1 |
/** |
2 |
* \file TrkLevel2.h |
3 |
* \author Elena Vannuccini |
4 |
*/ |
5 |
#ifndef trklevel2_h |
6 |
#define trklevel2_h |
7 |
|
8 |
#include <TObject.h> |
9 |
#include <TObjArray.h> |
10 |
#include <TClonesArray.h> |
11 |
#include <TRefArray.h> |
12 |
#include <TRef.h> |
13 |
|
14 |
#include <TrkStruct.h> |
15 |
#include <TrkLevel1.h> |
16 |
|
17 |
// z-coordinate of track state-vector reference-plane |
18 |
#define ZINI 23.5 |
19 |
// upper and lower (mechanical) z-coordinate of the tracker |
20 |
//#define ZTRKUP 22.29 |
21 |
//#define ZTRKDW -22.22 |
22 |
// (mechanical) z-coordinate of the tracker planes |
23 |
#define ZTRK6 -22.23 |
24 |
#define ZTRK5 -13.32 |
25 |
#define ZTRK4 -4.42 |
26 |
#define ZTRK3 4.48 |
27 |
#define ZTRK2 13.38 |
28 |
#define ZTRK1 22.28 |
29 |
// (mechanical) x/y-coordinates of magnet cavity |
30 |
#define XTRKL -8.1 |
31 |
#define XTRKR 8.1 |
32 |
#define YTRKL -6.6 |
33 |
#define YTRKR 6.6 |
34 |
|
35 |
/** |
36 |
* \brief Class to describe, by points, a particle trajectory in the apparatus. |
37 |
* |
38 |
* The idea is to create it by integrating the equations of motion, given the |
39 |
* track state vector and the z coordinates where to evaluate track position. |
40 |
*/ |
41 |
// ================================================================== |
42 |
class Trajectory : public TObject{ |
43 |
private: |
44 |
|
45 |
public: |
46 |
|
47 |
int npoint; ///< number of evaluated points along the trajectory |
48 |
float* x; ///< x coordinates |
49 |
float* y; ///< y coordinates |
50 |
float* z; ///< z coordinates |
51 |
float* thx; ///< x projected angle |
52 |
float* thy; ///< y projected angle |
53 |
float* tl; ///< track length |
54 |
|
55 |
Trajectory(); |
56 |
Trajectory(int n); |
57 |
Trajectory(int n, float* pz); |
58 |
~Trajectory(){Delete();}; |
59 |
void Dump(); |
60 |
void Delete(); |
61 |
|
62 |
int DoTrack2(float* al); |
63 |
float GetLength(){float l=0; for(int i=0; i<npoint;i++)l=l+tl[i]; return l;}; |
64 |
float GetLength(int,int); |
65 |
|
66 |
ClassDef(Trajectory,2); |
67 |
|
68 |
}; |
69 |
/** |
70 |
* \brief Class to describe fitted tracks. |
71 |
* |
72 |
* A track is defined by the measured coordinates associated to it, the |
73 |
* track status vector, plus other quantities. |
74 |
* A track may have an "image", due to the ambiguity in the y view. |
75 |
*/ |
76 |
// ================================================================== |
77 |
class TrkTrack : public TObject { |
78 |
|
79 |
private: |
80 |
|
81 |
int seqno; ///<stored track sequential number |
82 |
int image; ///<sequential number of track-image |
83 |
|
84 |
|
85 |
public: |
86 |
|
87 |
TRefArray *clx; |
88 |
TRefArray *cly; |
89 |
|
90 |
float al[5]; ///<TRACK STATE VECTOR |
91 |
float coval[5][5]; ///<covariance matrix |
92 |
int xgood[6]; ///<mask of included x planes |
93 |
int ygood[6]; ///<mask of included y planes |
94 |
float xm[6]; ///<measured x coordinates |
95 |
float ym[6]; ///<measured y coordinates |
96 |
float zm[6]; ///<measured z coordinates |
97 |
float resx[6]; ///<spatial resolution on X view |
98 |
float resy[6]; ///<spatial resolution on y view |
99 |
float chi2; ///<chi2 |
100 |
int nstep; ///<n. step |
101 |
float xv[6]; ///<calculated x coordinates |
102 |
float yv[6]; ///<calculated y coordinates |
103 |
float zv[6]; ///<calculated z coordinates |
104 |
float axv[6]; ///<calculated angles (deg) on x view |
105 |
float ayv[6]; ///<calculated angles (deg) on y view |
106 |
float dedx_x[6]; ///<signal in MIP (scaled to 300 micrometer) |
107 |
float dedx_y[6]; ///<signal in MIP (scaled to 300 micrometer) |
108 |
|
109 |
TrkTrack(); |
110 |
TrkTrack(const TrkTrack&); |
111 |
|
112 |
~TrkTrack(){ Delete(); }; |
113 |
|
114 |
void Dump(); |
115 |
void Clear(); |
116 |
void Clear(Option_t *option){Clear();}; |
117 |
void Delete(); |
118 |
void Copy(TrkTrack&); |
119 |
// void Set(); |
120 |
|
121 |
Int_t GetSeqNo(){return seqno;} ///< Returns the track sequential number |
122 |
Int_t GetImageSeqNo(){return image;} ///< Returns the track image sequential number |
123 |
Bool_t HasImage(){return !(image==-1);} ///< Returns true if the track has an image |
124 |
int DoTrack(Trajectory* t); ///< Evaluates the trajectory in the apparatus. |
125 |
int DoTrack2(Trajectory* t); ///< Evaluates the trajectory in the apparatus. |
126 |
float BdL(){return 0;}; ///< Evaluates the integral of B*dL along the track. |
127 |
Int_t GetNX(){Int_t n=0; for(Int_t i=0; i<6; i++)n+=xgood[i]; return n;}; |
128 |
Int_t GetNY(){Int_t n=0; for(Int_t i=0; i<6; i++)n+=ygood[i]; return n;}; |
129 |
Int_t GetNtot(){return GetNX()+GetNY();}; |
130 |
Float_t GetRigidity(); |
131 |
Float_t GetDeflection(); |
132 |
Float_t GetDEDX(); |
133 |
Float_t GetDEDX(Int_t ip){if( !(xgood[ip]+ygood[ip]) ) return 0; return (dedx_x[ip]+dedx_y[ip])/(xgood[ip]+ygood[ip]);}; |
134 |
// sono un'imbecille... assegno xm e ym anche quando si tratta di un singolo |
135 |
// non posso quindi usare xm e ym per dire se una vista e` inclusa nel fit o no |
136 |
/* Bool_t XGood(int ip){ return xm[ip] != -100.;}; |
137 |
Bool_t YGood(int ip){ return ym[ip] != -100.;};*/ |
138 |
Bool_t XGood(int ip){ return xgood[ip]==1;}; |
139 |
Bool_t YGood(int ip){ return ygood[ip]==1;}; |
140 |
|
141 |
void SetMeasure(double *xmeas, double *ymeas, double *zmeas); |
142 |
void SetResolution(double *rx, double *ry); |
143 |
void SetGood(int *xg, int *yg); |
144 |
void LoadField(TString s); |
145 |
void Fit(double pfixed, int& fail, int iprint); |
146 |
void FitReset(); |
147 |
|
148 |
void FillMiniStruct(cMini2track&); |
149 |
void SetFromMiniStruct(cMini2track*); |
150 |
|
151 |
TrkCluster *GetClusterX(int ip){TrkCluster *pt = (TrkCluster*)(clx->At(ip)); return pt;}; |
152 |
TrkCluster *GetClusterY(int ip){TrkCluster *pt = (TrkCluster*)(cly->At(ip)); return pt;}; |
153 |
|
154 |
TrkTrack* GetTrkTrack(){return this;}; |
155 |
|
156 |
friend class TrkLevel2; |
157 |
|
158 |
ClassDef(TrkTrack,2); |
159 |
|
160 |
}; |
161 |
/** |
162 |
* \brief Class to describe single clusters ("singlets"). |
163 |
* |
164 |
* Single clusters are clusters not associated to any track. |
165 |
*/ |
166 |
class TrkSinglet : public TObject { |
167 |
|
168 |
private: |
169 |
|
170 |
|
171 |
public: |
172 |
|
173 |
TRef cls; |
174 |
|
175 |
int plane; ///<plane |
176 |
float coord[2]; ///<coordinate (on sensor 1 and 2) |
177 |
float sgnl; ///<cluster signal in MIP |
178 |
|
179 |
TrkSinglet(); |
180 |
TrkSinglet(const TrkSinglet&); |
181 |
~TrkSinglet(){Delete();}; |
182 |
|
183 |
void Dump(); |
184 |
void Clear(); |
185 |
void Clear(Option_t *option){Clear();}; |
186 |
void Delete(){Clear();}; |
187 |
|
188 |
TrkCluster *GetCluster(){TrkCluster *pt = (TrkCluster*)cls.GetObject(); return pt;}; |
189 |
|
190 |
friend class TrkLevel2; |
191 |
|
192 |
ClassDef(TrkSinglet,2); |
193 |
|
194 |
}; |
195 |
|
196 |
/** |
197 |
* \brief Class to describe tracker LEVEL2 data. |
198 |
* |
199 |
* A tracker events is defined by some general variables, plus the collection of all the fitted tracks and all |
200 |
* single clusters on X and Y views. |
201 |
* Tracks and single clusters ("singlets") are described by the classes TrkTrack and TrkSinglet respectivelly. |
202 |
* |
203 |
* Each track may have an "image", due to the ambiguity on the Y view, which is stored also. |
204 |
* Thus, the number of stored tracks ( ntrk() ) differs from the number of "physical" tracks ( GetNTracks() ). |
205 |
* Proper methods allow to sort tracks and select the physical ones ( GetTracks() ). |
206 |
*/ |
207 |
class TrkLevel2 : public TObject { |
208 |
|
209 |
private: |
210 |
|
211 |
public: |
212 |
|
213 |
Int_t good[12]; ///< event status |
214 |
|
215 |
TClonesArray *Track; ///< fitted tracks |
216 |
TClonesArray *SingletX; ///< x singlets |
217 |
TClonesArray *SingletY; ///< y singlets |
218 |
|
219 |
TrkLevel2(); |
220 |
// TrkLevel2(cTrkLevel2 *); |
221 |
~TrkLevel2(){Delete();}; |
222 |
|
223 |
void Clear(); |
224 |
void Clear(Option_t *option){Clear();}; |
225 |
void Delete(); |
226 |
void Set(); |
227 |
|
228 |
int ntrk() {return Track->GetEntries();} ///< number of stored track |
229 |
int nclsx(){return SingletX->GetEntries();} ///< number of x singlets |
230 |
int nclsy(){return SingletY->GetEntries();} ///< number of y singlets |
231 |
|
232 |
void Dump(); |
233 |
void SetFromLevel2Struct(cTrkLevel2 *); |
234 |
void SetFromLevel2Struct(cTrkLevel2 *, TrkLevel1 *); |
235 |
void GetLevel2Struct(cTrkLevel2 *) const; |
236 |
void LoadField(TString); |
237 |
Float_t GetZTrk(Int_t); |
238 |
Float_t GetXTrkLeft(){return XTRKL;}; |
239 |
Float_t GetXTrkRight(){return XTRKR;}; |
240 |
Float_t GetYTrkLeft(){return YTRKL;}; |
241 |
Float_t GetYTrkRight(){return YTRKR;}; |
242 |
|
243 |
TrkSinglet *GetSingletX(int); |
244 |
TrkSinglet *GetSingletY(int); |
245 |
|
246 |
TrkTrack *GetStoredTrack(int i); |
247 |
Int_t GetSeqNo(Int_t i) {return (((TrkTrack *)Track->At(i))->seqno);}; ///< Returns track sequential number |
248 |
// TClonesArray *GetTracks_Chi2Sorted(); |
249 |
// TClonesArray *GetTracks_NFitSorted(); |
250 |
// TClonesArray *GetTracks(); |
251 |
TRefArray *GetTracks_NFitSorted(); |
252 |
TRefArray *GetTracks(){return this->GetTracks_NFitSorted();}; |
253 |
|
254 |
// int GetNTracks(){return this->GetTracks()->GetEntries();} |
255 |
Int_t GetNTracks(); |
256 |
TrkTrack* GetTrack(int i); |
257 |
TrkTrack* GetTrackImage(int i); |
258 |
|
259 |
TrkLevel2* GetTrkLevel2(){return this;} |
260 |
TClonesArray* GetTrackArray(){return Track;};///< returns pointer to the track array |
261 |
|
262 |
ClassDef(TrkLevel2,2); |
263 |
|
264 |
}; |
265 |
|
266 |
#endif |