/[PAMELA software]/DarthVader/TrackerLevel2/inc/TrkLevel2.h
ViewVC logotype

Annotation of /DarthVader/TrackerLevel2/inc/TrkLevel2.h

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1.45 - (hide annotations) (download)
Thu Feb 27 11:24:42 2014 UTC (10 years, 10 months ago) by pam-fi
Branch: MAIN
Changes since 1.44: +2 -0 lines
File MIME type: text/plain
Added new tracking algorythm

1 mocchiut 1.1 /**
2     * \file TrkLevel2.h
3     * \author Elena Vannuccini
4     */
5     #ifndef trklevel2_h
6     #define trklevel2_h
7    
8     #include <TObject.h>
9     #include <TObjArray.h>
10     #include <TClonesArray.h>
11 pam-fi 1.7 #include <TRefArray.h>
12 pam-fi 1.8 #include <TRef.h>
13 pam-fi 1.3
14 pam-fi 1.18 #include <TrkParams.h>
15 pam-fi 1.8 #include <TrkLevel1.h>
16 mocchiut 1.1
17 pam-fi 1.2 // z-coordinate of track state-vector reference-plane
18 pam-fi 1.43 #define ZINI 23.5 ///< z-coordinate of track state-vector reference-plane.
19 pam-fi 1.5 // (mechanical) z-coordinate of the tracker planes
20 pam-fi 1.27 #define ZTRK6 -22.22
21     #define ZTRK5 -13.31
22     #define ZTRK4 -4.41
23     #define ZTRK3 4.49
24     #define ZTRK2 13.39
25     #define ZTRK1 22.29
26     // magnet cavity dimensions
27     #define ZMAGNHIGH 21.83
28     #define ZMAGNLOW -21.83
29     #define XMAGNHIGH 8.07
30     #define XMAGNLOW -8.07
31     #define YMAGNHIGH 6.57
32     #define YMAGNLOW -6.57
33 pam-fi 1.35 // tof planes
34     #define ZS11 53.74
35     #define ZS12 53.04
36     #define ZS21 23.94
37     #define ZS22 23.44
38     #define ZS31 -23.49
39     #define ZS32 -24.34
40    
41 pam-fi 1.5 // (mechanical) x/y-coordinates of magnet cavity
42 pam-fi 1.34 /* #define XTRKL -8.1 */
43     /* #define XTRKR 8.1 */
44     /* #define YTRKL -6.6 */
45     /* #define YTRKR 6.6 */
46 pam-fi 1.2
47 mocchiut 1.1 /**
48     * \brief Class to describe, by points, a particle trajectory in the apparatus.
49     *
50     * The idea is to create it by integrating the equations of motion, given the
51     * track state vector and the z coordinates where to evaluate track position.
52     */
53     // ==================================================================
54     class Trajectory : public TObject{
55     private:
56    
57     public:
58    
59     int npoint; ///< number of evaluated points along the trajectory
60 pam-fi 1.35 float* x; //[npoint]
61     float* y; //[npoint]
62     float* z; //[npoint]
63     float* thx; //[npoint]
64     float* thy; //[npoint]
65     float* tl; //[npoint]
66 mocchiut 1.1
67 pam-fi 1.2 Trajectory();
68 mocchiut 1.1 Trajectory(int n);
69     Trajectory(int n, float* pz);
70 pam-fi 1.44 ~Trajectory(){Delete();}
71 mocchiut 1.1 void Dump();
72 pam-fi 1.15 void Delete();
73 mocchiut 1.1
74 pam-fi 1.41 int DoTrack(float* al, float zini);
75 pam-fi 1.44 int DoTrack(float* al){ return DoTrack(al,23.5); }
76 pam-fi 1.41
77     int DoTrack2(float* al, float zini);
78 pam-fi 1.44 int DoTrack2(float* al){ return DoTrack2(al,23.5); }
79 pam-fi 1.41
80 pam-fi 1.44 float GetLength(){float l=0; for(int i=0; i<npoint;i++)l=l+tl[i]; return l;}
81 pam-fi 1.2 float GetLength(int,int);
82    
83 pam-fi 1.35 ClassDef(Trajectory,3);
84 mocchiut 1.1
85     };
86     /**
87     * \brief Class to describe fitted tracks.
88     *
89     * A track is defined by the measured coordinates associated to it, the
90     * track status vector, plus other quantities.
91     * A track may have an "image", due to the ambiguity in the y view.
92 pam-fi 1.24 *
93     * Cluster flags: xgood[6], ygood[6]
94     *
95     * xgood/ygood = +/- 0lsccccccc
96 pam-fi 1.35 * ccccccc ID (1-7483647) of the included cluster
97     * s sensor number (1,2 - increasing y)
98     * l ladder number (1,2,3 - increasing x)
99     * +/- does-not/does include bad strips
100     *
101 mocchiut 1.1 */
102     // ==================================================================
103     class TrkTrack : public TObject {
104    
105     private:
106    
107 pam-fi 1.32 public:
108    
109 pam-fi 1.3 int seqno; ///<stored track sequential number
110     int image; ///<sequential number of track-image
111 pam-fi 1.8
112 pam-fi 1.43 /*! @brief Track state vector.
113     *
114     * This is the track state vector on reference plane defined by #ZINI.
115     *
116     * al[0]: X coordinate [cm]
117     * al[1]: Y coordinate [cm]
118     * al[2]: sin theta (altitude; theta = 0 is normal incidence)
119     * al[3]: phi (azimuth; phi = 0 is negative X axis)
120     * al[4]: deflection (with sign) [1/GV]
121     *
122     */
123     float al[5];
124 mocchiut 1.1 float coval[5][5]; ///<covariance matrix
125 pam-fi 1.31 int xgood[6]; ///<cluster id for x-view (0 = view not included in the fit)
126     int ygood[6]; ///<cluster id for y-view (0 = view not included in the fit)
127 mocchiut 1.1 float xm[6]; ///<measured x coordinates
128     float ym[6]; ///<measured y coordinates
129     float zm[6]; ///<measured z coordinates
130     float resx[6]; ///<spatial resolution on X view
131     float resy[6]; ///<spatial resolution on y view
132 pam-fi 1.24 float tailx[6]; ///<spatial resolution tail on X view
133     float taily[6]; ///<spatial resolution tail on y view
134 mocchiut 1.1 float chi2; ///<chi2
135 pam-fi 1.31 int nstep; ///<n.step
136 pam-fi 1.12 float xv[6]; ///<calculated x coordinates
137 mocchiut 1.1 float yv[6]; ///<calculated y coordinates
138     float zv[6]; ///<calculated z coordinates
139     float axv[6]; ///<calculated angles (deg) on x view
140     float ayv[6]; ///<calculated angles (deg) on y view
141 pam-fi 1.24 float dedx_x[6]; ///<dE/dx in MIP (<0 if saturated)
142     float dedx_y[6]; ///<dE/dx in MIP (<0 if saturated)
143 pam-fi 1.31 int multmaxx[6]; ///<cluster multiplicity and strip of maximum on x view
144     int multmaxy[6]; ///<cluster multiplicity and strip of maximum on y view
145     float seedx[6]; ///< seed of the cluster x
146     float seedy[6]; ///< seed of the cluster y
147     float xpu[6]; ///< x coordinate in pitch units
148     float ypu[6]; ///< y coordinate in pitch units
149 pam-fi 1.3
150 pam-fi 1.35 float xGF[14]; ///<calculated x coordinates on GF reference planes
151     float yGF[14]; ///<calculated y coordinates on GF reference planes
152    
153 mocchiut 1.1 TrkTrack();
154     TrkTrack(const TrkTrack&);
155    
156 pam-fi 1.44 ~TrkTrack(){ Delete(); }
157 pam-fi 1.10
158 mocchiut 1.1 void Dump();
159 pam-fi 1.12 void Clear();
160 pam-fi 1.44 void Clear(Option_t *option){Clear();}
161 pam-fi 1.12 void Delete();
162 pam-fi 1.15 void Copy(TrkTrack&);
163 pam-fi 1.16 // void Set();
164    
165 pam-fi 1.3 Int_t GetSeqNo(){return seqno;} ///< Returns the track sequential number
166     Int_t GetImageSeqNo(){return image;} ///< Returns the track image sequential number
167 mocchiut 1.1 Bool_t HasImage(){return !(image==-1);} ///< Returns true if the track has an image
168 pam-fi 1.35 int DoTrack(Trajectory* t); ///< Evaluates the trajectory in the apparatus.
169     int DoTrack2(Trajectory* t); ///< Evaluates the trajectory in the apparatus.
170 pam-fi 1.43 float BdL(){return 0;} ///< Evaluates the integral of B*dL along the track.
171 pam-fi 1.44 Int_t GetNX(){Int_t n=0; for(Int_t i=0; i<6; i++)n+=(Int_t)XGood(i); return n;}
172     Int_t GetNY(){Int_t n=0; for(Int_t i=0; i<6; i++)n+=(Int_t)YGood(i); return n;}
173     Int_t GetNXY(){Int_t n=0; for(Int_t i=0; i<6; i++)n+=(Int_t)YGood(i)*XGood(i); return n;}
174     Int_t GetNtot(){return GetNX()+GetNY();}
175 mocchiut 1.1 Float_t GetRigidity();
176     Float_t GetDeflection();
177 pam-fi 1.24 Bool_t IsSaturated(int,int);
178     Bool_t IsSaturated(int);
179     Bool_t IsSaturated();
180     Bool_t IsBad(int,int);
181 mocchiut 1.1 Float_t GetDEDX();
182 pam-fi 1.28 Float_t GetDEDX(int ip);
183     Float_t GetDEDX(int ip,int iv);
184 pam-fi 1.39 Int_t GetLeverArmXY();
185 pam-fi 1.24 Int_t GetLeverArmX();
186     Int_t GetLeverArmY();
187 pam-fi 1.29 Float_t GetChi2X();
188     Float_t GetChi2Y();
189     Float_t GetLnLX();
190     Float_t GetLnLY();
191 pam-fi 1.12
192 pam-fi 1.30 Float_t GetEffectiveAngle(int ip, int iv);
193    
194 pam-fi 1.12 void SetMeasure(double *xmeas, double *ymeas, double *zmeas);
195     void SetResolution(double *rx, double *ry);
196 pam-fi 1.26 void SetTail(double *tx, double *ty, double factor);
197     void SetStudentParam(int flag);
198 pam-fi 1.12 void SetGood(int *xg, int *yg);
199     void LoadField(TString s);
200 pam-fi 1.25 void Fit(double pfixed, int& fail, int iprint, int froml1);
201 pam-fi 1.44 void Fit(double pfixed, int& fail, int iprint){ Fit(pfixed,fail,iprint,0); }
202 pam-fi 1.12 void FitReset();
203 pam-fi 1.19 void SetTrackingMode(int trackmode);
204 pam-fi 1.21 void SetPrecisionFactor(double fact);
205     void SetStepMin(int istepmin);
206 pam-fi 1.33 void SetDeltaB(int id, double db);
207    
208 pam-fi 1.35 Bool_t IsInsideCavity(float);
209 pam-fi 1.44 Bool_t IsInsideCavity(){ return IsInsideCavity(0.); }
210 pam-fi 1.42 Bool_t IsInsideAcceptance(float);
211 pam-fi 1.44 Bool_t IsInsideAcceptance(){ return IsInsideAcceptance(0.); }
212 pam-fi 1.42 Bool_t IsInsideGFSurface(const char*,float);
213 pam-fi 1.44 Bool_t IsInsideGFSurface(const char* surf){ return IsInsideGFSurface(surf,0.); }
214 pam-fi 1.14
215 pam-fi 1.28 Bool_t EvaluateClusterPositions();
216 pam-fi 1.25
217 pam-fi 1.14 void FillMiniStruct(cMini2track&);
218     void SetFromMiniStruct(cMini2track*);
219 pam-fi 1.45 void FillMiniStruct(){ extern cMini2track track_; FillMiniStruct(track_); };
220     void SetFromMiniStruct(){extern cMini2track track_; SetFromMiniStruct(&track_);};
221 pam-fi 1.12
222 pam-fi 1.24 Int_t GetClusterX_ID(int ip);
223     Int_t GetClusterY_ID(int ip);
224     Int_t GetLadder(int ip);
225     Int_t GetSensor(int ip);
226 pam-fi 1.44 Bool_t XGood(int ip){ return GetClusterX_ID(ip)!=-1; }
227     Bool_t YGood(int ip){ return GetClusterY_ID(ip)!=-1; }
228     void ResetXGood(int ip){ xgood[ip]=0; }
229     void ResetYGood(int ip){ ygood[ip]=0; }
230 pam-fi 1.36 /* void SetXGood(int ip, int clid, int is); */
231     /* void SetYGood(int ip, int clid, int is); */
232     void SetXGood(int ip, int clid, int il, int is, bool bad);
233     void SetYGood(int ip, int clid, int il, int is, bool bad);
234 pam-fi 1.44 void SetXGood(int ip, int clid, int il, int is){ SetXGood(ip,clid,il,is,false); }
235     void SetYGood(int ip, int clid, int il, int is){ SetYGood(ip,clid,il,is,false); }
236 pam-fi 1.36
237 pam-fi 1.24
238 pam-fi 1.44 Bool_t BadClusterX(int ip){ return IsBad(ip,0); }
239     Bool_t BadClusterY(int ip){ return IsBad(ip,1); }
240 pam-fi 1.24
241 pam-fi 1.44 Bool_t SaturatedClusterX(int ip){ return IsSaturated(ip,0); }
242     Bool_t SaturatedClusterY(int ip){ return IsSaturated(ip,1); }
243    
244     Int_t GetClusterX_Multiplicity(int ip){ return (Int_t)(multmaxx[ip]/10000); }
245     Int_t GetClusterY_Multiplicity(int ip){ return (Int_t)(multmaxy[ip]/10000); }
246     Int_t GetClusterX_MaxStrip(int ip){ return (Int_t)(multmaxx[ip]%10000); }
247     Int_t GetClusterY_MaxStrip(int ip){ return (Int_t)(multmaxy[ip]%10000); }
248     Float_t GetClusterX_Seed(int ip){ return seedx[ip]; }
249     Float_t GetClusterY_Seed(int ip){ return seedy[ip]; }
250 pam-fi 1.36 /* Float_t GetClusterX_oordinatePU(int ip); */
251 pam-fi 1.31 /* Float_t GetClusterY_CoordinatePU(int ip); */
252    
253 pam-fi 1.34 Float_t GetYav();
254     Float_t GetXav();
255     Float_t GetZav();
256    
257     Int_t GetNColumns();
258    
259     Float_t GetDEDX_max(int ip, int iv);
260 pam-fi 1.44 Float_t GetDEDX_max(int iv){ return GetDEDX_max(-1,iv); }
261     Float_t GetDEDX_max(){ return GetDEDX_max(-1,-1); }
262 pam-fi 1.34 Float_t GetDEDX_min(int ip, int iv);
263 pam-fi 1.44 Float_t GetDEDX_min(int iv){ return GetDEDX_min(-1,iv); }
264     Float_t GetDEDX_min(){ return GetDEDX_min(-1,-1); }
265 pam-fi 1.34
266     Float_t GetResidual_max(int ip, int iv);
267 pam-fi 1.44 Float_t GetResidual_max(int iv){ return GetResidual_max(-1,iv); }
268     Float_t GetResidual_max(){ return GetResidual_max(-1,-1); }
269 pam-fi 1.37 Float_t GetResidual_av(int ip, int iv);
270 pam-fi 1.44 Float_t GetResidual_av(int iv){ return GetResidual_av(-1,iv); }
271     Float_t GetResidual_av(){ return GetResidual_av(-1,-1); }
272 pam-fi 1.34
273     Int_t GetClusterX_Multiplicity_max();
274     Int_t GetClusterX_Multiplicity_min();
275     Int_t GetClusterY_Multiplicity_max();
276     Int_t GetClusterY_Multiplicity_min();
277    
278     Float_t GetClusterX_Seed_min();
279     Float_t GetClusterY_Seed_min();
280 pam-fi 1.31
281 pam-fi 1.44 TrkTrack* GetTrkTrack(){return this;}
282 mocchiut 1.1
283 pam-fi 1.3 friend class TrkLevel2;
284    
285 pam-fi 1.35 ClassDef(TrkTrack,5);
286 mocchiut 1.1
287     };
288     /**
289     * \brief Class to describe single clusters ("singlets").
290     *
291     * Single clusters are clusters not associated to any track.
292     */
293     class TrkSinglet : public TObject {
294    
295     private:
296 pam-fi 1.8
297 mocchiut 1.1
298     public:
299 pam-fi 1.8
300 mocchiut 1.1 int plane; ///<plane
301     float coord[2]; ///<coordinate (on sensor 1 and 2)
302 pam-fi 1.24 float sgnl; ///<cluster signal in MIP (<0 if saturated)
303 pam-fi 1.35 int multmax; ///<cluster multiplicity and strip of maximum
304 mocchiut 1.1
305     TrkSinglet();
306     TrkSinglet(const TrkSinglet&);
307 pam-fi 1.44 ~TrkSinglet(){Delete();}
308 mocchiut 1.1
309     void Dump();
310 pam-fi 1.15 void Clear();
311 pam-fi 1.44 void Clear(Option_t *option){Clear();}
312 pam-fi 1.15 void Delete(){Clear();};
313 pam-fi 1.24 Float_t GetSignal(){return fabs(sgnl);}
314 pam-fi 1.44 Bool_t IsSaturated(){return (sgnl<0); }
315 pam-fi 1.35
316 pam-fi 1.44 Bool_t IsBad() { return multmax<=0; }
317     Int_t GetCluster_Multiplicity(){ return (Int_t)(abs(multmax)/10000); }
318     Int_t GetCluster_MaxStrip() { return (Int_t)(abs(multmax)%10000); }
319 pam-fi 1.35
320    
321 pam-fi 1.3 friend class TrkLevel2;
322    
323 pam-fi 1.35 ClassDef(TrkSinglet,4);
324 mocchiut 1.1
325     };
326    
327     /**
328     * \brief Class to describe tracker LEVEL2 data.
329     *
330     * A tracker events is defined by some general variables, plus the collection of all the fitted tracks and all
331     * single clusters on X and Y views.
332     * Tracks and single clusters ("singlets") are described by the classes TrkTrack and TrkSinglet respectivelly.
333     *
334     * Each track may have an "image", due to the ambiguity on the Y view, which is stored also.
335     * Thus, the number of stored tracks ( ntrk() ) differs from the number of "physical" tracks ( GetNTracks() ).
336     * Proper methods allow to sort tracks and select the physical ones ( GetTracks() ).
337 pam-fi 1.28 *
338     * The event status indicates the processing status of data from each DSP, according to the following
339     * notation:
340     *
341 pam-fi 1.35 * LSB --> 0 missing packet
342     * 1 CRC error
343     * 2 on-line software alarm (latch-up, timeout ecc...)
344     * 3 jump in the trigger counter
345     * 4 decode error
346     * 5 n.clusters > maximum number (level1 processing)
347     * 6
348     * 7
349     * 8 n.clusters > maximum value (level2 processing)
350     * 9 n.couples per plane > maximum values (vector dimention)
351     * 10 n.doublets > maximum values
352     * 11 n.triplets > maximum values
353     * 12 n.yz-clouds > maximum values
354     * 13 n.xz-clouds > maximum values
355     * 14 n.candidate-tracks > maximum values
356     * 15 n.couples per plane > maximum values (for Hough transform)
357     * MSB --> 16
358 pam-fi 1.28 *
359     *
360 pam-fi 1.39 * For all data processed before June 2007 the event status was coded according to
361     * a different rule:
362     *
363     * Status of level1 processing
364     * 0 -- OK
365     * 1 -- missing packet
366     * 2 -- 1 CRC error
367     * 3 -- 2 on-line software alarm (latch-up flags asserted or n.transmitted-words = 0)
368     * 4 -- 3 jump in the trigger counter
369     * 10 -- 4 decode error
370     * 11 -- 5 n.clusters > maximum number (for level1 processing)
371     * Status of level2 processing
372     * 21 -- 0 n.clusters > maximum value (for level2 processing)
373     * 22 -- 1 n.couples per plane > maximum values (vector dimention)
374     * 23 -- 2 n.doublets > maximum values
375     * 24 -- 3 n.triplets > maximum values
376     * 25 -- 4 n.yz-clouds > maximum values
377     * 26 -- 5 n.xz-clouds > maximum values
378     * 27 -- 6 n.candidate-tracks > maximum values
379     * 28 -- 7 n.couples per plane > maximum values (for Hough transform)
380 pam-fi 1.28 *
381     *
382 mocchiut 1.1 */
383     class TrkLevel2 : public TObject {
384    
385     private:
386 pam-fi 1.15
387 mocchiut 1.1 public:
388    
389 pam-fi 1.15 Int_t good[12]; ///< event status
390 pam-fi 1.24 UInt_t VKmask[12]; ///< Viking-chip mask
391     UInt_t VKflag[12]; ///< Viking-chip flag
392 mocchiut 1.1
393     TClonesArray *Track; ///< fitted tracks
394     TClonesArray *SingletX; ///< x singlets
395     TClonesArray *SingletY; ///< y singlets
396    
397     TrkLevel2();
398     // TrkLevel2(cTrkLevel2 *);
399 pam-fi 1.44 ~TrkLevel2(){Delete();}
400 pam-fi 1.10
401 pam-fi 1.11 void Clear();
402 pam-fi 1.44 void Clear(Option_t *option){Clear();}
403 pam-fi 1.11 void Delete();
404 pam-fi 1.16 void Set();
405 pam-fi 1.44 int UnpackError(){ for(int i=0; i<12; i++)if(!StatusCheck(i,0x12))return 1; return 0;}
406 pam-fi 1.11
407     int ntrk() {return Track->GetEntries();} ///< number of stored track
408 mocchiut 1.1 int nclsx(){return SingletX->GetEntries();} ///< number of x singlets
409     int nclsy(){return SingletY->GetEntries();} ///< number of y singlets
410    
411     void Dump();
412 pam-fi 1.11 void SetFromLevel2Struct(cTrkLevel2 *, TrkLevel1 *);
413 pam-fi 1.44 void SetFromLevel2Struct(cTrkLevel2 *s2){ SetFromLevel2Struct(s2, NULL); }
414     void SetFromLevel2Struct(TrkLevel1 *l1) { SetFromLevel2Struct(&level2event_, l1); }
415     void SetFromLevel2Struct() { SetFromLevel2Struct(&level2event_); }
416 pam-fi 1.11 void GetLevel2Struct(cTrkLevel2 *) const;
417 pam-fi 1.3 void LoadField(TString);
418 pam-fi 1.44 float GetBX(float* v){return TrkParams::GetBX(v);} ///< Bx (kGauss)
419     float GetBY(float* v){return TrkParams::GetBY(v);} ///< By (kGauss)
420     float GetBZ(float* v){return TrkParams::GetBZ(v);} ///< Bz (kGauss)
421 pam-fi 1.6 Float_t GetZTrk(Int_t);
422 pam-fi 1.44 Float_t GetXTrkLeft(){return XMAGNLOW;}
423     Float_t GetXTrkRight(){return XMAGNHIGH;}
424     Float_t GetYTrkLeft(){return YMAGNLOW;}
425     Float_t GetYTrkRight(){return YMAGNHIGH;}
426 pam-fi 1.6
427 pam-fi 1.24 Bool_t IsMaskedVK(int,int);
428     Bool_t GetVKMask(int,int);
429     Bool_t GetVKFlag(int,int);
430    
431 pam-fi 1.6 TrkSinglet *GetSingletX(int);
432     TrkSinglet *GetSingletY(int);
433    
434     TrkTrack *GetStoredTrack(int i);
435 pam-fi 1.44 Int_t GetSeqNo(Int_t i) {return (((TrkTrack *)Track->At(i))->seqno);} ///< Returns track sequential number
436 pam-fi 1.24
437 pam-fi 1.11 TRefArray *GetTracks_NFitSorted();
438 pam-fi 1.44 TRefArray *GetTracks(){return this->GetTracks_NFitSorted();}
439 pam-fi 1.11
440     Int_t GetNTracks();
441     TrkTrack* GetTrack(int i);
442 mocchiut 1.1 TrkTrack* GetTrackImage(int i);
443 pam-fi 1.11
444 pam-fi 1.3 TrkLevel2* GetTrkLevel2(){return this;}
445 pam-fi 1.44 TClonesArray* GetTrackArray(){return Track;}///< returns pointer to the track array
446 pam-fi 1.3
447 pam-fi 1.28 void StatusDump(int view);
448     Bool_t StatusCheck(int view, int flagmask);
449    
450 pam-fi 1.24 ClassDef(TrkLevel2,3);
451 mocchiut 1.1
452     };
453    
454     #endif

  ViewVC Help
Powered by ViewVC 1.1.23