| 1 |
/** |
| 2 |
* \file TrkLevel2.h |
| 3 |
* \author Elena Vannuccini |
| 4 |
*/ |
| 5 |
#ifndef trklevel2_h |
| 6 |
#define trklevel2_h |
| 7 |
|
| 8 |
#include <TObject.h> |
| 9 |
#include <TObjArray.h> |
| 10 |
#include <TClonesArray.h> |
| 11 |
#include <TRefArray.h> |
| 12 |
#include <TRef.h> |
| 13 |
|
| 14 |
#include <TrkParams.h> |
| 15 |
#include <TrkLevel1.h> |
| 16 |
|
| 17 |
// z-coordinate of track state-vector reference-plane |
| 18 |
#define ZINI 23.5 |
| 19 |
// (mechanical) z-coordinate of the tracker planes |
| 20 |
#define ZTRK6 -22.22 |
| 21 |
#define ZTRK5 -13.31 |
| 22 |
#define ZTRK4 -4.41 |
| 23 |
#define ZTRK3 4.49 |
| 24 |
#define ZTRK2 13.39 |
| 25 |
#define ZTRK1 22.29 |
| 26 |
// magnet cavity dimensions |
| 27 |
#define ZMAGNHIGH 21.83 |
| 28 |
#define ZMAGNLOW -21.83 |
| 29 |
#define XMAGNHIGH 8.07 |
| 30 |
#define XMAGNLOW -8.07 |
| 31 |
#define YMAGNHIGH 6.57 |
| 32 |
#define YMAGNLOW -6.57 |
| 33 |
// (mechanical) x/y-coordinates of magnet cavity |
| 34 |
#define XTRKL -8.1 |
| 35 |
#define XTRKR 8.1 |
| 36 |
#define YTRKL -6.6 |
| 37 |
#define YTRKR 6.6 |
| 38 |
|
| 39 |
/** |
| 40 |
* \brief Class to describe, by points, a particle trajectory in the apparatus. |
| 41 |
* |
| 42 |
* The idea is to create it by integrating the equations of motion, given the |
| 43 |
* track state vector and the z coordinates where to evaluate track position. |
| 44 |
*/ |
| 45 |
// ================================================================== |
| 46 |
class Trajectory : public TObject{ |
| 47 |
private: |
| 48 |
|
| 49 |
public: |
| 50 |
|
| 51 |
int npoint; ///< number of evaluated points along the trajectory |
| 52 |
float* x; ///< x coordinates |
| 53 |
float* y; ///< y coordinates |
| 54 |
float* z; ///< z coordinates |
| 55 |
float* thx; ///< x projected angle |
| 56 |
float* thy; ///< y projected angle |
| 57 |
float* tl; ///< track length |
| 58 |
|
| 59 |
Trajectory(); |
| 60 |
Trajectory(int n); |
| 61 |
Trajectory(int n, float* pz); |
| 62 |
~Trajectory(){Delete();}; |
| 63 |
void Dump(); |
| 64 |
void Delete(); |
| 65 |
|
| 66 |
int DoTrack2(float* al); |
| 67 |
float GetLength(){float l=0; for(int i=0; i<npoint;i++)l=l+tl[i]; return l;}; |
| 68 |
float GetLength(int,int); |
| 69 |
|
| 70 |
ClassDef(Trajectory,2); |
| 71 |
|
| 72 |
}; |
| 73 |
/** |
| 74 |
* \brief Class to describe fitted tracks. |
| 75 |
* |
| 76 |
* A track is defined by the measured coordinates associated to it, the |
| 77 |
* track status vector, plus other quantities. |
| 78 |
* A track may have an "image", due to the ambiguity in the y view. |
| 79 |
* |
| 80 |
* Cluster flags: xgood[6], ygood[6] |
| 81 |
* |
| 82 |
* xgood/ygood = +/- 0lsccccccc |
| 83 |
* | |||------- ID (1-7483647) of the included cluster |
| 84 |
* | ||-------- sensor number (1,2 - increasing y) |
| 85 |
* | |--------- ladder number (1,2,3 - increasing x) |
| 86 |
* |------------- does-not/does include bad strips |
| 87 |
*/ |
| 88 |
// ================================================================== |
| 89 |
class TrkTrack : public TObject { |
| 90 |
|
| 91 |
private: |
| 92 |
|
| 93 |
public: |
| 94 |
|
| 95 |
int seqno; ///<stored track sequential number |
| 96 |
int image; ///<sequential number of track-image |
| 97 |
|
| 98 |
float al[5]; ///<TRACK STATE VECTOR |
| 99 |
float coval[5][5]; ///<covariance matrix |
| 100 |
int xgood[6]; ///<cluster id for x-view (0 = view not included in the fit) |
| 101 |
int ygood[6]; ///<cluster id for y-view (0 = view not included in the fit) |
| 102 |
float xm[6]; ///<measured x coordinates |
| 103 |
float ym[6]; ///<measured y coordinates |
| 104 |
float zm[6]; ///<measured z coordinates |
| 105 |
float resx[6]; ///<spatial resolution on X view |
| 106 |
float resy[6]; ///<spatial resolution on y view |
| 107 |
float tailx[6]; ///<spatial resolution tail on X view |
| 108 |
float taily[6]; ///<spatial resolution tail on y view |
| 109 |
float chi2; ///<chi2 |
| 110 |
int nstep; ///<n.step |
| 111 |
float xv[6]; ///<calculated x coordinates |
| 112 |
float yv[6]; ///<calculated y coordinates |
| 113 |
float zv[6]; ///<calculated z coordinates |
| 114 |
float axv[6]; ///<calculated angles (deg) on x view |
| 115 |
float ayv[6]; ///<calculated angles (deg) on y view |
| 116 |
float dedx_x[6]; ///<dE/dx in MIP (<0 if saturated) |
| 117 |
float dedx_y[6]; ///<dE/dx in MIP (<0 if saturated) |
| 118 |
int multmaxx[6]; ///<cluster multiplicity and strip of maximum on x view |
| 119 |
int multmaxy[6]; ///<cluster multiplicity and strip of maximum on y view |
| 120 |
float seedx[6]; ///< seed of the cluster x |
| 121 |
float seedy[6]; ///< seed of the cluster y |
| 122 |
float xpu[6]; ///< x coordinate in pitch units |
| 123 |
float ypu[6]; ///< y coordinate in pitch units |
| 124 |
|
| 125 |
TrkTrack(); |
| 126 |
TrkTrack(const TrkTrack&); |
| 127 |
|
| 128 |
~TrkTrack(){ Delete(); }; |
| 129 |
|
| 130 |
void Dump(); |
| 131 |
void Clear(); |
| 132 |
void Clear(Option_t *option){Clear();}; |
| 133 |
void Delete(); |
| 134 |
void Copy(TrkTrack&); |
| 135 |
// void Set(); |
| 136 |
|
| 137 |
Int_t GetSeqNo(){return seqno;} ///< Returns the track sequential number |
| 138 |
Int_t GetImageSeqNo(){return image;} ///< Returns the track image sequential number |
| 139 |
Bool_t HasImage(){return !(image==-1);} ///< Returns true if the track has an image |
| 140 |
int DoTrack(Trajectory* t); ///< Evaluates the trajectory in the apparatus. |
| 141 |
int DoTrack2(Trajectory* t); ///< Evaluates the trajectory in the apparatus. |
| 142 |
float BdL(){return 0;}; ///< Evaluates the integral of B*dL along the track. |
| 143 |
Int_t GetNX(){Int_t n=0; for(Int_t i=0; i<6; i++)n+=(Int_t)XGood(i); return n;}; |
| 144 |
Int_t GetNY(){Int_t n=0; for(Int_t i=0; i<6; i++)n+=(Int_t)YGood(i); return n;}; |
| 145 |
Int_t GetNtot(){return GetNX()+GetNY();}; |
| 146 |
Float_t GetRigidity(); |
| 147 |
Float_t GetDeflection(); |
| 148 |
Bool_t IsSaturated(int,int); |
| 149 |
Bool_t IsSaturated(int); |
| 150 |
Bool_t IsSaturated(); |
| 151 |
Bool_t IsBad(int,int); |
| 152 |
Float_t GetDEDX(); |
| 153 |
Float_t GetDEDX(int ip); |
| 154 |
Float_t GetDEDX(int ip,int iv); |
| 155 |
Int_t GetLeverArmX(); |
| 156 |
Int_t GetLeverArmY(); |
| 157 |
Float_t GetChi2X(); |
| 158 |
Float_t GetChi2Y(); |
| 159 |
Float_t GetLnLX(); |
| 160 |
Float_t GetLnLY(); |
| 161 |
|
| 162 |
Float_t GetEffectiveAngle(int ip, int iv); |
| 163 |
|
| 164 |
void SetMeasure(double *xmeas, double *ymeas, double *zmeas); |
| 165 |
void SetResolution(double *rx, double *ry); |
| 166 |
void SetTail(double *tx, double *ty, double factor); |
| 167 |
void SetStudentParam(int flag); |
| 168 |
void SetGood(int *xg, int *yg); |
| 169 |
void LoadField(TString s); |
| 170 |
void Fit(double pfixed, int& fail, int iprint, int froml1); |
| 171 |
void Fit(double pfixed, int& fail, int iprint){ Fit(pfixed,fail,iprint,0); }; |
| 172 |
void FitReset(); |
| 173 |
void SetTrackingMode(int trackmode); |
| 174 |
void SetPrecisionFactor(double fact); |
| 175 |
void SetStepMin(int istepmin); |
| 176 |
Bool_t IsInsideCavity(); |
| 177 |
|
| 178 |
Bool_t EvaluateClusterPositions(); |
| 179 |
|
| 180 |
void FillMiniStruct(cMini2track&); |
| 181 |
void SetFromMiniStruct(cMini2track*); |
| 182 |
|
| 183 |
Int_t GetClusterX_ID(int ip); |
| 184 |
Int_t GetClusterY_ID(int ip); |
| 185 |
Int_t GetLadder(int ip); |
| 186 |
Int_t GetSensor(int ip); |
| 187 |
Bool_t XGood(int ip){ return GetClusterX_ID(ip)!=-1; }; |
| 188 |
Bool_t YGood(int ip){ return GetClusterY_ID(ip)!=-1; }; |
| 189 |
void ResetXGood(int ip){ xgood[ip]=0; }; |
| 190 |
void ResetYGood(int ip){ ygood[ip]=0; }; |
| 191 |
void SetXGood(int ip, int clid, int is); |
| 192 |
void SetYGood(int ip, int clid, int is); |
| 193 |
|
| 194 |
Bool_t BadClusterX(int ip){ return IsBad(ip,0); }; |
| 195 |
Bool_t BadClusterY(int ip){ return IsBad(ip,1); }; |
| 196 |
|
| 197 |
Bool_t SaturatedClusterX(int ip){ return IsSaturated(ip,0); }; |
| 198 |
Bool_t SaturatedClusterY(int ip){ return IsSaturated(ip,1); }; |
| 199 |
|
| 200 |
Int_t GetClusterX_Multiplicity(int ip){ return (Int_t)(multmaxx[ip]/10000); }; |
| 201 |
Int_t GetClusterY_Multiplicity(int ip){ return (Int_t)(multmaxy[ip]/10000); }; |
| 202 |
Int_t GetClusterX_MaxStrip(int ip){ return (Int_t)(multmaxx[ip]%10000); }; |
| 203 |
Int_t GetClusterY_MaxStrip(int ip){ return (Int_t)(multmaxy[ip]%10000); }; |
| 204 |
Float_t GetClusterX_Seed(int ip){ return seedx[ip]; }; |
| 205 |
Float_t GetClusterY_Seed(int ip){ return seedy[ip]; }; |
| 206 |
/* Float_t GetClusterX_CoordinatePU(int ip); */ |
| 207 |
/* Float_t GetClusterY_CoordinatePU(int ip); */ |
| 208 |
|
| 209 |
|
| 210 |
TrkTrack* GetTrkTrack(){return this;}; |
| 211 |
|
| 212 |
friend class TrkLevel2; |
| 213 |
|
| 214 |
ClassDef(TrkTrack,4); |
| 215 |
|
| 216 |
}; |
| 217 |
/** |
| 218 |
* \brief Class to describe single clusters ("singlets"). |
| 219 |
* |
| 220 |
* Single clusters are clusters not associated to any track. |
| 221 |
*/ |
| 222 |
class TrkSinglet : public TObject { |
| 223 |
|
| 224 |
private: |
| 225 |
|
| 226 |
|
| 227 |
public: |
| 228 |
|
| 229 |
int plane; ///<plane |
| 230 |
float coord[2]; ///<coordinate (on sensor 1 and 2) |
| 231 |
float sgnl; ///<cluster signal in MIP (<0 if saturated) |
| 232 |
|
| 233 |
TrkSinglet(); |
| 234 |
TrkSinglet(const TrkSinglet&); |
| 235 |
~TrkSinglet(){Delete();}; |
| 236 |
|
| 237 |
void Dump(); |
| 238 |
void Clear(); |
| 239 |
void Clear(Option_t *option){Clear();}; |
| 240 |
void Delete(){Clear();}; |
| 241 |
Float_t GetSignal(){return fabs(sgnl);} |
| 242 |
Bool_t IsSaturated(){return (sgnl<0); }; |
| 243 |
|
| 244 |
friend class TrkLevel2; |
| 245 |
|
| 246 |
ClassDef(TrkSinglet,3); |
| 247 |
|
| 248 |
}; |
| 249 |
|
| 250 |
/** |
| 251 |
* \brief Class to describe tracker LEVEL2 data. |
| 252 |
* |
| 253 |
* A tracker events is defined by some general variables, plus the collection of all the fitted tracks and all |
| 254 |
* single clusters on X and Y views. |
| 255 |
* Tracks and single clusters ("singlets") are described by the classes TrkTrack and TrkSinglet respectivelly. |
| 256 |
* |
| 257 |
* Each track may have an "image", due to the ambiguity on the Y view, which is stored also. |
| 258 |
* Thus, the number of stored tracks ( ntrk() ) differs from the number of "physical" tracks ( GetNTracks() ). |
| 259 |
* Proper methods allow to sort tracks and select the physical ones ( GetTracks() ). |
| 260 |
* |
| 261 |
* The event status indicates the processing status of data from each DSP, according to the following |
| 262 |
* notation: |
| 263 |
* |
| 264 |
* xxxx xxxx xxxx xxxx xxxx xxxx |
| 265 |
* |||| |||| |||| |||| |||| ||||_ 0 missing packet |
| 266 |
* |||| |||| |||| |||| |||| |||__ 1 CRC error |
| 267 |
* |||| |||| |||| |||| |||| ||___ 2 on-line software alarm (latch-up, timeout ecc...) |
| 268 |
* |||| |||| |||| |||| |||| |____ 3 jump in the trigger counter |
| 269 |
* |||| |||| |||| |||| ||||______ 4 decode error |
| 270 |
* |||| |||| |||| |||| |||_______ 5 n.clusters > maximum number (level1 processing) |
| 271 |
* |||| |||| |||| |||| ||________ 6 |
| 272 |
* |||| |||| |||| |||| |_________ 7 |
| 273 |
* |||| |||| |||| ||||___________ 8 n.clusters > maximum value (level2 processing) |
| 274 |
* |||| |||| |||| |||____________ 9 n.couples per plane > maximum values (vector dimention) |
| 275 |
* |||| |||| |||| ||_____________ 10 n.doublets > maximum values |
| 276 |
* |||| |||| |||| |______________ 11 n.triplets > maximum values |
| 277 |
* |||| |||| ||||________________ 12 n.yz-clouds > maximum values |
| 278 |
* |||| |||| |||_________________ 13 n.xz-clouds > maximum values |
| 279 |
* |||| |||| ||__________________ 14 n.candidate-tracks > maximum values |
| 280 |
* |||| |||| |___________________ 15 n.couples per plane > maximum values (for Hough transform) |
| 281 |
* |||| ||||_____________________ 16 |
| 282 |
* |
| 283 |
* |
| 284 |
* For all data processed before June 2007 the event status was coded according to |
| 285 |
* a different rule: |
| 286 |
* |
| 287 |
* Status of level1 processing |
| 288 |
* 0 -- OK |
| 289 |
* 1 -- missing packet |
| 290 |
* 2 -- 1 CRC error |
| 291 |
* 3 -- 2 on-line software alarm (latch-up flags asserted or n.transmitted-words = 0) |
| 292 |
* 4 -- 3 jump in the trigger counter |
| 293 |
* 10 -- 4 decode error |
| 294 |
* 11 -- 5 n.clusters > maximum number (for level1 processing) |
| 295 |
* Status of level2 processing |
| 296 |
* 21 -- 0 n.clusters > maximum value (for level2 processing) |
| 297 |
* 22 -- 1 n.couples per plane > maximum values (vector dimention) |
| 298 |
* 23 -- 2 n.doublets > maximum values |
| 299 |
* 24 -- 3 n.triplets > maximum values |
| 300 |
* 25 -- 4 n.yz-clouds > maximum values |
| 301 |
* 26 -- 5 n.xz-clouds > maximum values |
| 302 |
* 27 -- 6 n.candidate-tracks > maximum values |
| 303 |
* 28 -- 7 n.couples per plane > maximum values (for Hough transform) |
| 304 |
* |
| 305 |
* |
| 306 |
*/ |
| 307 |
class TrkLevel2 : public TObject { |
| 308 |
|
| 309 |
private: |
| 310 |
|
| 311 |
public: |
| 312 |
|
| 313 |
Int_t good[12]; ///< event status |
| 314 |
UInt_t VKmask[12]; ///< Viking-chip mask |
| 315 |
UInt_t VKflag[12]; ///< Viking-chip flag |
| 316 |
|
| 317 |
TClonesArray *Track; ///< fitted tracks |
| 318 |
TClonesArray *SingletX; ///< x singlets |
| 319 |
TClonesArray *SingletY; ///< y singlets |
| 320 |
|
| 321 |
TrkLevel2(); |
| 322 |
// TrkLevel2(cTrkLevel2 *); |
| 323 |
~TrkLevel2(){Delete();}; |
| 324 |
|
| 325 |
void Clear(); |
| 326 |
void Clear(Option_t *option){Clear();}; |
| 327 |
void Delete(); |
| 328 |
void Set(); |
| 329 |
|
| 330 |
int ntrk() {return Track->GetEntries();} ///< number of stored track |
| 331 |
int nclsx(){return SingletX->GetEntries();} ///< number of x singlets |
| 332 |
int nclsy(){return SingletY->GetEntries();} ///< number of y singlets |
| 333 |
|
| 334 |
void Dump(); |
| 335 |
void SetFromLevel2Struct(cTrkLevel2 *, TrkLevel1 *); |
| 336 |
void SetFromLevel2Struct(cTrkLevel2 *s2){ SetFromLevel2Struct(s2, NULL); }; |
| 337 |
void SetFromLevel2Struct(TrkLevel1 *l1) { SetFromLevel2Struct(&level2event_, l1); }; |
| 338 |
void SetFromLevel2Struct() { SetFromLevel2Struct(&level2event_); }; |
| 339 |
void GetLevel2Struct(cTrkLevel2 *) const; |
| 340 |
void LoadField(TString); |
| 341 |
float GetBX(float* v){return TrkParams::GetBX(v);};///< Bx (kGauss) |
| 342 |
float GetBY(float* v){return TrkParams::GetBY(v);};///< By (kGauss) |
| 343 |
float GetBZ(float* v){return TrkParams::GetBZ(v);};///< Bz (kGauss) |
| 344 |
Float_t GetZTrk(Int_t); |
| 345 |
Float_t GetXTrkLeft(){return XTRKL;}; |
| 346 |
Float_t GetXTrkRight(){return XTRKR;}; |
| 347 |
Float_t GetYTrkLeft(){return YTRKL;}; |
| 348 |
Float_t GetYTrkRight(){return YTRKR;}; |
| 349 |
|
| 350 |
Bool_t IsMaskedVK(int,int); |
| 351 |
Bool_t GetVKMask(int,int); |
| 352 |
Bool_t GetVKFlag(int,int); |
| 353 |
|
| 354 |
TrkSinglet *GetSingletX(int); |
| 355 |
TrkSinglet *GetSingletY(int); |
| 356 |
|
| 357 |
TrkTrack *GetStoredTrack(int i); |
| 358 |
Int_t GetSeqNo(Int_t i) {return (((TrkTrack *)Track->At(i))->seqno);}; ///< Returns track sequential number |
| 359 |
|
| 360 |
TRefArray *GetTracks_NFitSorted(); |
| 361 |
TRefArray *GetTracks(){return this->GetTracks_NFitSorted();}; |
| 362 |
|
| 363 |
Int_t GetNTracks(); |
| 364 |
TrkTrack* GetTrack(int i); |
| 365 |
TrkTrack* GetTrackImage(int i); |
| 366 |
|
| 367 |
TrkLevel2* GetTrkLevel2(){return this;} |
| 368 |
TClonesArray* GetTrackArray(){return Track;};///< returns pointer to the track array |
| 369 |
|
| 370 |
void StatusDump(int view); |
| 371 |
Bool_t StatusCheck(int view, int flagmask); |
| 372 |
|
| 373 |
ClassDef(TrkLevel2,3); |
| 374 |
|
| 375 |
}; |
| 376 |
|
| 377 |
#endif |