1 |
/** |
2 |
* \file TrkLevel2.h |
3 |
* \author Elena Vannuccini |
4 |
*/ |
5 |
#ifndef trklevel2_h |
6 |
#define trklevel2_h |
7 |
|
8 |
#include <TObject.h> |
9 |
#include <TObjArray.h> |
10 |
#include <TClonesArray.h> |
11 |
#include <TRefArray.h> |
12 |
#include <TRef.h> |
13 |
|
14 |
#include <TrkParams.h> |
15 |
#include <TrkLevel1.h> |
16 |
|
17 |
// z-coordinate of track state-vector reference-plane |
18 |
#define ZINI 23.5 |
19 |
// (mechanical) z-coordinate of the tracker planes |
20 |
#define ZTRK6 -22.22 |
21 |
#define ZTRK5 -13.31 |
22 |
#define ZTRK4 -4.41 |
23 |
#define ZTRK3 4.49 |
24 |
#define ZTRK2 13.39 |
25 |
#define ZTRK1 22.29 |
26 |
// magnet cavity dimensions |
27 |
#define ZMAGNHIGH 21.83 |
28 |
#define ZMAGNLOW -21.83 |
29 |
#define XMAGNHIGH 8.07 |
30 |
#define XMAGNLOW -8.07 |
31 |
#define YMAGNHIGH 6.57 |
32 |
#define YMAGNLOW -6.57 |
33 |
// tof planes |
34 |
#define ZS11 53.74 |
35 |
#define ZS12 53.04 |
36 |
#define ZS21 23.94 |
37 |
#define ZS22 23.44 |
38 |
#define ZS31 -23.49 |
39 |
#define ZS32 -24.34 |
40 |
|
41 |
// (mechanical) x/y-coordinates of magnet cavity |
42 |
/* #define XTRKL -8.1 */ |
43 |
/* #define XTRKR 8.1 */ |
44 |
/* #define YTRKL -6.6 */ |
45 |
/* #define YTRKR 6.6 */ |
46 |
|
47 |
/** |
48 |
* \brief Class to describe, by points, a particle trajectory in the apparatus. |
49 |
* |
50 |
* The idea is to create it by integrating the equations of motion, given the |
51 |
* track state vector and the z coordinates where to evaluate track position. |
52 |
*/ |
53 |
// ================================================================== |
54 |
class Trajectory : public TObject{ |
55 |
private: |
56 |
|
57 |
public: |
58 |
|
59 |
int npoint; ///< number of evaluated points along the trajectory |
60 |
float* x; //[npoint] |
61 |
float* y; //[npoint] |
62 |
float* z; //[npoint] |
63 |
float* thx; //[npoint] |
64 |
float* thy; //[npoint] |
65 |
float* tl; //[npoint] |
66 |
|
67 |
Trajectory(); |
68 |
Trajectory(int n); |
69 |
Trajectory(int n, float* pz); |
70 |
~Trajectory(){Delete();}; |
71 |
void Dump(); |
72 |
void Delete(); |
73 |
|
74 |
int DoTrack2(float* al); |
75 |
float GetLength(){float l=0; for(int i=0; i<npoint;i++)l=l+tl[i]; return l;}; |
76 |
float GetLength(int,int); |
77 |
|
78 |
ClassDef(Trajectory,3); |
79 |
|
80 |
}; |
81 |
/** |
82 |
* \brief Class to describe fitted tracks. |
83 |
* |
84 |
* A track is defined by the measured coordinates associated to it, the |
85 |
* track status vector, plus other quantities. |
86 |
* A track may have an "image", due to the ambiguity in the y view. |
87 |
* |
88 |
* Cluster flags: xgood[6], ygood[6] |
89 |
* |
90 |
* xgood/ygood = +/- 0lsccccccc |
91 |
* ccccccc ID (1-7483647) of the included cluster |
92 |
* s sensor number (1,2 - increasing y) |
93 |
* l ladder number (1,2,3 - increasing x) |
94 |
* +/- does-not/does include bad strips |
95 |
* |
96 |
*/ |
97 |
// ================================================================== |
98 |
class TrkTrack : public TObject { |
99 |
|
100 |
private: |
101 |
|
102 |
public: |
103 |
|
104 |
int seqno; ///<stored track sequential number |
105 |
int image; ///<sequential number of track-image |
106 |
|
107 |
float al[5]; ///<TRACK STATE VECTOR |
108 |
float coval[5][5]; ///<covariance matrix |
109 |
int xgood[6]; ///<cluster id for x-view (0 = view not included in the fit) |
110 |
int ygood[6]; ///<cluster id for y-view (0 = view not included in the fit) |
111 |
float xm[6]; ///<measured x coordinates |
112 |
float ym[6]; ///<measured y coordinates |
113 |
float zm[6]; ///<measured z coordinates |
114 |
float resx[6]; ///<spatial resolution on X view |
115 |
float resy[6]; ///<spatial resolution on y view |
116 |
float tailx[6]; ///<spatial resolution tail on X view |
117 |
float taily[6]; ///<spatial resolution tail on y view |
118 |
float chi2; ///<chi2 |
119 |
int nstep; ///<n.step |
120 |
float xv[6]; ///<calculated x coordinates |
121 |
float yv[6]; ///<calculated y coordinates |
122 |
float zv[6]; ///<calculated z coordinates |
123 |
float axv[6]; ///<calculated angles (deg) on x view |
124 |
float ayv[6]; ///<calculated angles (deg) on y view |
125 |
float dedx_x[6]; ///<dE/dx in MIP (<0 if saturated) |
126 |
float dedx_y[6]; ///<dE/dx in MIP (<0 if saturated) |
127 |
int multmaxx[6]; ///<cluster multiplicity and strip of maximum on x view |
128 |
int multmaxy[6]; ///<cluster multiplicity and strip of maximum on y view |
129 |
float seedx[6]; ///< seed of the cluster x |
130 |
float seedy[6]; ///< seed of the cluster y |
131 |
float xpu[6]; ///< x coordinate in pitch units |
132 |
float ypu[6]; ///< y coordinate in pitch units |
133 |
|
134 |
float xGF[14]; ///<calculated x coordinates on GF reference planes |
135 |
float yGF[14]; ///<calculated y coordinates on GF reference planes |
136 |
|
137 |
TrkTrack(); |
138 |
TrkTrack(const TrkTrack&); |
139 |
|
140 |
~TrkTrack(){ Delete(); }; |
141 |
|
142 |
void Dump(); |
143 |
void Clear(); |
144 |
void Clear(Option_t *option){Clear();}; |
145 |
void Delete(); |
146 |
void Copy(TrkTrack&); |
147 |
// void Set(); |
148 |
|
149 |
Int_t GetSeqNo(){return seqno;} ///< Returns the track sequential number |
150 |
Int_t GetImageSeqNo(){return image;} ///< Returns the track image sequential number |
151 |
Bool_t HasImage(){return !(image==-1);} ///< Returns true if the track has an image |
152 |
int DoTrack(Trajectory* t); ///< Evaluates the trajectory in the apparatus. |
153 |
int DoTrack2(Trajectory* t); ///< Evaluates the trajectory in the apparatus. |
154 |
float BdL(){return 0;}; ///< Evaluates the integral of B*dL along the track. |
155 |
Int_t GetNX(){Int_t n=0; for(Int_t i=0; i<6; i++)n+=(Int_t)XGood(i); return n;}; |
156 |
Int_t GetNY(){Int_t n=0; for(Int_t i=0; i<6; i++)n+=(Int_t)YGood(i); return n;}; |
157 |
Int_t GetNXY(){Int_t n=0; for(Int_t i=0; i<6; i++)n+=(Int_t)YGood(i)*XGood(i); return n;}; |
158 |
Int_t GetNtot(){return GetNX()+GetNY();}; |
159 |
Float_t GetRigidity(); |
160 |
Float_t GetDeflection(); |
161 |
Bool_t IsSaturated(int,int); |
162 |
Bool_t IsSaturated(int); |
163 |
Bool_t IsSaturated(); |
164 |
Bool_t IsBad(int,int); |
165 |
Float_t GetDEDX(); |
166 |
Float_t GetDEDX(int ip); |
167 |
Float_t GetDEDX(int ip,int iv); |
168 |
Int_t GetLeverArmXY(); |
169 |
Int_t GetLeverArmX(); |
170 |
Int_t GetLeverArmY(); |
171 |
Float_t GetChi2X(); |
172 |
Float_t GetChi2Y(); |
173 |
Float_t GetLnLX(); |
174 |
Float_t GetLnLY(); |
175 |
|
176 |
Float_t GetEffectiveAngle(int ip, int iv); |
177 |
|
178 |
void SetMeasure(double *xmeas, double *ymeas, double *zmeas); |
179 |
void SetResolution(double *rx, double *ry); |
180 |
void SetTail(double *tx, double *ty, double factor); |
181 |
void SetStudentParam(int flag); |
182 |
void SetGood(int *xg, int *yg); |
183 |
void LoadField(TString s); |
184 |
void Fit(double pfixed, int& fail, int iprint, int froml1); |
185 |
void Fit(double pfixed, int& fail, int iprint){ Fit(pfixed,fail,iprint,0); }; |
186 |
void FitReset(); |
187 |
void SetTrackingMode(int trackmode); |
188 |
void SetPrecisionFactor(double fact); |
189 |
void SetStepMin(int istepmin); |
190 |
void SetDeltaB(int id, double db); |
191 |
|
192 |
Bool_t IsInsideCavity(float); |
193 |
Bool_t IsInsideCavity(){ return IsInsideCavity(0.); }; |
194 |
Bool_t IsInsideAcceptance(); |
195 |
|
196 |
Bool_t EvaluateClusterPositions(); |
197 |
|
198 |
void FillMiniStruct(cMini2track&); |
199 |
void SetFromMiniStruct(cMini2track*); |
200 |
|
201 |
Int_t GetClusterX_ID(int ip); |
202 |
Int_t GetClusterY_ID(int ip); |
203 |
Int_t GetLadder(int ip); |
204 |
Int_t GetSensor(int ip); |
205 |
Bool_t XGood(int ip){ return GetClusterX_ID(ip)!=-1; }; |
206 |
Bool_t YGood(int ip){ return GetClusterY_ID(ip)!=-1; }; |
207 |
void ResetXGood(int ip){ xgood[ip]=0; }; |
208 |
void ResetYGood(int ip){ ygood[ip]=0; }; |
209 |
/* void SetXGood(int ip, int clid, int is); */ |
210 |
/* void SetYGood(int ip, int clid, int is); */ |
211 |
void SetXGood(int ip, int clid, int il, int is, bool bad); |
212 |
void SetYGood(int ip, int clid, int il, int is, bool bad); |
213 |
void SetXGood(int ip, int clid, int il, int is){ SetXGood(ip,clid,il,is,false); }; |
214 |
void SetYGood(int ip, int clid, int il, int is){ SetYGood(ip,clid,il,is,false); }; |
215 |
|
216 |
|
217 |
Bool_t BadClusterX(int ip){ return IsBad(ip,0); }; |
218 |
Bool_t BadClusterY(int ip){ return IsBad(ip,1); }; |
219 |
|
220 |
Bool_t SaturatedClusterX(int ip){ return IsSaturated(ip,0); }; |
221 |
Bool_t SaturatedClusterY(int ip){ return IsSaturated(ip,1); }; |
222 |
|
223 |
Int_t GetClusterX_Multiplicity(int ip){ return (Int_t)(multmaxx[ip]/10000); }; |
224 |
Int_t GetClusterY_Multiplicity(int ip){ return (Int_t)(multmaxy[ip]/10000); }; |
225 |
Int_t GetClusterX_MaxStrip(int ip){ return (Int_t)(multmaxx[ip]%10000); }; |
226 |
Int_t GetClusterY_MaxStrip(int ip){ return (Int_t)(multmaxy[ip]%10000); }; |
227 |
Float_t GetClusterX_Seed(int ip){ return seedx[ip]; }; |
228 |
Float_t GetClusterY_Seed(int ip){ return seedy[ip]; }; |
229 |
/* Float_t GetClusterX_oordinatePU(int ip); */ |
230 |
/* Float_t GetClusterY_CoordinatePU(int ip); */ |
231 |
|
232 |
Float_t GetYav(); |
233 |
Float_t GetXav(); |
234 |
Float_t GetZav(); |
235 |
|
236 |
Int_t GetNColumns(); |
237 |
|
238 |
Float_t GetDEDX_max(int ip, int iv); |
239 |
Float_t GetDEDX_max(int iv){ return GetDEDX_max(-1,iv); }; |
240 |
Float_t GetDEDX_max(){ return GetDEDX_max(-1,-1); }; |
241 |
Float_t GetDEDX_min(int ip, int iv); |
242 |
Float_t GetDEDX_min(int iv){ return GetDEDX_min(-1,iv); }; |
243 |
Float_t GetDEDX_min(){ return GetDEDX_min(-1,-1); }; |
244 |
|
245 |
Float_t GetResidual_max(int ip, int iv); |
246 |
Float_t GetResidual_max(int iv){ return GetResidual_max(-1,iv); }; |
247 |
Float_t GetResidual_max(){ return GetResidual_max(-1,-1); }; |
248 |
Float_t GetResidual_av(int ip, int iv); |
249 |
Float_t GetResidual_av(int iv){ return GetResidual_av(-1,iv); }; |
250 |
Float_t GetResidual_av(){ return GetResidual_av(-1,-1); }; |
251 |
|
252 |
Int_t GetClusterX_Multiplicity_max(); |
253 |
Int_t GetClusterX_Multiplicity_min(); |
254 |
Int_t GetClusterY_Multiplicity_max(); |
255 |
Int_t GetClusterY_Multiplicity_min(); |
256 |
|
257 |
Float_t GetClusterX_Seed_min(); |
258 |
Float_t GetClusterY_Seed_min(); |
259 |
|
260 |
TrkTrack* GetTrkTrack(){return this;}; |
261 |
|
262 |
friend class TrkLevel2; |
263 |
|
264 |
ClassDef(TrkTrack,5); |
265 |
|
266 |
}; |
267 |
/** |
268 |
* \brief Class to describe single clusters ("singlets"). |
269 |
* |
270 |
* Single clusters are clusters not associated to any track. |
271 |
*/ |
272 |
class TrkSinglet : public TObject { |
273 |
|
274 |
private: |
275 |
|
276 |
|
277 |
public: |
278 |
|
279 |
int plane; ///<plane |
280 |
float coord[2]; ///<coordinate (on sensor 1 and 2) |
281 |
float sgnl; ///<cluster signal in MIP (<0 if saturated) |
282 |
int multmax; ///<cluster multiplicity and strip of maximum |
283 |
|
284 |
TrkSinglet(); |
285 |
TrkSinglet(const TrkSinglet&); |
286 |
~TrkSinglet(){Delete();}; |
287 |
|
288 |
void Dump(); |
289 |
void Clear(); |
290 |
void Clear(Option_t *option){Clear();}; |
291 |
void Delete(){Clear();}; |
292 |
Float_t GetSignal(){return fabs(sgnl);} |
293 |
Bool_t IsSaturated(){return (sgnl<0); }; |
294 |
|
295 |
Bool_t IsBad() { return multmax<=0; }; |
296 |
Int_t GetCluster_Multiplicity(){ return (Int_t)(abs(multmax)/10000); }; |
297 |
Int_t GetCluster_MaxStrip() { return (Int_t)(abs(multmax)%10000); }; |
298 |
|
299 |
|
300 |
friend class TrkLevel2; |
301 |
|
302 |
ClassDef(TrkSinglet,4); |
303 |
|
304 |
}; |
305 |
|
306 |
/** |
307 |
* \brief Class to describe tracker LEVEL2 data. |
308 |
* |
309 |
* A tracker events is defined by some general variables, plus the collection of all the fitted tracks and all |
310 |
* single clusters on X and Y views. |
311 |
* Tracks and single clusters ("singlets") are described by the classes TrkTrack and TrkSinglet respectivelly. |
312 |
* |
313 |
* Each track may have an "image", due to the ambiguity on the Y view, which is stored also. |
314 |
* Thus, the number of stored tracks ( ntrk() ) differs from the number of "physical" tracks ( GetNTracks() ). |
315 |
* Proper methods allow to sort tracks and select the physical ones ( GetTracks() ). |
316 |
* |
317 |
* The event status indicates the processing status of data from each DSP, according to the following |
318 |
* notation: |
319 |
* |
320 |
* LSB --> 0 missing packet |
321 |
* 1 CRC error |
322 |
* 2 on-line software alarm (latch-up, timeout ecc...) |
323 |
* 3 jump in the trigger counter |
324 |
* 4 decode error |
325 |
* 5 n.clusters > maximum number (level1 processing) |
326 |
* 6 |
327 |
* 7 |
328 |
* 8 n.clusters > maximum value (level2 processing) |
329 |
* 9 n.couples per plane > maximum values (vector dimention) |
330 |
* 10 n.doublets > maximum values |
331 |
* 11 n.triplets > maximum values |
332 |
* 12 n.yz-clouds > maximum values |
333 |
* 13 n.xz-clouds > maximum values |
334 |
* 14 n.candidate-tracks > maximum values |
335 |
* 15 n.couples per plane > maximum values (for Hough transform) |
336 |
* MSB --> 16 |
337 |
* |
338 |
* |
339 |
* For all data processed before June 2007 the event status was coded according to |
340 |
* a different rule: |
341 |
* |
342 |
* Status of level1 processing |
343 |
* 0 -- OK |
344 |
* 1 -- missing packet |
345 |
* 2 -- 1 CRC error |
346 |
* 3 -- 2 on-line software alarm (latch-up flags asserted or n.transmitted-words = 0) |
347 |
* 4 -- 3 jump in the trigger counter |
348 |
* 10 -- 4 decode error |
349 |
* 11 -- 5 n.clusters > maximum number (for level1 processing) |
350 |
* Status of level2 processing |
351 |
* 21 -- 0 n.clusters > maximum value (for level2 processing) |
352 |
* 22 -- 1 n.couples per plane > maximum values (vector dimention) |
353 |
* 23 -- 2 n.doublets > maximum values |
354 |
* 24 -- 3 n.triplets > maximum values |
355 |
* 25 -- 4 n.yz-clouds > maximum values |
356 |
* 26 -- 5 n.xz-clouds > maximum values |
357 |
* 27 -- 6 n.candidate-tracks > maximum values |
358 |
* 28 -- 7 n.couples per plane > maximum values (for Hough transform) |
359 |
* |
360 |
* |
361 |
*/ |
362 |
class TrkLevel2 : public TObject { |
363 |
|
364 |
private: |
365 |
|
366 |
public: |
367 |
|
368 |
Int_t good[12]; ///< event status |
369 |
UInt_t VKmask[12]; ///< Viking-chip mask |
370 |
UInt_t VKflag[12]; ///< Viking-chip flag |
371 |
|
372 |
TClonesArray *Track; ///< fitted tracks |
373 |
TClonesArray *SingletX; ///< x singlets |
374 |
TClonesArray *SingletY; ///< y singlets |
375 |
|
376 |
TrkLevel2(); |
377 |
// TrkLevel2(cTrkLevel2 *); |
378 |
~TrkLevel2(){Delete();}; |
379 |
|
380 |
void Clear(); |
381 |
void Clear(Option_t *option){Clear();}; |
382 |
void Delete(); |
383 |
void Set(); |
384 |
int UnpackError(){ for(int i=0; i<12; i++)if(!StatusCheck(i,0x12))return 1; return 0;}; |
385 |
|
386 |
int ntrk() {return Track->GetEntries();} ///< number of stored track |
387 |
int nclsx(){return SingletX->GetEntries();} ///< number of x singlets |
388 |
int nclsy(){return SingletY->GetEntries();} ///< number of y singlets |
389 |
|
390 |
void Dump(); |
391 |
void SetFromLevel2Struct(cTrkLevel2 *, TrkLevel1 *); |
392 |
void SetFromLevel2Struct(cTrkLevel2 *s2){ SetFromLevel2Struct(s2, NULL); }; |
393 |
void SetFromLevel2Struct(TrkLevel1 *l1) { SetFromLevel2Struct(&level2event_, l1); }; |
394 |
void SetFromLevel2Struct() { SetFromLevel2Struct(&level2event_); }; |
395 |
void GetLevel2Struct(cTrkLevel2 *) const; |
396 |
void LoadField(TString); |
397 |
float GetBX(float* v){return TrkParams::GetBX(v);};///< Bx (kGauss) |
398 |
float GetBY(float* v){return TrkParams::GetBY(v);};///< By (kGauss) |
399 |
float GetBZ(float* v){return TrkParams::GetBZ(v);};///< Bz (kGauss) |
400 |
Float_t GetZTrk(Int_t); |
401 |
Float_t GetXTrkLeft(){return XMAGNLOW;}; |
402 |
Float_t GetXTrkRight(){return XMAGNHIGH;}; |
403 |
Float_t GetYTrkLeft(){return YMAGNLOW;}; |
404 |
Float_t GetYTrkRight(){return YMAGNHIGH;}; |
405 |
|
406 |
Bool_t IsMaskedVK(int,int); |
407 |
Bool_t GetVKMask(int,int); |
408 |
Bool_t GetVKFlag(int,int); |
409 |
|
410 |
TrkSinglet *GetSingletX(int); |
411 |
TrkSinglet *GetSingletY(int); |
412 |
|
413 |
TrkTrack *GetStoredTrack(int i); |
414 |
Int_t GetSeqNo(Int_t i) {return (((TrkTrack *)Track->At(i))->seqno);}; ///< Returns track sequential number |
415 |
|
416 |
TRefArray *GetTracks_NFitSorted(); |
417 |
TRefArray *GetTracks(){return this->GetTracks_NFitSorted();}; |
418 |
|
419 |
Int_t GetNTracks(); |
420 |
TrkTrack* GetTrack(int i); |
421 |
TrkTrack* GetTrackImage(int i); |
422 |
|
423 |
TrkLevel2* GetTrkLevel2(){return this;} |
424 |
TClonesArray* GetTrackArray(){return Track;};///< returns pointer to the track array |
425 |
|
426 |
void StatusDump(int view); |
427 |
Bool_t StatusCheck(int view, int flagmask); |
428 |
|
429 |
ClassDef(TrkLevel2,3); |
430 |
|
431 |
}; |
432 |
|
433 |
#endif |