/[PAMELA software]/DarthVader/TrackerLevel2/inc/TrkLevel2.h
ViewVC logotype

Annotation of /DarthVader/TrackerLevel2/inc/TrkLevel2.h

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1.43 - (hide annotations) (download)
Thu Sep 1 16:01:32 2011 UTC (13 years, 4 months ago) by pam-fi
Branch: MAIN
Changes since 1.42: +14 -3 lines
File MIME type: text/plain
Documentation for TrkTrack::al added. Some other fixes in doxygen.

1 mocchiut 1.1 /**
2     * \file TrkLevel2.h
3     * \author Elena Vannuccini
4     */
5     #ifndef trklevel2_h
6     #define trklevel2_h
7    
8     #include <TObject.h>
9     #include <TObjArray.h>
10     #include <TClonesArray.h>
11 pam-fi 1.7 #include <TRefArray.h>
12 pam-fi 1.8 #include <TRef.h>
13 pam-fi 1.3
14 pam-fi 1.18 #include <TrkParams.h>
15 pam-fi 1.8 #include <TrkLevel1.h>
16 mocchiut 1.1
17 pam-fi 1.2 // z-coordinate of track state-vector reference-plane
18 pam-fi 1.43 #define ZINI 23.5 ///< z-coordinate of track state-vector reference-plane.
19 pam-fi 1.5 // (mechanical) z-coordinate of the tracker planes
20 pam-fi 1.27 #define ZTRK6 -22.22
21     #define ZTRK5 -13.31
22     #define ZTRK4 -4.41
23     #define ZTRK3 4.49
24     #define ZTRK2 13.39
25     #define ZTRK1 22.29
26     // magnet cavity dimensions
27     #define ZMAGNHIGH 21.83
28     #define ZMAGNLOW -21.83
29     #define XMAGNHIGH 8.07
30     #define XMAGNLOW -8.07
31     #define YMAGNHIGH 6.57
32     #define YMAGNLOW -6.57
33 pam-fi 1.35 // tof planes
34     #define ZS11 53.74
35     #define ZS12 53.04
36     #define ZS21 23.94
37     #define ZS22 23.44
38     #define ZS31 -23.49
39     #define ZS32 -24.34
40    
41 pam-fi 1.5 // (mechanical) x/y-coordinates of magnet cavity
42 pam-fi 1.34 /* #define XTRKL -8.1 */
43     /* #define XTRKR 8.1 */
44     /* #define YTRKL -6.6 */
45     /* #define YTRKR 6.6 */
46 pam-fi 1.2
47 mocchiut 1.1 /**
48     * \brief Class to describe, by points, a particle trajectory in the apparatus.
49     *
50     * The idea is to create it by integrating the equations of motion, given the
51     * track state vector and the z coordinates where to evaluate track position.
52     */
53     // ==================================================================
54     class Trajectory : public TObject{
55     private:
56    
57     public:
58    
59     int npoint; ///< number of evaluated points along the trajectory
60 pam-fi 1.35 float* x; //[npoint]
61     float* y; //[npoint]
62     float* z; //[npoint]
63     float* thx; //[npoint]
64     float* thy; //[npoint]
65     float* tl; //[npoint]
66 mocchiut 1.1
67 pam-fi 1.2 Trajectory();
68 mocchiut 1.1 Trajectory(int n);
69     Trajectory(int n, float* pz);
70 pam-fi 1.15 ~Trajectory(){Delete();};
71 mocchiut 1.1 void Dump();
72 pam-fi 1.15 void Delete();
73 mocchiut 1.1
74 pam-fi 1.41 int DoTrack(float* al, float zini);
75     int DoTrack(float* al){ return DoTrack(al,23.5); };
76    
77     int DoTrack2(float* al, float zini);
78     int DoTrack2(float* al){ return DoTrack2(al,23.5); };
79    
80 pam-fi 1.2 float GetLength(){float l=0; for(int i=0; i<npoint;i++)l=l+tl[i]; return l;};
81     float GetLength(int,int);
82    
83 pam-fi 1.35 ClassDef(Trajectory,3);
84 mocchiut 1.1
85     };
86     /**
87     * \brief Class to describe fitted tracks.
88     *
89     * A track is defined by the measured coordinates associated to it, the
90     * track status vector, plus other quantities.
91     * A track may have an "image", due to the ambiguity in the y view.
92 pam-fi 1.24 *
93     * Cluster flags: xgood[6], ygood[6]
94     *
95     * xgood/ygood = +/- 0lsccccccc
96 pam-fi 1.35 * ccccccc ID (1-7483647) of the included cluster
97     * s sensor number (1,2 - increasing y)
98     * l ladder number (1,2,3 - increasing x)
99     * +/- does-not/does include bad strips
100     *
101 mocchiut 1.1 */
102     // ==================================================================
103     class TrkTrack : public TObject {
104    
105     private:
106    
107 pam-fi 1.32 public:
108    
109 pam-fi 1.3 int seqno; ///<stored track sequential number
110     int image; ///<sequential number of track-image
111 pam-fi 1.8
112 pam-fi 1.43 /*! @brief Track state vector.
113     *
114     * This is the track state vector on reference plane defined by #ZINI.
115     *
116     * al[0]: X coordinate [cm]
117     * al[1]: Y coordinate [cm]
118     * al[2]: sin theta (altitude; theta = 0 is normal incidence)
119     * al[3]: phi (azimuth; phi = 0 is negative X axis)
120     * al[4]: deflection (with sign) [1/GV]
121     *
122     */
123     float al[5];
124 mocchiut 1.1 float coval[5][5]; ///<covariance matrix
125 pam-fi 1.31 int xgood[6]; ///<cluster id for x-view (0 = view not included in the fit)
126     int ygood[6]; ///<cluster id for y-view (0 = view not included in the fit)
127 mocchiut 1.1 float xm[6]; ///<measured x coordinates
128     float ym[6]; ///<measured y coordinates
129     float zm[6]; ///<measured z coordinates
130     float resx[6]; ///<spatial resolution on X view
131     float resy[6]; ///<spatial resolution on y view
132 pam-fi 1.24 float tailx[6]; ///<spatial resolution tail on X view
133     float taily[6]; ///<spatial resolution tail on y view
134 mocchiut 1.1 float chi2; ///<chi2
135 pam-fi 1.31 int nstep; ///<n.step
136 pam-fi 1.12 float xv[6]; ///<calculated x coordinates
137 mocchiut 1.1 float yv[6]; ///<calculated y coordinates
138     float zv[6]; ///<calculated z coordinates
139     float axv[6]; ///<calculated angles (deg) on x view
140     float ayv[6]; ///<calculated angles (deg) on y view
141 pam-fi 1.24 float dedx_x[6]; ///<dE/dx in MIP (<0 if saturated)
142     float dedx_y[6]; ///<dE/dx in MIP (<0 if saturated)
143 pam-fi 1.31 int multmaxx[6]; ///<cluster multiplicity and strip of maximum on x view
144     int multmaxy[6]; ///<cluster multiplicity and strip of maximum on y view
145     float seedx[6]; ///< seed of the cluster x
146     float seedy[6]; ///< seed of the cluster y
147     float xpu[6]; ///< x coordinate in pitch units
148     float ypu[6]; ///< y coordinate in pitch units
149 pam-fi 1.3
150 pam-fi 1.35 float xGF[14]; ///<calculated x coordinates on GF reference planes
151     float yGF[14]; ///<calculated y coordinates on GF reference planes
152    
153 mocchiut 1.1 TrkTrack();
154     TrkTrack(const TrkTrack&);
155    
156 pam-fi 1.15 ~TrkTrack(){ Delete(); };
157 pam-fi 1.10
158 mocchiut 1.1 void Dump();
159 pam-fi 1.12 void Clear();
160 pam-fi 1.15 void Clear(Option_t *option){Clear();};
161 pam-fi 1.12 void Delete();
162 pam-fi 1.15 void Copy(TrkTrack&);
163 pam-fi 1.16 // void Set();
164    
165 pam-fi 1.3 Int_t GetSeqNo(){return seqno;} ///< Returns the track sequential number
166     Int_t GetImageSeqNo(){return image;} ///< Returns the track image sequential number
167 mocchiut 1.1 Bool_t HasImage(){return !(image==-1);} ///< Returns true if the track has an image
168 pam-fi 1.35 int DoTrack(Trajectory* t); ///< Evaluates the trajectory in the apparatus.
169     int DoTrack2(Trajectory* t); ///< Evaluates the trajectory in the apparatus.
170 pam-fi 1.43 float BdL(){return 0;} ///< Evaluates the integral of B*dL along the track.
171 pam-fi 1.24 Int_t GetNX(){Int_t n=0; for(Int_t i=0; i<6; i++)n+=(Int_t)XGood(i); return n;};
172     Int_t GetNY(){Int_t n=0; for(Int_t i=0; i<6; i++)n+=(Int_t)YGood(i); return n;};
173 pam-fi 1.39 Int_t GetNXY(){Int_t n=0; for(Int_t i=0; i<6; i++)n+=(Int_t)YGood(i)*XGood(i); return n;};
174 pam-fi 1.3 Int_t GetNtot(){return GetNX()+GetNY();};
175 mocchiut 1.1 Float_t GetRigidity();
176     Float_t GetDeflection();
177 pam-fi 1.24 Bool_t IsSaturated(int,int);
178     Bool_t IsSaturated(int);
179     Bool_t IsSaturated();
180     Bool_t IsBad(int,int);
181 mocchiut 1.1 Float_t GetDEDX();
182 pam-fi 1.28 Float_t GetDEDX(int ip);
183     Float_t GetDEDX(int ip,int iv);
184 pam-fi 1.39 Int_t GetLeverArmXY();
185 pam-fi 1.24 Int_t GetLeverArmX();
186     Int_t GetLeverArmY();
187 pam-fi 1.29 Float_t GetChi2X();
188     Float_t GetChi2Y();
189     Float_t GetLnLX();
190     Float_t GetLnLY();
191 pam-fi 1.12
192 pam-fi 1.30 Float_t GetEffectiveAngle(int ip, int iv);
193    
194 pam-fi 1.12 void SetMeasure(double *xmeas, double *ymeas, double *zmeas);
195     void SetResolution(double *rx, double *ry);
196 pam-fi 1.26 void SetTail(double *tx, double *ty, double factor);
197     void SetStudentParam(int flag);
198 pam-fi 1.12 void SetGood(int *xg, int *yg);
199     void LoadField(TString s);
200 pam-fi 1.25 void Fit(double pfixed, int& fail, int iprint, int froml1);
201     void Fit(double pfixed, int& fail, int iprint){ Fit(pfixed,fail,iprint,0); };
202 pam-fi 1.12 void FitReset();
203 pam-fi 1.19 void SetTrackingMode(int trackmode);
204 pam-fi 1.21 void SetPrecisionFactor(double fact);
205     void SetStepMin(int istepmin);
206 pam-fi 1.33 void SetDeltaB(int id, double db);
207    
208 pam-fi 1.35 Bool_t IsInsideCavity(float);
209     Bool_t IsInsideCavity(){ return IsInsideCavity(0.); };
210 pam-fi 1.42 Bool_t IsInsideAcceptance(float);
211     Bool_t IsInsideAcceptance(){ return IsInsideAcceptance(0.); };
212     Bool_t IsInsideGFSurface(const char*,float);
213     Bool_t IsInsideGFSurface(const char* surf){ return IsInsideGFSurface(surf,0.); };
214 pam-fi 1.14
215 pam-fi 1.28 Bool_t EvaluateClusterPositions();
216 pam-fi 1.25
217 pam-fi 1.14 void FillMiniStruct(cMini2track&);
218     void SetFromMiniStruct(cMini2track*);
219 pam-fi 1.12
220 pam-fi 1.24 Int_t GetClusterX_ID(int ip);
221     Int_t GetClusterY_ID(int ip);
222     Int_t GetLadder(int ip);
223     Int_t GetSensor(int ip);
224     Bool_t XGood(int ip){ return GetClusterX_ID(ip)!=-1; };
225     Bool_t YGood(int ip){ return GetClusterY_ID(ip)!=-1; };
226 pam-fi 1.39 void ResetXGood(int ip){ xgood[ip]=0; };
227 pam-fi 1.25 void ResetYGood(int ip){ ygood[ip]=0; };
228 pam-fi 1.36 /* void SetXGood(int ip, int clid, int is); */
229     /* void SetYGood(int ip, int clid, int is); */
230     void SetXGood(int ip, int clid, int il, int is, bool bad);
231     void SetYGood(int ip, int clid, int il, int is, bool bad);
232     void SetXGood(int ip, int clid, int il, int is){ SetXGood(ip,clid,il,is,false); };
233     void SetYGood(int ip, int clid, int il, int is){ SetYGood(ip,clid,il,is,false); };
234    
235 pam-fi 1.24
236     Bool_t BadClusterX(int ip){ return IsBad(ip,0); };
237     Bool_t BadClusterY(int ip){ return IsBad(ip,1); };
238    
239     Bool_t SaturatedClusterX(int ip){ return IsSaturated(ip,0); };
240     Bool_t SaturatedClusterY(int ip){ return IsSaturated(ip,1); };
241 pam-fi 1.20
242 pam-fi 1.31 Int_t GetClusterX_Multiplicity(int ip){ return (Int_t)(multmaxx[ip]/10000); };
243     Int_t GetClusterY_Multiplicity(int ip){ return (Int_t)(multmaxy[ip]/10000); };
244     Int_t GetClusterX_MaxStrip(int ip){ return (Int_t)(multmaxx[ip]%10000); };
245     Int_t GetClusterY_MaxStrip(int ip){ return (Int_t)(multmaxy[ip]%10000); };
246     Float_t GetClusterX_Seed(int ip){ return seedx[ip]; };
247     Float_t GetClusterY_Seed(int ip){ return seedy[ip]; };
248 pam-fi 1.36 /* Float_t GetClusterX_oordinatePU(int ip); */
249 pam-fi 1.31 /* Float_t GetClusterY_CoordinatePU(int ip); */
250    
251 pam-fi 1.34 Float_t GetYav();
252     Float_t GetXav();
253     Float_t GetZav();
254    
255     Int_t GetNColumns();
256    
257     Float_t GetDEDX_max(int ip, int iv);
258     Float_t GetDEDX_max(int iv){ return GetDEDX_max(-1,iv); };
259     Float_t GetDEDX_max(){ return GetDEDX_max(-1,-1); };
260     Float_t GetDEDX_min(int ip, int iv);
261     Float_t GetDEDX_min(int iv){ return GetDEDX_min(-1,iv); };
262     Float_t GetDEDX_min(){ return GetDEDX_min(-1,-1); };
263    
264     Float_t GetResidual_max(int ip, int iv);
265     Float_t GetResidual_max(int iv){ return GetResidual_max(-1,iv); };
266     Float_t GetResidual_max(){ return GetResidual_max(-1,-1); };
267 pam-fi 1.37 Float_t GetResidual_av(int ip, int iv);
268     Float_t GetResidual_av(int iv){ return GetResidual_av(-1,iv); };
269     Float_t GetResidual_av(){ return GetResidual_av(-1,-1); };
270 pam-fi 1.34
271     Int_t GetClusterX_Multiplicity_max();
272     Int_t GetClusterX_Multiplicity_min();
273     Int_t GetClusterY_Multiplicity_max();
274     Int_t GetClusterY_Multiplicity_min();
275    
276     Float_t GetClusterX_Seed_min();
277     Float_t GetClusterY_Seed_min();
278 pam-fi 1.31
279 mocchiut 1.1 TrkTrack* GetTrkTrack(){return this;};
280    
281 pam-fi 1.3 friend class TrkLevel2;
282    
283 pam-fi 1.35 ClassDef(TrkTrack,5);
284 mocchiut 1.1
285     };
286     /**
287     * \brief Class to describe single clusters ("singlets").
288     *
289     * Single clusters are clusters not associated to any track.
290     */
291     class TrkSinglet : public TObject {
292    
293     private:
294 pam-fi 1.8
295 mocchiut 1.1
296     public:
297 pam-fi 1.8
298 mocchiut 1.1 int plane; ///<plane
299     float coord[2]; ///<coordinate (on sensor 1 and 2)
300 pam-fi 1.24 float sgnl; ///<cluster signal in MIP (<0 if saturated)
301 pam-fi 1.35 int multmax; ///<cluster multiplicity and strip of maximum
302 mocchiut 1.1
303     TrkSinglet();
304     TrkSinglet(const TrkSinglet&);
305 pam-fi 1.15 ~TrkSinglet(){Delete();};
306 mocchiut 1.1
307     void Dump();
308 pam-fi 1.15 void Clear();
309     void Clear(Option_t *option){Clear();};
310     void Delete(){Clear();};
311 pam-fi 1.24 Float_t GetSignal(){return fabs(sgnl);}
312     Bool_t IsSaturated(){return (sgnl<0); };
313 pam-fi 1.35
314     Bool_t IsBad() { return multmax<=0; };
315     Int_t GetCluster_Multiplicity(){ return (Int_t)(abs(multmax)/10000); };
316     Int_t GetCluster_MaxStrip() { return (Int_t)(abs(multmax)%10000); };
317    
318    
319 pam-fi 1.3 friend class TrkLevel2;
320    
321 pam-fi 1.35 ClassDef(TrkSinglet,4);
322 mocchiut 1.1
323     };
324    
325     /**
326     * \brief Class to describe tracker LEVEL2 data.
327     *
328     * A tracker events is defined by some general variables, plus the collection of all the fitted tracks and all
329     * single clusters on X and Y views.
330     * Tracks and single clusters ("singlets") are described by the classes TrkTrack and TrkSinglet respectivelly.
331     *
332     * Each track may have an "image", due to the ambiguity on the Y view, which is stored also.
333     * Thus, the number of stored tracks ( ntrk() ) differs from the number of "physical" tracks ( GetNTracks() ).
334     * Proper methods allow to sort tracks and select the physical ones ( GetTracks() ).
335 pam-fi 1.28 *
336     * The event status indicates the processing status of data from each DSP, according to the following
337     * notation:
338     *
339 pam-fi 1.35 * LSB --> 0 missing packet
340     * 1 CRC error
341     * 2 on-line software alarm (latch-up, timeout ecc...)
342     * 3 jump in the trigger counter
343     * 4 decode error
344     * 5 n.clusters > maximum number (level1 processing)
345     * 6
346     * 7
347     * 8 n.clusters > maximum value (level2 processing)
348     * 9 n.couples per plane > maximum values (vector dimention)
349     * 10 n.doublets > maximum values
350     * 11 n.triplets > maximum values
351     * 12 n.yz-clouds > maximum values
352     * 13 n.xz-clouds > maximum values
353     * 14 n.candidate-tracks > maximum values
354     * 15 n.couples per plane > maximum values (for Hough transform)
355     * MSB --> 16
356 pam-fi 1.28 *
357     *
358 pam-fi 1.39 * For all data processed before June 2007 the event status was coded according to
359     * a different rule:
360     *
361     * Status of level1 processing
362     * 0 -- OK
363     * 1 -- missing packet
364     * 2 -- 1 CRC error
365     * 3 -- 2 on-line software alarm (latch-up flags asserted or n.transmitted-words = 0)
366     * 4 -- 3 jump in the trigger counter
367     * 10 -- 4 decode error
368     * 11 -- 5 n.clusters > maximum number (for level1 processing)
369     * Status of level2 processing
370     * 21 -- 0 n.clusters > maximum value (for level2 processing)
371     * 22 -- 1 n.couples per plane > maximum values (vector dimention)
372     * 23 -- 2 n.doublets > maximum values
373     * 24 -- 3 n.triplets > maximum values
374     * 25 -- 4 n.yz-clouds > maximum values
375     * 26 -- 5 n.xz-clouds > maximum values
376     * 27 -- 6 n.candidate-tracks > maximum values
377     * 28 -- 7 n.couples per plane > maximum values (for Hough transform)
378 pam-fi 1.28 *
379     *
380 mocchiut 1.1 */
381     class TrkLevel2 : public TObject {
382    
383     private:
384 pam-fi 1.15
385 mocchiut 1.1 public:
386    
387 pam-fi 1.15 Int_t good[12]; ///< event status
388 pam-fi 1.24 UInt_t VKmask[12]; ///< Viking-chip mask
389     UInt_t VKflag[12]; ///< Viking-chip flag
390 mocchiut 1.1
391     TClonesArray *Track; ///< fitted tracks
392     TClonesArray *SingletX; ///< x singlets
393     TClonesArray *SingletY; ///< y singlets
394    
395     TrkLevel2();
396     // TrkLevel2(cTrkLevel2 *);
397 pam-fi 1.11 ~TrkLevel2(){Delete();};
398 pam-fi 1.10
399 pam-fi 1.11 void Clear();
400 pam-fi 1.15 void Clear(Option_t *option){Clear();};
401 pam-fi 1.11 void Delete();
402 pam-fi 1.16 void Set();
403 pam-fi 1.40 int UnpackError(){ for(int i=0; i<12; i++)if(!StatusCheck(i,0x12))return 1; return 0;};
404 pam-fi 1.11
405     int ntrk() {return Track->GetEntries();} ///< number of stored track
406 mocchiut 1.1 int nclsx(){return SingletX->GetEntries();} ///< number of x singlets
407     int nclsy(){return SingletY->GetEntries();} ///< number of y singlets
408    
409     void Dump();
410 pam-fi 1.11 void SetFromLevel2Struct(cTrkLevel2 *, TrkLevel1 *);
411 pam-fi 1.18 void SetFromLevel2Struct(cTrkLevel2 *s2){ SetFromLevel2Struct(s2, NULL); };
412     void SetFromLevel2Struct(TrkLevel1 *l1) { SetFromLevel2Struct(&level2event_, l1); };
413     void SetFromLevel2Struct() { SetFromLevel2Struct(&level2event_); };
414 pam-fi 1.11 void GetLevel2Struct(cTrkLevel2 *) const;
415 pam-fi 1.3 void LoadField(TString);
416 pam-fi 1.25 float GetBX(float* v){return TrkParams::GetBX(v);};///< Bx (kGauss)
417     float GetBY(float* v){return TrkParams::GetBY(v);};///< By (kGauss)
418     float GetBZ(float* v){return TrkParams::GetBZ(v);};///< Bz (kGauss)
419 pam-fi 1.6 Float_t GetZTrk(Int_t);
420 pam-fi 1.34 Float_t GetXTrkLeft(){return XMAGNLOW;};
421     Float_t GetXTrkRight(){return XMAGNHIGH;};
422     Float_t GetYTrkLeft(){return YMAGNLOW;};
423     Float_t GetYTrkRight(){return YMAGNHIGH;};
424 pam-fi 1.6
425 pam-fi 1.24 Bool_t IsMaskedVK(int,int);
426     Bool_t GetVKMask(int,int);
427     Bool_t GetVKFlag(int,int);
428    
429 pam-fi 1.6 TrkSinglet *GetSingletX(int);
430     TrkSinglet *GetSingletY(int);
431    
432     TrkTrack *GetStoredTrack(int i);
433 pam-fi 1.3 Int_t GetSeqNo(Int_t i) {return (((TrkTrack *)Track->At(i))->seqno);}; ///< Returns track sequential number
434 pam-fi 1.24
435 pam-fi 1.11 TRefArray *GetTracks_NFitSorted();
436     TRefArray *GetTracks(){return this->GetTracks_NFitSorted();};
437    
438     Int_t GetNTracks();
439     TrkTrack* GetTrack(int i);
440 mocchiut 1.1 TrkTrack* GetTrackImage(int i);
441 pam-fi 1.11
442 pam-fi 1.3 TrkLevel2* GetTrkLevel2(){return this;}
443     TClonesArray* GetTrackArray(){return Track;};///< returns pointer to the track array
444    
445 pam-fi 1.28 void StatusDump(int view);
446     Bool_t StatusCheck(int view, int flagmask);
447    
448 pam-fi 1.24 ClassDef(TrkLevel2,3);
449 mocchiut 1.1
450     };
451    
452     #endif

  ViewVC Help
Powered by ViewVC 1.1.23