip+1) = zPAM |
2680 |
xgood(nplanes-ip+1) = 1 |
2681 |
ygood(nplanes-ip+1) = 1 |
2682 |
resx(nplanes-ip+1) = resxPAM |
2683 |
resy(nplanes-ip+1) = resyPAM |
2684 |
|
2685 |
c dedxtrk(nplanes-ip+1) = (dedx(icx)+dedx(icy))/2. !(1) |
2686 |
dedxtrk_x(nplanes-ip+1)=dedx(icx)/mip(VIEW(icx),LADDER(icx)) !(1)(2) |
2687 |
dedxtrk_y(nplanes-ip+1)=dedx(icy)/mip(VIEW(icy),LADDER(icy)) !(1)(2) |
2688 |
|
2689 |
* ||||||||||||||||||||||||||||||||||||||||||||||||| |
2690 |
* ------------------------------------------------- |
2691 |
* If the plane has NOT been already included, |
2692 |
* it tries to include a COUPLE or a single cluster |
2693 |
* ------------------------------------------------- |
2694 |
* ||||||||||||||||||||||||||||||||||||||||||||||||| |
2695 |
else |
2696 |
|
2697 |
xgood(nplanes-ip+1)=0 |
2698 |
ygood(nplanes-ip+1)=0 |
2699 |
|
2700 |
* -------------------------------------------------------------- |
2701 |
* determine which ladder and sensor are intersected by the track |
2702 |
xP=XV_STORE(nplanes-ip+1,ibest) |
2703 |
yP=YV_STORE(nplanes-ip+1,ibest) |
2704 |
zP=ZV_STORE(nplanes-ip+1,ibest) |
2705 |
call whichsensor(ip,xP,yP,nldt,ist) |
2706 |
* if the track hit the plane in a dead area, go to the next plane |
2707 |
if(nldt.eq.0.or.ist.eq.0)goto 133 |
2708 |
* -------------------------------------------------------------- |
2709 |
|
2710 |
if(DEBUG)then |
2711 |
print*, |
2712 |
$ '------ Plane ',ip,' intersected on LADDER ',nldt |
2713 |
$ ,' SENSOR ',ist |
2714 |
print*, |
2715 |
$ '------ coord: ',XP,YP |
2716 |
endif |
2717 |
|
2718 |
* =========================================== |
2719 |
* STEP 1 >>>>>>> try to include a new couple |
2720 |
* =========================================== |
2721 |
c if(DEBUG)print*,'>>>> try to include a new couple' |
2722 |
distmin=1000000. |
2723 |
xmm = 0. |
2724 |
ymm = 0. |
2725 |
zmm = 0. |
2726 |
rxmm = 0. |
2727 |
rymm = 0. |
2728 |
dedxmmx = 0. !(1) |
2729 |
dedxmmy = 0. !(1) |
2730 |
idm = 0 !ID of the closer couple |
2731 |
distance=0. |
2732 |
do icp=1,ncp_plane(ip) !loop on couples on plane icp |
2733 |
icx=clx(ip,icp) |
2734 |
icy=cly(ip,icp) |
2735 |
if(LADDER(icx).ne.nldt.or. !If the ladder number does not match |
2736 |
c $ cl_used(icx).eq.1.or. !or the X cluster is already used |
2737 |
c $ cl_used(icy).eq.1.or. !or the Y cluster is already used |
2738 |
$ cl_used(icx).ne.0.or. !or the X cluster is already used !(3) |
2739 |
$ cl_used(icy).ne.0.or. !or the Y cluster is already used !(3) |
2740 |
$ .false.)goto 1188 !then jump to next couple. |
2741 |
* |
2742 |
call xyz_PAM(icx,icy,ist, |
2743 |
$ PFA,PFA, |
2744 |
c $ 'ETA2','ETA2', |
2745 |
$ AXV_STORE(nplanes-ip+1,ibest), |
2746 |
$ AYV_STORE(nplanes-ip+1,ibest)) |
2747 |
|
2748 |
distance = distance_to(XP,YP) |
2749 |
distance = distance / RCHI2_STORE(ibest)!<<< MS |
2750 |
id=id_cp(ip,icp,ist) |
2751 |
if(DEBUG)print*,'( couple ',id |
2752 |
$ ,' ) normalized distance ',distance |
2753 |
if(distance.lt.distmin)then |
2754 |
xmm = xPAM |
2755 |
ymm = yPAM |
2756 |
zmm = zPAM |
2757 |
rxmm = resxPAM |
2758 |
rymm = resyPAM |
2759 |
distmin = distance |
2760 |
idm = id |
2761 |
c dedxmm = (dedx(icx)+dedx(icy))/2. !(1) |
2762 |
dedxmmx = dedx(icx)/mip(VIEW(icx),LADDER(icx)) !(1)(2) |
2763 |
dedxmmy = dedx(icy)/mip(VIEW(icy),LADDER(icy)) !(1)(2) |
2764 |
endif |
2765 |
1188 continue |
2766 |
enddo !end loop on couples on plane icp |
2767 |
if(distmin.le.clinc)then |
2768 |
* ----------------------------------- |
2769 |
xm(nplanes-ip+1) = xmm !<<< |
2770 |
ym(nplanes-ip+1) = ymm !<<< |
2771 |
zm(nplanes-ip+1) = zmm !<<< |
2772 |
xgood(nplanes-ip+1) = 1 !<<< |
2773 |
ygood(nplanes-ip+1) = 1 !<<< |
2774 |
resx(nplanes-ip+1)=rxmm !<<< |
2775 |
resy(nplanes-ip+1)=rymm !<<< |
2776 |
c dedxtrk(nplanes-ip+1) = dedxmm !<<< !(1) |
2777 |
dedxtrk_x(nplanes-ip+1) = dedxmmx !(1) |
2778 |
dedxtrk_y(nplanes-ip+1) = dedxmmy !(1) |
2779 |
* ----------------------------------- |
2780 |
CP_STORE(nplanes-ip+1,ibest)=idm |
2781 |
if(DEBUG)print*,'%%%% included couple ',idm |
2782 |
$ ,' (norm.dist.= ',distmin,', cut ',clinc,' )' |
2783 |
goto 133 !next plane |
2784 |
endif |
2785 |
* ================================================ |
2786 |
* STEP 2 >>>>>>> try to include a single cluster |
2787 |
* either from a couple or single |
2788 |
* ================================================ |
2789 |
c if(DEBUG)print*,'>>>> try to include a new cluster' |
2790 |
distmin=1000000. |
2791 |
xmm_A = 0. !--------------------------- |
2792 |
ymm_A = 0. ! init variables that |
2793 |
zmm_A = 0. ! define the SINGLET |
2794 |
xmm_B = 0. ! |
2795 |
ymm_B = 0. ! |
2796 |
zmm_B = 0. ! |
2797 |
rxmm = 0. ! |
2798 |
rymm = 0. ! |
2799 |
dedxmmx = 0. !(1) |
2800 |
dedxmmy = 0. !(1) |
2801 |
iclm=0 !--------------------------- |
2802 |
distance=0. |
2803 |
|
2804 |
*----- clusters inside couples ------------------------------------- |
2805 |
do icp=1,ncp_plane(ip) !loop on cluster inside couples |
2806 |
icx=clx(ip,icp) |
2807 |
icy=cly(ip,icp) |
2808 |
id=id_cp(ip,icp,ist) |
2809 |
if(LADDER(icx).ne.nldt)goto 11882 !if the ladder number does not match |
2810 |
* !jump to the next couple |
2811 |
*----- try cluster x ----------------------------------------------- |
2812 |
c if(cl_used(icx).eq.1)goto 11881 !if the X cluster is already used |
2813 |
if(cl_used(icx).ne.0)goto 11881 !if the X cluster is already used !(3) |
2814 |
* !jump to the Y cluster |
2815 |
call xyz_PAM(icx,0,ist, |
2816 |
c $ 'ETA2','ETA2', |
2817 |
$ PFA,PFA, |
2818 |
$ AXV_STORE(nplanes-ip+1,ibest),0.) |
2819 |
distance = distance_to(XP,YP) |
2820 |
distance = distance / RCHI2_STORE(ibest)!<<< MS |
2821 |
if(DEBUG)print*,'( cl-X ',icx |
2822 |
$ ,' in cp ',id,' ) normalized distance ',distance |
2823 |
if(distance.lt.distmin)then |
2824 |
xmm_A = xPAM_A |
2825 |
ymm_A = yPAM_A |
2826 |
zmm_A = zPAM_A |
2827 |
xmm_B = xPAM_B |
2828 |
ymm_B = yPAM_B |
2829 |
zmm_B = zPAM_B |
2830 |
rxmm = resxPAM |
2831 |
rymm = resyPAM |
2832 |
distmin = distance |
2833 |
iclm = icx |
2834 |
c dedxmm = dedx(icx) !(1) |
2835 |
dedxmmx = dedx(icx)/mip(VIEW(icx),LADDER(icx)) !(1)(2) |
2836 |
dedxmmy = 0. !(1) |
2837 |
endif |
2838 |
11881 continue |
2839 |
*----- try cluster y ----------------------------------------------- |
2840 |
c if(cl_used(icy).eq.1)goto 11882 !if the Y cluster is already used |
2841 |
if(cl_used(icy).ne.0)goto 11882 !if the Y cluster is already used !(3) |
2842 |
* !jump to the next couple |
2843 |
call xyz_PAM(0,icy,ist, |
2844 |
c $ 'ETA2','ETA2', |
2845 |
$ PFA,PFA, |
2846 |
$ 0.,AYV_STORE(nplanes-ip+1,ibest)) |
2847 |
distance = distance_to(XP,YP) |
2848 |
distance = distance / RCHI2_STORE(ibest)!<<< MS |
2849 |
if(DEBUG)print*,'( cl-Y ',icy |
2850 |
$ ,' in cp ',id,' ) normalized distance ',distance |
2851 |
if(distance.lt.distmin)then |
2852 |
xmm_A = xPAM_A |
2853 |
ymm_A = yPAM_A |
2854 |
zmm_A = zPAM_A |
2855 |
xmm_B = xPAM_B |
2856 |
ymm_B = yPAM_B |
2857 |
zmm_B = zPAM_B |
2858 |
rxmm = resxPAM |
2859 |
rymm = resyPAM |
2860 |
distmin = distance |
2861 |
iclm = icy |
2862 |
c dedxmm = dedx(icy) !(1) |
2863 |
dedxmmx = 0. !(1) |
2864 |
dedxmmy = dedx(icy)/mip(VIEW(icy),LADDER(icy)) !(1)(2) |
2865 |
endif |
2866 |
11882 continue |
2867 |
enddo !end loop on cluster inside couples |
2868 |
*----- single clusters ----------------------------------------------- |
2869 |
do ic=1,ncls(ip) !loop on single clusters |
2870 |
icl=cls(ip,ic) |
2871 |
c if(cl_used(icl).eq.1.or. !if the cluster is already used |
2872 |
if(cl_used(icl).ne.0.or. !if the cluster is already used !(3) |
2873 |
$ LADDER(icl).ne.nldt.or. !or the ladder number does not match |
2874 |
$ .false.)goto 18882 !jump to the next singlet |
2875 |
if(mod(VIEW(icl),2).eq.0)then!<---- X view |
2876 |
call xyz_PAM(icl,0,ist, |
2877 |
c $ 'ETA2','ETA2', |
2878 |
$ PFA,PFA, |
2879 |
$ AXV_STORE(nplanes-ip+1,ibest),0.) |
2880 |
else !<---- Y view |
2881 |
call xyz_PAM(0,icl,ist, |
2882 |
c $ 'ETA2','ETA2', |
2883 |
$ PFA,PFA, |
2884 |
$ 0.,AYV_STORE(nplanes-ip+1,ibest)) |
2885 |
endif |
2886 |
|
2887 |
distance = distance_to(XP,YP) |
2888 |
distance = distance / RCHI2_STORE(ibest)!<<< MS |
2889 |
if(DEBUG)print*,'( cl-s ',icl |
2890 |
$ ,' ) normalized distance ',distance |
2891 |
if(distance.lt.distmin)then |
2892 |
xmm_A = xPAM_A |
2893 |
ymm_A = yPAM_A |
2894 |
zmm_A = zPAM_A |
2895 |
xmm_B = xPAM_B |
2896 |
ymm_B = yPAM_B |
2897 |
zmm_B = zPAM_B |
2898 |
rxmm = resxPAM |
2899 |
rymm = resyPAM |
2900 |
distmin = distance |
2901 |
iclm = icl |
2902 |
c dedxmm = dedx(icl) !(1) |
2903 |
if(mod(VIEW(icl),2).eq.0)then !<---- X view |
2904 |
dedxmmx = dedx(icl)/mip(VIEW(icl),LADDER(icl)) !(1)(2) |
2905 |
dedxmmy = 0. !(1) |
2906 |
else !<---- Y view |
2907 |
dedxmmx = 0. !(1) |
2908 |
dedxmmy = dedx(icl)/mip(VIEW(icl),LADDER(icl)) !(1)(2) |
2909 |
endif |
2910 |
endif |
2911 |
18882 continue |
2912 |
enddo !end loop on single clusters |
2913 |
|
2914 |
if(distmin.le.clinc)then |
2915 |
|
2916 |
CLS_STORE(nplanes-ip+1,ibest)=iclm !<<<< |
2917 |
* ---------------------------- |
2918 |
c print*,'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~' |
2919 |
if(mod(VIEW(iclm),2).eq.0)then |
2920 |
XGOOD(nplanes-ip+1)=1. |
2921 |
resx(nplanes-ip+1)=rxmm |
2922 |
if(DEBUG)print*,'%%%% included X-cl ',iclm |
2923 |
c if(.true.)print*,'%%%% included X-cl ',iclm |
2924 |
$ ,'( chi^2, ',RCHI2_STORE(ibest) |
2925 |
$ ,', norm.dist.= ',distmin |
2926 |
$ ,', cut ',clinc,' )' |
2927 |
else |
2928 |
YGOOD(nplanes-ip+1)=1. |
2929 |
resy(nplanes-ip+1)=rymm |
2930 |
if(DEBUG)print*,'%%%% included Y-cl ',iclm |
2931 |
c if(.true.)print*,'%%%% included Y-cl ',iclm |
2932 |
$ ,'( chi^2, ',RCHI2_STORE(ibest) |
2933 |
$ ,', norm.dist.= ', distmin |
2934 |
$ ,', cut ',clinc,' )' |
2935 |
endif |
2936 |
c print*,'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~' |
2937 |
* ---------------------------- |
2938 |
xm_A(nplanes-ip+1) = xmm_A |
2939 |
ym_A(nplanes-ip+1) = ymm_A |
2940 |
xm_B(nplanes-ip+1) = xmm_B |
2941 |
ym_B(nplanes-ip+1) = ymm_B |
2942 |
zm(nplanes-ip+1) = (zmm_A+zmm_B)/2. |
2943 |
c dedxtrk(nplanes-ip+1) = dedxmm !<<< !(1) |
2944 |
dedxtrk_x(nplanes-ip+1) = dedxmmx !<<< !(1) |
2945 |
dedxtrk_y(nplanes-ip+1) = dedxmmy !<<< !(1) |
2946 |
* ---------------------------- |
2947 |
endif |
2948 |
endif |
2949 |
133 continue |
2950 |
enddo !end loop on planes |
2951 |
|
2952 |
|
2953 |
|
2954 |
return |
2955 |
end |
2956 |
|
2957 |
*************************************************** |
2958 |
* * |
2959 |
* * |
2960 |
* * |
2961 |
* * |
2962 |
* * |
2963 |
* * |
2964 |
************************************************** |
2965 |
cccccc 12/08/2006 modified by elena ---> (1) |
2966 |
* |
2967 |
subroutine clean_XYclouds(ibest,iflag) |
2968 |
|
2969 |
include 'commontracker.f' |
2970 |
include 'level1.f' |
2971 |
include 'common_momanhough.f' |
2972 |
c include 'momanhough_init.f' |
2973 |
include 'level2.f' !(1) |
2974 |
c include 'calib.f' |
2975 |
c include 'level1.f' |
2976 |
|
2977 |
|
2978 |
|
2979 |
do ip=1,nplanes !loop on planes |
2980 |
|
2981 |
id=CP_STORE(nplanes-ip+1,ibest) |
2982 |
icl=CLS_STORE(nplanes-ip+1,ibest) |
2983 |
if(id.ne.0.or.icl.ne.0)then |
2984 |
if(id.ne.0)then |
2985 |
iclx=clx(ip,icp_cp(id)) |
2986 |
icly=cly(ip,icp_cp(id)) |
2987 |
c cl_used(iclx)=1 !tag used clusters |
2988 |
c cl_used(icly)=1 !tag used clusters |
2989 |
cl_used(iclx)=ntrk !tag used clusters !(1) |
2990 |
cl_used(icly)=ntrk !tag used clusters !(1) |
2991 |
elseif(icl.ne.0)then |
2992 |
c cl_used(icl)=1 !tag used clusters |
2993 |
cl_used(icl)=ntrk !tag used clusters !1) |
2994 |
endif |
2995 |
|
2996 |
c if(DEBUG)then |
2997 |
c print*,ip,' <<< ',id |
2998 |
c endif |
2999 |
* ----------------------------- |
3000 |
* remove the couple from clouds |
3001 |
* remove also vitual couples containing the |
3002 |
* selected clusters |
3003 |
* ----------------------------- |
3004 |
do icp=1,ncp_plane(ip) |
3005 |
if( |
3006 |
$ clx(ip,icp).eq.iclx |
3007 |
$ .or. |
3008 |
$ clx(ip,icp).eq.icl |
3009 |
$ .or. |
3010 |
$ cly(ip,icp).eq.icly |
3011 |
$ .or. |
3012 |
$ cly(ip,icp).eq.icl |
3013 |
$ )then |
3014 |
id=id_cp(ip,icp,1) |
3015 |
if(DEBUG)then |
3016 |
print*,ip,' <<< cp ',id |
3017 |
$ ,' ( cl-x ' |
3018 |
$ ,clx(ip,icp) |
3019 |
$ ,' cl-y ' |
3020 |
$ ,cly(ip,icp),' ) --> removed' |
3021 |
endif |
3022 |
* ----------------------------- |
3023 |
* remove the couple from clouds |
3024 |
do iyz=1,nclouds_yz |
3025 |
if(cpcloud_yz(iyz,abs(id)).ne.0)then |
3026 |
ptcloud_yz(iyz)=ptcloud_yz(iyz)-1 |
3027 |
cpcloud_yz(iyz,abs(id))=0 |
3028 |
endif |
3029 |
enddo |
3030 |
do ixz=1,nclouds_xz |
3031 |
if(cpcloud_xz(ixz,abs(id)).ne.0)then |
3032 |
ptcloud_xz(ixz)=ptcloud_xz(ixz)-1 |
3033 |
cpcloud_xz(ixz,abs(id))=0 |
3034 |
endif |
3035 |
enddo |
3036 |
* ----------------------------- |
3037 |
endif |
3038 |
enddo |
3039 |
|
3040 |
endif |
3041 |
enddo !end loop on planes |
3042 |
|
3043 |
return |
3044 |
end |
3045 |
|
3046 |
|
3047 |
|
3048 |
|
3049 |
|
3050 |
|
3051 |
* **************************************************** |
3052 |
|
3053 |
subroutine init_level2 |
3054 |
|
3055 |
include 'commontracker.f' |
3056 |
include 'level1.f' |
3057 |
include 'common_momanhough.f' |
3058 |
include 'level2.f' |
3059 |
c include 'level1.f' |
3060 |
|
3061 |
do i=1,nviews |
3062 |
good2(i)=good1(i) |
3063 |
enddo |
3064 |
|
3065 |
|
3066 |
NTRK = 0 |
3067 |
do it=1,NTRKMAX |
3068 |
IMAGE(IT)=0 |
3069 |
CHI2_nt(IT) = -100000. |
3070 |
do ip=1,nplanes |
3071 |
XM_nt(IP,IT) = 0 |
3072 |
YM_nt(IP,IT) = 0 |
3073 |
ZM_nt(IP,IT) = 0 |
3074 |
RESX_nt(IP,IT) = 0 |
3075 |
RESY_nt(IP,IT) = 0 |
3076 |
XGOOD_nt(IP,IT) = 0 |
3077 |
YGOOD_nt(IP,IT) = 0 |
3078 |
DEDX_X(IP,IT) = 0 |
3079 |
DEDX_Y(IP,IT) = 0 |
3080 |
CLTRX(IP,IT) = 0 |
3081 |
CLTRY(IP,IT) = 0 |
3082 |
enddo |
3083 |
do ipa=1,5 |
3084 |
AL_nt(IPA,IT) = 0 |
3085 |
do ipaa=1,5 |
3086 |
coval(ipa,ipaa,IT)=0 |
3087 |
enddo |
3088 |
enddo |
3089 |
enddo |
3090 |
nclsx=0 |
3091 |
nclsy=0 |
3092 |
do ip=1,NSINGMAX |
3093 |
planex(ip)=0 |
3094 |
xs(1,ip)=0 |
3095 |
xs(2,ip)=0 |
3096 |
sgnlxs(ip)=0 |
3097 |
planey(ip)=0 |
3098 |
ys(1,ip)=0 |
3099 |
ys(2,ip)=0 |
3100 |
sgnlys(ip)=0 |
3101 |
enddo |
3102 |
end |
3103 |
|
3104 |
|
3105 |
************************************************************ |
3106 |
* |
3107 |
* |
3108 |
* |
3109 |
* |
3110 |
* |
3111 |
* |
3112 |
* |
3113 |
************************************************************ |
3114 |
|
3115 |
|
3116 |
subroutine init_hough |
3117 |
|
3118 |
include 'commontracker.f' |
3119 |
include 'level1.f' |
3120 |
include 'common_momanhough.f' |
3121 |
include 'common_hough.f' |
3122 |
include 'level2.f' |
3123 |
|
3124 |
ntrpt_nt=0 |
3125 |
ndblt_nt=0 |
3126 |
NCLOUDS_XZ_nt=0 |
3127 |
NCLOUDS_YZ_nt=0 |
3128 |
do idb=1,ndblt_max_nt |
3129 |
db_cloud_nt(idb)=0 |
3130 |
alfayz1_nt(idb)=0 |
3131 |
alfayz2_nt(idb)=0 |
3132 |
enddo |
3133 |
do itr=1,ntrpt_max_nt |
3134 |
tr_cloud_nt(itr)=0 |
3135 |
alfaxz1_nt(itr)=0 |
3136 |
alfaxz2_nt(itr)=0 |
3137 |
alfaxz3_nt(itr)=0 |
3138 |
enddo |
3139 |
do idb=1,ncloyz_max |
3140 |
ptcloud_yz_nt(idb)=0 |
3141 |
alfayz1_av_nt(idb)=0 |
3142 |
alfayz2_av_nt(idb)=0 |
3143 |
enddo |
3144 |
do itr=1,ncloxz_max |
3145 |
ptcloud_xz_nt(itr)=0 |
3146 |
alfaxz1_av_nt(itr)=0 |
3147 |
alfaxz2_av_nt(itr)=0 |
3148 |
alfaxz3_av_nt(itr)=0 |
3149 |
enddo |
3150 |
|
3151 |
ntrpt=0 |
3152 |
ndblt=0 |
3153 |
NCLOUDS_XZ=0 |
3154 |
NCLOUDS_YZ=0 |
3155 |
do idb=1,ndblt_max |
3156 |
db_cloud(idb)=0 |
3157 |
cpyz1(idb)=0 |
3158 |
cpyz2(idb)=0 |
3159 |
alfayz1(idb)=0 |
3160 |
alfayz2(idb)=0 |
3161 |
enddo |
3162 |
do itr=1,ntrpt_max |
3163 |
tr_cloud(itr)=0 |
3164 |
cpxz1(itr)=0 |
3165 |
cpxz2(itr)=0 |
3166 |
cpxz3(itr)=0 |
3167 |
alfaxz1(itr)=0 |
3168 |
alfaxz2(itr)=0 |
3169 |
alfaxz3(itr)=0 |
3170 |
enddo |
3171 |
do idb=1,ncloyz_max |
3172 |
ptcloud_yz(idb)=0 |
3173 |
alfayz1_av(idb)=0 |
3174 |
alfayz2_av(idb)=0 |
3175 |
do idbb=1,ncouplemaxtot |
3176 |
cpcloud_yz(idb,idbb)=0 |
3177 |
enddo |
3178 |
enddo |
3179 |
do itr=1,ncloxz_max |
3180 |
ptcloud_xz(itr)=0 |
3181 |
alfaxz1_av(itr)=0 |
3182 |
alfaxz2_av(itr)=0 |
3183 |
alfaxz3_av(itr)=0 |
3184 |
do itrr=1,ncouplemaxtot |
3185 |
cpcloud_xz(itr,itrr)=0 |
3186 |
enddo |
3187 |
enddo |
3188 |
end |
3189 |
************************************************************ |
3190 |
* |
3191 |
* |
3192 |
* |
3193 |
* |
3194 |
* |
3195 |
* |
3196 |
* |
3197 |
************************************************************ |
3198 |
|
3199 |
|
3200 |
subroutine fill_level2_tracks(ntr) |
3201 |
|
3202 |
* ------------------------------------------------------- |
3203 |
* This routine fills the ntr-th element of the variables |
3204 |
* inside the level2_tracks common, which correspond |
3205 |
* to the ntr-th track info. |
3206 |
* ------------------------------------------------------- |
3207 |
|
3208 |
|
3209 |
include 'commontracker.f' |
3210 |
c include 'level1.f' |
3211 |
include 'level1.f' |
3212 |
include 'common_momanhough.f' |
3213 |
include 'level2.f' |
3214 |
include 'common_mini_2.f' |
3215 |
real sinth,phi,pig |
3216 |
pig=acos(-1.) |
3217 |
|
3218 |
chi2_nt(ntr) = sngl(chi2) |
3219 |
nstep_nt(ntr) = nstep |
3220 |
|
3221 |
phi = al(4) |
3222 |
sinth = al(3) |
3223 |
if(sinth.lt.0)then |
3224 |
sinth = -sinth |
3225 |
phi = phi + pig |
3226 |
endif |
3227 |
npig = aint(phi/(2*pig)) |
3228 |
phi = phi - npig*2*pig |
3229 |
if(phi.lt.0) |
3230 |
$ phi = phi + 2*pig |
3231 |
al(4) = phi |
3232 |
al(3) = sinth |
3233 |
|
3234 |
do i=1,5 |
3235 |
al_nt(i,ntr) = sngl(al(i)) |
3236 |
do j=1,5 |
3237 |
coval(i,j,ntr) = sngl(cov(i,j)) |
3238 |
enddo |
3239 |
enddo |
3240 |
|
3241 |
do ip=1,nplanes ! loop on planes |
3242 |
xgood_nt(ip,ntr) = int(xgood(ip)) |
3243 |
ygood_nt(ip,ntr) = int(ygood(ip)) |
3244 |
xm_nt(ip,ntr) = sngl(xm(ip)) |
3245 |
ym_nt(ip,ntr) = sngl(ym(ip)) |
3246 |
zm_nt(ip,ntr) = sngl(zm(ip)) |
3247 |
RESX_nt(IP,ntr) = sngl(resx(ip)) |
3248 |
RESY_nt(IP,ntr) = sngl(resy(ip)) |
3249 |
xv_nt(ip,ntr) = sngl(xv(ip)) |
3250 |
yv_nt(ip,ntr) = sngl(yv(ip)) |
3251 |
zv_nt(ip,ntr) = sngl(zv(ip)) |
3252 |
axv_nt(ip,ntr) = sngl(axv(ip)) |
3253 |
ayv_nt(ip,ntr) = sngl(ayv(ip)) |
3254 |
dedx_x(ip,ntr) = sngl(dedxtrk_x(ip)) !(2) |
3255 |
dedx_y(ip,ntr) = sngl(dedxtrk_y(ip)) !(2) |
3256 |
|
3257 |
id = CP_STORE(ip,IDCAND) |
3258 |
icl = CLS_STORE(ip,IDCAND) |
3259 |
if(id.ne.0)then |
3260 |
cltrx(ip,ntr) = clx(nplanes-ip+1,icp_cp(id)) |
3261 |
cltry(ip,ntr) = cly(nplanes-ip+1,icp_cp(id)) |
3262 |
c print*,ip,' ',cltrx(ip,ntr),cltry(ip,ntr) |
3263 |
elseif(icl.ne.0)then |
3264 |
if(mod(VIEW(icl),2).eq.0)cltrx(ip,ntr)=icl |
3265 |
if(mod(VIEW(icl),2).eq.1)cltry(ip,ntr)=icl |
3266 |
c print*,ip,' ',cltrx(ip,ntr),cltry(ip,ntr) |
3267 |
endif |
3268 |
|
3269 |
enddo |
3270 |
|
3271 |
|
3272 |
end |
3273 |
|
3274 |
subroutine fill_level2_siglets |
3275 |
|
3276 |
* ------------------------------------------------------- |
3277 |
* This routine fills the elements of the variables |
3278 |
* inside the level2_singletsx and level2_singletsy commons, |
3279 |
* which store info on clusters outside the tracks |
3280 |
* ------------------------------------------------------- |
3281 |
|
3282 |
include 'commontracker.f' |
3283 |
c include 'level1.f' |
3284 |
include 'calib.f' |
3285 |
include 'level1.f' |
3286 |
include 'common_momanhough.f' |
3287 |
include 'level2.f' |
3288 |
include 'common_xyzPAM.f' |
3289 |
|
3290 |
* count #cluster per plane not associated to any track |
3291 |
c good2=1!.true. |
3292 |
nclsx = 0 |
3293 |
nclsy = 0 |
3294 |
|
3295 |
do iv = 1,nviews |
3296 |
if( mask_view(iv).ne.0 )good2(iv) = 20+mask_view(iv) |
3297 |
enddo |
3298 |
|
3299 |
do icl=1,nclstr1 |
3300 |
if(cl_used(icl).eq.0)then !cluster not included in any track |
3301 |
ip=nplanes-npl(VIEW(icl))+1 |
3302 |
if(mod(VIEW(icl),2).eq.0)then !=== X views |
3303 |
nclsx = nclsx + 1 |
3304 |
planex(nclsx) = ip |
3305 |
sgnlxs(nclsx) = dedx(icl)/mip(VIEW(icl),LADDER(icl))!(2) |
3306 |
clsx(nclsx) = icl |
3307 |
do is=1,2 |
3308 |
c call xyz_PAM(icl,0,is,'COG1',' ',0.,0.) |
3309 |
call xyz_PAM(icl,0,is,PFAdef,' ',0.,0.) |
3310 |
xs(is,nclsx) = (xPAM_A+xPAM_B)/2 |
3311 |
enddo |
3312 |
c$$$ print*,'nclsx ',nclsx |
3313 |
c$$$ print*,'planex(nclsx) ',planex(nclsx) |
3314 |
c$$$ print*,'sgnlxs(nclsx) ',sgnlxs(nclsx) |
3315 |
c$$$ print*,'xs(1,nclsx) ',xs(1,nclsx) |
3316 |
c$$$ print*,'xs(2,nclsx) ',xs(2,nclsx) |
3317 |
else !=== Y views |
3318 |
nclsy = nclsy + 1 |
3319 |
planey(nclsy) = ip |
3320 |
sgnlys(nclsy) = dedx(icl)/mip(VIEW(icl),LADDER(icl))!(2) |
3321 |
clsy(nclsy) = icl |
3322 |
do is=1,2 |
3323 |
c call xyz_PAM(0,icl,is,' ','COG1',0.,0.) |
3324 |
call xyz_PAM(0,icl,is,' ',PFAdef,0.,0.) |
3325 |
ys(is,nclsy) = (yPAM_A+yPAM_B)/2 |
3326 |
enddo |
3327 |
c$$$ print*,'nclsy ',nclsy |
3328 |
c$$$ print*,'planey(nclsy) ',planey(nclsy) |
3329 |
c$$$ print*,'sgnlys(nclsy) ',sgnlys(nclsy) |
3330 |
c$$$ print*,'ys(1,nclsy) ',ys(1,nclsy) |
3331 |
c$$$ print*,'ys(2,nclsy) ',ys(2,nclsy) |
3332 |
endif |
3333 |
endif |
3334 |
c print*,icl,cl_used(icl),cl_good(icl),ip,VIEW(icl)!nclsx(ip),nclsy(ip) |
3335 |
|
3336 |
***** LO METTO QUI PERCHE` NON SO DOVE METTERLO |
3337 |
whichtrack(icl) = cl_used(icl) |
3338 |
|
3339 |
enddo |
3340 |
end |
3341 |
|
3342 |
*************************************************** |
3343 |
* * |
3344 |
* * |
3345 |
* * |
3346 |
* * |
3347 |
* * |
3348 |
* * |
3349 |
************************************************** |
3350 |
|
3351 |
subroutine fill_hough |
3352 |
|
3353 |
* ------------------------------------------------------- |
3354 |
* This routine fills the variables related to the hough |
3355 |
* transform, for the debig n-tuple |
3356 |
* ------------------------------------------------------- |
3357 |
|
3358 |
include 'commontracker.f' |
3359 |
include 'level1.f' |
3360 |
include 'common_momanhough.f' |
3361 |
include 'common_hough.f' |
3362 |
include 'level2.f' |
3363 |
|
3364 |
if(.false. |
3365 |
$ .or.ntrpt.gt.ntrpt_max_nt |
3366 |
$ .or.ndblt.gt.ndblt_max_nt |
3367 |
$ .or.NCLOUDS_XZ.gt.ncloxz_max |
3368 |
$ .or.NCLOUDS_yZ.gt.ncloyz_max |
3369 |
$ )then |
3370 |
ntrpt_nt=0 |
3371 |
ndblt_nt=0 |
3372 |
NCLOUDS_XZ_nt=0 |
3373 |
NCLOUDS_YZ_nt=0 |
3374 |
else |
3375 |
ndblt_nt=ndblt |
3376 |
ntrpt_nt=ntrpt |
3377 |
if(ndblt.ne.0)then |
3378 |
do id=1,ndblt |
3379 |
alfayz1_nt(id)=alfayz1(id) !Y0 |
3380 |
alfayz2_nt(id)=alfayz2(id) !tg theta-yz |
3381 |
enddo |
3382 |
endif |
3383 |
if(ndblt.ne.0)then |
3384 |
do it=1,ntrpt |
3385 |
alfaxz1_nt(it)=alfaxz1(it) !X0 |
3386 |
alfaxz2_nt(it)=alfaxz2(it) !tg theta-xz |
3387 |
alfaxz3_nt(it)=alfaxz3(it) !1/r |
3388 |
enddo |
3389 |
endif |
3390 |
nclouds_yz_nt=nclouds_yz |
3391 |
nclouds_xz_nt=nclouds_xz |
3392 |
if(nclouds_yz.ne.0)then |
3393 |
nnn=0 |
3394 |
do iyz=1,nclouds_yz |
3395 |
ptcloud_yz_nt(iyz)=ptcloud_yz(iyz) |
3396 |
alfayz1_av_nt(iyz)=alfayz1_av(iyz) |
3397 |
alfayz2_av_nt(iyz)=alfayz2_av(iyz) |
3398 |
nnn=nnn+ptcloud_yz(iyz) |
3399 |
enddo |
3400 |
do ipt=1,nnn |
3401 |
db_cloud_nt(ipt)=db_cloud(ipt) |
3402 |
enddo |
3403 |
endif |
3404 |
if(nclouds_xz.ne.0)then |
3405 |
nnn=0 |
3406 |
do ixz=1,nclouds_xz |
3407 |
ptcloud_xz_nt(ixz)=ptcloud_xz(ixz) |
3408 |
alfaxz1_av_nt(ixz)=alfaxz1_av(ixz) |
3409 |
alfaxz2_av_nt(ixz)=alfaxz2_av(ixz) |
3410 |
alfaxz3_av_nt(ixz)=alfaxz3_av(ixz) |
3411 |
nnn=nnn+ptcloud_xz(ixz) |
3412 |
enddo |
3413 |
do ipt=1,nnn |
3414 |
tr_cloud_nt(ipt)=tr_cloud(ipt) |
3415 |
enddo |
3416 |
endif |
3417 |
endif |
3418 |
end |
3419 |
|