/[PAMELA software]/DarthVader/TrackerLevel2/inc/TrkLevel2.h
ViewVC logotype

Diff of /DarthVader/TrackerLevel2/inc/TrkLevel2.h

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 1.11 by pam-fi, Thu Oct 12 15:41:02 2006 UTC revision 1.47 by pam-ts, Wed Oct 15 08:45:51 2014 UTC
# Line 11  Line 11 
11  #include <TRefArray.h>  #include <TRefArray.h>
12  #include <TRef.h>  #include <TRef.h>
13    
14  #include <TrkStruct.h>  #include <TrkParams.h>
15  #include <TrkLevel1.h>  #include <TrkLevel1.h>
16    
17  // z-coordinate of track state-vector reference-plane  // z-coordinate of track state-vector reference-plane
18  #define ZINI 23.5    #define ZINI 23.5 ///< z-coordinate of track state-vector reference-plane.
 // upper and lower (mechanical) z-coordinate of the tracker  
 //#define ZTRKUP 22.29  
 //#define ZTRKDW -22.22  
19  // (mechanical) z-coordinate of the tracker planes  // (mechanical) z-coordinate of the tracker planes
20  #define ZTRK6 -22.23  #define ZTRK6 -22.23 //-22.22  //Aprile 2014... trovata differenza con mech_pos.dat
21  #define ZTRK5 -13.32  #define ZTRK5 -13.32 //-13.31  // ...speriamo bene... no comment
22  #define ZTRK4 -4.42  #define ZTRK4 -4.42//-4.41
23  #define ZTRK3 4.48  #define ZTRK3  4.48//4.49
24  #define ZTRK2 13.38  #define ZTRK2 13.38//13.39
25  #define ZTRK1 22.28  #define ZTRK1 22.28//22.29
26    // magnet cavity dimensions
27    #define ZMAGNHIGH 21.83
28    #define ZMAGNLOW -21.83
29    #define XMAGNHIGH 8.07
30    #define XMAGNLOW -8.07
31    #define YMAGNHIGH 6.57
32    #define YMAGNLOW -6.57
33    // tof planes
34    #define ZS11  53.74
35    #define ZS12  53.04
36    #define ZS21  23.94
37    #define ZS22  23.44
38    #define ZS31 -23.49
39    #define ZS32 -24.34
40    
41  // (mechanical) x/y-coordinates of magnet cavity  // (mechanical) x/y-coordinates of magnet cavity
42  #define XTRKL -8.1  /* #define XTRKL -8.1 */
43  #define XTRKR  8.1  /* #define XTRKR  8.1 */
44  #define YTRKL -6.6  /* #define YTRKL -6.6 */
45  #define YTRKR  6.6  /* #define YTRKR  6.6 */
46    
47  /**  /**
48   * \brief Class to describe, by points, a particle trajectory in the apparatus.   * \brief Class to describe, by points, a particle trajectory in the apparatus.
# Line 45  class Trajectory : public TObject{ Line 57  class Trajectory : public TObject{
57   public:   public:
58    
59      int npoint; ///< number of evaluated points along the trajectory      int npoint; ///< number of evaluated points along the trajectory
60      float* x;   ///< x coordinates      float* x;   //[npoint]
61      float* y;   ///< y coordinates      float* y;   //[npoint]
62      float* z;   ///< z coordinates      float* z;   //[npoint]
63      float* thx; ///< x projected angle      float* thx; //[npoint]
64      float* thy; ///< y projected angle      float* thy; //[npoint]
65      float* tl;  ///< track length      float* tl;  //[npoint]
66    
67      Trajectory();      Trajectory();
68      Trajectory(int n);      Trajectory(int n);
69      Trajectory(int n, float* pz);      Trajectory(int n, float* pz);
70        ~Trajectory(){Delete();}
71      void Dump();      void Dump();
72        void Delete();
73    
74        int DoTrack(float* al, float zini);
75        int DoTrack(float* al){ return DoTrack(al,23.5); }
76    
77      float GetLength(){float l=0; for(int i=0; i<npoint;i++)l=l+tl[i]; return l;};      int DoTrack2(float* al, float zini);
78        int DoTrack2(float* al){ return DoTrack2(al,23.5); }
79    
80        float GetLength(){float l=0; for(int i=0; i<npoint;i++)l=l+tl[i]; return l;}
81      float GetLength(int,int);      float GetLength(int,int);
82    
83      ClassDef(Trajectory,2);      ClassDef(Trajectory,3);
84    
85  };  };
86  /**  /**
# Line 69  class Trajectory : public TObject{ Line 89  class Trajectory : public TObject{
89   * A track is defined by the measured coordinates associated to it, the   * A track is defined by the measured coordinates associated to it, the
90   * track status vector, plus other quantities.   * track status vector, plus other quantities.
91   * A track may have an "image", due to the ambiguity in the y view.   * A track may have an "image", due to the ambiguity in the y view.
92     *
93     * Cluster flags: xgood[6], ygood[6]
94     *
95     * xgood/ygood = +/- 0lsccccccc
96     * ccccccc ID (1-7483647) of the included cluster  
97     * s       sensor number (1,2   - increasing y)
98     * l       ladder number (1,2,3 - increasing x)
99     * +/-     does-not/does include bad strips
100     *
101   */   */
102  // ==================================================================  // ==================================================================
103  class TrkTrack : public TObject {  class TrkTrack : public TObject {
104    
105  private:  private:
106    
107    public:
108    
109      int   seqno;           ///<stored track sequential number      int   seqno;           ///<stored track sequential number
110      int   image;           ///<sequential number of track-image      int   image;           ///<sequential number of track-image
   
111                    
112  public:      /*! @brief Track state vector.
113         *
114  //      TRef clx[6];       *  This is the track state vector on reference plane defined by #ZINI.
115  //      TRef cly[6];       *
116          TRefArray *clx;       *  al[0]: X coordinate [cm]
117          TRefArray *cly;       *  al[1]: Y coordinate [cm]
118         *  al[2]: sin theta (altitude; theta = 0 is normal incidence)
119      float al[5];           ///<TRACK STATE VECTOR       *  al[3]: phi (azimuth; phi = 0 is negative X axis)
120         *  al[4]: deflection (with sign) [1/GV]
121         *
122         */
123        float al[5];
124      float coval[5][5];     ///<covariance matrix      float coval[5][5];     ///<covariance matrix
125      int   xgood[6];        ///<mask of included x planes      int   xgood[6];        ///<cluster id for x-view (0 = view not included in the fit)
126      int   ygood[6];        ///<mask of included y planes      int   ygood[6];        ///<cluster id for y-view (0 = view not included in the fit)
127      float xm[6];           ///<measured x coordinates      float xm[6];           ///<measured x coordinates
128      float ym[6];           ///<measured y coordinates      float ym[6];           ///<measured y coordinates
129      float zm[6];           ///<measured z coordinates      float zm[6];           ///<measured z coordinates
130      float resx[6];         ///<spatial resolution on X view      float resx[6];         ///<spatial resolution on X view
131      float resy[6];         ///<spatial resolution on y view      float resy[6];         ///<spatial resolution on y view
132        float tailx[6];        ///<spatial resolution tail on X view
133        float taily[6];        ///<spatial resolution tail on y view
134      float chi2;            ///<chi2      float chi2;            ///<chi2
135          int   nstep;           ///<n. step      int   nstep;           ///<n.step
136          float xv[6];           ///<calculated x coordinates      float xv[6];           ///<calculated x coordinates
137      float yv[6];           ///<calculated y coordinates      float yv[6];           ///<calculated y coordinates
138      float zv[6];           ///<calculated z coordinates      float zv[6];           ///<calculated z coordinates
139      float axv[6];          ///<calculated angles (deg) on x view      float axv[6];          ///<calculated angles (deg) on x view
140      float ayv[6];          ///<calculated angles (deg) on y view      float ayv[6];          ///<calculated angles (deg) on y view
141      float dedx_x[6];       ///<signal in MIP (scaled to 300 micrometer)      float dedx_x[6];       ///<dE/dx in MIP (<0 if saturated)
142      float dedx_y[6];       ///<signal in MIP (scaled to 300 micrometer)      float dedx_y[6];       ///<dE/dx in MIP (<0 if saturated)
143        int   multmaxx[6];     ///<cluster multiplicity and strip of maximum on x view
144        int   multmaxy[6];     ///<cluster multiplicity and strip of maximum on y view
145        float seedx[6];        ///< seed of the cluster x
146        float seedy[6];        ///< seed of the cluster y
147        float xpu[6];          ///< x coordinate in pitch units
148        float ypu[6];          ///< y coordinate in pitch units
149    
150        float xGF[14];         ///<calculated x coordinates on GF reference planes
151        float yGF[14];         ///<calculated y coordinates on GF reference planes
152    
153      TrkTrack();      TrkTrack();
154      TrkTrack(const TrkTrack&);      TrkTrack(const TrkTrack&);
155    
156          ~TrkTrack(){Delete();};      ~TrkTrack(){ Delete(); }
157                    
158      void Dump();      void Dump();
159          void Clear();      void Clear();
160          void Delete();      void Clear(Option_t *option){Clear();}
161                void Delete();
162        void Copy(TrkTrack&);
163    //    void Set();
164    
165      Int_t  GetSeqNo(){return seqno;}        ///< Returns the track sequential number      Int_t  GetSeqNo(){return seqno;}        ///< Returns the track sequential number
166      Int_t  GetImageSeqNo(){return image;}   ///< Returns the track image sequential number      Int_t  GetImageSeqNo(){return image;}   ///< Returns the track image sequential number
167      Bool_t HasImage(){return !(image==-1);} ///< Returns true if the track has an image      Bool_t HasImage(){return !(image==-1);} ///< Returns true if the track has an image
168      int DoTrack(Trajectory* t);                         ///< Evaluates the trajectory in the apparatus.      int DoTrack(Trajectory* t);             ///< Evaluates the trajectory in the apparatus.
169      int DoTrack2(Trajectory* t);                        ///< Evaluates the trajectory in the apparatus.      int DoTrack2(Trajectory* t);            ///< Evaluates the trajectory in the apparatus.
170      float BdL(){return 0;};                                     ///< Evaluates the integral of B*dL along the track.      float BdL(){return 0;}              ///< Evaluates the integral of B*dL along the track.
171      Int_t GetNX(){Int_t n=0; for(Int_t i=0; i<6; i++)n+=xgood[i]; return n;};      Int_t GetNX(){Int_t n=0; for(Int_t i=0; i<6; i++)n+=(Int_t)XGood(i); return n;}
172      Int_t GetNY(){Int_t n=0; for(Int_t i=0; i<6; i++)n+=ygood[i]; return n;};      Int_t GetNY(){Int_t n=0; for(Int_t i=0; i<6; i++)n+=(Int_t)YGood(i); return n;}
173      Int_t GetNtot(){return GetNX()+GetNY();};      Int_t GetNXY(){Int_t n=0; for(Int_t i=0; i<6; i++)n+=(Int_t)YGood(i)*XGood(i); return n;}
174        Int_t GetNtot(){return GetNX()+GetNY();}
175        Int_t GetNhit() ;
176      Float_t GetRigidity();      Float_t GetRigidity();
177      Float_t GetDeflection();      Float_t GetDeflection();
178        Bool_t IsSaturated(int,int);
179        Bool_t IsSaturated(int);
180        Bool_t IsSaturated();
181        Bool_t IsBad(int,int);
182      Float_t GetDEDX();      Float_t GetDEDX();
183          Float_t GetDEDX(Int_t ip){if( !(xgood[ip]+ygood[ip]) ) return 0; return (dedx_x[ip]+dedx_y[ip])/(xgood[ip]+ygood[ip]);};      Float_t GetDEDX(int ip);
184          // sono un'imbecille... assegno xm e ym anche quando si tratta di un singolo      Float_t GetDEDX(int ip,int iv);
185          // non posso quindi usare xm e ym per dire se una vista e` inclusa nel fit o no      Int_t GetLeverArmXY();
186  /*      Bool_t XGood(int ip){ return xm[ip] != -100.;};      Int_t GetLeverArmX();
187          Bool_t YGood(int ip){ return ym[ip] != -100.;};*/      Int_t GetLeverArmY();
188          Bool_t XGood(int ip){ return xgood[ip]==1;};      Float_t GetChi2X();
189          Bool_t YGood(int ip){ return ygood[ip]==1;};      Float_t GetChi2Y();
190                Float_t GetLnLX();
191          TrkCluster *GetClusterX(int ip){TrkCluster *pt = (TrkCluster*)(clx->At(ip)); return pt;};      Float_t GetLnLY();
192          TrkCluster *GetClusterY(int ip){TrkCluster *pt = (TrkCluster*)(cly->At(ip)); return pt;};      Float_t GetMDR(){return (coval[4][4]>0 ? 1./sqrt(coval[4][4]) : 0.); };
193            
194      TrkTrack* GetTrkTrack(){return this;};      Float_t GetEffectiveAngle(int ip, int iv);
195        
196        void SetMeasure(double *xmeas, double *ymeas, double *zmeas);
197        void SetResolution(double *rx, double *ry);
198        void SetTail(double *tx, double *ty, double factor);
199        void SetStudentParam(int flag);
200        void SetGood(int *xg, int *yg);
201        void LoadField(TString s);
202        void Fit(double pfixed, int& fail, int iprint, int froml1);
203        void Fit(double pfixed, int& fail, int iprint){ Fit(pfixed,fail,iprint,0); }
204        void FitReset();
205        void SetTrackingMode(int trackmode);
206        void SetPrecisionFactor(double fact);
207        void SetStepMin(int istepmin);
208        void SetDeltaB(int id, double db);
209    
210        Bool_t IsInsideCavity(float);
211        Bool_t IsInsideCavity(){ return IsInsideCavity(0.); }
212        Bool_t IsInsideAcceptance(float);
213        Bool_t IsInsideAcceptance(){ return IsInsideAcceptance(0.); }
214        Bool_t IsInsideGFSurface(const char*,float);
215        Bool_t IsInsideGFSurface(const char* surf){ return IsInsideGFSurface(surf,0.); }
216    
217        Bool_t EvaluateClusterPositions();
218    
219        void FillMiniStruct(cMini2track&);
220        void SetFromMiniStruct(cMini2track*);
221        void FillMiniStruct(){ extern cMini2track track_; FillMiniStruct(track_); };
222        void SetFromMiniStruct(){extern cMini2track track_; SetFromMiniStruct(&track_);};
223        
224        Int_t GetClusterX_ID(int ip);
225        Int_t GetClusterY_ID(int ip);
226        Int_t GetLadder(int ip);
227        Int_t GetSensor(int ip);
228        Bool_t XGood(int ip){ return GetClusterX_ID(ip)!=-1; }
229        Bool_t YGood(int ip){ return GetClusterY_ID(ip)!=-1; }
230        void ResetXGood(int ip){ xgood[ip]=0; }
231        void ResetYGood(int ip){ ygood[ip]=0; }
232    /*     void SetXGood(int ip, int clid, int is); */
233    /*     void SetYGood(int ip, int clid, int is); */
234        void SetXGood(int ip, int clid, int il, int is, bool bad);
235        void SetYGood(int ip, int clid, int il, int is, bool bad);
236        void SetXGood(int ip, int clid, int il, int is){ SetXGood(ip,clid,il,is,false); }
237        void SetYGood(int ip, int clid, int il, int is){ SetYGood(ip,clid,il,is,false); }
238    
239    
240        Bool_t BadClusterX(int ip){ return IsBad(ip,0); }
241        Bool_t BadClusterY(int ip){ return IsBad(ip,1); }
242    
243        Bool_t SaturatedClusterX(int ip){ return IsSaturated(ip,0); }
244        Bool_t SaturatedClusterY(int ip){ return IsSaturated(ip,1); }
245    
246        Int_t GetClusterX_Multiplicity(int ip){ return (Int_t)(multmaxx[ip]/10000); }
247        Int_t GetClusterY_Multiplicity(int ip){ return (Int_t)(multmaxy[ip]/10000); }
248        Int_t GetClusterX_MaxStrip(int ip){ return (Int_t)(multmaxx[ip]%10000); }
249        Int_t GetClusterY_MaxStrip(int ip){ return (Int_t)(multmaxy[ip]%10000); }
250        Float_t GetClusterX_Seed(int ip){ return seedx[ip]; }
251        Float_t GetClusterY_Seed(int ip){ return seedy[ip]; }
252    /*     Float_t GetClusterX_oordinatePU(int ip); */
253    /*     Float_t GetClusterY_CoordinatePU(int ip); */
254        
255        Float_t GetYav();
256        Float_t GetXav();
257        Float_t GetZav();
258    
259        Int_t GetNColumns();
260    
261        Float_t GetDEDX_max(int ip, int iv);
262        Float_t GetDEDX_max(int iv){ return GetDEDX_max(-1,iv); }
263        Float_t GetDEDX_max(){ return GetDEDX_max(-1,-1); }
264        Float_t GetDEDX_min(int ip, int iv);
265        Float_t GetDEDX_min(int iv){ return GetDEDX_min(-1,iv); }
266        Float_t GetDEDX_min(){ return GetDEDX_min(-1,-1); }
267    
268        Float_t GetResidual_max(int ip, int iv);
269        Float_t GetResidual_max(int iv){ return GetResidual_max(-1,iv); }
270        Float_t GetResidual_max(){ return GetResidual_max(-1,-1); }
271        Float_t GetResidual_av(int ip, int iv);
272        Float_t GetResidual_av(int iv){ return GetResidual_av(-1,iv); }
273        Float_t GetResidual_av(){ return GetResidual_av(-1,-1); }
274    
275        Int_t GetClusterX_Multiplicity_max();
276        Int_t GetClusterX_Multiplicity_min();
277        Int_t GetClusterY_Multiplicity_max();
278        Int_t GetClusterY_Multiplicity_min();
279    
280        Float_t GetClusterX_Seed_min();
281        Float_t GetClusterY_Seed_min();
282    
283        TrkTrack* GetTrkTrack(){return this;}
284    
285      friend class TrkLevel2;      friend class TrkLevel2;
286    
287      ClassDef(TrkTrack,2);      ClassDef(TrkTrack,6);
288    
289  };  };
290  /**  /**
# Line 157  private: Line 299  private:
299    
300  public:  public:
301                    
         TRef cls;  
   
302      int plane;       ///<plane      int plane;       ///<plane
303      float coord[2];  ///<coordinate (on sensor 1 and 2)      float coord[2];  ///<coordinate (on sensor 1 and 2)
304      float sgnl;      ///<cluster signal in MIP      float sgnl;      ///<cluster signal in MIP (<0 if saturated)
305        int multmax;     ///<cluster multiplicity and strip of maximum
306    
307      TrkSinglet();      TrkSinglet();
308      TrkSinglet(const TrkSinglet&);      TrkSinglet(const TrkSinglet&);
309        ~TrkSinglet(){Delete();}
310    
311      void Dump();      void Dump();
312                void Clear();
313      TrkCluster *GetCluster(){TrkCluster *pt = (TrkCluster*)cls.GetObject(); return pt;};      void Clear(Option_t *option){Clear();}
314        void Delete(){Clear();};
315        Float_t GetSignal(){return fabs(sgnl);}
316        Bool_t IsSaturated(){return (sgnl<0); }
317    
318        Bool_t IsBad()                 { return multmax<=0; }
319        Int_t GetCluster_Multiplicity(){ return (Int_t)(abs(multmax)/10000); }
320        Int_t GetCluster_MaxStrip()    { return (Int_t)(abs(multmax)%10000); }
321    
322    
323      friend class TrkLevel2;      friend class TrkLevel2;
324    
325      ClassDef(TrkSinglet,2);      ClassDef(TrkSinglet,4);
326    
327  };  };
328    
# Line 186  public: Line 336  public:
336   * Each track may have an "image", due to the ambiguity on the Y view, which is stored also.   * Each track may have an "image", due to the ambiguity on the Y view, which is stored also.
337   * Thus, the number of stored tracks ( ntrk() ) differs from the number of "physical" tracks ( GetNTracks() ).   * Thus, the number of stored tracks ( ntrk() ) differs from the number of "physical" tracks ( GetNTracks() ).
338   * Proper methods allow to sort tracks and select the physical ones ( GetTracks() ).   * Proper methods allow to sort tracks and select the physical ones ( GetTracks() ).
339     *
340     * The event status indicates the processing status of data from each DSP, according to the following
341     * notation:
342     *
343     * LSB --> 0 missing packet
344     *         1 CRC error
345     *         2 on-line software alarm (latch-up, timeout ecc...)
346     *         3 jump in the trigger counter
347     *         4 decode error
348     *         5 n.clusters > maximum number (level1 processing)
349     *         6
350     *         7
351     *         8 n.clusters > maximum value (level2 processing)
352     *         9 n.couples per plane > maximum values (vector dimention)
353     *         10 n.doublets > maximum values
354     *         11 n.triplets > maximum values
355     *         12 n.yz-clouds > maximum values
356     *         13 n.xz-clouds > maximum values
357     *         14 n.candidate-tracks > maximum values
358     *         15 n.couples per plane > maximum values (for Hough transform)
359     * MSB --> 16
360     *        
361     *
362     * For all data processed before June 2007 the event status was coded according to
363     * a different rule:
364     *
365     * Status of level1 processing
366     *  0 -- OK  
367     *  1 -- missing packet
368     *  2 -- 1  CRC error
369     *  3 -- 2 on-line software alarm (latch-up flags asserted or n.transmitted-words = 0)
370     *  4 -- 3 jump in the trigger counter
371     * 10 -- 4 decode error
372     * 11 -- 5  n.clusters > maximum number (for level1 processing)
373     * Status of level2 processing
374     * 21 -- 0 n.clusters > maximum value (for level2 processing)
375     * 22 -- 1 n.couples per plane > maximum values (vector dimention)
376     * 23 -- 2 n.doublets > maximum values
377     * 24 -- 3 n.triplets > maximum values
378     * 25 -- 4 n.yz-clouds > maximum values
379     * 26 -- 5 n.xz-clouds > maximum values
380     * 27 -- 6 n.candidate-tracks > maximum values
381     * 28 -- 7 n.couples per plane > maximum values (for Hough transform)
382     *  
383     *
384   */   */
385  class TrkLevel2 : public TObject {  class TrkLevel2 : public TObject {
386    
387   private:   private:
388            
 //      TRefArray    *PhysicalTrack;  ///< physical tracks (no image) -  
           
389   public:   public:
390    
391          Int_t         good[12];       ///< event status      Int_t         good[12];       ///< event status
392  //      Int_t good2;      UInt_t        VKmask[12];     ///< Viking-chip mask
393  //    Int_t crc[12];      UInt_t        VKflag[12];     ///< Viking-chip flag
394    
395      TClonesArray *Track;        ///< fitted tracks      TClonesArray *Track;        ///< fitted tracks
396      TClonesArray *SingletX;     ///< x singlets      TClonesArray *SingletX;     ///< x singlets
# Line 205  class TrkLevel2 : public TObject { Line 398  class TrkLevel2 : public TObject {
398    
399      TrkLevel2();      TrkLevel2();
400  //    TrkLevel2(cTrkLevel2 *);  //    TrkLevel2(cTrkLevel2 *);
401      ~TrkLevel2(){Delete();};      ~TrkLevel2(){Delete();}
402                    
403      void Clear();      void Clear();
404        void Clear(Option_t *option){Clear();}
405      void Delete();      void Delete();
406        void Set();
407        void SetTrackArray(TClonesArray *track);///<set pointer to the track array
408        TClonesArray*  GetTrackArray(){return Track;}///< returns pointer to the track array
409        TClonesArray** GetPointerToTrackArray(){return &Track;}///< returns pointer to pointer to the track array
410        int UnpackError(){ for(int i=0; i<12; i++)if(!StatusCheck(i,0x12))return 1; return 0;}
411            
412      int ntrk() {return Track->GetEntries();}    ///< number of stored track      int ntrk() {return Track->GetEntries();}    ///< number of stored track
413      int nclsx(){return SingletX->GetEntries();} ///< number of x singlets      int nclsx(){return SingletX->GetEntries();} ///< number of x singlets
414      int nclsy(){return SingletY->GetEntries();} ///< number of y singlets      int nclsy(){return SingletY->GetEntries();} ///< number of y singlets
415    
416      void Dump();      void Dump();
     void SetFromLevel2Struct(cTrkLevel2 *);  
417      void SetFromLevel2Struct(cTrkLevel2 *, TrkLevel1 *);      void SetFromLevel2Struct(cTrkLevel2 *, TrkLevel1 *);
418        void SetFromLevel2Struct(cTrkLevel2 *s2){ SetFromLevel2Struct(s2, NULL);          }
419        void SetFromLevel2Struct(TrkLevel1 *l1) { SetFromLevel2Struct(&level2event_, l1); }    
420        void SetFromLevel2Struct()              { SetFromLevel2Struct(&level2event_);     }    
421      void GetLevel2Struct(cTrkLevel2 *) const;      void GetLevel2Struct(cTrkLevel2 *) const;
422      void LoadField(TString);      void LoadField(TString);
423        float GetBX(float* v){return TrkParams::GetBX(v);} ///< Bx (kGauss)
424        float GetBY(float* v){return TrkParams::GetBY(v);} ///< By (kGauss)
425        float GetBZ(float* v){return TrkParams::GetBZ(v);} ///< Bz (kGauss)
426      Float_t GetZTrk(Int_t);      Float_t GetZTrk(Int_t);
427      Float_t GetXTrkLeft(){return XTRKL;};      Float_t GetXTrkLeft(){return XMAGNLOW;}
428      Float_t GetXTrkRight(){return XTRKR;};      Float_t GetXTrkRight(){return XMAGNHIGH;}
429      Float_t GetYTrkLeft(){return YTRKL;};      Float_t GetYTrkLeft(){return YMAGNLOW;}
430      Float_t GetYTrkRight(){return YTRKR;};      Float_t GetYTrkRight(){return YMAGNHIGH;}
431            
432        Bool_t IsMaskedVK(int,int);
433        Bool_t GetVKMask(int,int);
434        Bool_t GetVKFlag(int,int);
435    
436      TrkSinglet   *GetSingletX(int);      TrkSinglet   *GetSingletX(int);
437      TrkSinglet   *GetSingletY(int);      TrkSinglet   *GetSingletY(int);
438            
439      TrkTrack     *GetStoredTrack(int i);      TrkTrack     *GetStoredTrack(int i);
440      Int_t         GetSeqNo(Int_t i)  {return (((TrkTrack *)Track->At(i))->seqno);}; ///< Returns track sequential number      Int_t         GetSeqNo(Int_t i)  {return (((TrkTrack *)Track->At(i))->seqno);} ///< Returns track sequential number
441  //    TClonesArray *GetTracks_Chi2Sorted();  
 //    TClonesArray *GetTracks_NFitSorted();  
 //    TClonesArray *GetTracks();  
442      TRefArray *GetTracks_NFitSorted();      TRefArray *GetTracks_NFitSorted();
443      TRefArray *GetTracks(){return this->GetTracks_NFitSorted();};      TRefArray *GetTracks(){return this->GetTracks_NFitSorted();}
444            
 //    int       GetNTracks(){return this->GetTracks()->GetEntries();}  
445      Int_t     GetNTracks();      Int_t     GetNTracks();
446      TrkTrack* GetTrack(int i);      TrkTrack* GetTrack(int i);
447      TrkTrack* GetTrackImage(int i);      TrkTrack* GetTrackImage(int i);
448            
449      TrkLevel2*    GetTrkLevel2(){return this;}      TrkLevel2*     GetTrkLevel2(){return this;}
450      TClonesArray* GetTrackArray(){return Track;};///< returns pointer to the track array      void   StatusDump(int view);
451            Bool_t StatusCheck(int view, int flagmask);
452      ClassDef(TrkLevel2,2);  
453        ClassDef(TrkLevel2,4);
454    
455  };  };
456    

Legend:
Removed from v.1.11  
changed lines
  Added in v.1.47

  ViewVC Help
Powered by ViewVC 1.1.23