/[PAMELA software]/DarthVader/TrackerLevel2/inc/TrkLevel2.h
ViewVC logotype

Annotation of /DarthVader/TrackerLevel2/inc/TrkLevel2.h

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1.35 - (hide annotations) (download)
Wed Mar 5 17:00:18 2008 UTC (16 years, 10 months ago) by pam-fi
Branch: MAIN
CVS Tags: v5r00
Changes since 1.34: +55 -36 lines
File MIME type: text/plain
modified TrkSinglet, optimized DoTrack2, fixed bug in evaluation of effective angle

1 mocchiut 1.1 /**
2     * \file TrkLevel2.h
3     * \author Elena Vannuccini
4     */
5     #ifndef trklevel2_h
6     #define trklevel2_h
7    
8     #include <TObject.h>
9     #include <TObjArray.h>
10     #include <TClonesArray.h>
11 pam-fi 1.7 #include <TRefArray.h>
12 pam-fi 1.8 #include <TRef.h>
13 pam-fi 1.3
14 pam-fi 1.18 #include <TrkParams.h>
15 pam-fi 1.8 #include <TrkLevel1.h>
16 mocchiut 1.1
17 pam-fi 1.2 // z-coordinate of track state-vector reference-plane
18     #define ZINI 23.5
19 pam-fi 1.5 // (mechanical) z-coordinate of the tracker planes
20 pam-fi 1.27 #define ZTRK6 -22.22
21     #define ZTRK5 -13.31
22     #define ZTRK4 -4.41
23     #define ZTRK3 4.49
24     #define ZTRK2 13.39
25     #define ZTRK1 22.29
26     // magnet cavity dimensions
27     #define ZMAGNHIGH 21.83
28     #define ZMAGNLOW -21.83
29     #define XMAGNHIGH 8.07
30     #define XMAGNLOW -8.07
31     #define YMAGNHIGH 6.57
32     #define YMAGNLOW -6.57
33 pam-fi 1.35 // tof planes
34     #define ZS11 53.74
35     #define ZS12 53.04
36     #define ZS21 23.94
37     #define ZS22 23.44
38     #define ZS31 -23.49
39     #define ZS32 -24.34
40    
41 pam-fi 1.5 // (mechanical) x/y-coordinates of magnet cavity
42 pam-fi 1.34 /* #define XTRKL -8.1 */
43     /* #define XTRKR 8.1 */
44     /* #define YTRKL -6.6 */
45     /* #define YTRKR 6.6 */
46 pam-fi 1.2
47 mocchiut 1.1 /**
48     * \brief Class to describe, by points, a particle trajectory in the apparatus.
49     *
50     * The idea is to create it by integrating the equations of motion, given the
51     * track state vector and the z coordinates where to evaluate track position.
52     */
53     // ==================================================================
54     class Trajectory : public TObject{
55     private:
56    
57     public:
58    
59     int npoint; ///< number of evaluated points along the trajectory
60 pam-fi 1.35 float* x; //[npoint]
61     float* y; //[npoint]
62     float* z; //[npoint]
63     float* thx; //[npoint]
64     float* thy; //[npoint]
65     float* tl; //[npoint]
66 mocchiut 1.1
67 pam-fi 1.2 Trajectory();
68 mocchiut 1.1 Trajectory(int n);
69     Trajectory(int n, float* pz);
70 pam-fi 1.15 ~Trajectory(){Delete();};
71 mocchiut 1.1 void Dump();
72 pam-fi 1.15 void Delete();
73 mocchiut 1.1
74 pam-fi 1.13 int DoTrack2(float* al);
75 pam-fi 1.2 float GetLength(){float l=0; for(int i=0; i<npoint;i++)l=l+tl[i]; return l;};
76     float GetLength(int,int);
77    
78 pam-fi 1.35 ClassDef(Trajectory,3);
79 mocchiut 1.1
80     };
81     /**
82     * \brief Class to describe fitted tracks.
83     *
84     * A track is defined by the measured coordinates associated to it, the
85     * track status vector, plus other quantities.
86     * A track may have an "image", due to the ambiguity in the y view.
87 pam-fi 1.24 *
88     * Cluster flags: xgood[6], ygood[6]
89     *
90     * xgood/ygood = +/- 0lsccccccc
91 pam-fi 1.35 * ccccccc ID (1-7483647) of the included cluster
92     * s sensor number (1,2 - increasing y)
93     * l ladder number (1,2,3 - increasing x)
94     * +/- does-not/does include bad strips
95     *
96 mocchiut 1.1 */
97     // ==================================================================
98     class TrkTrack : public TObject {
99    
100     private:
101    
102 pam-fi 1.32 public:
103    
104 pam-fi 1.3 int seqno; ///<stored track sequential number
105     int image; ///<sequential number of track-image
106 pam-fi 1.8
107 pam-fi 1.22 float al[5]; ///<TRACK STATE VECTOR
108 mocchiut 1.1 float coval[5][5]; ///<covariance matrix
109 pam-fi 1.31 int xgood[6]; ///<cluster id for x-view (0 = view not included in the fit)
110     int ygood[6]; ///<cluster id for y-view (0 = view not included in the fit)
111 mocchiut 1.1 float xm[6]; ///<measured x coordinates
112     float ym[6]; ///<measured y coordinates
113     float zm[6]; ///<measured z coordinates
114     float resx[6]; ///<spatial resolution on X view
115     float resy[6]; ///<spatial resolution on y view
116 pam-fi 1.24 float tailx[6]; ///<spatial resolution tail on X view
117     float taily[6]; ///<spatial resolution tail on y view
118 mocchiut 1.1 float chi2; ///<chi2
119 pam-fi 1.31 int nstep; ///<n.step
120 pam-fi 1.12 float xv[6]; ///<calculated x coordinates
121 mocchiut 1.1 float yv[6]; ///<calculated y coordinates
122     float zv[6]; ///<calculated z coordinates
123     float axv[6]; ///<calculated angles (deg) on x view
124     float ayv[6]; ///<calculated angles (deg) on y view
125 pam-fi 1.24 float dedx_x[6]; ///<dE/dx in MIP (<0 if saturated)
126     float dedx_y[6]; ///<dE/dx in MIP (<0 if saturated)
127 pam-fi 1.31 int multmaxx[6]; ///<cluster multiplicity and strip of maximum on x view
128     int multmaxy[6]; ///<cluster multiplicity and strip of maximum on y view
129     float seedx[6]; ///< seed of the cluster x
130     float seedy[6]; ///< seed of the cluster y
131     float xpu[6]; ///< x coordinate in pitch units
132     float ypu[6]; ///< y coordinate in pitch units
133 pam-fi 1.3
134 pam-fi 1.35 float xGF[14]; ///<calculated x coordinates on GF reference planes
135     float yGF[14]; ///<calculated y coordinates on GF reference planes
136    
137 mocchiut 1.1 TrkTrack();
138     TrkTrack(const TrkTrack&);
139    
140 pam-fi 1.15 ~TrkTrack(){ Delete(); };
141 pam-fi 1.10
142 mocchiut 1.1 void Dump();
143 pam-fi 1.12 void Clear();
144 pam-fi 1.15 void Clear(Option_t *option){Clear();};
145 pam-fi 1.12 void Delete();
146 pam-fi 1.15 void Copy(TrkTrack&);
147 pam-fi 1.16 // void Set();
148    
149 pam-fi 1.3 Int_t GetSeqNo(){return seqno;} ///< Returns the track sequential number
150     Int_t GetImageSeqNo(){return image;} ///< Returns the track image sequential number
151 mocchiut 1.1 Bool_t HasImage(){return !(image==-1);} ///< Returns true if the track has an image
152 pam-fi 1.35 int DoTrack(Trajectory* t); ///< Evaluates the trajectory in the apparatus.
153     int DoTrack2(Trajectory* t); ///< Evaluates the trajectory in the apparatus.
154     float BdL(){return 0;}; ///< Evaluates the integral of B*dL along the track.
155 pam-fi 1.24 Int_t GetNX(){Int_t n=0; for(Int_t i=0; i<6; i++)n+=(Int_t)XGood(i); return n;};
156     Int_t GetNY(){Int_t n=0; for(Int_t i=0; i<6; i++)n+=(Int_t)YGood(i); return n;};
157 pam-fi 1.3 Int_t GetNtot(){return GetNX()+GetNY();};
158 mocchiut 1.1 Float_t GetRigidity();
159     Float_t GetDeflection();
160 pam-fi 1.24 Bool_t IsSaturated(int,int);
161     Bool_t IsSaturated(int);
162     Bool_t IsSaturated();
163     Bool_t IsBad(int,int);
164 mocchiut 1.1 Float_t GetDEDX();
165 pam-fi 1.28 Float_t GetDEDX(int ip);
166     Float_t GetDEDX(int ip,int iv);
167 pam-fi 1.24 Int_t GetLeverArmX();
168     Int_t GetLeverArmY();
169 pam-fi 1.29 Float_t GetChi2X();
170     Float_t GetChi2Y();
171     Float_t GetLnLX();
172     Float_t GetLnLY();
173 pam-fi 1.12
174 pam-fi 1.30 Float_t GetEffectiveAngle(int ip, int iv);
175    
176 pam-fi 1.12 void SetMeasure(double *xmeas, double *ymeas, double *zmeas);
177     void SetResolution(double *rx, double *ry);
178 pam-fi 1.26 void SetTail(double *tx, double *ty, double factor);
179     void SetStudentParam(int flag);
180 pam-fi 1.12 void SetGood(int *xg, int *yg);
181     void LoadField(TString s);
182 pam-fi 1.25 void Fit(double pfixed, int& fail, int iprint, int froml1);
183     void Fit(double pfixed, int& fail, int iprint){ Fit(pfixed,fail,iprint,0); };
184 pam-fi 1.12 void FitReset();
185 pam-fi 1.19 void SetTrackingMode(int trackmode);
186 pam-fi 1.21 void SetPrecisionFactor(double fact);
187     void SetStepMin(int istepmin);
188 pam-fi 1.33 void SetDeltaB(int id, double db);
189    
190 pam-fi 1.35 Bool_t IsInsideCavity(float);
191     Bool_t IsInsideCavity(){ return IsInsideCavity(0.); };
192     Bool_t IsInsideAcceptance();
193 pam-fi 1.14
194 pam-fi 1.28 Bool_t EvaluateClusterPositions();
195 pam-fi 1.25
196 pam-fi 1.14 void FillMiniStruct(cMini2track&);
197     void SetFromMiniStruct(cMini2track*);
198 pam-fi 1.12
199 pam-fi 1.24 Int_t GetClusterX_ID(int ip);
200     Int_t GetClusterY_ID(int ip);
201     Int_t GetLadder(int ip);
202     Int_t GetSensor(int ip);
203     Bool_t XGood(int ip){ return GetClusterX_ID(ip)!=-1; };
204     Bool_t YGood(int ip){ return GetClusterY_ID(ip)!=-1; };
205 pam-fi 1.25 void ResetXGood(int ip){ xgood[ip]=0; };
206     void ResetYGood(int ip){ ygood[ip]=0; };
207     void SetXGood(int ip, int clid, int is);
208     void SetYGood(int ip, int clid, int is);
209 pam-fi 1.24
210     Bool_t BadClusterX(int ip){ return IsBad(ip,0); };
211     Bool_t BadClusterY(int ip){ return IsBad(ip,1); };
212    
213     Bool_t SaturatedClusterX(int ip){ return IsSaturated(ip,0); };
214     Bool_t SaturatedClusterY(int ip){ return IsSaturated(ip,1); };
215 pam-fi 1.20
216 pam-fi 1.31 Int_t GetClusterX_Multiplicity(int ip){ return (Int_t)(multmaxx[ip]/10000); };
217     Int_t GetClusterY_Multiplicity(int ip){ return (Int_t)(multmaxy[ip]/10000); };
218     Int_t GetClusterX_MaxStrip(int ip){ return (Int_t)(multmaxx[ip]%10000); };
219     Int_t GetClusterY_MaxStrip(int ip){ return (Int_t)(multmaxy[ip]%10000); };
220     Float_t GetClusterX_Seed(int ip){ return seedx[ip]; };
221     Float_t GetClusterY_Seed(int ip){ return seedy[ip]; };
222     /* Float_t GetClusterX_CoordinatePU(int ip); */
223     /* Float_t GetClusterY_CoordinatePU(int ip); */
224    
225 pam-fi 1.34 Float_t GetYav();
226     Float_t GetXav();
227     Float_t GetZav();
228    
229     Int_t GetNColumns();
230    
231     Float_t GetDEDX_max(int ip, int iv);
232     Float_t GetDEDX_max(int iv){ return GetDEDX_max(-1,iv); };
233     Float_t GetDEDX_max(){ return GetDEDX_max(-1,-1); };
234     Float_t GetDEDX_min(int ip, int iv);
235     Float_t GetDEDX_min(int iv){ return GetDEDX_min(-1,iv); };
236     Float_t GetDEDX_min(){ return GetDEDX_min(-1,-1); };
237    
238     Float_t GetResidual_max(int ip, int iv);
239     Float_t GetResidual_max(int iv){ return GetResidual_max(-1,iv); };
240     Float_t GetResidual_max(){ return GetResidual_max(-1,-1); };
241    
242     Int_t GetClusterX_Multiplicity_max();
243     Int_t GetClusterX_Multiplicity_min();
244     Int_t GetClusterY_Multiplicity_max();
245     Int_t GetClusterY_Multiplicity_min();
246    
247     Float_t GetClusterX_Seed_min();
248     Float_t GetClusterY_Seed_min();
249 pam-fi 1.31
250 mocchiut 1.1 TrkTrack* GetTrkTrack(){return this;};
251    
252 pam-fi 1.3 friend class TrkLevel2;
253    
254 pam-fi 1.35 ClassDef(TrkTrack,5);
255 mocchiut 1.1
256     };
257     /**
258     * \brief Class to describe single clusters ("singlets").
259     *
260     * Single clusters are clusters not associated to any track.
261     */
262     class TrkSinglet : public TObject {
263    
264     private:
265 pam-fi 1.8
266 mocchiut 1.1
267     public:
268 pam-fi 1.8
269 mocchiut 1.1 int plane; ///<plane
270     float coord[2]; ///<coordinate (on sensor 1 and 2)
271 pam-fi 1.24 float sgnl; ///<cluster signal in MIP (<0 if saturated)
272 pam-fi 1.35 int multmax; ///<cluster multiplicity and strip of maximum
273 mocchiut 1.1
274     TrkSinglet();
275     TrkSinglet(const TrkSinglet&);
276 pam-fi 1.15 ~TrkSinglet(){Delete();};
277 mocchiut 1.1
278     void Dump();
279 pam-fi 1.15 void Clear();
280     void Clear(Option_t *option){Clear();};
281     void Delete(){Clear();};
282 pam-fi 1.24 Float_t GetSignal(){return fabs(sgnl);}
283     Bool_t IsSaturated(){return (sgnl<0); };
284 pam-fi 1.35
285     Bool_t IsBad() { return multmax<=0; };
286     Int_t GetCluster_Multiplicity(){ return (Int_t)(abs(multmax)/10000); };
287     Int_t GetCluster_MaxStrip() { return (Int_t)(abs(multmax)%10000); };
288    
289    
290 pam-fi 1.3 friend class TrkLevel2;
291    
292 pam-fi 1.35 ClassDef(TrkSinglet,4);
293 mocchiut 1.1
294     };
295    
296     /**
297     * \brief Class to describe tracker LEVEL2 data.
298     *
299     * A tracker events is defined by some general variables, plus the collection of all the fitted tracks and all
300     * single clusters on X and Y views.
301     * Tracks and single clusters ("singlets") are described by the classes TrkTrack and TrkSinglet respectivelly.
302     *
303     * Each track may have an "image", due to the ambiguity on the Y view, which is stored also.
304     * Thus, the number of stored tracks ( ntrk() ) differs from the number of "physical" tracks ( GetNTracks() ).
305     * Proper methods allow to sort tracks and select the physical ones ( GetTracks() ).
306 pam-fi 1.28 *
307     * The event status indicates the processing status of data from each DSP, according to the following
308     * notation:
309     *
310 pam-fi 1.35 * LSB --> 0 missing packet
311     * 1 CRC error
312     * 2 on-line software alarm (latch-up, timeout ecc...)
313     * 3 jump in the trigger counter
314     * 4 decode error
315     * 5 n.clusters > maximum number (level1 processing)
316     * 6
317     * 7
318     * 8 n.clusters > maximum value (level2 processing)
319     * 9 n.couples per plane > maximum values (vector dimention)
320     * 10 n.doublets > maximum values
321     * 11 n.triplets > maximum values
322     * 12 n.yz-clouds > maximum values
323     * 13 n.xz-clouds > maximum values
324     * 14 n.candidate-tracks > maximum values
325     * 15 n.couples per plane > maximum values (for Hough transform)
326     * MSB --> 16
327 pam-fi 1.28 *
328     *
329     * For all data processed before June 2007 the event status was coded according to
330     * a different rule:
331     *
332     * Status of level1 processing
333     * 0 -- OK
334     * 1 -- missing packet
335     * 2 -- 1 CRC error
336     * 3 -- 2 on-line software alarm (latch-up flags asserted or n.transmitted-words = 0)
337     * 4 -- 3 jump in the trigger counter
338     * 10 -- 4 decode error
339     * 11 -- 5 n.clusters > maximum number (for level1 processing)
340     * Status of level2 processing
341     * 21 -- 0 n.clusters > maximum value (for level2 processing)
342     * 22 -- 1 n.couples per plane > maximum values (vector dimention)
343     * 23 -- 2 n.doublets > maximum values
344     * 24 -- 3 n.triplets > maximum values
345     * 25 -- 4 n.yz-clouds > maximum values
346     * 26 -- 5 n.xz-clouds > maximum values
347     * 27 -- 6 n.candidate-tracks > maximum values
348     * 28 -- 7 n.couples per plane > maximum values (for Hough transform)
349     *
350     *
351 mocchiut 1.1 */
352     class TrkLevel2 : public TObject {
353    
354     private:
355 pam-fi 1.15
356 mocchiut 1.1 public:
357    
358 pam-fi 1.15 Int_t good[12]; ///< event status
359 pam-fi 1.24 UInt_t VKmask[12]; ///< Viking-chip mask
360     UInt_t VKflag[12]; ///< Viking-chip flag
361 mocchiut 1.1
362     TClonesArray *Track; ///< fitted tracks
363     TClonesArray *SingletX; ///< x singlets
364     TClonesArray *SingletY; ///< y singlets
365    
366     TrkLevel2();
367     // TrkLevel2(cTrkLevel2 *);
368 pam-fi 1.11 ~TrkLevel2(){Delete();};
369 pam-fi 1.10
370 pam-fi 1.11 void Clear();
371 pam-fi 1.15 void Clear(Option_t *option){Clear();};
372 pam-fi 1.11 void Delete();
373 pam-fi 1.16 void Set();
374 pam-fi 1.11
375     int ntrk() {return Track->GetEntries();} ///< number of stored track
376 mocchiut 1.1 int nclsx(){return SingletX->GetEntries();} ///< number of x singlets
377     int nclsy(){return SingletY->GetEntries();} ///< number of y singlets
378    
379     void Dump();
380 pam-fi 1.11 void SetFromLevel2Struct(cTrkLevel2 *, TrkLevel1 *);
381 pam-fi 1.18 void SetFromLevel2Struct(cTrkLevel2 *s2){ SetFromLevel2Struct(s2, NULL); };
382     void SetFromLevel2Struct(TrkLevel1 *l1) { SetFromLevel2Struct(&level2event_, l1); };
383     void SetFromLevel2Struct() { SetFromLevel2Struct(&level2event_); };
384 pam-fi 1.11 void GetLevel2Struct(cTrkLevel2 *) const;
385 pam-fi 1.3 void LoadField(TString);
386 pam-fi 1.25 float GetBX(float* v){return TrkParams::GetBX(v);};///< Bx (kGauss)
387     float GetBY(float* v){return TrkParams::GetBY(v);};///< By (kGauss)
388     float GetBZ(float* v){return TrkParams::GetBZ(v);};///< Bz (kGauss)
389 pam-fi 1.6 Float_t GetZTrk(Int_t);
390 pam-fi 1.34 Float_t GetXTrkLeft(){return XMAGNLOW;};
391     Float_t GetXTrkRight(){return XMAGNHIGH;};
392     Float_t GetYTrkLeft(){return YMAGNLOW;};
393     Float_t GetYTrkRight(){return YMAGNHIGH;};
394 pam-fi 1.6
395 pam-fi 1.24 Bool_t IsMaskedVK(int,int);
396     Bool_t GetVKMask(int,int);
397     Bool_t GetVKFlag(int,int);
398    
399 pam-fi 1.6 TrkSinglet *GetSingletX(int);
400     TrkSinglet *GetSingletY(int);
401    
402     TrkTrack *GetStoredTrack(int i);
403 pam-fi 1.3 Int_t GetSeqNo(Int_t i) {return (((TrkTrack *)Track->At(i))->seqno);}; ///< Returns track sequential number
404 pam-fi 1.24
405 pam-fi 1.11 TRefArray *GetTracks_NFitSorted();
406     TRefArray *GetTracks(){return this->GetTracks_NFitSorted();};
407    
408     Int_t GetNTracks();
409     TrkTrack* GetTrack(int i);
410 mocchiut 1.1 TrkTrack* GetTrackImage(int i);
411 pam-fi 1.11
412 pam-fi 1.3 TrkLevel2* GetTrkLevel2(){return this;}
413     TClonesArray* GetTrackArray(){return Track;};///< returns pointer to the track array
414    
415 pam-fi 1.28 void StatusDump(int view);
416     Bool_t StatusCheck(int view, int flagmask);
417    
418 pam-fi 1.24 ClassDef(TrkLevel2,3);
419 mocchiut 1.1
420     };
421    
422     #endif

  ViewVC Help
Powered by ViewVC 1.1.23