/[PAMELA software]/DarthVader/TrackerLevel2/inc/TrkLevel2.h
ViewVC logotype

Contents of /DarthVader/TrackerLevel2/inc/TrkLevel2.h

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1.42 - (show annotations) (download)
Wed Mar 11 14:19:09 2009 UTC (15 years, 9 months ago) by pam-fi
Branch: MAIN
CVS Tags: v9r00, v9r01
Changes since 1.41: +4 -1 lines
File MIME type: text/plain
new methods to define the acceptance, with tolerance.

1 /**
2 * \file TrkLevel2.h
3 * \author Elena Vannuccini
4 */
5 #ifndef trklevel2_h
6 #define trklevel2_h
7
8 #include <TObject.h>
9 #include <TObjArray.h>
10 #include <TClonesArray.h>
11 #include <TRefArray.h>
12 #include <TRef.h>
13
14 #include <TrkParams.h>
15 #include <TrkLevel1.h>
16
17 // z-coordinate of track state-vector reference-plane
18 #define ZINI 23.5
19 // (mechanical) z-coordinate of the tracker planes
20 #define ZTRK6 -22.22
21 #define ZTRK5 -13.31
22 #define ZTRK4 -4.41
23 #define ZTRK3 4.49
24 #define ZTRK2 13.39
25 #define ZTRK1 22.29
26 // magnet cavity dimensions
27 #define ZMAGNHIGH 21.83
28 #define ZMAGNLOW -21.83
29 #define XMAGNHIGH 8.07
30 #define XMAGNLOW -8.07
31 #define YMAGNHIGH 6.57
32 #define YMAGNLOW -6.57
33 // tof planes
34 #define ZS11 53.74
35 #define ZS12 53.04
36 #define ZS21 23.94
37 #define ZS22 23.44
38 #define ZS31 -23.49
39 #define ZS32 -24.34
40
41 // (mechanical) x/y-coordinates of magnet cavity
42 /* #define XTRKL -8.1 */
43 /* #define XTRKR 8.1 */
44 /* #define YTRKL -6.6 */
45 /* #define YTRKR 6.6 */
46
47 /**
48 * \brief Class to describe, by points, a particle trajectory in the apparatus.
49 *
50 * The idea is to create it by integrating the equations of motion, given the
51 * track state vector and the z coordinates where to evaluate track position.
52 */
53 // ==================================================================
54 class Trajectory : public TObject{
55 private:
56
57 public:
58
59 int npoint; ///< number of evaluated points along the trajectory
60 float* x; //[npoint]
61 float* y; //[npoint]
62 float* z; //[npoint]
63 float* thx; //[npoint]
64 float* thy; //[npoint]
65 float* tl; //[npoint]
66
67 Trajectory();
68 Trajectory(int n);
69 Trajectory(int n, float* pz);
70 ~Trajectory(){Delete();};
71 void Dump();
72 void Delete();
73
74 int DoTrack(float* al, float zini);
75 int DoTrack(float* al){ return DoTrack(al,23.5); };
76
77 int DoTrack2(float* al, float zini);
78 int DoTrack2(float* al){ return DoTrack2(al,23.5); };
79
80 float GetLength(){float l=0; for(int i=0; i<npoint;i++)l=l+tl[i]; return l;};
81 float GetLength(int,int);
82
83 ClassDef(Trajectory,3);
84
85 };
86 /**
87 * \brief Class to describe fitted tracks.
88 *
89 * A track is defined by the measured coordinates associated to it, the
90 * track status vector, plus other quantities.
91 * A track may have an "image", due to the ambiguity in the y view.
92 *
93 * Cluster flags: xgood[6], ygood[6]
94 *
95 * xgood/ygood = +/- 0lsccccccc
96 * ccccccc ID (1-7483647) of the included cluster
97 * s sensor number (1,2 - increasing y)
98 * l ladder number (1,2,3 - increasing x)
99 * +/- does-not/does include bad strips
100 *
101 */
102 // ==================================================================
103 class TrkTrack : public TObject {
104
105 private:
106
107 public:
108
109 int seqno; ///<stored track sequential number
110 int image; ///<sequential number of track-image
111
112 float al[5]; ///<TRACK STATE VECTOR
113 float coval[5][5]; ///<covariance matrix
114 int xgood[6]; ///<cluster id for x-view (0 = view not included in the fit)
115 int ygood[6]; ///<cluster id for y-view (0 = view not included in the fit)
116 float xm[6]; ///<measured x coordinates
117 float ym[6]; ///<measured y coordinates
118 float zm[6]; ///<measured z coordinates
119 float resx[6]; ///<spatial resolution on X view
120 float resy[6]; ///<spatial resolution on y view
121 float tailx[6]; ///<spatial resolution tail on X view
122 float taily[6]; ///<spatial resolution tail on y view
123 float chi2; ///<chi2
124 int nstep; ///<n.step
125 float xv[6]; ///<calculated x coordinates
126 float yv[6]; ///<calculated y coordinates
127 float zv[6]; ///<calculated z coordinates
128 float axv[6]; ///<calculated angles (deg) on x view
129 float ayv[6]; ///<calculated angles (deg) on y view
130 float dedx_x[6]; ///<dE/dx in MIP (<0 if saturated)
131 float dedx_y[6]; ///<dE/dx in MIP (<0 if saturated)
132 int multmaxx[6]; ///<cluster multiplicity and strip of maximum on x view
133 int multmaxy[6]; ///<cluster multiplicity and strip of maximum on y view
134 float seedx[6]; ///< seed of the cluster x
135 float seedy[6]; ///< seed of the cluster y
136 float xpu[6]; ///< x coordinate in pitch units
137 float ypu[6]; ///< y coordinate in pitch units
138
139 float xGF[14]; ///<calculated x coordinates on GF reference planes
140 float yGF[14]; ///<calculated y coordinates on GF reference planes
141
142 TrkTrack();
143 TrkTrack(const TrkTrack&);
144
145 ~TrkTrack(){ Delete(); };
146
147 void Dump();
148 void Clear();
149 void Clear(Option_t *option){Clear();};
150 void Delete();
151 void Copy(TrkTrack&);
152 // void Set();
153
154 Int_t GetSeqNo(){return seqno;} ///< Returns the track sequential number
155 Int_t GetImageSeqNo(){return image;} ///< Returns the track image sequential number
156 Bool_t HasImage(){return !(image==-1);} ///< Returns true if the track has an image
157 int DoTrack(Trajectory* t); ///< Evaluates the trajectory in the apparatus.
158 int DoTrack2(Trajectory* t); ///< Evaluates the trajectory in the apparatus.
159 float BdL(){return 0;}; ///< Evaluates the integral of B*dL along the track.
160 Int_t GetNX(){Int_t n=0; for(Int_t i=0; i<6; i++)n+=(Int_t)XGood(i); return n;};
161 Int_t GetNY(){Int_t n=0; for(Int_t i=0; i<6; i++)n+=(Int_t)YGood(i); return n;};
162 Int_t GetNXY(){Int_t n=0; for(Int_t i=0; i<6; i++)n+=(Int_t)YGood(i)*XGood(i); return n;};
163 Int_t GetNtot(){return GetNX()+GetNY();};
164 Float_t GetRigidity();
165 Float_t GetDeflection();
166 Bool_t IsSaturated(int,int);
167 Bool_t IsSaturated(int);
168 Bool_t IsSaturated();
169 Bool_t IsBad(int,int);
170 Float_t GetDEDX();
171 Float_t GetDEDX(int ip);
172 Float_t GetDEDX(int ip,int iv);
173 Int_t GetLeverArmXY();
174 Int_t GetLeverArmX();
175 Int_t GetLeverArmY();
176 Float_t GetChi2X();
177 Float_t GetChi2Y();
178 Float_t GetLnLX();
179 Float_t GetLnLY();
180
181 Float_t GetEffectiveAngle(int ip, int iv);
182
183 void SetMeasure(double *xmeas, double *ymeas, double *zmeas);
184 void SetResolution(double *rx, double *ry);
185 void SetTail(double *tx, double *ty, double factor);
186 void SetStudentParam(int flag);
187 void SetGood(int *xg, int *yg);
188 void LoadField(TString s);
189 void Fit(double pfixed, int& fail, int iprint, int froml1);
190 void Fit(double pfixed, int& fail, int iprint){ Fit(pfixed,fail,iprint,0); };
191 void FitReset();
192 void SetTrackingMode(int trackmode);
193 void SetPrecisionFactor(double fact);
194 void SetStepMin(int istepmin);
195 void SetDeltaB(int id, double db);
196
197 Bool_t IsInsideCavity(float);
198 Bool_t IsInsideCavity(){ return IsInsideCavity(0.); };
199 Bool_t IsInsideAcceptance(float);
200 Bool_t IsInsideAcceptance(){ return IsInsideAcceptance(0.); };
201 Bool_t IsInsideGFSurface(const char*,float);
202 Bool_t IsInsideGFSurface(const char* surf){ return IsInsideGFSurface(surf,0.); };
203
204 Bool_t EvaluateClusterPositions();
205
206 void FillMiniStruct(cMini2track&);
207 void SetFromMiniStruct(cMini2track*);
208
209 Int_t GetClusterX_ID(int ip);
210 Int_t GetClusterY_ID(int ip);
211 Int_t GetLadder(int ip);
212 Int_t GetSensor(int ip);
213 Bool_t XGood(int ip){ return GetClusterX_ID(ip)!=-1; };
214 Bool_t YGood(int ip){ return GetClusterY_ID(ip)!=-1; };
215 void ResetXGood(int ip){ xgood[ip]=0; };
216 void ResetYGood(int ip){ ygood[ip]=0; };
217 /* void SetXGood(int ip, int clid, int is); */
218 /* void SetYGood(int ip, int clid, int is); */
219 void SetXGood(int ip, int clid, int il, int is, bool bad);
220 void SetYGood(int ip, int clid, int il, int is, bool bad);
221 void SetXGood(int ip, int clid, int il, int is){ SetXGood(ip,clid,il,is,false); };
222 void SetYGood(int ip, int clid, int il, int is){ SetYGood(ip,clid,il,is,false); };
223
224
225 Bool_t BadClusterX(int ip){ return IsBad(ip,0); };
226 Bool_t BadClusterY(int ip){ return IsBad(ip,1); };
227
228 Bool_t SaturatedClusterX(int ip){ return IsSaturated(ip,0); };
229 Bool_t SaturatedClusterY(int ip){ return IsSaturated(ip,1); };
230
231 Int_t GetClusterX_Multiplicity(int ip){ return (Int_t)(multmaxx[ip]/10000); };
232 Int_t GetClusterY_Multiplicity(int ip){ return (Int_t)(multmaxy[ip]/10000); };
233 Int_t GetClusterX_MaxStrip(int ip){ return (Int_t)(multmaxx[ip]%10000); };
234 Int_t GetClusterY_MaxStrip(int ip){ return (Int_t)(multmaxy[ip]%10000); };
235 Float_t GetClusterX_Seed(int ip){ return seedx[ip]; };
236 Float_t GetClusterY_Seed(int ip){ return seedy[ip]; };
237 /* Float_t GetClusterX_oordinatePU(int ip); */
238 /* Float_t GetClusterY_CoordinatePU(int ip); */
239
240 Float_t GetYav();
241 Float_t GetXav();
242 Float_t GetZav();
243
244 Int_t GetNColumns();
245
246 Float_t GetDEDX_max(int ip, int iv);
247 Float_t GetDEDX_max(int iv){ return GetDEDX_max(-1,iv); };
248 Float_t GetDEDX_max(){ return GetDEDX_max(-1,-1); };
249 Float_t GetDEDX_min(int ip, int iv);
250 Float_t GetDEDX_min(int iv){ return GetDEDX_min(-1,iv); };
251 Float_t GetDEDX_min(){ return GetDEDX_min(-1,-1); };
252
253 Float_t GetResidual_max(int ip, int iv);
254 Float_t GetResidual_max(int iv){ return GetResidual_max(-1,iv); };
255 Float_t GetResidual_max(){ return GetResidual_max(-1,-1); };
256 Float_t GetResidual_av(int ip, int iv);
257 Float_t GetResidual_av(int iv){ return GetResidual_av(-1,iv); };
258 Float_t GetResidual_av(){ return GetResidual_av(-1,-1); };
259
260 Int_t GetClusterX_Multiplicity_max();
261 Int_t GetClusterX_Multiplicity_min();
262 Int_t GetClusterY_Multiplicity_max();
263 Int_t GetClusterY_Multiplicity_min();
264
265 Float_t GetClusterX_Seed_min();
266 Float_t GetClusterY_Seed_min();
267
268 TrkTrack* GetTrkTrack(){return this;};
269
270 friend class TrkLevel2;
271
272 ClassDef(TrkTrack,5);
273
274 };
275 /**
276 * \brief Class to describe single clusters ("singlets").
277 *
278 * Single clusters are clusters not associated to any track.
279 */
280 class TrkSinglet : public TObject {
281
282 private:
283
284
285 public:
286
287 int plane; ///<plane
288 float coord[2]; ///<coordinate (on sensor 1 and 2)
289 float sgnl; ///<cluster signal in MIP (<0 if saturated)
290 int multmax; ///<cluster multiplicity and strip of maximum
291
292 TrkSinglet();
293 TrkSinglet(const TrkSinglet&);
294 ~TrkSinglet(){Delete();};
295
296 void Dump();
297 void Clear();
298 void Clear(Option_t *option){Clear();};
299 void Delete(){Clear();};
300 Float_t GetSignal(){return fabs(sgnl);}
301 Bool_t IsSaturated(){return (sgnl<0); };
302
303 Bool_t IsBad() { return multmax<=0; };
304 Int_t GetCluster_Multiplicity(){ return (Int_t)(abs(multmax)/10000); };
305 Int_t GetCluster_MaxStrip() { return (Int_t)(abs(multmax)%10000); };
306
307
308 friend class TrkLevel2;
309
310 ClassDef(TrkSinglet,4);
311
312 };
313
314 /**
315 * \brief Class to describe tracker LEVEL2 data.
316 *
317 * A tracker events is defined by some general variables, plus the collection of all the fitted tracks and all
318 * single clusters on X and Y views.
319 * Tracks and single clusters ("singlets") are described by the classes TrkTrack and TrkSinglet respectivelly.
320 *
321 * Each track may have an "image", due to the ambiguity on the Y view, which is stored also.
322 * Thus, the number of stored tracks ( ntrk() ) differs from the number of "physical" tracks ( GetNTracks() ).
323 * Proper methods allow to sort tracks and select the physical ones ( GetTracks() ).
324 *
325 * The event status indicates the processing status of data from each DSP, according to the following
326 * notation:
327 *
328 * LSB --> 0 missing packet
329 * 1 CRC error
330 * 2 on-line software alarm (latch-up, timeout ecc...)
331 * 3 jump in the trigger counter
332 * 4 decode error
333 * 5 n.clusters > maximum number (level1 processing)
334 * 6
335 * 7
336 * 8 n.clusters > maximum value (level2 processing)
337 * 9 n.couples per plane > maximum values (vector dimention)
338 * 10 n.doublets > maximum values
339 * 11 n.triplets > maximum values
340 * 12 n.yz-clouds > maximum values
341 * 13 n.xz-clouds > maximum values
342 * 14 n.candidate-tracks > maximum values
343 * 15 n.couples per plane > maximum values (for Hough transform)
344 * MSB --> 16
345 *
346 *
347 * For all data processed before June 2007 the event status was coded according to
348 * a different rule:
349 *
350 * Status of level1 processing
351 * 0 -- OK
352 * 1 -- missing packet
353 * 2 -- 1 CRC error
354 * 3 -- 2 on-line software alarm (latch-up flags asserted or n.transmitted-words = 0)
355 * 4 -- 3 jump in the trigger counter
356 * 10 -- 4 decode error
357 * 11 -- 5 n.clusters > maximum number (for level1 processing)
358 * Status of level2 processing
359 * 21 -- 0 n.clusters > maximum value (for level2 processing)
360 * 22 -- 1 n.couples per plane > maximum values (vector dimention)
361 * 23 -- 2 n.doublets > maximum values
362 * 24 -- 3 n.triplets > maximum values
363 * 25 -- 4 n.yz-clouds > maximum values
364 * 26 -- 5 n.xz-clouds > maximum values
365 * 27 -- 6 n.candidate-tracks > maximum values
366 * 28 -- 7 n.couples per plane > maximum values (for Hough transform)
367 *
368 *
369 */
370 class TrkLevel2 : public TObject {
371
372 private:
373
374 public:
375
376 Int_t good[12]; ///< event status
377 UInt_t VKmask[12]; ///< Viking-chip mask
378 UInt_t VKflag[12]; ///< Viking-chip flag
379
380 TClonesArray *Track; ///< fitted tracks
381 TClonesArray *SingletX; ///< x singlets
382 TClonesArray *SingletY; ///< y singlets
383
384 TrkLevel2();
385 // TrkLevel2(cTrkLevel2 *);
386 ~TrkLevel2(){Delete();};
387
388 void Clear();
389 void Clear(Option_t *option){Clear();};
390 void Delete();
391 void Set();
392 int UnpackError(){ for(int i=0; i<12; i++)if(!StatusCheck(i,0x12))return 1; return 0;};
393
394 int ntrk() {return Track->GetEntries();} ///< number of stored track
395 int nclsx(){return SingletX->GetEntries();} ///< number of x singlets
396 int nclsy(){return SingletY->GetEntries();} ///< number of y singlets
397
398 void Dump();
399 void SetFromLevel2Struct(cTrkLevel2 *, TrkLevel1 *);
400 void SetFromLevel2Struct(cTrkLevel2 *s2){ SetFromLevel2Struct(s2, NULL); };
401 void SetFromLevel2Struct(TrkLevel1 *l1) { SetFromLevel2Struct(&level2event_, l1); };
402 void SetFromLevel2Struct() { SetFromLevel2Struct(&level2event_); };
403 void GetLevel2Struct(cTrkLevel2 *) const;
404 void LoadField(TString);
405 float GetBX(float* v){return TrkParams::GetBX(v);};///< Bx (kGauss)
406 float GetBY(float* v){return TrkParams::GetBY(v);};///< By (kGauss)
407 float GetBZ(float* v){return TrkParams::GetBZ(v);};///< Bz (kGauss)
408 Float_t GetZTrk(Int_t);
409 Float_t GetXTrkLeft(){return XMAGNLOW;};
410 Float_t GetXTrkRight(){return XMAGNHIGH;};
411 Float_t GetYTrkLeft(){return YMAGNLOW;};
412 Float_t GetYTrkRight(){return YMAGNHIGH;};
413
414 Bool_t IsMaskedVK(int,int);
415 Bool_t GetVKMask(int,int);
416 Bool_t GetVKFlag(int,int);
417
418 TrkSinglet *GetSingletX(int);
419 TrkSinglet *GetSingletY(int);
420
421 TrkTrack *GetStoredTrack(int i);
422 Int_t GetSeqNo(Int_t i) {return (((TrkTrack *)Track->At(i))->seqno);}; ///< Returns track sequential number
423
424 TRefArray *GetTracks_NFitSorted();
425 TRefArray *GetTracks(){return this->GetTracks_NFitSorted();};
426
427 Int_t GetNTracks();
428 TrkTrack* GetTrack(int i);
429 TrkTrack* GetTrackImage(int i);
430
431 TrkLevel2* GetTrkLevel2(){return this;}
432 TClonesArray* GetTrackArray(){return Track;};///< returns pointer to the track array
433
434 void StatusDump(int view);
435 Bool_t StatusCheck(int view, int flagmask);
436
437 ClassDef(TrkLevel2,3);
438
439 };
440
441 #endif

  ViewVC Help
Powered by ViewVC 1.1.23