1 |
/** |
2 |
* \file TrkLevel2.h |
3 |
* \author Elena Vannuccini |
4 |
*/ |
5 |
#ifndef trklevel2_h |
6 |
#define trklevel2_h |
7 |
|
8 |
#include <TObject.h> |
9 |
#include <TObjArray.h> |
10 |
#include <TClonesArray.h> |
11 |
#include <TRefArray.h> |
12 |
#include <TRef.h> |
13 |
|
14 |
//#include <TrkStruct.h> |
15 |
#include <TrkParams.h> |
16 |
#include <TrkLevel1.h> |
17 |
|
18 |
// z-coordinate of track state-vector reference-plane |
19 |
#define ZINI 23.5 |
20 |
// upper and lower (mechanical) z-coordinate of the tracker |
21 |
//#define ZTRKUP 22.29 |
22 |
//#define ZTRKDW -22.22 |
23 |
// (mechanical) z-coordinate of the tracker planes |
24 |
#define ZTRK6 -22.23 |
25 |
#define ZTRK5 -13.32 |
26 |
#define ZTRK4 -4.42 |
27 |
#define ZTRK3 4.48 |
28 |
#define ZTRK2 13.38 |
29 |
#define ZTRK1 22.28 |
30 |
// (mechanical) x/y-coordinates of magnet cavity |
31 |
#define XTRKL -8.1 |
32 |
#define XTRKR 8.1 |
33 |
#define YTRKL -6.6 |
34 |
#define YTRKR 6.6 |
35 |
|
36 |
/** |
37 |
* \brief Class to describe, by points, a particle trajectory in the apparatus. |
38 |
* |
39 |
* The idea is to create it by integrating the equations of motion, given the |
40 |
* track state vector and the z coordinates where to evaluate track position. |
41 |
*/ |
42 |
// ================================================================== |
43 |
class Trajectory : public TObject{ |
44 |
private: |
45 |
|
46 |
public: |
47 |
|
48 |
int npoint; ///< number of evaluated points along the trajectory |
49 |
float* x; ///< x coordinates |
50 |
float* y; ///< y coordinates |
51 |
float* z; ///< z coordinates |
52 |
float* thx; ///< x projected angle |
53 |
float* thy; ///< y projected angle |
54 |
float* tl; ///< track length |
55 |
|
56 |
Trajectory(); |
57 |
Trajectory(int n); |
58 |
Trajectory(int n, float* pz); |
59 |
~Trajectory(){Delete();}; |
60 |
void Dump(); |
61 |
void Delete(); |
62 |
|
63 |
int DoTrack2(float* al); |
64 |
float GetLength(){float l=0; for(int i=0; i<npoint;i++)l=l+tl[i]; return l;}; |
65 |
float GetLength(int,int); |
66 |
|
67 |
ClassDef(Trajectory,2); |
68 |
|
69 |
}; |
70 |
/** |
71 |
* \brief Class to describe fitted tracks. |
72 |
* |
73 |
* A track is defined by the measured coordinates associated to it, the |
74 |
* track status vector, plus other quantities. |
75 |
* A track may have an "image", due to the ambiguity in the y view. |
76 |
*/ |
77 |
// ================================================================== |
78 |
class TrkTrack : public TObject { |
79 |
|
80 |
private: |
81 |
|
82 |
int seqno; ///<stored track sequential number |
83 |
int image; ///<sequential number of track-image |
84 |
|
85 |
|
86 |
public: |
87 |
|
88 |
TRefArray *clx; |
89 |
TRefArray *cly; |
90 |
|
91 |
float al[5]; ///<TRACK STATE VECTOR |
92 |
float coval[5][5]; ///<covariance matrix |
93 |
int xgood[6]; ///<mask of included x planes |
94 |
int ygood[6]; ///<mask of included y planes |
95 |
float xm[6]; ///<measured x coordinates |
96 |
float ym[6]; ///<measured y coordinates |
97 |
float zm[6]; ///<measured z coordinates |
98 |
float resx[6]; ///<spatial resolution on X view |
99 |
float resy[6]; ///<spatial resolution on y view |
100 |
float chi2; ///<chi2 |
101 |
int nstep; ///<n. step |
102 |
float xv[6]; ///<calculated x coordinates |
103 |
float yv[6]; ///<calculated y coordinates |
104 |
float zv[6]; ///<calculated z coordinates |
105 |
float axv[6]; ///<calculated angles (deg) on x view |
106 |
float ayv[6]; ///<calculated angles (deg) on y view |
107 |
float dedx_x[6]; ///<signal in MIP (scaled to 300 micrometer) |
108 |
float dedx_y[6]; ///<signal in MIP (scaled to 300 micrometer) |
109 |
|
110 |
TrkTrack(); |
111 |
TrkTrack(const TrkTrack&); |
112 |
|
113 |
~TrkTrack(){ Delete(); }; |
114 |
|
115 |
void Dump(); |
116 |
void Clear(); |
117 |
void Clear(Option_t *option){Clear();}; |
118 |
void Delete(); |
119 |
void Copy(TrkTrack&); |
120 |
// void Set(); |
121 |
|
122 |
Int_t GetSeqNo(){return seqno;} ///< Returns the track sequential number |
123 |
Int_t GetImageSeqNo(){return image;} ///< Returns the track image sequential number |
124 |
Bool_t HasImage(){return !(image==-1);} ///< Returns true if the track has an image |
125 |
int DoTrack(Trajectory* t); ///< Evaluates the trajectory in the apparatus. |
126 |
int DoTrack2(Trajectory* t); ///< Evaluates the trajectory in the apparatus. |
127 |
float BdL(){return 0;}; ///< Evaluates the integral of B*dL along the track. |
128 |
Int_t GetNX(){Int_t n=0; for(Int_t i=0; i<6; i++)n+=xgood[i]; return n;}; |
129 |
Int_t GetNY(){Int_t n=0; for(Int_t i=0; i<6; i++)n+=ygood[i]; return n;}; |
130 |
Int_t GetNtot(){return GetNX()+GetNY();}; |
131 |
Float_t GetRigidity(); |
132 |
Float_t GetDeflection(); |
133 |
Float_t GetDEDX(); |
134 |
Float_t GetDEDX(Int_t ip){if( !(xgood[ip]+ygood[ip]) ) return 0; return (dedx_x[ip]+dedx_y[ip])/(xgood[ip]+ygood[ip]);}; |
135 |
// sono un'imbecille... assegno xm e ym anche quando si tratta di un singolo |
136 |
// non posso quindi usare xm e ym per dire se una vista e` inclusa nel fit o no |
137 |
/* Bool_t XGood(int ip){ return xm[ip] != -100.;}; |
138 |
Bool_t YGood(int ip){ return ym[ip] != -100.;};*/ |
139 |
Bool_t XGood(int ip){ return xgood[ip]==1;}; |
140 |
Bool_t YGood(int ip){ return ygood[ip]==1;}; |
141 |
|
142 |
void SetMeasure(double *xmeas, double *ymeas, double *zmeas); |
143 |
void SetResolution(double *rx, double *ry); |
144 |
void SetGood(int *xg, int *yg); |
145 |
void LoadField(TString s); |
146 |
void Fit(double pfixed, int& fail, int iprint); |
147 |
void FitReset(); |
148 |
|
149 |
void FillMiniStruct(cMini2track&); |
150 |
void SetFromMiniStruct(cMini2track*); |
151 |
|
152 |
TrkCluster *GetClusterX(int ip){TrkCluster *pt = (TrkCluster*)(clx->At(ip)); return pt;}; |
153 |
TrkCluster *GetClusterY(int ip){TrkCluster *pt = (TrkCluster*)(cly->At(ip)); return pt;}; |
154 |
|
155 |
TrkTrack* GetTrkTrack(){return this;}; |
156 |
|
157 |
friend class TrkLevel2; |
158 |
|
159 |
ClassDef(TrkTrack,2); |
160 |
|
161 |
}; |
162 |
/** |
163 |
* \brief Class to describe single clusters ("singlets"). |
164 |
* |
165 |
* Single clusters are clusters not associated to any track. |
166 |
*/ |
167 |
class TrkSinglet : public TObject { |
168 |
|
169 |
private: |
170 |
|
171 |
|
172 |
public: |
173 |
|
174 |
TRef cls; |
175 |
|
176 |
int plane; ///<plane |
177 |
float coord[2]; ///<coordinate (on sensor 1 and 2) |
178 |
float sgnl; ///<cluster signal in MIP |
179 |
|
180 |
TrkSinglet(); |
181 |
TrkSinglet(const TrkSinglet&); |
182 |
~TrkSinglet(){Delete();}; |
183 |
|
184 |
void Dump(); |
185 |
void Clear(); |
186 |
void Clear(Option_t *option){Clear();}; |
187 |
void Delete(){Clear();}; |
188 |
|
189 |
TrkCluster *GetCluster(){TrkCluster *pt = (TrkCluster*)cls.GetObject(); return pt;}; |
190 |
|
191 |
friend class TrkLevel2; |
192 |
|
193 |
ClassDef(TrkSinglet,2); |
194 |
|
195 |
}; |
196 |
|
197 |
/** |
198 |
* \brief Class to describe tracker LEVEL2 data. |
199 |
* |
200 |
* A tracker events is defined by some general variables, plus the collection of all the fitted tracks and all |
201 |
* single clusters on X and Y views. |
202 |
* Tracks and single clusters ("singlets") are described by the classes TrkTrack and TrkSinglet respectivelly. |
203 |
* |
204 |
* Each track may have an "image", due to the ambiguity on the Y view, which is stored also. |
205 |
* Thus, the number of stored tracks ( ntrk() ) differs from the number of "physical" tracks ( GetNTracks() ). |
206 |
* Proper methods allow to sort tracks and select the physical ones ( GetTracks() ). |
207 |
*/ |
208 |
class TrkLevel2 : public TObject { |
209 |
|
210 |
private: |
211 |
|
212 |
public: |
213 |
|
214 |
Int_t good[12]; ///< event status |
215 |
|
216 |
TClonesArray *Track; ///< fitted tracks |
217 |
TClonesArray *SingletX; ///< x singlets |
218 |
TClonesArray *SingletY; ///< y singlets |
219 |
|
220 |
TrkLevel2(); |
221 |
// TrkLevel2(cTrkLevel2 *); |
222 |
~TrkLevel2(){Delete();}; |
223 |
|
224 |
void Clear(); |
225 |
void Clear(Option_t *option){Clear();}; |
226 |
void Delete(); |
227 |
void Set(); |
228 |
|
229 |
int ntrk() {return Track->GetEntries();} ///< number of stored track |
230 |
int nclsx(){return SingletX->GetEntries();} ///< number of x singlets |
231 |
int nclsy(){return SingletY->GetEntries();} ///< number of y singlets |
232 |
|
233 |
void Dump(); |
234 |
void SetFromLevel2Struct(cTrkLevel2 *, TrkLevel1 *); |
235 |
void SetFromLevel2Struct(cTrkLevel2 *s2){ SetFromLevel2Struct(s2, NULL); }; |
236 |
void SetFromLevel2Struct(TrkLevel1 *l1) { SetFromLevel2Struct(&level2event_, l1); }; |
237 |
void SetFromLevel2Struct() { SetFromLevel2Struct(&level2event_); }; |
238 |
void GetLevel2Struct(cTrkLevel2 *) const; |
239 |
void LoadField(TString); |
240 |
float GetBX(float*); |
241 |
float GetBY(float*); |
242 |
float GetBZ(float*); |
243 |
Float_t GetZTrk(Int_t); |
244 |
Float_t GetXTrkLeft(){return XTRKL;}; |
245 |
Float_t GetXTrkRight(){return XTRKR;}; |
246 |
Float_t GetYTrkLeft(){return YTRKL;}; |
247 |
Float_t GetYTrkRight(){return YTRKR;}; |
248 |
|
249 |
TrkSinglet *GetSingletX(int); |
250 |
TrkSinglet *GetSingletY(int); |
251 |
|
252 |
TrkTrack *GetStoredTrack(int i); |
253 |
Int_t GetSeqNo(Int_t i) {return (((TrkTrack *)Track->At(i))->seqno);}; ///< Returns track sequential number |
254 |
// TClonesArray *GetTracks_Chi2Sorted(); |
255 |
// TClonesArray *GetTracks_NFitSorted(); |
256 |
// TClonesArray *GetTracks(); |
257 |
TRefArray *GetTracks_NFitSorted(); |
258 |
TRefArray *GetTracks(){return this->GetTracks_NFitSorted();}; |
259 |
|
260 |
// int GetNTracks(){return this->GetTracks()->GetEntries();} |
261 |
Int_t GetNTracks(); |
262 |
TrkTrack* GetTrack(int i); |
263 |
TrkTrack* GetTrackImage(int i); |
264 |
|
265 |
TrkLevel2* GetTrkLevel2(){return this;} |
266 |
TClonesArray* GetTrackArray(){return Track;};///< returns pointer to the track array |
267 |
|
268 |
ClassDef(TrkLevel2,2); |
269 |
|
270 |
}; |
271 |
|
272 |
#endif |