/[PAMELA software]/DarthVader/TrackerLevel2/inc/TrkLevel2.h
ViewVC logotype

Contents of /DarthVader/TrackerLevel2/inc/TrkLevel2.h

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1.33 - (show annotations) (download)
Tue Nov 27 11:43:49 2007 UTC (17 years ago) by pam-fi
Branch: MAIN
Changes since 1.32: +2 -0 lines
File MIME type: text/plain
implemented m.field deformation, for alignment purpouse

1 /**
2 * \file TrkLevel2.h
3 * \author Elena Vannuccini
4 */
5 #ifndef trklevel2_h
6 #define trklevel2_h
7
8 #include <TObject.h>
9 #include <TObjArray.h>
10 #include <TClonesArray.h>
11 #include <TRefArray.h>
12 #include <TRef.h>
13
14 #include <TrkParams.h>
15 #include <TrkLevel1.h>
16
17 // z-coordinate of track state-vector reference-plane
18 #define ZINI 23.5
19 // (mechanical) z-coordinate of the tracker planes
20 #define ZTRK6 -22.22
21 #define ZTRK5 -13.31
22 #define ZTRK4 -4.41
23 #define ZTRK3 4.49
24 #define ZTRK2 13.39
25 #define ZTRK1 22.29
26 // magnet cavity dimensions
27 #define ZMAGNHIGH 21.83
28 #define ZMAGNLOW -21.83
29 #define XMAGNHIGH 8.07
30 #define XMAGNLOW -8.07
31 #define YMAGNHIGH 6.57
32 #define YMAGNLOW -6.57
33 // (mechanical) x/y-coordinates of magnet cavity
34 #define XTRKL -8.1
35 #define XTRKR 8.1
36 #define YTRKL -6.6
37 #define YTRKR 6.6
38
39 /**
40 * \brief Class to describe, by points, a particle trajectory in the apparatus.
41 *
42 * The idea is to create it by integrating the equations of motion, given the
43 * track state vector and the z coordinates where to evaluate track position.
44 */
45 // ==================================================================
46 class Trajectory : public TObject{
47 private:
48
49 public:
50
51 int npoint; ///< number of evaluated points along the trajectory
52 float* x; ///< x coordinates
53 float* y; ///< y coordinates
54 float* z; ///< z coordinates
55 float* thx; ///< x projected angle
56 float* thy; ///< y projected angle
57 float* tl; ///< track length
58
59 Trajectory();
60 Trajectory(int n);
61 Trajectory(int n, float* pz);
62 ~Trajectory(){Delete();};
63 void Dump();
64 void Delete();
65
66 int DoTrack2(float* al);
67 float GetLength(){float l=0; for(int i=0; i<npoint;i++)l=l+tl[i]; return l;};
68 float GetLength(int,int);
69
70 ClassDef(Trajectory,2);
71
72 };
73 /**
74 * \brief Class to describe fitted tracks.
75 *
76 * A track is defined by the measured coordinates associated to it, the
77 * track status vector, plus other quantities.
78 * A track may have an "image", due to the ambiguity in the y view.
79 *
80 * Cluster flags: xgood[6], ygood[6]
81 *
82 * xgood/ygood = +/- 0lsccccccc
83 * | |||------- ID (1-7483647) of the included cluster
84 * | ||-------- sensor number (1,2 - increasing y)
85 * | |--------- ladder number (1,2,3 - increasing x)
86 * |------------- does-not/does include bad strips
87 */
88 // ==================================================================
89 class TrkTrack : public TObject {
90
91 private:
92
93 public:
94
95 int seqno; ///<stored track sequential number
96 int image; ///<sequential number of track-image
97
98 float al[5]; ///<TRACK STATE VECTOR
99 float coval[5][5]; ///<covariance matrix
100 int xgood[6]; ///<cluster id for x-view (0 = view not included in the fit)
101 int ygood[6]; ///<cluster id for y-view (0 = view not included in the fit)
102 float xm[6]; ///<measured x coordinates
103 float ym[6]; ///<measured y coordinates
104 float zm[6]; ///<measured z coordinates
105 float resx[6]; ///<spatial resolution on X view
106 float resy[6]; ///<spatial resolution on y view
107 float tailx[6]; ///<spatial resolution tail on X view
108 float taily[6]; ///<spatial resolution tail on y view
109 float chi2; ///<chi2
110 int nstep; ///<n.step
111 float xv[6]; ///<calculated x coordinates
112 float yv[6]; ///<calculated y coordinates
113 float zv[6]; ///<calculated z coordinates
114 float axv[6]; ///<calculated angles (deg) on x view
115 float ayv[6]; ///<calculated angles (deg) on y view
116 float dedx_x[6]; ///<dE/dx in MIP (<0 if saturated)
117 float dedx_y[6]; ///<dE/dx in MIP (<0 if saturated)
118 int multmaxx[6]; ///<cluster multiplicity and strip of maximum on x view
119 int multmaxy[6]; ///<cluster multiplicity and strip of maximum on y view
120 float seedx[6]; ///< seed of the cluster x
121 float seedy[6]; ///< seed of the cluster y
122 float xpu[6]; ///< x coordinate in pitch units
123 float ypu[6]; ///< y coordinate in pitch units
124
125 TrkTrack();
126 TrkTrack(const TrkTrack&);
127
128 ~TrkTrack(){ Delete(); };
129
130 void Dump();
131 void Clear();
132 void Clear(Option_t *option){Clear();};
133 void Delete();
134 void Copy(TrkTrack&);
135 // void Set();
136
137 Int_t GetSeqNo(){return seqno;} ///< Returns the track sequential number
138 Int_t GetImageSeqNo(){return image;} ///< Returns the track image sequential number
139 Bool_t HasImage(){return !(image==-1);} ///< Returns true if the track has an image
140 int DoTrack(Trajectory* t); ///< Evaluates the trajectory in the apparatus.
141 int DoTrack2(Trajectory* t); ///< Evaluates the trajectory in the apparatus.
142 float BdL(){return 0;}; ///< Evaluates the integral of B*dL along the track.
143 Int_t GetNX(){Int_t n=0; for(Int_t i=0; i<6; i++)n+=(Int_t)XGood(i); return n;};
144 Int_t GetNY(){Int_t n=0; for(Int_t i=0; i<6; i++)n+=(Int_t)YGood(i); return n;};
145 Int_t GetNtot(){return GetNX()+GetNY();};
146 Float_t GetRigidity();
147 Float_t GetDeflection();
148 Bool_t IsSaturated(int,int);
149 Bool_t IsSaturated(int);
150 Bool_t IsSaturated();
151 Bool_t IsBad(int,int);
152 Float_t GetDEDX();
153 Float_t GetDEDX(int ip);
154 Float_t GetDEDX(int ip,int iv);
155 Int_t GetLeverArmX();
156 Int_t GetLeverArmY();
157 Float_t GetChi2X();
158 Float_t GetChi2Y();
159 Float_t GetLnLX();
160 Float_t GetLnLY();
161
162 Float_t GetEffectiveAngle(int ip, int iv);
163
164 void SetMeasure(double *xmeas, double *ymeas, double *zmeas);
165 void SetResolution(double *rx, double *ry);
166 void SetTail(double *tx, double *ty, double factor);
167 void SetStudentParam(int flag);
168 void SetGood(int *xg, int *yg);
169 void LoadField(TString s);
170 void Fit(double pfixed, int& fail, int iprint, int froml1);
171 void Fit(double pfixed, int& fail, int iprint){ Fit(pfixed,fail,iprint,0); };
172 void FitReset();
173 void SetTrackingMode(int trackmode);
174 void SetPrecisionFactor(double fact);
175 void SetStepMin(int istepmin);
176 void SetDeltaB(int id, double db);
177
178 Bool_t IsInsideCavity();
179
180 Bool_t EvaluateClusterPositions();
181
182 void FillMiniStruct(cMini2track&);
183 void SetFromMiniStruct(cMini2track*);
184
185 Int_t GetClusterX_ID(int ip);
186 Int_t GetClusterY_ID(int ip);
187 Int_t GetLadder(int ip);
188 Int_t GetSensor(int ip);
189 Bool_t XGood(int ip){ return GetClusterX_ID(ip)!=-1; };
190 Bool_t YGood(int ip){ return GetClusterY_ID(ip)!=-1; };
191 void ResetXGood(int ip){ xgood[ip]=0; };
192 void ResetYGood(int ip){ ygood[ip]=0; };
193 void SetXGood(int ip, int clid, int is);
194 void SetYGood(int ip, int clid, int is);
195
196 Bool_t BadClusterX(int ip){ return IsBad(ip,0); };
197 Bool_t BadClusterY(int ip){ return IsBad(ip,1); };
198
199 Bool_t SaturatedClusterX(int ip){ return IsSaturated(ip,0); };
200 Bool_t SaturatedClusterY(int ip){ return IsSaturated(ip,1); };
201
202 Int_t GetClusterX_Multiplicity(int ip){ return (Int_t)(multmaxx[ip]/10000); };
203 Int_t GetClusterY_Multiplicity(int ip){ return (Int_t)(multmaxy[ip]/10000); };
204 Int_t GetClusterX_MaxStrip(int ip){ return (Int_t)(multmaxx[ip]%10000); };
205 Int_t GetClusterY_MaxStrip(int ip){ return (Int_t)(multmaxy[ip]%10000); };
206 Float_t GetClusterX_Seed(int ip){ return seedx[ip]; };
207 Float_t GetClusterY_Seed(int ip){ return seedy[ip]; };
208 /* Float_t GetClusterX_CoordinatePU(int ip); */
209 /* Float_t GetClusterY_CoordinatePU(int ip); */
210
211
212 TrkTrack* GetTrkTrack(){return this;};
213
214 friend class TrkLevel2;
215
216 ClassDef(TrkTrack,4);
217
218 };
219 /**
220 * \brief Class to describe single clusters ("singlets").
221 *
222 * Single clusters are clusters not associated to any track.
223 */
224 class TrkSinglet : public TObject {
225
226 private:
227
228
229 public:
230
231 int plane; ///<plane
232 float coord[2]; ///<coordinate (on sensor 1 and 2)
233 float sgnl; ///<cluster signal in MIP (<0 if saturated)
234
235 TrkSinglet();
236 TrkSinglet(const TrkSinglet&);
237 ~TrkSinglet(){Delete();};
238
239 void Dump();
240 void Clear();
241 void Clear(Option_t *option){Clear();};
242 void Delete(){Clear();};
243 Float_t GetSignal(){return fabs(sgnl);}
244 Bool_t IsSaturated(){return (sgnl<0); };
245
246 friend class TrkLevel2;
247
248 ClassDef(TrkSinglet,3);
249
250 };
251
252 /**
253 * \brief Class to describe tracker LEVEL2 data.
254 *
255 * A tracker events is defined by some general variables, plus the collection of all the fitted tracks and all
256 * single clusters on X and Y views.
257 * Tracks and single clusters ("singlets") are described by the classes TrkTrack and TrkSinglet respectivelly.
258 *
259 * Each track may have an "image", due to the ambiguity on the Y view, which is stored also.
260 * Thus, the number of stored tracks ( ntrk() ) differs from the number of "physical" tracks ( GetNTracks() ).
261 * Proper methods allow to sort tracks and select the physical ones ( GetTracks() ).
262 *
263 * The event status indicates the processing status of data from each DSP, according to the following
264 * notation:
265 *
266 * xxxx xxxx xxxx xxxx xxxx xxxx
267 * |||| |||| |||| |||| |||| ||||_ 0 missing packet
268 * |||| |||| |||| |||| |||| |||__ 1 CRC error
269 * |||| |||| |||| |||| |||| ||___ 2 on-line software alarm (latch-up, timeout ecc...)
270 * |||| |||| |||| |||| |||| |____ 3 jump in the trigger counter
271 * |||| |||| |||| |||| ||||______ 4 decode error
272 * |||| |||| |||| |||| |||_______ 5 n.clusters > maximum number (level1 processing)
273 * |||| |||| |||| |||| ||________ 6
274 * |||| |||| |||| |||| |_________ 7
275 * |||| |||| |||| ||||___________ 8 n.clusters > maximum value (level2 processing)
276 * |||| |||| |||| |||____________ 9 n.couples per plane > maximum values (vector dimention)
277 * |||| |||| |||| ||_____________ 10 n.doublets > maximum values
278 * |||| |||| |||| |______________ 11 n.triplets > maximum values
279 * |||| |||| ||||________________ 12 n.yz-clouds > maximum values
280 * |||| |||| |||_________________ 13 n.xz-clouds > maximum values
281 * |||| |||| ||__________________ 14 n.candidate-tracks > maximum values
282 * |||| |||| |___________________ 15 n.couples per plane > maximum values (for Hough transform)
283 * |||| ||||_____________________ 16
284 *
285 *
286 * For all data processed before June 2007 the event status was coded according to
287 * a different rule:
288 *
289 * Status of level1 processing
290 * 0 -- OK
291 * 1 -- missing packet
292 * 2 -- 1 CRC error
293 * 3 -- 2 on-line software alarm (latch-up flags asserted or n.transmitted-words = 0)
294 * 4 -- 3 jump in the trigger counter
295 * 10 -- 4 decode error
296 * 11 -- 5 n.clusters > maximum number (for level1 processing)
297 * Status of level2 processing
298 * 21 -- 0 n.clusters > maximum value (for level2 processing)
299 * 22 -- 1 n.couples per plane > maximum values (vector dimention)
300 * 23 -- 2 n.doublets > maximum values
301 * 24 -- 3 n.triplets > maximum values
302 * 25 -- 4 n.yz-clouds > maximum values
303 * 26 -- 5 n.xz-clouds > maximum values
304 * 27 -- 6 n.candidate-tracks > maximum values
305 * 28 -- 7 n.couples per plane > maximum values (for Hough transform)
306 *
307 *
308 */
309 class TrkLevel2 : public TObject {
310
311 private:
312
313 public:
314
315 Int_t good[12]; ///< event status
316 UInt_t VKmask[12]; ///< Viking-chip mask
317 UInt_t VKflag[12]; ///< Viking-chip flag
318
319 TClonesArray *Track; ///< fitted tracks
320 TClonesArray *SingletX; ///< x singlets
321 TClonesArray *SingletY; ///< y singlets
322
323 TrkLevel2();
324 // TrkLevel2(cTrkLevel2 *);
325 ~TrkLevel2(){Delete();};
326
327 void Clear();
328 void Clear(Option_t *option){Clear();};
329 void Delete();
330 void Set();
331
332 int ntrk() {return Track->GetEntries();} ///< number of stored track
333 int nclsx(){return SingletX->GetEntries();} ///< number of x singlets
334 int nclsy(){return SingletY->GetEntries();} ///< number of y singlets
335
336 void Dump();
337 void SetFromLevel2Struct(cTrkLevel2 *, TrkLevel1 *);
338 void SetFromLevel2Struct(cTrkLevel2 *s2){ SetFromLevel2Struct(s2, NULL); };
339 void SetFromLevel2Struct(TrkLevel1 *l1) { SetFromLevel2Struct(&level2event_, l1); };
340 void SetFromLevel2Struct() { SetFromLevel2Struct(&level2event_); };
341 void GetLevel2Struct(cTrkLevel2 *) const;
342 void LoadField(TString);
343 float GetBX(float* v){return TrkParams::GetBX(v);};///< Bx (kGauss)
344 float GetBY(float* v){return TrkParams::GetBY(v);};///< By (kGauss)
345 float GetBZ(float* v){return TrkParams::GetBZ(v);};///< Bz (kGauss)
346 Float_t GetZTrk(Int_t);
347 Float_t GetXTrkLeft(){return XTRKL;};
348 Float_t GetXTrkRight(){return XTRKR;};
349 Float_t GetYTrkLeft(){return YTRKL;};
350 Float_t GetYTrkRight(){return YTRKR;};
351
352 Bool_t IsMaskedVK(int,int);
353 Bool_t GetVKMask(int,int);
354 Bool_t GetVKFlag(int,int);
355
356 TrkSinglet *GetSingletX(int);
357 TrkSinglet *GetSingletY(int);
358
359 TrkTrack *GetStoredTrack(int i);
360 Int_t GetSeqNo(Int_t i) {return (((TrkTrack *)Track->At(i))->seqno);}; ///< Returns track sequential number
361
362 TRefArray *GetTracks_NFitSorted();
363 TRefArray *GetTracks(){return this->GetTracks_NFitSorted();};
364
365 Int_t GetNTracks();
366 TrkTrack* GetTrack(int i);
367 TrkTrack* GetTrackImage(int i);
368
369 TrkLevel2* GetTrkLevel2(){return this;}
370 TClonesArray* GetTrackArray(){return Track;};///< returns pointer to the track array
371
372 void StatusDump(int view);
373 Bool_t StatusCheck(int view, int flagmask);
374
375 ClassDef(TrkLevel2,3);
376
377 };
378
379 #endif

  ViewVC Help
Powered by ViewVC 1.1.23