/[PAMELA software]/DarthVader/TrackerLevel2/inc/TrkLevel2.h
ViewVC logotype

Contents of /DarthVader/TrackerLevel2/inc/TrkLevel2.h

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1.40 - (show annotations) (download)
Fri Dec 5 11:33:30 2008 UTC (16 years ago) by pam-fi
Branch: MAIN
CVS Tags: v6r01, v6r00
Changes since 1.39: +1 -1 lines
File MIME type: text/plain
*** empty log message ***

1 /**
2 * \file TrkLevel2.h
3 * \author Elena Vannuccini
4 */
5 #ifndef trklevel2_h
6 #define trklevel2_h
7
8 #include <TObject.h>
9 #include <TObjArray.h>
10 #include <TClonesArray.h>
11 #include <TRefArray.h>
12 #include <TRef.h>
13
14 #include <TrkParams.h>
15 #include <TrkLevel1.h>
16
17 // z-coordinate of track state-vector reference-plane
18 #define ZINI 23.5
19 // (mechanical) z-coordinate of the tracker planes
20 #define ZTRK6 -22.22
21 #define ZTRK5 -13.31
22 #define ZTRK4 -4.41
23 #define ZTRK3 4.49
24 #define ZTRK2 13.39
25 #define ZTRK1 22.29
26 // magnet cavity dimensions
27 #define ZMAGNHIGH 21.83
28 #define ZMAGNLOW -21.83
29 #define XMAGNHIGH 8.07
30 #define XMAGNLOW -8.07
31 #define YMAGNHIGH 6.57
32 #define YMAGNLOW -6.57
33 // tof planes
34 #define ZS11 53.74
35 #define ZS12 53.04
36 #define ZS21 23.94
37 #define ZS22 23.44
38 #define ZS31 -23.49
39 #define ZS32 -24.34
40
41 // (mechanical) x/y-coordinates of magnet cavity
42 /* #define XTRKL -8.1 */
43 /* #define XTRKR 8.1 */
44 /* #define YTRKL -6.6 */
45 /* #define YTRKR 6.6 */
46
47 /**
48 * \brief Class to describe, by points, a particle trajectory in the apparatus.
49 *
50 * The idea is to create it by integrating the equations of motion, given the
51 * track state vector and the z coordinates where to evaluate track position.
52 */
53 // ==================================================================
54 class Trajectory : public TObject{
55 private:
56
57 public:
58
59 int npoint; ///< number of evaluated points along the trajectory
60 float* x; //[npoint]
61 float* y; //[npoint]
62 float* z; //[npoint]
63 float* thx; //[npoint]
64 float* thy; //[npoint]
65 float* tl; //[npoint]
66
67 Trajectory();
68 Trajectory(int n);
69 Trajectory(int n, float* pz);
70 ~Trajectory(){Delete();};
71 void Dump();
72 void Delete();
73
74 int DoTrack2(float* al);
75 float GetLength(){float l=0; for(int i=0; i<npoint;i++)l=l+tl[i]; return l;};
76 float GetLength(int,int);
77
78 ClassDef(Trajectory,3);
79
80 };
81 /**
82 * \brief Class to describe fitted tracks.
83 *
84 * A track is defined by the measured coordinates associated to it, the
85 * track status vector, plus other quantities.
86 * A track may have an "image", due to the ambiguity in the y view.
87 *
88 * Cluster flags: xgood[6], ygood[6]
89 *
90 * xgood/ygood = +/- 0lsccccccc
91 * ccccccc ID (1-7483647) of the included cluster
92 * s sensor number (1,2 - increasing y)
93 * l ladder number (1,2,3 - increasing x)
94 * +/- does-not/does include bad strips
95 *
96 */
97 // ==================================================================
98 class TrkTrack : public TObject {
99
100 private:
101
102 public:
103
104 int seqno; ///<stored track sequential number
105 int image; ///<sequential number of track-image
106
107 float al[5]; ///<TRACK STATE VECTOR
108 float coval[5][5]; ///<covariance matrix
109 int xgood[6]; ///<cluster id for x-view (0 = view not included in the fit)
110 int ygood[6]; ///<cluster id for y-view (0 = view not included in the fit)
111 float xm[6]; ///<measured x coordinates
112 float ym[6]; ///<measured y coordinates
113 float zm[6]; ///<measured z coordinates
114 float resx[6]; ///<spatial resolution on X view
115 float resy[6]; ///<spatial resolution on y view
116 float tailx[6]; ///<spatial resolution tail on X view
117 float taily[6]; ///<spatial resolution tail on y view
118 float chi2; ///<chi2
119 int nstep; ///<n.step
120 float xv[6]; ///<calculated x coordinates
121 float yv[6]; ///<calculated y coordinates
122 float zv[6]; ///<calculated z coordinates
123 float axv[6]; ///<calculated angles (deg) on x view
124 float ayv[6]; ///<calculated angles (deg) on y view
125 float dedx_x[6]; ///<dE/dx in MIP (<0 if saturated)
126 float dedx_y[6]; ///<dE/dx in MIP (<0 if saturated)
127 int multmaxx[6]; ///<cluster multiplicity and strip of maximum on x view
128 int multmaxy[6]; ///<cluster multiplicity and strip of maximum on y view
129 float seedx[6]; ///< seed of the cluster x
130 float seedy[6]; ///< seed of the cluster y
131 float xpu[6]; ///< x coordinate in pitch units
132 float ypu[6]; ///< y coordinate in pitch units
133
134 float xGF[14]; ///<calculated x coordinates on GF reference planes
135 float yGF[14]; ///<calculated y coordinates on GF reference planes
136
137 TrkTrack();
138 TrkTrack(const TrkTrack&);
139
140 ~TrkTrack(){ Delete(); };
141
142 void Dump();
143 void Clear();
144 void Clear(Option_t *option){Clear();};
145 void Delete();
146 void Copy(TrkTrack&);
147 // void Set();
148
149 Int_t GetSeqNo(){return seqno;} ///< Returns the track sequential number
150 Int_t GetImageSeqNo(){return image;} ///< Returns the track image sequential number
151 Bool_t HasImage(){return !(image==-1);} ///< Returns true if the track has an image
152 int DoTrack(Trajectory* t); ///< Evaluates the trajectory in the apparatus.
153 int DoTrack2(Trajectory* t); ///< Evaluates the trajectory in the apparatus.
154 float BdL(){return 0;}; ///< Evaluates the integral of B*dL along the track.
155 Int_t GetNX(){Int_t n=0; for(Int_t i=0; i<6; i++)n+=(Int_t)XGood(i); return n;};
156 Int_t GetNY(){Int_t n=0; for(Int_t i=0; i<6; i++)n+=(Int_t)YGood(i); return n;};
157 Int_t GetNXY(){Int_t n=0; for(Int_t i=0; i<6; i++)n+=(Int_t)YGood(i)*XGood(i); return n;};
158 Int_t GetNtot(){return GetNX()+GetNY();};
159 Float_t GetRigidity();
160 Float_t GetDeflection();
161 Bool_t IsSaturated(int,int);
162 Bool_t IsSaturated(int);
163 Bool_t IsSaturated();
164 Bool_t IsBad(int,int);
165 Float_t GetDEDX();
166 Float_t GetDEDX(int ip);
167 Float_t GetDEDX(int ip,int iv);
168 Int_t GetLeverArmXY();
169 Int_t GetLeverArmX();
170 Int_t GetLeverArmY();
171 Float_t GetChi2X();
172 Float_t GetChi2Y();
173 Float_t GetLnLX();
174 Float_t GetLnLY();
175
176 Float_t GetEffectiveAngle(int ip, int iv);
177
178 void SetMeasure(double *xmeas, double *ymeas, double *zmeas);
179 void SetResolution(double *rx, double *ry);
180 void SetTail(double *tx, double *ty, double factor);
181 void SetStudentParam(int flag);
182 void SetGood(int *xg, int *yg);
183 void LoadField(TString s);
184 void Fit(double pfixed, int& fail, int iprint, int froml1);
185 void Fit(double pfixed, int& fail, int iprint){ Fit(pfixed,fail,iprint,0); };
186 void FitReset();
187 void SetTrackingMode(int trackmode);
188 void SetPrecisionFactor(double fact);
189 void SetStepMin(int istepmin);
190 void SetDeltaB(int id, double db);
191
192 Bool_t IsInsideCavity(float);
193 Bool_t IsInsideCavity(){ return IsInsideCavity(0.); };
194 Bool_t IsInsideAcceptance();
195
196 Bool_t EvaluateClusterPositions();
197
198 void FillMiniStruct(cMini2track&);
199 void SetFromMiniStruct(cMini2track*);
200
201 Int_t GetClusterX_ID(int ip);
202 Int_t GetClusterY_ID(int ip);
203 Int_t GetLadder(int ip);
204 Int_t GetSensor(int ip);
205 Bool_t XGood(int ip){ return GetClusterX_ID(ip)!=-1; };
206 Bool_t YGood(int ip){ return GetClusterY_ID(ip)!=-1; };
207 void ResetXGood(int ip){ xgood[ip]=0; };
208 void ResetYGood(int ip){ ygood[ip]=0; };
209 /* void SetXGood(int ip, int clid, int is); */
210 /* void SetYGood(int ip, int clid, int is); */
211 void SetXGood(int ip, int clid, int il, int is, bool bad);
212 void SetYGood(int ip, int clid, int il, int is, bool bad);
213 void SetXGood(int ip, int clid, int il, int is){ SetXGood(ip,clid,il,is,false); };
214 void SetYGood(int ip, int clid, int il, int is){ SetYGood(ip,clid,il,is,false); };
215
216
217 Bool_t BadClusterX(int ip){ return IsBad(ip,0); };
218 Bool_t BadClusterY(int ip){ return IsBad(ip,1); };
219
220 Bool_t SaturatedClusterX(int ip){ return IsSaturated(ip,0); };
221 Bool_t SaturatedClusterY(int ip){ return IsSaturated(ip,1); };
222
223 Int_t GetClusterX_Multiplicity(int ip){ return (Int_t)(multmaxx[ip]/10000); };
224 Int_t GetClusterY_Multiplicity(int ip){ return (Int_t)(multmaxy[ip]/10000); };
225 Int_t GetClusterX_MaxStrip(int ip){ return (Int_t)(multmaxx[ip]%10000); };
226 Int_t GetClusterY_MaxStrip(int ip){ return (Int_t)(multmaxy[ip]%10000); };
227 Float_t GetClusterX_Seed(int ip){ return seedx[ip]; };
228 Float_t GetClusterY_Seed(int ip){ return seedy[ip]; };
229 /* Float_t GetClusterX_oordinatePU(int ip); */
230 /* Float_t GetClusterY_CoordinatePU(int ip); */
231
232 Float_t GetYav();
233 Float_t GetXav();
234 Float_t GetZav();
235
236 Int_t GetNColumns();
237
238 Float_t GetDEDX_max(int ip, int iv);
239 Float_t GetDEDX_max(int iv){ return GetDEDX_max(-1,iv); };
240 Float_t GetDEDX_max(){ return GetDEDX_max(-1,-1); };
241 Float_t GetDEDX_min(int ip, int iv);
242 Float_t GetDEDX_min(int iv){ return GetDEDX_min(-1,iv); };
243 Float_t GetDEDX_min(){ return GetDEDX_min(-1,-1); };
244
245 Float_t GetResidual_max(int ip, int iv);
246 Float_t GetResidual_max(int iv){ return GetResidual_max(-1,iv); };
247 Float_t GetResidual_max(){ return GetResidual_max(-1,-1); };
248 Float_t GetResidual_av(int ip, int iv);
249 Float_t GetResidual_av(int iv){ return GetResidual_av(-1,iv); };
250 Float_t GetResidual_av(){ return GetResidual_av(-1,-1); };
251
252 Int_t GetClusterX_Multiplicity_max();
253 Int_t GetClusterX_Multiplicity_min();
254 Int_t GetClusterY_Multiplicity_max();
255 Int_t GetClusterY_Multiplicity_min();
256
257 Float_t GetClusterX_Seed_min();
258 Float_t GetClusterY_Seed_min();
259
260 TrkTrack* GetTrkTrack(){return this;};
261
262 friend class TrkLevel2;
263
264 ClassDef(TrkTrack,5);
265
266 };
267 /**
268 * \brief Class to describe single clusters ("singlets").
269 *
270 * Single clusters are clusters not associated to any track.
271 */
272 class TrkSinglet : public TObject {
273
274 private:
275
276
277 public:
278
279 int plane; ///<plane
280 float coord[2]; ///<coordinate (on sensor 1 and 2)
281 float sgnl; ///<cluster signal in MIP (<0 if saturated)
282 int multmax; ///<cluster multiplicity and strip of maximum
283
284 TrkSinglet();
285 TrkSinglet(const TrkSinglet&);
286 ~TrkSinglet(){Delete();};
287
288 void Dump();
289 void Clear();
290 void Clear(Option_t *option){Clear();};
291 void Delete(){Clear();};
292 Float_t GetSignal(){return fabs(sgnl);}
293 Bool_t IsSaturated(){return (sgnl<0); };
294
295 Bool_t IsBad() { return multmax<=0; };
296 Int_t GetCluster_Multiplicity(){ return (Int_t)(abs(multmax)/10000); };
297 Int_t GetCluster_MaxStrip() { return (Int_t)(abs(multmax)%10000); };
298
299
300 friend class TrkLevel2;
301
302 ClassDef(TrkSinglet,4);
303
304 };
305
306 /**
307 * \brief Class to describe tracker LEVEL2 data.
308 *
309 * A tracker events is defined by some general variables, plus the collection of all the fitted tracks and all
310 * single clusters on X and Y views.
311 * Tracks and single clusters ("singlets") are described by the classes TrkTrack and TrkSinglet respectivelly.
312 *
313 * Each track may have an "image", due to the ambiguity on the Y view, which is stored also.
314 * Thus, the number of stored tracks ( ntrk() ) differs from the number of "physical" tracks ( GetNTracks() ).
315 * Proper methods allow to sort tracks and select the physical ones ( GetTracks() ).
316 *
317 * The event status indicates the processing status of data from each DSP, according to the following
318 * notation:
319 *
320 * LSB --> 0 missing packet
321 * 1 CRC error
322 * 2 on-line software alarm (latch-up, timeout ecc...)
323 * 3 jump in the trigger counter
324 * 4 decode error
325 * 5 n.clusters > maximum number (level1 processing)
326 * 6
327 * 7
328 * 8 n.clusters > maximum value (level2 processing)
329 * 9 n.couples per plane > maximum values (vector dimention)
330 * 10 n.doublets > maximum values
331 * 11 n.triplets > maximum values
332 * 12 n.yz-clouds > maximum values
333 * 13 n.xz-clouds > maximum values
334 * 14 n.candidate-tracks > maximum values
335 * 15 n.couples per plane > maximum values (for Hough transform)
336 * MSB --> 16
337 *
338 *
339 * For all data processed before June 2007 the event status was coded according to
340 * a different rule:
341 *
342 * Status of level1 processing
343 * 0 -- OK
344 * 1 -- missing packet
345 * 2 -- 1 CRC error
346 * 3 -- 2 on-line software alarm (latch-up flags asserted or n.transmitted-words = 0)
347 * 4 -- 3 jump in the trigger counter
348 * 10 -- 4 decode error
349 * 11 -- 5 n.clusters > maximum number (for level1 processing)
350 * Status of level2 processing
351 * 21 -- 0 n.clusters > maximum value (for level2 processing)
352 * 22 -- 1 n.couples per plane > maximum values (vector dimention)
353 * 23 -- 2 n.doublets > maximum values
354 * 24 -- 3 n.triplets > maximum values
355 * 25 -- 4 n.yz-clouds > maximum values
356 * 26 -- 5 n.xz-clouds > maximum values
357 * 27 -- 6 n.candidate-tracks > maximum values
358 * 28 -- 7 n.couples per plane > maximum values (for Hough transform)
359 *
360 *
361 */
362 class TrkLevel2 : public TObject {
363
364 private:
365
366 public:
367
368 Int_t good[12]; ///< event status
369 UInt_t VKmask[12]; ///< Viking-chip mask
370 UInt_t VKflag[12]; ///< Viking-chip flag
371
372 TClonesArray *Track; ///< fitted tracks
373 TClonesArray *SingletX; ///< x singlets
374 TClonesArray *SingletY; ///< y singlets
375
376 TrkLevel2();
377 // TrkLevel2(cTrkLevel2 *);
378 ~TrkLevel2(){Delete();};
379
380 void Clear();
381 void Clear(Option_t *option){Clear();};
382 void Delete();
383 void Set();
384 int UnpackError(){ for(int i=0; i<12; i++)if(!StatusCheck(i,0x12))return 1; return 0;};
385
386 int ntrk() {return Track->GetEntries();} ///< number of stored track
387 int nclsx(){return SingletX->GetEntries();} ///< number of x singlets
388 int nclsy(){return SingletY->GetEntries();} ///< number of y singlets
389
390 void Dump();
391 void SetFromLevel2Struct(cTrkLevel2 *, TrkLevel1 *);
392 void SetFromLevel2Struct(cTrkLevel2 *s2){ SetFromLevel2Struct(s2, NULL); };
393 void SetFromLevel2Struct(TrkLevel1 *l1) { SetFromLevel2Struct(&level2event_, l1); };
394 void SetFromLevel2Struct() { SetFromLevel2Struct(&level2event_); };
395 void GetLevel2Struct(cTrkLevel2 *) const;
396 void LoadField(TString);
397 float GetBX(float* v){return TrkParams::GetBX(v);};///< Bx (kGauss)
398 float GetBY(float* v){return TrkParams::GetBY(v);};///< By (kGauss)
399 float GetBZ(float* v){return TrkParams::GetBZ(v);};///< Bz (kGauss)
400 Float_t GetZTrk(Int_t);
401 Float_t GetXTrkLeft(){return XMAGNLOW;};
402 Float_t GetXTrkRight(){return XMAGNHIGH;};
403 Float_t GetYTrkLeft(){return YMAGNLOW;};
404 Float_t GetYTrkRight(){return YMAGNHIGH;};
405
406 Bool_t IsMaskedVK(int,int);
407 Bool_t GetVKMask(int,int);
408 Bool_t GetVKFlag(int,int);
409
410 TrkSinglet *GetSingletX(int);
411 TrkSinglet *GetSingletY(int);
412
413 TrkTrack *GetStoredTrack(int i);
414 Int_t GetSeqNo(Int_t i) {return (((TrkTrack *)Track->At(i))->seqno);}; ///< Returns track sequential number
415
416 TRefArray *GetTracks_NFitSorted();
417 TRefArray *GetTracks(){return this->GetTracks_NFitSorted();};
418
419 Int_t GetNTracks();
420 TrkTrack* GetTrack(int i);
421 TrkTrack* GetTrackImage(int i);
422
423 TrkLevel2* GetTrkLevel2(){return this;}
424 TClonesArray* GetTrackArray(){return Track;};///< returns pointer to the track array
425
426 void StatusDump(int view);
427 Bool_t StatusCheck(int view, int flagmask);
428
429 ClassDef(TrkLevel2,3);
430
431 };
432
433 #endif

  ViewVC Help
Powered by ViewVC 1.1.23